Gradle User Manual
Version 7.3.2

Version 7.3.2

Table of Contents

About Gradle
What is Gradle?
Getting Started
Getting Started
Installing Gradle
Troubleshooting builds
Compatibility Matrix
Upgrading and Migrating
Upgrading your build from Gradle 6.x to the latest
Upgrading your build from Gradle 5.x to 6.0
Upgrading your build from Gradle 4.x to 5.0
Migrating Builds From Apache Maven
Migrating Builds From Apache Ant
Running Gradle Builds
Build Environment
The Gradle Daemon
Initialization Scripts
Executing Multi-Project Builds
Build Cache
Authoring Gradle Builds
Build Script Basics
Authoring Tasks
Writing Build Scripts
Working With Files
Using Gradle Plugins
Build Lifecycle
Logging
Structuring and Building a Software Component with Gradle
Sharing Build Logic between Subprojects
Fine Tuning the Project Layout
Declaring Dependencies between Subprojects
Configuration time and execution time
Organizing Gradle Projects
Best practices for authoring maintainable builds
Lazy Configuration
Testing Build Logic with TestKit
Using Ant from Gradle
Dependency Management

© O B

12

14

21

23

23

42

61

87
107
126
126
135
143
153
158
176
176
194
272
287
351
373
387
395
399
400
402
412
414
421
431
459
473
492

Learning the Basics

Declaring Versions

Controlling Transitive Dependencies

Producing and Consuming Variants of Libraries

Working in a Multi-repo Environment

Publishing Libraries
Java & Other JVM Projects

Building Java & JVM projects

Testing in Java & JVM projects

Managing Dependencies of JVM Projects
C++ & Other Native Projects

Building C++ projects

Testing in C++ projects

Building Swift projects

Testing in Swift projects
Native Projects using the Software Model

Building native software

Implementing model rules in a plugin
Extending Gradle

Developing Custom Gradle Task Types

Developing Custom Gradle Plugins

Developing Custom Gradle Types

Gradle Plugin Development Plugin
Reference

A Groovy Build Script Primer

Gradle Kotlin DSL Primer

Gradle Plugin Reference

Command-Line Interface

Gradle & Third-party Tools

The Gradle Wrapper

The Directories and Files Gradle Uses
Plugins

The ANTLR Plugin

The Application Plugin

The Base Plugin

Build Init Plugin

The Checkstyle Plugin

The CodeNarc Plugin

The Distribution Plugin

The Ear Plugin

The Eclipse Plugins

492
601
631
730
801
809
838
838
864
902
907
907
917
918
927
936
936
975
976
976
1007
1029
1039
1042
1042
1047
1082
1085
1101
1105
1114
1117
1117
1120
1128
1131
1138
1141
1143
1148
1154

The Groovy Plugin
The IDEA Plugin
Ivy Publish Plugin
The JaCoCo Plugin
The Java Plugin
The Java Library Plugin
The Java Library Distribution Plugin
The Java Platform Plugin
Maven Publish Plugin
The PMD Plugin
The Scala Plugin
The Signing Plugin
The War Plugin
License Information
License Information
Gradle Documentation

Gradle Build Scan Plugin

1162
1173
1180
1195
1206
1225
1240
1242
1249
1271
1273
1284
1294
1300
1301
1301
1301

About Gradle

What is Gradle?

Overview

Gradle is an open-source build automation tool that is designed to be flexible enough to build
almost any type of software. The following is a high-level overview of some of its most important
features:

High performance

Gradle avoids unnecessary work by only running the tasks that need to run because their inputs
or outputs have changed. You can also use a build cache to enable the reuse of task outputs from
previous runs or even from a different machine (with a shared build cache).

There are many other optimizations that Gradle implements and the development team
continually work to improve Gradle’s performance.

JVM foundation

Gradle runs on the JVM and you must have a Java Development Kit (JDK) installed to use it. This
is a bonus for users familiar with the Java platform as you can use the standard Java APIs in
your build logic, such as custom task types and plugins. It also makes it easy to run Gradle on
different platforms.

Note that Gradle isn’t limited to building just JVM projects, and it even comes packaged with
support for building native projects.

Conventions

Gradle takes a leaf out of Maven’s book and makes common types of projects — such as Java
projects — easy to build by implementing conventions. Apply the appropriate plugins and you
can easily end up with slim build scripts for many projects. But these conventions don’t limit
you: Gradle allows you to override them, add your own tasks, and make many other
customizations to your convention-based builds.

Extensibility

You can readily extend Gradle to provide your own task types or even build model. See the
Android build support for an example of this: it adds many new build concepts such as flavors
and build types.

IDE support

Several major IDEs allow you to import Gradle builds and interact with them: Android Studio,
Intelli] IDEA, Eclipse, and NetBeans. Gradle also has support for generating the solution files
required to load a project into Visual Studio.

Insight

Build scans provide extensive information about a build run that you can use to identify build
issues. They are particularly good at helping you to identify problems with a build’s

https://en.wikipedia.org/wiki/Build_automation
https://scans.gradle.com/

performance. You can also share build scans with others, which is particularly useful if you need
to ask for advice in fixing an issue with the build.

Five things you need to know about Gradle

Gradle is a flexible and powerful build tool that can easily feel intimidating when you first start.
However, understanding the following core principles will make Gradle much more approachable
and you will become adept with the tool before you know it.

1. Gradle is a general-purpose build tool

Gradle allows you to build any software, because it makes few assumptions about what you’re
trying to build or how it should be done. The most notable restriction is that dependency
management currently only supports Maven- and Ivy-compatible repositories and the filesystem.

This doesn’t mean you have to do a lot of work to create a build. Gradle makes it easy to build
common types of project — say Java libraries — by adding a layer of conventions and prebuilt
functionality through plugins. You can even create and publish custom plugins to encapsulate your
own conventions and build functionality.

2. The core model is based on tasks

Gradle models its builds as Directed Acyclic Graphs (DAGs) of tasks (units of work). What this
means is that a build essentially configures a set of tasks and wires them together — based on their
dependencies —to create that DAG. Once the task graph has been created, Gradle determines
which tasks need to be run in which order and then proceeds to execute them.

This diagram shows two example task graphs, one abstract and the other concrete, with the
dependencies between the tasks represented as arrows:

Partial task graph for a
standard Java build

[compiledava] [processResources]

[Task D J (Task E J classes

Generic task graph

Depends on

assemble

Figure 1. Two examples of Gradle task graphs

Almost any build process can be modeled as a graph of tasks in this way, which is one of the
reasons why Gradle is so flexible. And that task graph can be defined by both plugins and your own
build scripts, with tasks linked together via the task dependency mechanism.

Tasks themselves consist of:

» Actions — pieces of work that do something, like copy files or compile source
* Inputs — values, files and directories that the actions use or operate on

* Outputs — files and directories that the actions modify or generate

In fact, all of the above are optional depending on what the task needs to do. Some tasks — such as
the standard lifecycle tasks — don’t even have any actions. They simply aggregate multiple tasks
together as a convenience.

You choose which task to run. Save time by specifying the task that does what you
need, but no more than that. If you just want to run the unit tests, choose the task
that does that — typically test. If you want to package an application, most builds
have an assemble task for that.

NOTE

One last thing: Gradle’s incremental build support is robust and reliable, so keep your builds
running fast by avoiding the clean task unless you actually do want to perform a clean.

3. Gradle has several fixed build phases

It’s important to understand that Gradle evaluates and executes build scripts in three phases:
1. Initialization
Sets up the environment for the build and determine which projects will take part in it.
2. Configuration

Constructs and configures the task graph for the build and then determines which tasks need to
run and in which order, based on the task the user wants to run.

3. Execution

Runs the tasks selected at the end of the configuration phase.

These phases form Gradle’s Build Lifecycle.

Comparison to Apache Maven terminology

Gradle’s build phases are not like Maven’s phases. Maven uses its phases to divide
NOTE the build execution into multiple stages. They serve a similar role to Gradle’s task
graph, although less flexibly.

Maven’s concept of a build lifecycle is loosely similar to Gradle’s lifecycle tasks.

Well-designed build scripts consist mostly of declarative configuration rather than imperative logic.

That configuration is understandably evaluated during the configuration phase. Even so, many
such builds also have task actions — for example via dolLast {} and doFirst {} blocks — which are
evaluated during the execution phase. This is important because code evaluated during the
configuration phase won’t see changes that happen during the execution phase.

Another important aspect of the configuration phase is that everything involved in it is evaluated
every time the build runs. That is why it’s best practice to avoid expensive work during the
configuration phase. Build scans can help you identify such hotspots, among other things.

4. Gradle is extensible in more ways than one

It would be great if you could build your project using only the build logic bundled with Gradle, but
that’s rarely possible. Most builds have some special requirements that mean you need to add
custom build logic.

Gradle provides several mechanisms that allow you to extend it, such as:
* Custom task types.

When you want the build to do some work that an existing task can’t do, you can simply write
your own task type. It’s typically best to put the source file for a custom task type in the buildSrc
directory or in a packaged plugin. Then you can use the custom task type just like any of the
Gradle-provided ones.

e Custom task actions.

You can attach custom build logic that executes before or after a task via the Task.doFirst() and
Task.doLast() methods.

» Extra properties on projects and tasks.

These allows you to add your own properties to a project or task that you can then use from
your own custom actions or any other build logic. Extra properties can even be applied to tasks
that aren’t explicitly created by you, such as those created by Gradle’s core plugins.

» Custom conventions.

Conventions are a powerful way to simplify builds so that users can understand and use them
more easily. This can be seen with builds that use standard project structures and naming
conventions, such as Java builds. You can write your own plugins that provide conventions —
they just need to configure default values for the relevant aspects of a build.

¢ A custom model.

Gradle allows you to introduce new concepts into a build beyond tasks, files and dependency
configurations. You can see this with most language plugins, which add the concept of source
sets to a build. Appropriate modeling of a build process can greatly improve a build’s ease of use
and its efficiency.

https://scans.gradle.com/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
implementing_gradle_plugins.pdf#modeling_dsl_like_apis

5. Build scripts operate against an API

It’s easy to view Gradle’s build scripts as executable code, because that’s what they are. But that’s an
implementation detail: well-designed build scripts describe what steps are needed to build the
software, not how those steps should do the work. That’s a job for custom task types and plugins.

There is a common misconception that Gradle’s power and flexibility come from the
fact that its build scripts are code. This couldn’t be further from the truth. It’s the

NOTE underlying model and API that provide the power. As we recommend in our best
practices, you should avoid putting much, if any, imperative logic in your build
scripts.

Yet there is one area in which it is useful to view a build script as executable code: in understanding
how the syntax of the build script maps to Gradle’s API. The API documentation — formed of the
Groovy DSL Reference and the Javadocs — lists methods and properties, and refers to closures and
actions. What do these mean within the context of a build script? Check out the Groovy Build Script
Primer to learn the answer to that question so that you can make effective use of the API
documentation.

As Gradle runs on the JVM, build scripts can also use the standard Java APIL. Groovy
NOTE build scripts can additionally use the Groovy APIs, while Kotlin build scripts can use
the Kotlin ones.

https://docs.gradle.org/7.3.2/dsl/
https://docs.gradle.org/7.3.2/javadoc/
https://docs.oracle.com/javase/8/docs/api

Getting Started

Getting Started

Everyone has to start somewhere and if you’re new to Gradle, this is where to begin.

Before you start

In order to use Gradle effectively, you need to know what it is and understand some of its
fundamental concepts. So before you start using Gradle in earnest, we highly recommend you read
What is Gradle?.

Even if you’re experienced with using Gradle, we suggest you read the section 5 things you need to
know about Gradle as it clears up some common misconceptions.

Installation

If all you want to do is run an existing Gradle build, then you don’t need to install Gradle if the
build has a Gradle Wrapper, identifiable via the gradlew and/or gradlew.bat files in the root of the
build. You just need to make sure your system satisfies Gradle’s prerequisites.

Android Studio comes with a working installation of Gradle, so you don’t need to install Gradle
separately in that case.

In order to create a new build or add a Wrapper to an existing build, you will need to install Gradle
according to these instructions. Note that there may be other ways to install Gradle in addition to
those described on that page, since it’s nearly impossible to keep track of all the package managers
out there.

Try Gradle

Actively using Gradle is a great way to learn about it, so once you’ve installed Gradle, try one of the
introductory hands-on tutorials:

* Building Android apps

* Building Java applications

* Building Java libraries

* Building Groovy applications

* Building Groovy libraries

* Building Scala applications

* Building Scala libraries

* Building Kotlin JVM applications

* Building Kotlin JVM libraries

* Building C++ applications

../samples/sample_building_android_apps.html
../samples/sample_building_java_applications.html
../samples/sample_building_java_libraries.html
../samples/sample_building_groovy_applications.html
../samples/sample_building_groovy_libraries.html
../samples/sample_building_scala_applications.html
../samples/sample_building_scala_libraries.html
../samples/sample_building_kotlin_applications.html
../samples/sample_building_kotlin_libraries.html
../samples/sample_building_cpp_applications.html

Building C++ libraries
Building Swift applications
Building Swift libraries

Creating build scans

There are more samples available on the samples pages.

Command line vs IDEs

Some folks are hard-core command-line users, while others prefer to never leave the comfort of
their IDE. Many people happily use both and Gradle endeavors not to discriminate. Gradle is
supported by several major IDEs and everything that can be done from the command line is
available to IDEs via the Tooling API.

Android Studio and Intelli] IDEA users should consider using Kotlin DSL build scripts for the
superior IDE support when editing them.

Executing Gradle builds

If you follow any of the tutorials linked above, you will execute a Gradle build. But what do you do
if you’re given a Gradle build without any instructions?

Here are some useful steps to follow:

1.

Determine whether the project has a Gradle wrapper and use it if it’s there — the main IDEs
default to using the wrapper when it’s available.

Discover the project structure.

Either import the build with an IDE or run gradle projects from the command line. If only the
root project is listed, it’s a single-project build. Otherwise it’s a multi-project build.

Find out what tasks you can run.

If you have imported the build into an IDE, you should have access to a view that displays all the
available tasks. From the command line, run gradle tasks.

Learn more about the tasks via gradle help --task <taskname>.

The help task can display extra information about a task, including which projects contain that
task and what options the task supports.

Run the task that you are interested in.

Many convention-based builds integrate with Gradle’s lifecycle tasks, so use those when you
don’t have something more specific you want to do with the build. For example, most builds
have clean, check, assemble and build tasks.

From the command line, just run gradle <taskname> to execute a particular task. You can learn
more about command-line execution in the corresponding user manual chapter. If you’re using

../samples/sample_building_cpp_libraries.html
../samples/sample_building_swift_applications.html
../samples/sample_building_swift_libraries.html
https://scans.gradle.com/
../samples/index.html

an IDE, check its documentation to find out how to run a task.

Gradle builds often follow standard conventions on project structure and tasks, so if you’re familiar
with other builds of the same type — such as Java, Android or native builds — then the file and
directory structure of the build should be familiar, as well as many of the tasks and project
properties.

For more specialized builds or those with significant customizations, you should ideally have access
to documentation on how to run the build and what build properties you can configure.

Authoring Gradle builds

Learning to create and maintain Gradle builds is a process, and one that takes a little time. We
recommend that you start with the appropriate core plugins and their conventions for your project,
and then gradually incorporate customizations as you learn more about the tool.

Here are some useful first steps on your journey to mastering Gradle:
1. Try one or two basic tutorials to see what a Gradle build looks like, particularly the ones that
match the type of project you work with (Java, native, Android, etc.).
2. Make sure you’ve read 5 things you need to know about Gradle!
3. Learn about the fundamental elements of a Gradle build: projects, tasks, and the file API.

4. If you are building software for the JVM, be sure to read about the specifics of those types of
projects in Building Java & JVM projects and Testing in Java & JVM projects.

5. Familiarize yourself with the core plugins that come packaged with Gradle, as they provide a lot
of useful functionality out of the box.

6. Learn how to author maintainable build scripts and best organize your Gradle projects.

The user manual contains a lot of other useful information and you can find samples
demonstrating various Gradle features on the samples pages.

Integrating 3rd-party tools with Gradle

Gradle’s flexibility means that it readily works with other tools, such as those listed on our Gradle &
Third-party Tools page.

There are two main modes of integration:

* A tool drives Gradle — uses it to extract information about a build and run it — via the Tooling
API

* Gradle invokes or generates information for a tool via the 3rd-party tool’s APIs — this is usually
done via plugins and custom task types

Tools that have existing Java-based APIs are generally straightforward to integrate. You can find
many such integrations on Gradle’s plugin portal.

../samples/index.html
https://plugins.gradle.org/

Installing Gradle

You can install the Gradle build tool on Linux, macOS, or Windows. This document covers installing
using a package manager like SDKMAN! or Homebrew, as well as manual installation.

Use of the Gradle Wrapper is the recommended way to upgrade Gradle.

You can find all releases and their checksums on the releases page.

Prerequisites
Gradle runs on all major operating systems and requires only a Java Development Kit version 8 or

higher to run. To check, run java -version. You should see something like this:

0 java -version

java version "1.8.0_151"

Java(TM) SE Runtime Environment (build 1.8.0_151-b12)

Java HotSpot(TM) 64-Bit Server VM (build 25.151-b12, mixed mode)

Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any
existing Groovy installation is ignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA_HOME
environment variable to point to the installation directory of the desired JDK.

See the full compatibility notes for Java, Groovy, Kotlin and Android.

Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on most
Unix-like systems (macOS, Linux, Cygwin, Solaris and FreeBSD). We deploy and maintain the
versions available from SDKMAN!.

0 sdk install gradle
Homebrew is "the missing package manager for macOS".
0 brew install gradle

Other package managers are available, but the version of Gradle distributed by them is not
controlled by Gradle, Inc. Linux package managers may distribute a modified version of Gradle that
is incompatible or incomplete when compared to the official version (available from SDKMAN! or
below).

0 Proceed to next steps

https://gradle.org/releases
https://jdk.java.net/
http://sdkman.io
http://brew.sh

Installing manually

Step 1. Download the latest Gradle distribution
The distribution ZIP file comes in two flavors:

* Binary-only (bin)

» Complete (all) with docs and sources

Need to work with an older version? See the releases page.

Step 2. Unpack the distribution

Linux & MacOS users

Unzip the distribution zip file in the directory of your choosing, e.g.:

0 mkdir /opt/gradle

0 unzip -d /opt/gradle gradle-7.3.2-bin.zip

0 1s /opt/gradle/gradle-7.3.2

LICENSE NOTICE bin README init.d 1ib media

Microsoft Windows users

Create a new directory C:\Gradle with File Explorer.

Open a second File Explorer window and go to the directory where the Gradle distribution was
downloaded. Double-click the ZIP archive to expose the content. Drag the content folder gradle-
7.3.2 to your newly created C:\Gradle folder.

Alternatively, you can unpack the Gradle distribution ZIP into C:\Gradle using an archiver tool of
your choice.

Step 3. Configure your system environment

To run Gradle, the path to the unpacked files from the Gradle website need to be on your terminal’s
path. The steps to do this are different for each operating system.

Linux & MacOS users

Configure your PATH environment variable to include the bin directory of the unzipped distribution,
e.g.

0 export PATH=$PATH:/opt/gradle/gradle-7.3.2/bin

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your PATH, you can add
$GRADLE_HOME/bin to your PATH. When upgrading to a different version of Gradle, just change the
GRADLE_HOME environment variable.

https://gradle.org/releases
https://gradle.org/releases

Microsoft Windows users

In File Explorer right-click on the This PC (or Computer) icon, then click Properties — Advanced
System Settings — Environmental Variables.

Under System Variables select Path, then click Edit. Add an entry for C:\Gradle\gradle-7.3.2\bin.
Click OK to save.

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your Path, you can add
%GRADLE_HOME%/bin to your Path. When upgrading to a different version of Gradle, just change the
GRADLE_HOME environment variable.

0 Proceed to next steps

Verifying installation
Open a console (or a Windows command prompt) and run gradle -v to run gradle and display the
version, e.g.:

0 gradle -v

(environment specific information)

If you run into any trouble, see the section on troubleshooting installation.

You can verify the integrity of the Gradle distribution by downloading the SHA-256 file (available
from the releases page) and following these verification instructions.

Next steps

Now that you have Gradle installed, use these resources for getting started:

* Create your first Gradle project by following one of our step-by-step samples.

* Sign up for a live introductory Gradle training with a core engineer.

* Learn how to achieve common tasks through the command-line interface.

* Configure Gradle execution, such as use of an HTTP proxy for downloading dependencies.

* Subscribe to the Gradle Newsletter for monthly release and community updates.

Troubleshooting builds

The following is a collection of common issues and suggestions for addressing them. You can get
other tips and search the Gradle forums and StackOverflow #gradle answers, as well as Gradle

https://gradle.org/releases
../samples/index.html
https://gradle.org/training/intro-to-gradle/
https://newsletter.gradle.com/
https://discuss.gradle.org/c/help-discuss
https://stackoverflow.com/questions/tagged/gradle

documentation from help.gradle.org.

Troubleshooting Gradle installation

If you followed the installation instructions, and aren’t able to execute your Gradle build, here are
some tips that may help.

If you installed Gradle outside of just invoking the Gradle Wrapper, you can check your Gradle
installation by running gradle --version in a terminal.

You should see something like this:

0 gradle --version

Build time: 2020-06-02 20:46:21 UTC

Revision: a27f41e4ae5e8a41ab9b19f8dd6d86d7b384dad4

Kotlin: 1.3.72

Groovy: 2.5.11

Ant: Apache Ant(TM) version 1.10.7 compiled on September 1 2019
JVM: 14 (AdoptOpen]DK 14+36)

0S: Mac 0S X 10.15.2 x86_64

If not, here are some things you might see instead.

Command not found: gradle

If you get "command not found: gradle", you need to ensure that Gradle is properly added to your
PATH.

JAVA_HOME is set to an invalid directory

If you get something like:

ERROR: JAVA_HOME is set to an invalid directory

Please set the JAVA_HOME variable in your environment to match the location of your
Java installation.

You’ll need to ensure that a Java Development Kit version 8 or higher is properly installed, the
JAVA_HOME environment variable is set, and Java is added to your PATH.

https://help.gradle.org/
https://jdk.java.net/
https://www.java.com/en/download/help/index_installing.xml
https://www.java.com/en/download/help/path.xml
https://www.java.com/en/download/help/path.xml

Permission denied

If you get "permission denied", that means that Gradle likely exists in the correct place, but it is not
executable. You can fix this using chmod +x path/to/executable on *nix-based systems.

Other installation failures

If gradle --version works, but all of your builds fail with the same error, it is possible there is a
problem with one of your Gradle build configuration scripts.

You can verify the problem is with Gradle scripts by running gradle help which executes
configuration scripts, but no Gradle tasks. If the error persists, build configuration is problematic. If
not, then the problem exists within the execution of one or more of the requested tasks (Gradle
executes configuration scripts first, and then executes build steps).

Debugging dependency resolution

Common dependency resolution issues such as resolving version conflicts are covered in
Troubleshooting Dependency Resolution.

You can see a dependency tree and see which resolved dependency versions differed from what
was requested by clicking the Dependencies view and using the search functionality, specifying the
resolution reason.

20O (< [l & scans.gradle.com & i} [l ’T
ﬁ Build Scan e v/ gradle :docs:userguide... Feb 21, 2018 3:06:35 PM MST
E Summary Search
Console IOg | [Resolution: Selected different from requested X] |
##+ Timeline
“'w LR . Found 3 dependencies resolved in 1 project across 2 configurations
o Projects
9 Dependencies :docs
) asciidoctor ~ - 0.018s
> Plugins org.asciidoctor:asciidoctorj:1.5.2 = 1.5.6 conflict resolution
o= Custom values userGuideTask ~ - 0.011s
g Switches xerces:xerceslmpl:2.9.0 — 2.11.0 conflict resolution

xml-apis:xml-apis:1.3.04 — 1.4.01 conflict resolution

15

Infrastructure

B

Home : Dependencies Close dependency details {esc)

Figure 2. Debugging dependency conflicts with build scans

The actual build scan with filtering criteria is available for exploration.

Troubleshooting slow Gradle builds

For build performance issues (including “slow sync time”), see improving the Performance of
Gradle Builds.

https://scans.gradle.com/s/sample/troubleshooting-userguide/dependencies?expandAll&filters=WzFd&toggled=W1swXSxbMF0sWzAsMF0sWzAsMV1d
performance.pdf#performance_gradle
performance.pdf#performance_gradle

Android developers should watch a presentation by the Android SDK Tools team about Speeding Up
Your Android Gradle Builds. Many tips are also covered in the Android Studio user guide on
optimizing build speed.

Debugging build logic

Attaching a debugger to your build

You can set breakpoints and debug buildSrc and standalone plugins in your Gradle build itself by
setting the org.gradle.debug property to “true” and then attaching a remote debugger to port 5005.

0 gradle help -Dorg.gradle.debug=true

In addition, if you’ve adopted the Kotlin DSL, you can also debug build scripts themselves.
The following video demonstrates how to debug an example build using Intelli] IDEA.

[remote debug gradle] | remote-debug-gradle.gif
Figure 3. Interactive debugging of a build script

Adding and changing logging

In addition to controlling logging verbosity, you can also control display of task outcomes (e.g. “UP-
TO-DATE”) in lifecycle logging using the --console=verbose flag.

You can also replace much of Gradle’s logging with your own by registering various event listeners.
One example of a custom event logger is explained in the logging documentation. You can also
control logging from external tools, making them more verbose in order to debug their execution.

Additional logs from the Gradle Daemon can be found under

NOTE .
GRADLE_USER_HOME/daemon/<gradle-version>/.

Task executed when it should have been UP-TO-DATE

--info logs explain why a task was executed, though build scans do this in a searchable, visual way
by going to the Timeline view and clicking on the task you want to inspect.

https://youtu.be/7ll-rkLCtyk
https://youtu.be/7ll-rkLCtyk
https://developer.android.com/studio/build/optimize-your-build.html
https://developer.android.com/studio/build/optimize-your-build.html

oD® < Em} @ scans.gradle.com & i} [l ,T
ﬁ Build Scan e Vv gradle :docs:userguideHtml Feb 21, 2018 3:06:35 PM MST (& (Q)
=] © 12 tasks executed in 1 project in 43.899s ()

= Summary

Console log :docs:userguideAsci...

:docs:userguideHtml

I Performance

52';5 Projects Path Started after Duration Class Order: Execution
¥% Dependencies ExtractDslM|
s Plugins) GenerateDe
. | :docsiuserguideAsciidoc H X rT:
o= Custom values :docs:checkSectionlds Started after 0.108s rifi
g Switches :docs:configureCss Duration 8.930s
BE Infrastructure Class org.gradle.build.docs.CacheableAsciidoctorTask
S lel}
The task was not up-to-date because of the following reasons:
Task "docs:userguideAsciidoc' class path has changed from CT:
:docs:userguideDocbook 764654807a0962e25e318676ecec5244 to 1E}
97e9924c30cd3fe08d245f30f54ac92a.
:docs:userguideHtml
Build cache result > Miss (local and remote), Store (local)
Home » Timeline Close timeline (esc)

Figure 4. Debugging incremental build with a build scan

You can learn what the task outcomes mean from this listing.

Debugging IDE integration

Many infrequent errors within IDEs can be solved by '"refreshing" Gradle. See also more
documentation on working with Gradle in Intelli] IDEA and in Eclipse.

Refreshing Intelli] IDEA

NOTE: This only works for Gradle projects linked to Intelli].

From the main menu, go to View > Tool Windows > Gradle. Then click on the Refresh icon.

https://www.jetbrains.com/help/idea/gradle.html
http://www.vogella.com/tutorials/EclipseGradle/article.html
https://www.jetbrains.com/help/idea/gradle.html#link_gradle_project

Figure 5. Refreshing a Gradle project in Intelli] IDEA

Refreshing Eclipse (using Buildship)

[] | gradle-digest-plugin [~/sreferiwen/gradle-digest-plugin] - .../build.gradle.kis [gradle-digest-plugin]

L

'buildScan { s

' Remote

servicelrl("https

Debug Gradle) =

Refresh all Gradle projects

+

¥ (=; gradle

>
>
>
>
>
>
>
>
>
>

help
other

og

gest-plugin (auto-impo

build
build scan
build setup

documentation

plugin development
plugin portal
publ

verif ion

ing

> [Ef Dependencies

If you're using Buildship for the Eclipse IDE, you can re-synchronize your Gradle build by opening
the "Gradle Tasks" view and clicking the "Refresh" icon, or by executing the Gradle > Refresh Gradle
Project command from the context menu while editing a Gradle script.

b

®
=5
L

(=

]

& build.gradle £3

lapply plugin: 'java'

2apply plugin: 'application'

3apply plugin: 'idea'

4apply plugin: '"eclipse'
c

6group "org.sample"
7version "1.@"

&G

8

9mainClassName = "org.sample.myapp.Main"
10

11 dependencies {

12 compile "org.sample:number-utils:1.0"
13 compile "org.sample:string-utils:1.@"
141

eclipse-workspace - multirepo-app/build.gradle - Eclipse

@ = HO-%UQU HCG BC -

= B & Gradle Tasks I3

Name
v Bmultimpo-app
b (& application
P (% build scan
¥ (2 build setup
b (% build
b (& distribution
» (& documentation
b (& help
b (Zide
b (& verification
» = number-utils
> I.L",Jstring-utils

<&

e
1B $5% ¥ ||

Dest pefresh Tasks for All Proje
|4

Figure 6. Refreshing a Gradle project in Eclipse Buildship

Troubleshooting daemon connection issues

If your Gradle build fails before running any tasks, you may be encountering problems with your
network configuration. When Gradle is unable to communicate with the Gradle daemon process,
the build will immediately fail with a message similar to this:

https://projects.eclipse.org/projects/tools.buildship

$ gradle help

Starting a Gradle Daemon, 1 stopped Daemon could not be reused, use --status for
details

FAILURE: Build failed with an exception.

* What went wrong:

A new daemon was started but could not be connected to: pid=DaemonInfo{pid=55913,
address=[7fb34c82-1907-4c32-afda-888c9b6e2279 port:42751, addresses:[/127.0.0.1]],
state=Busy, ...

We have observed this can occur when network address translation (NAT) masquerade is used.
When NAT masquerade is enabled, connections that should be considered local to the machine are
masked to appear from external IP addresses. Gradle refuses to connect to any external IP address
as a security precaution.

The solution to this problem is to adjust your network configuration such that local connections are
not modified to appear as from external addresses.

You can monitor the detected network setup and the connection requests in the daemon log file
(<GRADLE_USER_HOME>/daemon/<Gradle version>/daemon-<PID>.out.1loqg).

2021-08-12712:01:50.755+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding IP addresses for
network interface enp@s3

2021-08-12712:01:50.759+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Is this a loopback interface?
false

2021-08-12712:01:50.769+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding remote address
/fe80:0:0:0:85ba:3f3e:1b88:c0e1%enpds3

2021-08-12712:01:50.770+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding remote address
/10.0.2.15

2021-08-12712:01:50.770+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding IP addresses for
network interface lo

2021-08-12712:01:50.771+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Is this a loopback interface?
true

2021-08-12712:01:50.771+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding loopback address
/0:0:0:0:0:0:0:1%10

2021-08-12712:01:50.771+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding loopback address
/127.0.0.1

2021-08-12712:01:50.775+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.TcpIncomingConnector] Listening on
[7fb34c82-1907-4c32-afda-888c9b6e2279 port:42751, addresses:[localhost/127.0.0.1]].

2021-08-12712:01:50.797+0200 [INFO]
[org.gradle.launcher.daemon.server.DaemonRegistryUpdater] Advertising the daemon
address to the clients: [7fb34c82-1907-4c32-afda-888c9bbe2279 port:42751,
addresses:[localhost/127.0.0.1]]

2021-08-12712:01:50.923+0200 [ERROR]
[org.gradle.internal.remote.internal.inet.TcpIncomingConnector] Cannot accept
connection from remote address /10.0.2.15.

Getting additional help

If you didn’t find a fix for your issue here, please reach out to the Gradle community on the help
forum or search relevant developer resources using help.gradle.org.

If you believe you’ve found a bug in Gradle, please file an issue on GitHub.

Compatibility Matrix

The sections below describe Gradle’s compatibility with several integrations. Other versions not
listed here may or may not work.

https://discuss.gradle.org/c/help-discuss
https://discuss.gradle.org/c/help-discuss
https://help.gradle.org/
https://github.com/gradle/gradle/issues

Java

A Java version between 8 and 17 is required to execute Gradle. Java 18 and later versions are not
yet supported.

Java 6 and 7 can still be used for compilation and forked test execution.
Any supported version of Java can be used for compile or test.

For older Gradle versions, please see the table below which Java version is supported by which
Gradle release.

Table 1. Java Compatibility

Java version First Gradle version to support it
8 2.0
9 4.3
10 4.7
11 5.0
12 5.4
13 6.0
14 6.3
15 6.7
16 7.0
17 7.3
Kotlin

Gradle is tested with Kotlin 1.3.72 through 1.5.31.

Gradle plugins written in Kotlin target Kotlin 1.4 for compatibility with Gradle and Kotlin DSL build
scripts, even though the embedded Kotlin runtime is Kotlin 1.5.

Groovy

Gradle is tested with Groovy 1.5.8 through 3.0.9.

Gradle plugins written in Groovy must use Groovy 3.x for compatibility with Gradle and Groovy
DSL build scripts.

Android

Gradle is tested with Android Gradle Plugin 4.1, 4.2, 7.0 and 7.1. Alpha and beta versions may or
may not work.

Upgrading and Migrating

Upgrading your build from Gradle 6.x to the latest

This chapter provides the information you need to migrate your Gradle 6.x builds to the latest
Gradle release. For migrating from Gradle 4.x or 5.X, see the older migration guide first.

We recommend the following steps for all users:

1. Try running gradle help --scan and view the deprecations view of the generated build scan.

(% Gradle Enterprise

= Summary

[Console log
Timeline

Wk Performance
Tests

s Projects

$2 Dependencies
22 Build dependencies
B Plugins

5 Custom values
8 switches
Infrastructure

“D See before and after

& Compare build scan

€ gradle clean kotlin-dsl-tooling-builders:platforniTest Dec 23, 2020 7:38:27 PM ES §= Buidsans | @O @

Using i istry to detect Java i ions has been
This is scheduled to be removed in Gradle 7.0.
/a Toolchains instead

10t

The KotlinDsIPluginOptions.experimentalWarning property has been deprecated.
This is scheduled to be removed in Gradle 8.0.
2 usages >

This is so that you can see any deprecation warnings that apply to your build.

Alternatively, you could run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

2. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of

the APIL

3. Run gradle wrapper --gradle-version 7.0 to update the project to 7.0.

4. Try to run the project and debug any errors using the Troubleshooting Guide.

Upgrading from 6.8

Changes in the IDE integration

https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

Changes in the IDEA model

The getGeneratedSourceDirectories() and getGeneratedTestDirectories() methods are removed
from the IdeaContentRoot interface. Clients should replace these invocations with
getSourceDirectories() and getTestDirectories() and use the isGenerated() method on the
returned instances.

Dependency locking now defaults to a single file per project

The format of the dependency lockfile has been changed and as a consequence there is only one file
per project instead of one file per configuration per project. This change only affects writing lock
files. Gradle remains capable of loading lock state saved in the older format.

Head over to the documentation to learn how to migrate to the new format. The migration can be
performed per configuration and does not have to be done in a single step. Gradle will
automatically clean up previous lock files when migrating them over to the new file format.

Gradle Module Metadata is now reproducible by default

The buildId field will not be populated by default to ensure that the produced metadata file
remains unchanged when no build inputs are changed. Users can still opt in to have this unique
identifier part of the produced metadata if they want to, see the documentation.

The jcenter() convenience method is now deprecated

JFrog announced the sunset of the JCenter repository in February 2021. Many Gradle builds rely on
JCenter for project dependencies.

No new packages or versions are published to JCenter, but JFrog says they will keep JCenter
running in a read-only state indefinitely. We recommend that you consider using mavenCentral(),
google() or a private maven repository instead.

Gradle emits a deprecation warning when jcenter() is used as a repository and this method is
scheduled to be removed in Gradle 8.0.

Potential breaking changes

Updates to bundled Gradle dependencies

* Kotlin has been updated to Kotlin 1.4.31.

* Groovy has been updated to Groovy 3.0.7.

Changes to Groovy and Groovy DSL

Due to the update to the next major version of Groovy, you may experience minor issues when
upgrading to Gradle 7.0.

The new version of Groovy has a stricter parser that fails to compile code that may have been
accepted in previous Groovy versions. If you encounter syntax errors, check the Groovy issue
tracker and Groovy 3 release highlights.

https://jfrog.com/blog/into-the-sunset-bintray-jcenter-gocenter-and-chartcenter
https://blog.gradle.org/jcenter-shutdown
https://kotlinlang.org/docs/reference/whatsnew1430.html
https://groovy-lang.org/releasenotes/groovy-3.0.html
https://groovy.apache.org/#reporting-issues
https://groovy.apache.org/#reporting-issues
https://blogs.apache.org/groovy/entry/groovy-3-highlights

Some very specific regressions have already been fixed in the next minor version of Groovy.

Groovy modularization

Gradle no longer embeds a copy of groovy-all that bundles all Groovy modules into a single jar—
only the most important modules are distributed in the Gradle distribution.

The localGroovy() dependency will include these Groovy modules:

* groovy
* groovy-ant

* groovy-astbuilder
* groovy-console

* groovy-datetime

* groovy-dateutil

* groovy-groovydoc
* groovy-json

* groovy-nio

* groovy-sql

* groovy-templates
* groovy-test

* groovy-xml
But the following Groovy modules are not included:

* groovy-cli-picocli
* groovy-docgenerator
* groovy-groovysh

* groovy-jmx

* groovy-jsr223

* groovy-macro

* groovy-servlet

* groovy-swing

* groovy-test-junith

* groovy-testng

You can pull these dependencies into your build like any other external dependency.

Building Gradle plugins with Groovy 3

Plugins built with Gradle 7.0 will now have Groovy 3 on their classpath when using gradleApi() or
localGroovy().

https://issues.apache.org/jira/browse/GROOVY-9936

If you use Spock to test your plugins, you will need to use Spock 2.x. There are no

NOTE
compatible versions of Spock 1.x and Groovy 3.

dependencies {
// Ensure you use the Groovy 3.x variant
testImplementation('org.spockframework:spock-core:2.0-groovy-3.0"') {
exclude group: 'org.codehaus.groovy'
}
}

// Spock 2 is based on JUnit Platform which needs to be enabled explicitly.
tasks.withType(Test).configureEach {

useJUnitPlatform()
}

Performance

Depending on the number of subprojects and Groovy DSL build scripts, you may notice a
performance regression when compiling build scripts for the first time or when changes are made
to the build script’s classpath. This is due to the slower performance of the Groovy 3 parser, but the
Groovy team is aware of the issue and trying to mitigate the regression.

In general, we are also looking at how we can improve the performance of build script compilation
for both Groovy DSL and Kotlin DSL.

Encountering 'Could not find method X for arguments Y on DefaultDependencyHandler'

While the following error initially looks like a compile error, it is actually due to the fact that
specific "Configuration's have been removed. Please refer to Removal of compile and runtime
configurations for more details.

Could not find method testCompile() for arguments
[DefaultExternalModuleDependency{group="org.junit', name='junit-bom', version='5.7.0",
configuration="default'}] on object of type
org.gradle.api.internal.artifacts.dsl.dependencies.DefaultDependencyHandler.

Updates to default tool integration versions

* PMD has been updated to PMD 6.31.0.

* Groovy and GroovyDoc have been updated to Groovy 3.0.7.

Removal of compile and runtime configurations

Since its inception, Gradle provided the compile and runtime configurations to declare
dependencies. These however did not support a fine grained scoping of dependencies. Hence, better
replacements were introduced in Gradle 3.4:

https://spockframework.org/
https://github.com/pmd/pmd/releases/tag/pmd_releases%2F6.31.0
https://groovy-lang.org/releasenotes/groovy-3.0.html

* The implementation configuration should be used to declare dependencies which are
implementation details of a library: they are not visible to consumers of the library during
compilation time.

* The api configuration, available only if you apply the java-library plugin, should be used to
declare dependencies which are part of the API of a library, that need to be exposed to
consumers at compilation time.

In Gradle 7, both the compile and runtime configurations are removed. Therefore, you have to
migrate to the implementation and api configurations above. If you are still using the java plugin for
a Java library, you will need to apply the java-library plugin instead.

Table 2. Common configuration upgrades

Removed Configuration New Configuration
compile api or implementation
runtime runtimeOnly

testRuntime testRuntimeOnly
testCompile testImplementation
<sourceSet>Runtime <sourceSet>RuntimeOnly
<sourceSet>Compile <sourceSet>Implementation

You can find more details about the benefits of the new configurations and which one to use in
place of compile and runtime by reading the Java Library plugin documentation.

When using the Groovy DSL, you need to watch out for a particular upgrade
problem when dealing with the removed configurations.

If you were creating custom configurations that extend one of the removed
configurations, Gradle may silently create configurations that do not exist.

This looks something like:

WARNING . .
configurations {

// This silently creates a configuration called "runtime"
myConf extendsFrom runtime

}

The result of dependency resolution for your custom configuration may not be
the same as Gradle 6.x or before. You may notice missing dependencies or
artifacts.

Location of temporary project files for ProjectBuilder

The ProjectBuilder API is used for inspecting Gradle builds in unit tests. This API used to create
temporary project files under the system temporary directory as defined by java.io.tmpdir.

The API now creates temporary project files under the Test task’s temporary directory. This path is

usually under the project build directory. This may cause test failures when the test expects
particular file paths.

If the test uses ProjectBuilder.withProjectDir(:-+), it is unaffected.

Location of temporary files for TestKit tests

Tests that use the TestKit API used to create temporary files under the system temporary directory
as defined by java.io.tmpdir. These files were used to store copies of Gradle distributions or
another test-only Gradle User Home.

TestKit tests will now create temporary files under the Test task’s temporary directory. This path is
usually under the project build directory. This may cause test failures when the test expects
particular file paths.

If the test uses GradleRunner.withTestKitDir(::+), it is unaffected.

File system watching with TestKit on Windows

The file system watching implementation on Windows adds a lock to the root project directory in
order to watch for changes. This may cause errors when you try to delete the root project directory
after running a build with TestKit. For example, tests that use TestKit together with JUnit’s @TempDir
extension, or the TemporaryFolder rule can run into this problem. To avoid problems with these file
locks, TestKit disables file system watching for builds executed on Windows via GradleRunner. If
you’d like to override the default behavior, you can enable file system watching by passing --watch
-fs to GradleRunner.withArguments().

Removal of the legacy maven plugin

The maven plugin has been removed. You should use the maven-publish plugin instead.

Please refer to the documentation of the Maven Publish plugin for more details.

Removal of the uploadArchives task

The uploadArchives task was used in combination with the legacy Ivy or Maven publishing
mechanisms. It has been removed in Gradle 7. You should migrate to the maven-publish or ivy-
publish plugin instead.

Please refer to the documentation of the Maven Publish plugin for publishing on Maven
repositories. Please refer to the documentation of the Ivy Publish plugin for publishing on Ivy
repositories.

Changes in dependency version sorting

In the context of dependency version sorting, a -SNAPSHOT version is now considered to be right
before a final release but after any -RC version. More special version suffixes are also taken into
account. This brings the Gradle algorithm closer to the Maven one for well-known version suffixes.

Have a look at the documentation for all the rules Gradle applies.

Removal of Play Framework plugins

The deprecated Play plugins have been removed. An external replacement, the Play Framework
plugin, is available from the plugin portal.

Removal of deprecated JVM plugins

These unmaintained alternative JVM plugins have been removed: java-lang, scala-lang, junit-
test-suite, jvm-component, jvm-resources.

Please use the stable Java Library and Scala plugins instead.

Removal of experimental JavaScript plugins

The following plugins for experimental JavaScript integration are now removed from the
distribution: coffeescript-base, envjs, javascript-base, jshint, rhino.

If you used these plugins despite their experimental nature, you may find suitable replacements in
the Plugin Portal.

Configuring the layout of an Ivy repository

The layout method taking a configuration block has been removed and is replaced by
patternLayout.

Executing a Gradle build without a settings file is now an error

A Gradle build is defined by its settings.gradle(.kts) file found in the current or parent directory.
Without a settings file, a Gradle build is undefined and Gradle produces an error when attempting
to execute tasks.

To fix this error, create a settings.gradle(.kts) file for the build.

Exceptions to this are invoking Gradle with the init task or using diagnostic command line flags,
such as --version.

Calling Project.afterEvaluate() after project evaluation is now an error

Gradle 6.x warns users about the wrong behavior and ignores the target action in this scenario.
Starting from 7.0 the same case will produce an error. Plugins and build scripts should be adjusted
to call afterEvaluate only at configuration time. If you have such a build failure and the related
afterEvaluate statement is declared in your build sources then you can simply delete it. If
afterEvaluate is declared in a plugin then report the issue to the plugin maintainers.

Modifying file collections after values finalized is now an error

Calling any mutator methods (i.e. clear(), add(), remove(), etc.) on ConfigurableFileCollection after
the stored value calculated throws an exception. Users and plugin authors should adjust their code
such that all configuration on ConfigurableFileCollection happens during configuration time,
before the values are read.

https://gradle.github.io/playframework
https://gradle.github.io/playframework
https://plugins.gradle.org/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:patternLayout(org.gradle.api.Action)

Removal of ProjectlLayout#fconfigurableFiles

Please use ObjectFactory#fileCollection() instead.

Removal of BasePluginConvention.1libsDir and BasePluginConvention.distsDir

Please use the the libsDirectory and distsDirectory properties instead.

Removal of UnableToDeleteFileException

Existing usages should be replaced with RuntimeException.

Properties removed in Checkstyle and PMD plugins

» The configDir getters and setters have been removed from the Checkstle task and extension. Use
the configDirectory property instead.

* The rulePriority getter and setter have been removed from the Pmd task and extension. Use the
rulesMinimumPriority property instead.

Removal of baseName property in distribution plugin

The getBaseName() and setBaseName() methods were removed from the Distribution class. Clients
should replace the usages with the distributionBaseName property.

Using AbstractTask

Registering a task with the AbstractTask type or with a type extending AbstractTask was deprecated
in Gradle 6.5 and is now an error in Gradle 7.0. You can use DefaultTask instead.

Removal of BuildListener.buildStarted(Gradle)

BuildListener.buildStarted(Gradle) was deprecated in Gradle 6.0 and is now removed in Gradle
7.0. Please use BuildListener.beforeSettings(Settings) instead.

Removal of unused StartParameter APIs

The following APIs, which were not usable via command line options anymore since Gradle 5.0, are
now removed: StartParameter.useEmptySettings(), StartParameter.isUseEmptySettings(),
StartParameter.setSearchUpwards(boolean) and StartParameter.isSearchUpwards().

Removal of searching for settings files in 'master' directories

Gradle no longer supports discovering the settings file in a directory named master in a sibling
directory. If your build still uses this deprecated feature, consider refactoring the build to have the
root directory match the physical root of the project hierarchy. You can find more information
about how to structure a Gradle build or a composition of builds in the user manual. Alternatively,
you can still run tasks in builds like this by invoking the build from the master directory only using
a fully qualified path to the task.

modularity.inferModulePath defaults to 'true’

Compiling, testing and executing now works automatically for any source set that defines a module

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/DefaultTask.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/BuildListener.html#beforeSettings-org.gradle.api.initialization.Settings-
structuring_software_products.pdf#structure_large_projects

by containing a module-info.java file. Usually, this is the behavior you need. If this is causing issues
in cases you manually configure the module path, or use a 3rd party plugin for it, you can still opt
out of this by setting modularity.inferModulePath to false on the java extension or individual tasks.

Removal of ValidateTaskProperties

The ValidateTaskProperties task has been removed and replaced by the ValidatePlugins task.

Removal of ImmutableFileCollection

The ImmutableFileCollection type has been removed. Use the factory method instead. A handle to
the project layout can be obtained via Project.layout.

Removal of ComponentSelectionReason.getDescription

The method ComponentSelectionReason.getDescription has been removed. It is replaced by
ComponentSelectionReason.getDescriptions which returns a list of ComponentSelectionDescriptor,
each having a getDescription.

Removal of domain object collection constructors

The following deprecated constructors were removed:

DefaultNamedDomainObjectList(Class, Instantiator, Namer)

DefaultNamedDomainObjectSet(Class, Instantiator)

DefaultPolymorphicDomainObjectContainer(Class, Instantiator)

* FactoryNamedDomainObjectContainer(Class, Instantiator, NamedDomainObjectFactory)

Removal of arbitrary local cache configuration

The local build cache configuration now needs to be done via BuildCacheConfiguration.local().

Removal of DefaultVersionSelectorScheme constructor

This internal API was used in plugins, amongst other the Nebula plugins, and was deprecated in the
Gradle 5.x timeline and is now removed. Latest plugins version should no longer reference it.

Setting the config_loc config property on the checkstyle plugin is now an error

The checkstyle plugin now fails for the following configuration

checkstyle {
configProperties['config_loc'] = file("path/to/checkstyle-config-dir")

Builds should declare the checkstyle configuration with the checkstyle block:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object…​-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Project.html#getLayout--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#local-org.gradle.api.Action-
https://github.com/nebula-plugins

checkstyle {
configDirectory = file("path/to/checkstyle-config-dir")

Querying the mapped value of a provider before the producer has completed is now an error

Gradle 6.x warns users about the wrong behavior and then returns a possibly incorrect provider
value. Starting with 7.0 the same case will produce an error. Plugins and build scripts should be
adjusted to query the mapped value of a provider, for example a task output property, after the task
has completed.

Task validation problems are now errors

Gradle 6.0 started warning about problems with task definitions (such as incorrectly defined inputs
or outputs). For Gradle 7.0, those warnings are now errors and will fail the build.

Change in behavior when there’s a strict version conflict with a local project

Previous Gradle releases had an inconsistent behavior in regard to conflict resolution in a
particular configuration: - your project declares a strict dependency on a published module (for
example, com.mycompany:some-module:1.2!!, where 1.2!! is the short hand notation for a strict
dependency on 1.2) - your build actually provides com.mycompany:some-module in a higher version

Previous Gradle releases would succeed, selecting the project dependency despite the strict
constraint. Starting from Gradle 7, this will trigger a dependency resolution failure.

See this issue for more context.

Deprecations

Missing dependencies between tasks

Having a task which produces an output in a location and another task consuming that location by
referring to it as an input without the consumer task depending on the producer task has been
deprecated. A fix for this problem is to add a dependency from the consumer to the producer.

Duplicates strategy

Gradle 7 now fails when a copy operation (or any operation which wuses a
org.gradle.api.file.CopySpec) encounters a duplicate entry, and that the duplicates strategy isn’t
set. Please look at the CopySpec docs for details.

Upgrading from 6.7

Potential breaking changes

Toolchain API is now marked as @NonNull

The API supporting the Java Toolchain feature in org.gradle.jvm.toolchain is now marked as
@NonNull.

https://github.com/gradle/gradle/issues/16706
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#setDuplicatesStrategy-org.gradle.api.file.DuplicatesStrategy-

This may impact Kotlin consumers where the return types of APIs are no longer nullable.

Updates to default tool integration versions

» JaCoCo has been updated to 0.8.6.
* Checkstyle has been updated to Checkstyle 8.37.
* CodeNarc has been updated to CodeNarc 2.0.0.

Updates to bundled Gradle dependencies

* Kotlin has been updated to Kotlin 1.4.20. Note that Gradle scripts are still using the Kotlin 1.3
language.

* Apache Ant has been updated to 1.10.9 to fix CVE-2020-11979

Projects imported into Eclipse now include custom source set classpaths

Previously, projects imported by Eclipse only included dependencies for the main and test source
sets. The compile and runtime classpaths of custom source sets were ignored.

Since Gradle 6.8, projects imported into Eclipse include the compile and runtime classpath for
every source set defined by the build.

SourceTask is no longer sensitive to empty directories

Previously, empty directories would be taken into account during up-to-date checks and build cache
key calculations for the sources declared in SourceTask. This meant that a source tree that contained
an empty directory and an otherwise identical source tree that did not contain the empty directory
would be considered different sources, even if the task would produce the same outputs. In Gradle
6.8, SourceTask now ignores empty directories during doing up-to-date checks and build cache key
calculations. In the vast majority of cases, this is the desired behavior, but it is possible that a task
may extend SourceTask but also produce different outputs when empty directories are present in
the sources. For tasks where this is a concern, you can expose a separate property without the
@IgnoreEmptyDirectories annotation in order to capture those changes:

@InputFiles

@SkipWhenEmpty

@PathSensitive(PathSensitivity.ABSOLUTE)

public FileTree getSourcesWithEmptyDirectories() {
return super.getSource()

}

Changes to publications

Publishing a component which has a dependency on an enforced platform now triggers a
validation error, preventing accidental publishing of bad metadata: enforced platforms use cases
should be limited to applications, not things which can be consumed from another library or an
application.

If, for some reason, you still want to publish components with dependencies on enforced platforms,

http://www.jacoco.org/jacoco/trunk/doc/changes.html
https://checkstyle.sourceforge.io/releasenotes.html#Release_8.37
https://github.com/CodeNarc/CodeNarc/blob/v2.0.0/CHANGELOG.md
https://blog.jetbrains.com/kotlin/2020/08/kotlin-1-4-released-with-a-focus-on-quality-and-performance/
https://github.com/gradle/gradle/security/advisories/GHSA-j45w-qrgf-25vm

you can disable the validation following the documentation.

Changing default excludes during the execution phase

Gradle’s file trees apply some default exclude patterns for convenience — the same defaults as Ant
in fact. See the user manual for more information. Sometimes, Ant’s default excludes prove
problematic, for example when you want to include the .gitignore in an archive file.

Changing Gradle’s default excludes during the execution phase can lead to correctness problems
with up-to-date checks. As a consequence, you are only allowed to change Gradle’s default excludes
in the settings script, see the user manual for an example.

Deprecations

Referencing tasks from included builds

Direct references to tasks from included builds in mustRunAfter, shouldRunAfter and finalizedBy task
methods have been deprecated. Task ordering using mustRunAfter and shouldRunAfter as well as
finalizers specified by finalizedBy should be used for task ordering within a build. If you happen to
have cross-build task ordering defined using above mentioned methods, consider restructuring
such builds and decoupling them from one another.

Searching for settings files in 'master' directories

Gradle will emit a deprecation warning when your build relies on finding the settings file in a
directory named master in a sibling directory.

If your build uses this feature, consider refactoring the build to have the root directory match the
physical root of the project hierarchy.

Alternatively, you can still run tasks in builds like this by invoking the build from the master
directory only using a fully qualified path to the task.

Using method NamedDomainObjectContainer<T>.invoke(kotlin.Function1)

Gradle Kotlin DSL extensions have been changed to favor Gradle’s Action<T> type over Kotlin
function types.

While the change should be transparent to Kotlin clients, Java clients calling Kotlin DSL extensions
need to be updated to use the Action<T> APIs.

Upgrading from 6.6

Potential breaking changes

buildSrc can now see included builds from the root

Previously, buildSrc was built in such a way that included builds were ignored from the root build.

Since Gradle 6.7, buildSrc can see any included build from the root build. This may cause
dependencies to be substituted from an included build in buildSrc. This may also change the order

in which some builds are executed if an included build is needed by buildSrc.

Updates to default tool integration versions

* PMD has been updated to PMD 6.26.0.
* Checkstyle has been updated to Checkstyle 8.35.
* CodeNarc has been updated to CodeNarc 1.6.1.

Deprecations

Changing default excludes during the execution phase

Gradle’s file trees apply some default exclude patterns for convenience — the same defaults as Ant
in fact. See the user manual for more information. Sometimes, Ant’s default excludes prove
problematic, for example when you want to include the .gitignore in an archive file.

Changing Gradle’s default excludes during the execution phase can lead to correctness problems
with up-to-date checks, and is deprecated. You are only allowed to change Gradle’s default excludes
in the settings script, see the user manual for an example.

Using a Configuration directly as a dependency

Gradle allowed instances of Configuration to be used directly as dependencies:

dependencies {
implementation(configurations.myConfiguration)

This behavior is now deprecated as it is confusing: one could expect the "dependent configuration”
to be resolved first and add the result of resolution as dependencies to the including configuration,
which is not the case. The deprecated version can be replaced with the actual behavior, which is
configuration inheritance:

configurations.implementation.extendsFrom(configurations.myConfiguration)

Upgrading from 6.5

Potential breaking changes

Updates to bundled Gradle dependencies
* Ant has been updated to 1.10.8.
* Groovy has been updated to Groovy 2.5.12.
Dependency substitutions and variant aware dependency resolution

While adding support for expressing variant support in dependency substitutions, a bug fix

https://github.com/pmd/pmd/releases/tag/pmd_releases%2F6.26.0
https://checkstyle.sourceforge.io/releasenotes.html#Release_8.35
https://github.com/CodeNarc/CodeNarc/blob/v1.6.1/CHANGELOG.md
https://downloads.apache.org/ant/RELEASE-NOTES-1.10.8.html
https://groovy-lang.org/changelogs/changelog-2.5.12.html

introduced a behaviour change that some builds may rely upon. Previously a substituted
dependency would still use the attributes of the original selector instead of the ones from the
replacement selector.

With that change, existing substitutions around dependencies with richer selectors, such as for
platform dependencies, will no longer work as they did. It becomes mandatory to define the variant
aware part in the target selector.

You can be affected by this change if you:

* have dependencies on platforms, like implementation platform("org:platform:1.0")
* or if you specify attributes on dependencies,

* and you use resolution rules on these dependencies.

See the documentation for resolving issues if you are impacted.

Deprecations

No deprecations were made in Gradle 6.6.

Upgrading from 6.4

Potential breaking changes

Updates to bundled Gradle dependencies

 Kotlin has been updated to Kotlin 1.3.72.

* Groovy has been updated to Groovy 2.5.11.

Updates to default tool integration versions

* PMD has been updated to PMD 6.23.0.

Deprecations

Internal class AbstractTask is deprecated

AbstractTask is an internal class which is visible on the public API, as a superclass of public type
DefaultTask. AbstractTask will be removed in Gradle 7.0, and the following are deprecated in Gradle
6.5:

* Registering a task whose type is AbstractTask or TaskInternal. You can remove the task type
from the task registration and Gradle will use DefaultTask instead.

* Registering a task whose type is a subclass of AbstractTask but not a subclass of DefaultTask. You
can change the task type to extend DefaultTask instead.

» Using the class AbstractTask from plugin code or build scripts. You can change the code to use
DefaultTask instead.

https://github.com/JetBrains/kotlin/releases/tag/v1.3.72
https://groovy-lang.org/changelogs/changelog-2.5.11.html
https://github.com/pmd/pmd/releases/tag/pmd_releases%2F6.23.0

Upgrading from 6.3

Potential breaking changes

PMD plugin expects PMD 6.0.0 or higher by default

Gradle 6.4 enabled incremental analysis by default. Incremental analysis is only available in PMD
6.0.0 or higher. If you want to use an older PMD version, you need to disable incremental analysis:

pmd {
incrementalAnalysis = false

}

Changes in dependency locking

With Gradle 6.4, the incubating API for dependency locking LockMode has changed. The value is now
set via a Property<LockMode> instead of a direct setter. This means that the notation to set the value
has to be updated for the Kotlin DSL:

dependencylocking {
lockMode.set(LockMode.STRICT)
by

Users of the Groovy DSL should not be impacted as the notation lockMode = LockMode.STRICT
remains valid.

Java versions in published metadata

If a Java library is published with Gradle Module Metadata, the information which Java version it
supports is encoded in the org.gradle.jvm.version attribute. By default, this attribute was set to
what you configured in java.targetCompatibility. If that was not configured, it was set to the
current Java version running Gradle. Changing the version of a particular compile task, e.g.
javaCompile.targetCompatibility had no effect on that attribute, leading to wrong information if the
attribute was not adjusted manually. This is now fixed and the attribute defaults to the setting of
the compile task that is associated with the sources from which the published jar is built.

Ivy repositories with custom layouts

Gradle versions from 6.0 to 6.3.x included could generate bad Gradle Module Metadata when
publishing on an Ivy repository which had a custom repository layout. Starting from 6.4, Gradle will
no longer publish Gradle Module Metadata if it detects that you are using a custom repository
layout.

New properties may shadow variables in build scripts

This release introduces some new properties—mainClass, mainModule, modularity —in different
places. Since these are very generic names, there is a chance that you use one of them in your build
scripts as variable name. A new property might then shadow one of your variables in an undesired

way, leading to a build failure where the property is accessed instead of the local variable with the
same name. You can fix it by renaming the corresponding variable in the build script.

Affected is configuration code inside the application {} and java {} configuration blocks, inside a
java execution setup with project.javaexec {}, and inside various task configurations (JavaExec,
CreateStartScripts, JavaCompile, Test, Javadoc).

Updates to bundled Gradle dependencies

* Kotlin has been updated to Kotlin 1.3.71.

Deprecations

There were no deprecations between Gradle 6.3 and 6.4.

Upgrading from 6.2

Potential breaking changes

Fewer dependencies available in IDEA

Gradle no longer includes the annotation processor classpath as provided dependencies in IDEA.
The dependencies IDEA sees at compile time are the same as what Gradle sees after resolving the
compile classpath (configuration named compileClasspath). This prevents the leakage of annotation
processor dependencies into the project’s code.

Before Gradle introduced incremental annotation processing support, IDEA required all annotation
processors to be on the compilation classpath to be able to run annotation processing when
compiling in IDEA. This is no longer necessary because Gradle has a separate annotation processor
classpath. The dependencies for annotation processors are not added to an IDEA module’s classpath
when a Gradle project with annotation processors is imported.

Updates to bundled Gradle dependencies
 Kotlin has been updated to Kotlin 1.3.70.
* Groovy has been updated to Groovy 2.5.10.
Updates to default tool integration versions
* PMD has been updated to PMD 6.21.0.
* CodeNarc has been updated to CodeNarc 1.5.
Rich console support removed for some 32-bit operating systems

Gradle 6.3 does not support the rich console for 32-bit Unix systems and for old FreeBSD versions
(older than FreeBSD 10). Microsoft Windows 32-bit is unaffected.

Gradle will continue building projects on 32-bit systems but will no longer show the rich console.

https://github.com/JetBrains/kotlin/releases/tag/v1.3.71
https://blog.jetbrains.com/kotlin/2020/03/kotlin-1-3-70-released/
http://groovy-lang.org/changelogs/changelog-2.5.10.html
https://pmd.github.io/pmd-6.21.0/pmd_release_notes.html#24-january-2020---6210
https://github.com/CodeNarc/CodeNarc/blob/v1.5/CHANGELOG.md#version-15----nov-2019

Deprecations

Using default and archives configurations

Almost every Gradle project has the default and archives configurations which are added by the
base plugin. These configurations are no longer used in modern Gradle builds that use variant
aware dependency management and the new publishing plugins.

While the configurations will stay in Gradle for backwards compatibility for now, using them to
declare dependencies or to resolve dependencies is now deprecated.

Resolving these configurations was never an intended use case and only possible because in earlier
Gradle versions every configuration was resolvable. For declaring dependencies, please use the
configurations provided by the plugins you use, for example by the Java Library plugin.

Upgrading from 6.1

Potential breaking changes

Compile and runtime classpath now request library variants by default

A classpath in a JVM project now explicitly requests the org.gradle.category=1library attribute. This
leads to clearer error messages if a certain library cannot be used. For example, when the library
does not support the required Java version. The practical effect is that now all platform
dependencies have to be declared as such. Before, platform dependencies also worked, accidentally,
when the platform() keyword was omitted for local platforms or platforms published with Gradle
Module Metadata.

Properties from project root gradle.properties leaking into buildSrc and included builds

There was a regression in Gradle 6.2 and Gradle 6.2.1 that caused Gradle properties set in the
project root gradle.properties file to leak into the buildSrc build and any builds included by the
root.

This could cause your build to start failing if the buildSrc build or an included build suddenly found
an unexpected or incompatible value for a property coming from the project root gradle.properties
file.

The regression has been fixed in Gradle 6.2.2.
Deprecations

There were no deprecations between Gradle 6.1 and 6.2.
Upgrading from 6.0 and earlier

Deprecations

Querying a mapped output property of a task before the task has completed

Querying the value of a mapped output property before the task has completed can cause strange

build failures because it indicates stale or non-existent outputs may be used by mistake. This
behavior is deprecated and will emit a deprecation warning. This will become an error in Gradle
7.0.

The following example demonstrates this problem where the Producer’s output file is parsed
before the Producer executes:

class Consumer extends DefaultTask {
@Input
final Property<Integer> threadPoolSize = ...

class Producer extends DefaultTask {
@OutputFile
final RegularFileProperty outputFile = ...

}

// threadPoolSize is read from the producer's outputFile
consumer .threadPoolSize = producer.outputFile.map { it.text.toInteger() }

// Emits deprecation warning
println("thread pool size = " + consumer.threadPoolSize.get())

Querying the value of consumer.threadPoolSize will produce a deprecation warning if done prior to
producer completing, as the output file has not yet been generated.

Discontinued methods

The following methods have been discontinued and should no longer be used. They will be
removed in Gradle 7.0.

BasePluginConvention.setProject(ProjectInternal)
* BasePluginConvention.getProject()

o StartParameter.useEmptySettings()

StartParameter.isUseEmptySettings()

Alternative JVM plugins (a.k.a "Software Model")

A set of alternative plugins for Java and Scala development were introduced in Gradle 2.x as an
experiment based on the "software model". These plugins are now deprecated and will eventually
be removed. If you are still using one of these old plugins (java-1lang, scala-1lang, jvm-component, jvm-
resources, junit-test-suite) please consult the documentation on Building Java & JVM projects to
determine which of the stable JVM plugins are appropriate for your project.

Potential breaking changes

ProjectLayout is no longer available to worker actions as a service

In Gradle 6.0, the ProjectlLayout service was made available to worker actions via service injection.
This service allowed for mutable state to leak into a worker action and introduced a way for
dependencies to go undeclared in the worker action.

ProjectlLayout has been removed from the available services. Worker actions that were using
ProjectlLayout should switch to injecting the projectDirectory or buildDirectory as a parameter
instead.

Updates to bundled Gradle dependencies

* Kotlin has been updated to Kotlin 1.3.61.

Updates to default tool integration versions

* Checkstyle has been updated to Checkstyle 8.27.
* PMD has been updated to PMD 6.20.0.

Publishing Spring Boot applications

Starting from Gradle 6.2, Gradle performs a sanity check before uploading, to make sure you don’t
upload stale files (files produced by another build). This introduces a problem with Spring Boot
applications which are uploaded using the components.java component:

Artifact my-application-0.0.1-SNAPSHOT.jar wasn't produced by this build.

This is caused by the fact that the main jar task is disabled by the Spring Boot application, and the
component expects it to be present. Because the bootJar task uses the same file as the main jar task
by default, previous releases of Gradle would either:

* publish a stale bootJar artifact

« or fail if the bootJar task hasn’t been called previously

A workaround is to tell Gradle what to upload. If you want to upload the bootJar, then you need to
configure the outgoing configurations to do this:

configurations {
[apiElements, runtimeElements].each {
it.outgoing.artifacts.removelf {
it.buildDependencies.getDependencies(null).contains(jar) }
it.outgoing.artifact(bootJar)
}

Alternatively, you might want to re-enable the jar task, and add the bootJar with a different
classifier.

https://blog.jetbrains.com/kotlin/2019/11/kotlin-1-3-60-released/
https://checkstyle.org/releasenotes.html#Release_8.27
https://pmd.github.io/pmd-6.20.0/pmd_release_notes.html#29-november-2019---6200

jar {
enabled = true

}
bootJar {

classifier = 'application’
}

Upgrading your build from Gradle 5.x to 6.0

This chapter provides the information you need to migrate your Gradle 5.x builds to Gradle 6.0. For
migrating from Gradle 4.x, complete the 4.x to 5.0 guide first.

We recommend the following steps for all users:

1. Try running gradle help --scan and view the deprecations view of the generated build scan.

(% Gradle Enterprise € + eradle clean kotlin-dsl-tooling-builders:platforniTest Dec 23, 2020 7:38:27 PM ES 5= Buldscans | @ @

= Summary istry to detect Java i ions has been

[Console log

Timeline

Wk Performance The KotlinDsIPluginOptions.experi ing property has been
Tegs This is scheduled to be removed in Gradle 8.0.
2 usages >

s Projects

&% Dependencies

22 Build dependencies
B Plugins

5S Custom values

8 switches

Infrastructure

“D See before and after
@D Compare build scan

This is so that you can see any deprecation warnings that apply to your build.

Alternatively, you could run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

2. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of
the APIL.

3. Run gradle wrapper --gradle-version 6.0 to update the project to 6.0.

4. Try to run the project and debug any errors using the Troubleshooting Guide.

https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

Upgrading from 5.6 and earlier

Deprecations

Dependencies should no longer be declared using the compile and runtime configurations

The usage of the compile and runtime configurations in the Java ecosystem plugins has been
discouraged since Gradle 3.4.

These configurations are used for compiling and running code from the main source set. Other
sources sets create similar configurations (e.g. testCompile and testRuntime for the test source set),
should not be used either. The implementation, api, compileOnly and runtimeOnly configurations
should be used to declare dependencies and the compileClasspath and runtimeClasspath
configurations to resolve dependencies. See the relationship of these configurations.

Legacy publication system is deprecated and replaced with the *-publish plugins

The uploadArchives task and the maven plugin are deprecated.

Users should migrate to the publishing system of Gradle by using either the maven-publish or ivy-
publish plugins. These plugins have been stable since Gradle 4.8.

The publishing system is also the only way to ensure the publication of Gradle Module Metadata.

Problems with tasks emit deprecation warnings

When Gradle detects problems with task definitions (such as incorrectly defined inputs or outputs)
it will show the following message on the console:

Deprecated Gradle features were used in this build, making it incompatible with Gradle
7.0.

Use '--warning-mode all' to show the individual deprecation warnings.

See
https://docs.gradle.org/6.0/userquide/command_line_interface.html#sec:command_line_war
nings

The deprecation warnings show up in build scans for every build, regardless of the command-line
switches used.

When the build is executed with --warning-mode all, the individual warnings will be shown:

> Task :myTask

Property 'inputDirectory' is declared without normalization specified. Properties of
cacheable work must declare their normalization via @PathSensitive, @Classpath or
@CompileClasspath. Defaulting to PathSensitivity.ABSOLUTE. This behaviour has been
deprecated and is scheduled to be removed in Gradle 7.0.

Property 'outputFile' is not annotated with an input or output annotation. This
behaviour has been deprecated and is scheduled to be removed in Gradle 7.0.

https://docs.gradle.org/3.4/release-notes.html#the-java-library-plugin
https://scans.gradle.com/s/txrptciitl2ha/deprecations

If you own the code of the tasks in question, you can fix them by following the suggestions. You can
also use --stacktrace to see where in the code each warning originates from.

Otherwise, you’ll need to report the problems to the maintainer of the relevant task or plugin.

0ld API for incremental tasks, IncrementalTaskInputs, has been deprecated

In Gradle 5.4 we introduced a new API for implementing incremental tasks: InputChanges. The old
API based on IncrementalTaskInputs has been deprecated.

Forced dependencies
Forcing dependency versions using force = true on a first-level dependency has been deprecated.

Force has both a semantic and ordering issue which can be avoided by using a strict version
constraint.

Search upwards related APIs in StartParameter have been deprecated
In Gradle 5.0, we removed the --no-search-upward CLI parameter.
The related APIs in StartParameter (like isSearchUpwards()) are now deprecated.

APIs BuildlListener.buildStarted and Gradle.buildStarted have been deprecated

These methods currently do not work as expected since the callbacks will never be called after the
build has started.

The methods are being deprecated to avoid confusion.

Implicit duplicate strategy for Copy or archive tasks has been deprecated

Archive tasks Tar and Zip by default allow multiple entries for the same path to exist in the created
archive. This can cause "grossly invalid zip files" that can trigger zip bomb detection.

To prevent this from happening accidentally, encountering duplicates while creating an archive
now produces a deprecation message and will fail the build starting with Gradle 7.0.

Copy tasks also happily copy multiple sources with the same relative path to the destination
directory. This behavior has also been deprecated.

If you want to allow duplicates, you can specify that explicitly:

task archive(type: Zip) {
duplicatesStrategy = DuplicatesStrategy.INCLUDE // allow duplicates

Executing Gradle without a settings file has been deprecated

A Gradle build is defined by a settings.gradle[.kts] file in the current or parent directory. Without

https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html
https://github.com/gradle/gradle/issues/9990

a settings file, a Gradle build is undefined and will emit a deprecation warning.

In Gradle 7.0, Gradle will only allow you to invoke the init task or diagnostic command line flags,
such as --version, with undefined builds.

Calling Project.afterEvaluate on an evaluated project has been deprecated

Once a project is evaluated, Gradle ignores all configuration passed to Project#afterEvaluate and
emits a deprecation warning. This scenario will become an error in Gradle 7.0.

Deprecated plugins

The following bundled plugins were never announced and will be removed in the next major
release of Gradle:

* org.gradle.coffeescript-base
* org.gradle.envjs

* org.gradle.javascript-base

* org.gradle.jshint

* org.gradle.rhino

Some of these plugins may have replacements on the Plugin Portal.

Potential breaking changes

Android Gradle Plugin 3.3 and earlier is no longer supported

Gradle 6.0 supports Android Gradle Plugin versions 3.4 and later.

Build scan plugin 2.x is no longer supported

For Gradle 6, usage of the build scan plugin must be replaced with the Gradle Enterprise plugin.
This also requires changing how the plugin is applied. Please see https://gradle.com/help/gradle-6-
build-scan-plugin for more information.

Updates to bundled Gradle dependencies

* Groovy has been updated to Groovy 2.5.8.
 Kotlin has been updated to Kotlin 1.3.50.

* Ant has been updated to Ant 1.10.7.

Updates to default integration versions

Checkstyle has been updated to Checkstyle 8.24.
* CodeNarc has been updated to CodeNarc 1.4.

PMD has been updated to PMD 6.17.0.

* JaCoCo has been updated to 0.8.5. Contributed by Evgeny Mandrikov

https://plugins.gradle.org/
https://gradle.com/help/gradle-6-build-scan-plugin
https://gradle.com/help/gradle-6-build-scan-plugin
http://groovy-lang.org/changelogs/changelog-2.5.8.html
https://blog.jetbrains.com/kotlin/2019/08/kotlin-1-3-50-released/
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.10.7.html
https://checkstyle.org/releasenotes.html#Release_8.24
https://github.com/CodeNarc/CodeNarc/blob/master/CHANGELOG.md#version-14---may-2019
https://pmd.github.io/latest/pmd_release_notes.html#28-july-2019---6170
http://www.jacoco.org/jacoco/trunk/doc/changes.html
https://github.com/Godin

Changes to build and task names in composite builds

Previously, Gradle used the name of the root project as the build name for an included build. Now,
the name of the build’s root directory is used and the root project name is not considered if
different. A different name for the build can be specified if the build is being included via a settings
file.

includeBuild("some-other-build") {
name = "another-name"

The previous behavior was problematic as it caused different names to be used at different times
during the build.

buildSrc is now reserved as a project and subproject build name

Previously, Gradle did not prevent using the name “buildSrc” for a subproject of a multi-project
build or as the name of an included build. Now, this is not allowed. The name “buildSrc” is now
reserved for the conventional buildSrc project that builds extra build logic.

Typical use of buildSrc is unaffected by this change. You will only be affected if your settings file
specifies include("buildSrc") or includeBuild("buildSrc").

Scala Zinc compiler

The Zinc compiler has been upgraded to version 1.3.0. Gradle no longer supports building for Scala
2.9.

The minimum Zinc compiler supported by Gradle is 1.2.0 and the maximum tested version is 1.3.0.
To make it easier to select the version of the Zinc compiler, you can now configure a zincVersion

property:

scala {
zincVersion = "1.2.1"

Please remove any explicit dependencies you’ve added to the zinc configuration and use this
property instead. If you try to use the com.typesafe.zinc:zinc dependency, Gradle will switch to the
new Zinc implementation.

Changes to Build Cache

Local build cache is always a directory cache

In the past, it was possible to use any build cache implementation as the local cache. This is no
longer allowed as the local cache must always be a DirectoryBuildCache.

Calls to BuildCacheConfiguration.local(Class) with anything other than DirectoryBuildCache as the

type will fail the build. Calling these methods with the DirectoryBuildCache type will produce a
deprecation warning.

Use getlocal() and local(Action) instead.

Failing to pack or unpack cached results will now fail the build

In the past, when Gradle encountered a problem while packing the results of a cached task, Gradle
would ignore the problem and continue running the build.

When encountering a corrupt cached artifact, Gradle would remove whatever was already
unpacked and re-execute the task to make sure the build had a chance to succeed.

While this behavior was intended to make a build successful, this had the adverse effect of hiding
problems and led to reduced cache performance.

In Gradle 6.0, both pack and unpack errors will cause the build to fail, so that these problems will
be surfaced more easily.

buildSrc projects automatically use build cache configuration

Previously, in order to to use the build cache for the buildSrc build you needed to duplicate your
build cache config in the buildSrc build. Now, it automatically uses the build cache configuration
defined by the top level settings script.

Changes to Dependency Management

Gradle Module Metadata is always published

Officially introduced in Gradle 5.3, Gradle Module Metadata was created to solve many of the
problems that have plagued dependency management for years, in particular, but not exclusively,
in the Java ecosystem.

With Gradle 6.0, Gradle Module Metadata is enabled by default.

This means, if you are publishing libraries with Gradle and using the maven-publish or ivy-publish
plugin, the Gradle Module Metadata file is always published in addition to traditional metadata.

The traditional metadata file will contain a marker so that Gradle knows that there is additional
metadata to consume.

Gradle Module Metadata has stricter validation

The following rules are verified when publishing Gradle Module Metadata:
* Variant names must be unique,
e Each variant must have at least one attribute,

» Two variants cannot have the exact same attributes and capabilities,

* If there are dependencies, at least one, across all variants, must carry version information.

These are documented in the specification as well.

https://blog.gradle.org/gradle-metadata-1.0
https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md

Maven or Ivy repositories are no longer queried for artifacts without metadata by default

If Gradle fails to locate the metadata file (.pom or ivy.xml) of a module in a repository defined in the
repositories { } section, it now assumes that the module does not exist in that repository.

For dynamic versions, the maven-metadata.xml for the corresponding module needs to be present in
a Maven repository.

Previously, Gradle would also look for a default artifact (.jar). This behavior often caused a large
number of unnecessary requests when using multiple repositories that slowed builds down.

You can opt into the old behavior for selected repositories by adding the artifact() metadata
source.

Changing the pom packaging property no longer changes the artifact extension

Previously, if the pom packaging was not jar, ejb, bundle or maven-plugin, the extension of the main
artifact published to a Maven repository was changed during publishing to match the pom
packaging.

This behavior led to broken Gradle Module Metadata and was difficult to understand due to
handling of different packaging types.

Build authors can change the artifact name when the artifact is created to obtain the same result as
before — e.g. by setting jar.archiveExtension.set(pomPackaging) explicitly.

An ivy.xml published for Java libraries contains more information
A number of fixes were made to produce more correct ivy.xml metadata in the ivy-publish plugin.

As a consequence, the internal structure of the ivy.xml file has changed. The runtime configuration
now contains more information, which corresponds to the runtimeElements variant of a Java
library. The default configuration should yield the same result as before.

In general, users are advised to migrate from ivy.xml to the new Gradle Module Metadata format.

Changes to Plugins and Build scripts

Classes from buildSrc are no longer visible to settings scripts

Previously, the buildSrc project was built before applying the project’s settings script and its classes
were visible within the script. Now, buildSrc is built after the settings script and its classes are not
visible to it. The buildSrc classes remain visible to project build scripts and script plugins.

Custom logic can be used from a settings script by declaring external dependencies.

The pluginManagement block in settings scripts is now isolated

Previously, any pluginManagement {} blocks inside a settings script were executed during the normal
execution of the script.

Now, they are executed earlier in a similar manner to buildscript {} or plugins {}. This means that

code inside such a block cannot reference anything declared elsewhere in the script.

This change has been made so that pluginManagement configuration can also be applied when
resolving plugins for the settings script itself.

Plugins and classes loaded in settings scripts are visible to project scripts and buildSrc

Previously, any classes added to the a settings script by using buildscript {} were not visible
outside of the script. Now, they they are visible to all of the project build scripts.

They are also visible to the buildSrc build script and its settings script.

This change has been made so that plugins applied to the settings script can contribute logic to the
entire build.

Plugin validation changes

* The validateTaskProperties task is now deprecated, use validatePlugins instead. The new name
better reflects the fact that it also validates artifact transform parameters and other non-
property definitions.

* The ValidateTaskProperties type is replaced by ValidatePlugins.

* The set(Classes() method is now removed. Use getClasses().setFrom() instead.

* The setClasspath() method is also removed. use getClasspath().setFrom() instead.
* The failOnWarning option is now enabled by default.

* The following task validation errors now fail the build at runtime and are promoted to errors
for ValidatePlugins:

o A task property is annotated with a property annotation not allowed for tasks, like
@InputArtifact.

Changes to Kotlin DSL

Using the embedded-kot1lin plugin now requires a repository

Just like when using the kotlin-dsl plugin, it is now required to declare a repository where Kotlin
dependencies can be found if you apply the embedded-kot1lin plugin.

plugins {
‘embedded-kotlin®
}

repositories {
mavenCentral()

}

Kotlin DSL IDE support now requires Kotlin Intelli] Plugin >= 1.3.50

With Kotlin Intelli] plugin versions prior to 1.3.50, Kotlin DSL scripts will be wrongly highlighted

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html#getFailOnWarning--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html

when the Gradle JVM is set to a version different from the one in Project SDK. Simply upgrade your
IDE plugin to a version >= 1.3.50 to restore the correct Kotlin DSL script highlighting behavior.

Kotlin DSL script base types no longer extend Project, Settings or Gradle

In previous versions, Kotlin DSL scripts were compiled to classes that implemented one of the three
core Gradle configuration interfaces in order to implicitly expose their APIs to scripts.
org.gradle.api.Project for project scripts, org.gradle.api.initialization.Settings for settings
scripts and org.gradle.api.invocation.Gradle for init scripts.

Having the script instance implement the core Gradle interface of the model object it was supposed
to configure was convenient because it made the model object API immediately available to the
body of the script but it was also a lie that could cause all sorts of trouble whenever the script itself
was used in place of the model object, a project script was not a proper Project instance just
because it implemented the core Project interface and the same was true for settings and init
scripts.

In 6.0 all Kotlin DSL scripts are compiled to classes that implement the newly introduced
org.gradle.kotlin.dsl.KotlinScript interface and the corresponding model objects are now
available as implicit receivers in the body of the scripts. In other words, a project script behaves as if
the body of the script is enclosed within a with(project) { -+ } block, a settings script as if the
body of the script is enclosed within a with(settings) { -+ } block and an init script as if the body
of the script is enclosed within a with(gradle) { -+ } block. This implies the corresponding model
object is also available as a property in the body of the script, the project property for project
scripts, the settings property for settings scripts and the gradle property for init scripts.

As part of the change, the SettingsScriptApi interface is no longer implemented by settings scripts
and the InitScriptApi interface is no longer implemented by init scripts. They should be replaced
with the corresponding model object interfaces, Settings and Gradle.

Miscellaneous

Javadoc and Groovydoc don’t include timestamps by default

Timestamps in the generated documentation have very limited practical use, however they make it
impossible to have repeatable documentation builds. Therefore, the Javadoc and Groovydoc tasks are
now configured to not include timestamps by default any more.

User provided 'config_loc' properties are ignored by Checkstyle

Gradle always uses configDirectory as the value for 'config_loc' when running Checkstyle.

New Tooling API progress event

In Gradle 6.0, we introduced a new progress event (org.gradle.tooling.events.test.TestOutputEvent)
to expose the output of test execution. This new event breaks the convention of having a StartEvent-
FinisEvent pair to express progress. TaskOutputEvent is a simple ProgressEvent.

Changes to the task container behavior

The following deprecated methods on the task container now result in errors:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/tooling/events/test/TestOutputEvent.html

» TaskContainer.add()

e TaskContainer.addAl1l()

* TaskContainer.remove()

» TaskContainer.removeAll()
e TaskContainer.retainAll()
e TaskContainer.clear()

» TaskContainer.iterator().remove()
Additionally, the following deprecated functionality now results in an error:

* Replacing a task that has already been realized.

* Replacing a registered (unrealized) task with an incompatible type. A compatible type is the
same type or a sub-type of the registered type.

* Replacing a task that has never been registered.

Replaced and Removed APIs

Methods on DefaultTask and ProjectLayout replaced with ObjectFactory
Use ObjectFactory.fileProperty() instead of the following methods that are now removed:
e DefaultTask.newInputFile()

» DefaultTask.newOutputFile()

* Projectlayout.fileProperty()
Use ObjectFactory.directoryProperty() instead of the following methods that are now removed:

» DefaultTask.newInputDirectory()
» DefaultTask.newQutputDirectory()

* Projectlayout.directoryProperty()

Annotation @Nullable has been removed

The org.gradle.api.Nullable annotation type has been removed. Use javax.annotation.Nullable
from JSR-305 instead.

The FindBugs plugin has been removed

The deprecated FindBugs plugin has been removed. As an alternative, you can use the SpotBugs
plugin from the Gradle Plugin Portal.

The JDepend plugin has been removed

The deprecated JDepend plugin has been removed. There are a number of community-provided
plugins for code and architecture analysis available on the Gradle Plugin Portal.

https://plugins.gradle.org/plugin/com.github.spotbugs
https://plugins.gradle.org/plugin/com.github.spotbugs
https://plugins.gradle.org/search?term=spotbugs
https://plugins.gradle.org

The OSGI plugin has been removed

The deprecated OSGI plugin has been removed. There are a number of community-provided OSGI
plugins available on the Gradle Plugin Portal.

The announce and build-announcements plugins have been removed

The deprecated announce and build-announcements plugins have been removed. There are a
number of community-provided plugins for sending out notifications available on the Gradle
Plugin Portal.

The Compare Gradle Builds plugin has been removed

The deprecated Compare Gradle Builds plugin has been removed. Please use build scans for build
analysis and comparison.

The Play plugins have been removed

The deprecated Play plugin has been removed. An external replacement, the Play Framework
plugin, is available from the plugin portal.

Method AbstractCompile.compile() method has been removed

The abstract method compile() is no longer declared by AbstractCompile.

Tasks extending AbstractCompile can implement their own @TaskAction method with the name of
their choosing.

They are also free to add a method annotated with @TaskAction using an InputChanges parameter
without having to implement a parameter-less one as well.

Other Deprecated Behaviors and APIs

* The org.gradle.util.internal.GUtil.savePropertiesNoDateComment has been removed. There is
no public replacement for this internal method.

* The deprecated class org.gradle.api.tasks.compile.CompilerArgumentProvider has been
removed. Use org.gradle.process.CommandLineArgumentProvider instead.

* The deprecated class org.gradle.api.ConventionProperty has been removed. Use Providers
instead of convention properties.

* The deprecated class org.gradle.reporting.DurationFormatter has been removed.

* The bridge method org.gradle.api.tasks.TaskInputs.property(String name, @Nullable Object
value) returning TaskInputs has been removed. A plugin using the method must be compiled
with Gradle 4.3 to work on Gradle 6.0.

* The following setters have been removed from JacocoReportBase:
o executionData - use getExecutionData().setFrom() instead.
o sourceDirectories - use getSourceDirectories().setFrom() instead.
o classDirectories - use getClassDirectories().setFrom() instead.

o additionalClassDirs - use getAdditionalClassDirs().setFrom() instead.

https://plugins.gradle.org/search?term=osgi
https://plugins.gradle.org
https://plugins.gradle.org
https://scans.gradle.com/
https://gradle.github.io/playframework
https://gradle.github.io/playframework
https://docs.gradle.org/7.3.2/javadoc/org/gradle/process/CommandLineArgumentProvider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:executionData
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:sourceDirectories
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:classDirectories
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:additionalClassDirs

o additionalSourceDirs - use getAdditionalSourceDirs().setFrom() instead.

* The append property on JacocoTaskExtension has been removed. append is now always configured
to be true for the Jacoco agent.

* The configureDefaultOutputPathForJacocoMerge method on JacocoPlugin has been removed. The
method was never meant to be public.

* File paths in deployment descriptor file name for the ear plugin are not allowed any more. Use a
simple name, like application.xml, instead.

* The org.gradle.testfixtures.ProjectBuilder constructor has been removed. Please use
ProjectBuilder.builder() instead.

* When incremental Groovy compilation is enabled, a wrong configuration of the source roots or
enabling Java annotation for Groovy now fails the build. Disable incremental Groovy
compilation when you want to compile in those cases.

» ComponentSelectionRule no longer can inject the metadata or ivy descriptor. Use the methods on
the ComponentSelection parameter instead.

* Declaring an incremental task without declaring outputs is now an error. Declare file outputs or
use TaskOutputs.upToDateWhen() instead.

* The getEffectiveAnnotationProcessorPath() method is removed from the JavaCompile and
ScalaCompile tasks.

* Changing the value of a task property with type Property<T> after the task has started execution
now results in an error.

* The islLegacylLayout() method is removed from SourceSetQutput.

* The map returned by TaskInputs.getProperties() is now unmodifiable. Trying to modify it will
result in an UnsupportedOperationException being thrown.

* There are slight changes in the incubating capabilities resolution API, which has been
introduced in 5.6, to also allow variant selection based on variant name

Upgrading from 5.5 and earlier

Deprecations

Changing the contents of ConfigurableFileCollection task properties after task starts execution

When a task property has type ConfigurableFileCollection, then the file collection referenced by
the property will ignore changes made to the contents of the collection once the task starts
execution. This has two benefits. Firstly, this prevents accidental changes to the property value
during task execution which can cause Gradle up-to-date checks and build cache lookup using
different values to those used by the task action. Secondly, this improves performance as Gradle can
calculate the value once and cache the result.

This will become an error in Gradle 6.0.

Creating SignOperation instances

Creating SignOperation instances directly is now deprecated. Instead, the methods of

https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:additionalSourceDirs
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ear/descriptor/DeploymentDescriptor.html#getFileName--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-

SigningExtension should be used to create these instances.

This will become an error in Gradle 6.0.

Declaring an incremental task without outputs

Declaring an incremental task without declaring outputs is now deprecated. Declare file outputs or
use TaskOutputs.upToDateWhen() instead.

This will become an error in Gradle 6.0.

Method WorkerExecutor.submit() is deprecated

The WorkerExecutor.submit() method is now deprecated. The new nolsolation(),
classloaderIsolation() and processIsolation() methods should now be used to submit work. See
the section on the Worker API for more information on using these methods.

WorkerExecutor.submit() will be removed in Gradle 8.0.

Potential breaking changes

Task dependencies are honored for task @Input properties whose value is a Property

Previously, task dependencies would be ignored for task @Input properties of type Property<T>.
These are now honored, so that it is possible to attach a task output property to a task @Input

property.

This may introduce unexpected cycles in the task dependency graph, where the value of an output
property is mapped to produce a value for an input property.

Declaring task dependencies using a file Provider that does not represent a task output

Previously, it was possible to pass Task.dependsOn() a Provider<File>, Provider<RegularFile> or
Provider<Directory> instance that did not represent a task output. These providers would be silently
ignored.

This is now an error because Gradle does not know how to build files that are not task outputs.

Note that it is still possible to to pass Task.dependsOn() a Provider that returns a file and that
represents a task output, for example myTask.dependsOn(jar.archiveFile) or
myTask.dependsOn(taskProvider.flatMap { it.outputDirectory }), when the Provider is an annotated
@OutputFile or @OutputDirectory property of a task.

Setting Property value to null uses the property convention

Previously, calling Property.set(null) would always reset the value of the property to 'not defined'.
Now, the convention that is associated with the property using the convention() method will be
used to determine the value of the property.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-
worker_api.pdf#tasks_parallel_worker

Enhanced validation of names for publishing.publications and publishing.repositories

The repository and publication names are used to construct task names for publishing. It was
possible to supply a name that would result in an invalid task name. Names for publications and
repositories are now restricted to [A-Za-z0-9_\\-.]+.

Restricted Worker API classloader and process classpath

Gradle now prevents internal dependencies (like Guava) from leaking into the classpath used by
Worker API actions. This fixes an issue where a worker needs to use a dependency that is also used
by Gradle internally.

In previous releases, it was possible to rely on these leaked classes. Plugins relying on this behavior
will now fail. To fix the plugin, the worker should explicitly include all required dependencies in its
classpath.

Default PMD version upgraded to 6.15.0

The PMD plugin has been upgraded to use PMD version 6.15.0 instead of 6.8.0 by default.

Contributed by wreulicke

Configuration copies have unique names

Previously, all copies of a configuration always had the name <0riginConfigurationName>Copy. Now
when creating multiple copies, each will have a unique name by adding an index starting from the
second copy. (e.g. CompileOnlyCopy2)

Changed classpath filtering for Eclipse

Gradle 5.6 no longer supplies custom classpath attributes in the Eclipse model. Instead, it provides
the attributes for Eclipse test sources. This change requires Buildship version 3.1.1 or later.

Embedded Kotlin upgraded to 1.3.41

Gradle Kotlin DSL scripts and Gradle Plugins authored using the kotlin-dsl plugin are now
compiled using Kotlin 1.3.41.

Please see the Kotlin blog post and changelog for more information about the included changes.
The minimum supported Kotlin Gradle Plugin version is now 1.2.31. Previously it was 1.2.21.

Automatic capability conflict resolution

Previous versions of Gradle would automatically select, in case of capability conflicts, the module
which has the highest capability version. Starting from 5.6, this is an opt-in behavior that can be
activated using:

configurations.all {
resolutionStrategy.capabilitiesResolution.all { selectHighestVersion() }

https://github.com/gradle/gradle/issues/3698
https://pmd.github.io/pmd-6.15.0/pmd_release_notes.html
https://github.com/wreulicke
https://www.eclipse.org/eclipse/news/4.8/jdt.php#jdt-test-sources
https://blog.jetbrains.com/kotlin/2019/06/kotlin-1-3-40-released/
https://github.com/JetBrains/kotlin/blob/1.3.40/ChangeLog.md

See the capabilities section of the documentation for more options.

File removal operations don’t follow symlinked directories

When Gradle has to remove the output files of a task for various reasons, it will not follow
symlinked directories. The symlink itself will be deleted, but the contents of the linked directory
will stay intact.

Disabled debug argument parsing in JavaExec

Gradle 5.6 introduced a new DSL element (
JavaForkOptions.debugOptions(Action<JavaDebugOptions>)) to configure debug properties for forked
Java processes. Due to this change, Gradle no longer parses debug-related JVM arguments.
Consequently, JavaForkOptions.getDebu() no longer returns true if the
-Xrunjdwp:transport=dt_socket,server=y, suspend=y,address=5005 or the
-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005 argument is specified to the
process.

Scala 2.9 and Zinc compiler

Gradle no longer supports building applications using Scala 2.9.

Upgrading from 5.4 and earlier

Deprecations

Play

The built-in Play plugin has been deprecated and will be replaced by a new Play Framework plugin
available from the plugin portal.

Build Comparison

The build comparison plugin has been deprecated and will be removed in the next major version of
Gradle.

Build scans show much deeper insights into your build and you can use Gradle Enterprise to
directly compare two build’s build-scans.

Potential breaking changes

User supplied Eclipse project names may be ignored on conflict

Project names configured via EclipseProject.setName(::-) were honored by Gradle and Buildship in
all cases, even when the names caused conflicts and import/synchronization errors.

Gradle can now deduplicate these names if they conflict with other project names in an Eclipse
workspace. This may lead to different Eclipse project names for projects with user-specified names.

The upcoming 3.1.1 version of Buildship is required to take advantage of this behavior.

play_plugin.pdf#play_plugin
https://gradle.github.io/playframework
https://gradle.com/build-scans
https://gradle.com/
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/eclipse/model/EclipseProject.html

Contributed by Christian Frankel

Default JaCoCo version upgraded to 0.8.4

The JaCoCo plugin has been upgraded to use JaCoCo version 0.8.4 instead of 0.8.3 by default.

Contributed by Evgeny Mandrikov

Embedded Ant version upgraded to 1.9.14

The version of Ant distributed with Gradle has been upgraded to 1.9.14 from 1.9.13.

Type DependencyHandler now statically exposes ExtensionAware

This affects Kotlin DSL build scripts that make use of ExtensionAware extension members such as the
extra properties accessor inside the dependencies {} block. The receiver for those members will no
longer be the enclosing Project instance but the dependencies object itself, the innermost
ExtensionAware conforming receiver. In order to address Project extra properties inside
dependencies {} the receiver must be explicitly qualified i.e. project.extra instead of just extra.
Affected extensions also include the<T>() and configure<T>(T.() » Unit).

Improved processing of dependency excludes

Previous versions of Gradle could, in some complex dependency graphs, have a wrong result or a
randomized dependency order when lots of excludes were present. To mitigate this, the algorithm
that computes exclusions has been rewritten. In some rare cases this may cause some differences in
resolution, due to the correctness changes.

Improved classpath separation for worker processes

The system classpath for worker daemons started by the Worker API when using PROCESS isolation
has been reduced to a minimum set of Gradle infrastructure. User code is still segregated into a
separate classloader to isolate it from the Gradle runtime. This should be a transparent change for
tasks using the worker API, but previous versions of Gradle mixed user code and Gradle internals
in the worker process. Worker actions that rely on things like the java.class.path system property
may be affected, since java.class.path now represents only the classpath of the Gradle internals.

Upgrading from 5.3 and earlier

Deprecations

Using custom local build cache implementations

Using a custom build cache implementation for the local build cache is now deprecated. The only
allowed type will be DirectoryBuildCache going forward. There is no change in the support for using
custom build cache implementations as the remote build cache.

Potential breaking changes

https://github.com/fraenkelc
http://www.jacoco.org/jacoco/trunk/doc/changes.html
https://github.com/Godin
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.9.14.html

Use HTTPS when configuring Google Hosted Libraries via googleApis()

The Google Hosted Libraries URL accessible via
JavaScriptRepositoriesExtension#GO0GLE_APIS_REPO_URL was changed to use the HTTPS protocol. The
change also affect the Ivy repository configured via googleApis().

Upgrading from 5.2 and earlier

Potential breaking changes

Bug fixes in platform resolution

There was a bug from Gradle 5.0 to 5.2.1 (included) where enforced platforms would potentially
include dependencies instead of constraints. This would happen whenever a POM file defined both
dependencies and "constraints" (via <dependencyManagement>) and that you used enforcedPlatform.
Gradle 5.3 fixes this bug, meaning that you might have differences in the resolution result if you
relied on this broken behavior. Similarly, Gradle 5.3 will no longer try to download jars for platform
and enforcedPlatform dependencies (as they should only bring in constraints).

Automatic target JVM version

If you apply any of the Java plugins, Gradle will now do its best to select dependencies which match
the target compatibility of the module being compiled. What it means, in practice, is that if you
have module A built for Java 8, and module B built for Java 8, then there’s no change. However if B
is built for Java 9+, then it’s not binary compatible anymore, and Gradle would complain with an
error message like the following:

Unable to find a matching variant of project :producer:

- Variant 'apiElements' capability test:producer:unspecified:
- Provides org.gradle.dependency.bundling 'external’
- Required org.gradle.jvm.version '8"' and found incompatible value '9".
- Required org.gradle.usage 'java-api' and found value 'java-api-jars'.

- Variant 'runtimeElements' capability test:producer:unspecified:
- Provides org.gradle.dependency.bundling 'external’
- Required org.gradle.jvm.version '8' and found incompatible value '9'.
- Required org.gradle.usage 'java-api' and found value 'java-runtime-jars'.

In general, this is a sign that your project is misconfigured and that your dependencies are not
compatible. However, there are cases where you still may want to do this, for example when only a
subset of classes of your module actually need the Java 9 dependencies, and are not intended to be
used on earlier releases. Java in general doesn’t encourage you to do this (you should split your
module instead), but if you face this problem, you can workaround by disabling this new behavior
on the consumer side:

java {
disableAutoTargetJvm()
}

Bug fix in Maven / Ivy interoperability with dependency substitution

If you have a Maven dependency pointing to an Ivy dependency where the default configuration
dependencies do not match the compile + runtime + master ones and that Ivy dependency was
substituted (using a resolutionStrategy.force, resolutionStrategy.eachDependency or
resolutionStrateqgy.dependencySubstitution) then this fix will impact you. The legacy behaviour of
Gradle, prior to 5.0, was still in place instead of being replaced by the changes introduced by
improved pom support.

Delete operations correctly handle symbolic links on Windows

Gradle no longer ignores the followSymlink option on Windows for the clean task, all Delete tasks,
and project.delete {} operations in the presence of junction points and symbolic links.

Fix in publication of additional artifacts

In previous Gradle versions, additional artifacts registered at the project level were not published
by maven-publish or ivy-publish unless they were also added as artifacts in the publication
configuration.

With Gradle 5.3, these artifacts are now properly accounted for and published.

This means that artifacts that are registered both on the project and the publication, Ivy or Maven,
will cause publication to fail since it will create duplicate entries. The fix is to remove these artifacts
from the publication configuration.

Upgrading from 5.1 and earlier

Potential breaking changes

none

Upgrading from 5.0 and earlier

Deprecations

Follow the API links to learn how to deal with these deprecations (if no extra information is
provided here):

o Setters for classes and classpath on ValidateTaskProperties

* There should not be setters for lazy properties like ConfigurableFileCollection. Use setFrom
instead. For example,

validateTaskProperties.getClasses().setFrom(fileCollection)
validateTaskProperties.getClasspath().setFrom(fileCollection)

Potential breaking changes

The following changes were not previously deprecated:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/ValidateTaskProperties.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileCollection.html

Signing API changes

Input and output files of Sign tasks are now tracked via Signature.getToSign() and
Signature.getFile(), respectively.

Collection properties default to empty collection

In Gradle 5.0, the collection property instances created using ObjectFactory would have no value
defined, requiring plugin authors to explicitly set an initial value. This proved to be awkward and
error prone so ObjectFactory now returns instances with an empty collection as their initial value.

Worker API: working directory of a worker can no longer be set

Since JDK 11 no longer supports changing the working directory of a running process, setting the
working directory of a worker via its fork options is now prohibited. All workers now use the same
working directory to enable reuse. Please pass files and directories as arguments instead. See
examples in the Worker API documentation.

Changes to native linking tasks

To expand our idiomatic Provider API practices, the install name property from
org.gradle.nativeplatform.tasks.LinkSharedLibrary is affected by this change.
» getInstallName() was changed to return a Property.

» setInstallName(String) was removed. Use Property.set() instead.

Passing arguments to Windows Resource Compiler

To expand our idiomatic Provider API practices, the WindowsResourceCompile task has been
converted to use the Provider API.

Passing additional compiler arguments now follow the same pattern as the CppCompile and other
tasks.

Copied configuration no longer shares a list of beforeResolve actions with original

The list of beforeResolve actions are no longer shared between a copied configuration and the
original. Instead, a copied configuration receives a copy of the beforeResolve actions at the time the
copy is made. Any beforeResolve actions added after copying (to either configuration) will not be
shared between the original and the copy. This may break plugins that relied on the previous
behaviour.

Changes to incubating POM customization types

* The type of MavenPomDeveloper.properties has changed from Property<Map<String, String>> to
MapProperty<String, String>.

* The type of MavenPomContributor.properties has changed from Property<Map<String, String>>to
MapProperty<String, String>.

Changes to specifying operating system for native projects

The incubating operatingSystems property on native components has been replaced with the
targetMachines property.

Changes for archive tasks (Zip, Jar, War, Ear, Tar)

Change in behavior for tasks extending AbstractArchiveTask

The AbstractArchiveTask has several new properties using the Provider API. Plugins that extend
these types and override methods from the base class may no longer behave the same way.
Internally, AbstractArchiveTask prefers the new properties and methods like getArchiveName() are
fagades over the new properties.

If your plugin/build only uses these types (and does not extend them), nothing has changed.

Upgrading your build from Gradle 4.x to 5.0

This chapter provides the information you need to migrate your older Gradle 4.x builds to Gradle
5.0. In most cases, you will need to apply the changes from all versions that come after the one
you’re upgrading from. For example, if you’re upgrading from Gradle 4.3 to 5.0, you will also need
to apply the changes since 4.4, 4.5, etc up to 5.0.

If you are using Gradle for Android, you need to move to version 3.3 or higher of both

TIP
the Android Gradle Plugin and Android Studio.

For all users

1. If you are not already on the latest 4.10.x release, read the sections below for help upgrading
your project to the latest 4.10.x release. We recommend upgrading to the latest 4.10.x release to
get the most useful warnings and deprecations information before moving to 5.0. Avoid
upgrading Gradle and migrating to Kotlin DSL at the same time in order to ease troubleshooting
in case of potential issues.

2. Try running gradle help --scan and view the deprecations view of the generated build scan. If
there are no warnings, the Deprecations tab will not appear.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/cpp/CppComponent.html#getTargetMachines()
https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

(7 Gradle Enterprise € + gradle clean kotlin-dsl-tooling-builders:platforniTest Dec 23,2020 7:38:27 PM EST i= Buldsans | @ @

= Ssummary
Console log

(D Deprecations.]

- Timeline

ons has been deprecated.

W Performance The KotlinDslPluginOptions.

Tests This s scheduled to be rem
2 usages >

s Projects

rimentalWarning property has been deprecated.
in Gradle 8.0.

&% Dependencies

22 Build dependencies
[Plugins

5= Custom values

& Switches

Infrastructure

¥ See before and after

@D Compare build scan

This is so that you can see any deprecation warnings that apply to your build. Gradle 5.x will
generate (potentially less obvious) errors if you try to upgrade directly to it.

Alternatively, you could run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

3. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of
the APIL.

In particular, you will need to use at least a 2.x version of the Shadow Plugin.

4. Run gradle wrapper --gradle-version 5.0 to update the project to 5.0

5. Move to Java 8 or higher if you haven’t already. Whereas Gradle 4.x requires Java 7, Gradle 5
requires Java 8 to run.

6. Read the Upgrading from 4.10 section and make any necessary changes.
7. Try to run the project and debug any errors using the Troubleshooting Guide.

In addition, Gradle has added several significant new and improved features that you should
consider using in your builds:

e Maven Publish and Ivy Publish Plugins that now support digital signatures with the Signing
Plugin.

» Use native BOM import in your builds.

* The Worker API for enabling units of work to run in parallel.

* A new API for creating and configuring tasks lazily that can significantly improve your build’s
configuration time.

https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow

Other notable changes to be aware of that may break your build include:

» Separation of compile and runtime dependencies when consuming POMs

* A change that means you should configure existing wrapper and init tasks rather than defining
your own.

* The honoring of implicit wildcards in Maven POM exclusions, which may result in
dependencies being excluded that weren’t before.

* A change to the way you add Java annotation processors to a project.

The default memory settings for the command-line client, the Gradle daemon, and all workers
including compilers and test executors, have been greatly reduced.

The default versions of several code quality plugins have been updated.

Several library versions used by Gradle have been upgraded.

Upgrading from 4.10 and earlier

If you are not already on version 4.10, skip down to the section that applies to your current Gradle
version and work your way up until you reach here. Then, apply these changes when moving from
Gradle 4.10 to 5.0.

Other changes

* The enableFeaturePreview('IMPROVED_POM_SUPPORT") and
enableFeaturePreview('STABLE_PUBLISHING") flags are no longer necessary. These features are
now enabled by default.

* Gradle now bundles JAXB for Java 9 and above. You can remove the --add-modules
java.xml.bind option from org.gradle.jvmargs, if set.

Potential breaking changes

The changes in this section have the potential to break your build, but the vast majority have been
deprecated for quite some time and few builds will be affected by a large number of them. We
strongly recommend upgrading to Gradle 4.10 first to get a report on what deprecations affect your
build.

The following breaking changes are not from deprecations, but the result of changes in behavior:

» Separation of compile and runtime dependencies when consuming POMs

* The evaluation of the publishing {} block is no longer deferred until needed but behaves like
any other block. Please use afterEvaluate {} if you need to defer evaluation.

e The Javadoc and Groovydoc tasks now delete the destination dir for the documentation before
executing. This has been added to remove stale output files from the last task execution.

* The Java Library Distribution Plugin is now based on the Java Library Plugin instead of the Java

Plugin.

While it applies the Java Plugin, it behaves slightly different (e.g. it adds the api configuration).
Thus, make sure to check whether your build behaves as expected after upgrading.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

* The html property on CheckstyleReport and FindBugsReport now returns a
CustomizableHtmlReport instance that is easier to configure from statically typed languages like
Java and Kotlin.

» The Configuration Avoidance API has been updated to prevent the creation and configuration of
tasks that are never used.

* The default memory settings for the command-line client, the Gradle daemon, and all workers
including compilers and test executors, have been greatly reduced.

* The default versions of several code quality plugins have been updated.

* Several library versions used by Gradle have been upgraded.
The following breaking changes will appear as deprecation warnings with Gradle 4.10:

General

» << for task definitions no longer works. In other words, you can not use the syntax task
myTask << { -+ 1.

Use the Task.doLast() method instead, like this:

task myTask {
dolast {

* You can no longer use any of the following characters in domain object names, such as
project and task names: <space>/ \ : < > " ? * | . You should also not use . as a leading or
trailing character.

Running Gradle & build environment

* As mentioned before, Gradle can no longer be run on Java 7. However, you can still use
forked compilation and testing to build and test software for Java 6 and above.

* The -Dtest.single command-line option has been removed — use test filtering instead.

* The -Dtest.debug command-line option has been removed — use the --debug-jvm option
instead.

* The -u/--no-search-upward command-line option has been removed — make sure all your
builds have a settings.gradle file.

* The --recompile-scripts command-line option has been removed.

* You can no longer have a Gradle build nested in a subdirectory of another Gradle build
unless the nested build has a settings.gradle file.

* The DirectoryBuildCache.setTargetSizeInMB(long) method has been removed — use
DirectoryBuildCache.removeUnusedEntriesAfterDays instead.

* The org.gradle.readlLoggingConfigFile system property no longer does anything — update
affected tests to work with your java.util.logging settings.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.reporting.CustomizableHtmlReport.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.local.DirectoryBuildCache.html#org.gradle.caching.local.DirectoryBuildCache:removeUnusedEntriesAfterDays

Working with files
* You can no longer cast FileCollection objects to other types using the as keyword or the
asType() method.

* You can no longer pass null as the configuration action of CopySpec.from(Object, Action).

* For better compatibility with the Kotlin DSL, CopySpec.duplicatesStrategy is no longer
nullable. The property setter no longer accepts null as a way to reset the property back to its
default value. Use DuplicatesStrategy.INHERIT instead.

» The FileCollection.stopExecutionIfEmpty() method has been removed — wuse the
@SkipWhenEmpty annotation on FileCollection task properties instead.

* The FileCollection.add() method has been removed —use Project.files() and
Project.fileTree() to create configurable file collections/file trees and add to them via
ConfigurableFileCollection.from().

» SimpleFileCollection has been removed — use Project.files(Object...) instead.

* Don’t have your own classes extend AbstractFileCollection — use the Project.files() method
instead. This problem may exhibit as a missing getBuildDependencies() method.

Java builds

* The CompileOptions.bootClasspath property has been removed —use
CompileOptions.bootstrapClasspath instead.

* You can no longer use -source-path as a generic compiler argument — use
CompileOptions.sourcepath instead.

* You can no longer use -processorpath as a generic compiler argument — use
CompileOptions.annotationProcessorPath instead.

» Gradle will no longer automatically apply annotation processors that are on the compile
classpath — use CompileOptions.annotationProcessorPath instead.

* The test(lassesDir property has been removed from the Test task — use testClassesDirs
instead.

* The classesDir property has been removed from both the JDepend task and SourceSetOutput.
Use the JDepend.classesDirs and SourceSetOutput.classesDirs properties instead.

» The Javalibrary(PublishArtifact, DependencySet) constructor has been removed — this was
used by the Shadow Plugin, so make sure you upgrade to at least version 2.x of that plugin.

» The JavaBasePlugin.configureForSourceSet() method has been removed.

* You can no longer create your own instances of JavaPluginConvention,
ApplicationPluginConvention, WarPluginConvention, EarPluginConvention,
BasePluginConvention, and ProjectReportsPluginConvention.

* The Maven Plugin used to publish the highly outdated Maven 2 metadata format. This has
been changed and it will now publish Maven 3 metadata, just like the Maven Publish Plugin.

With the removal of Maven 2 support, the methods that configure unique snapshot behavior
have also been removed. Maven 3 only supports unique snapshots, so we decided to remove
them.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object-org.gradle.api.Action-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DuplicatesStrategy.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileCollection.html#from-java.lang.Object...-
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:bootstrapClasspath
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:sourcepath
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:annotationProcessorPath
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:annotationProcessorPath
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:testClassesDirs
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.SourceSetOutput.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.SourceSetOutput.html#org.gradle.api.tasks.SourceSetOutput:classesDirs
https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/JavaPluginConvention.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/ApplicationPluginConvention.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/WarPluginConvention.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ear/EarPluginConvention.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/BasePluginConvention.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/ProjectReportsPluginConvention.html

Tasks & properties

» The following legacy classes and methods related to lazy properties have been removed
— use ObjectFactory.property() to create Property instances:

o PropertyState

o DirectoryVar

o RegularFileVar

o ProjectlLayout.newDirectoryVar()
o ProjectlLayout.newFileVar()

o Project.property(Class)

o Script.property(Class)

o ProviderFactory.property(Class)

» Tasks configured and registered with the task configuration avoidance APIs have more
restrictions on the other methods that can be called from a configuration action.

» The internal @0ption and @0ptionValues annotations — package
org.gradle.api.internal.tasks.options — have been removed. Use the public @Option and
@OptionValues annotations instead.

» The Task.deleteAllActions() method has been removed with no replacement.

* The Task.dependsOnTaskDidWork() method has been removed — use declared inputs and
outputs instead.

* The following properties and methods of TaskInternal have been removed — use task
dependencies, task rules, reusable utility methods, or the Worker API in place of executing a
task directly.

o execute()

o executer

o getValidators()
o addValidator()

» The TaskInputs.file(Object) method can no longer be called with an argument that resolves to
anything other than a single regular file.

* The TaskInputs.dir(Object) method can no longer be called with an argument that resolves to
anything other than a single directory.

* You can no longer register invalid inputs and outputs via TaskInputs and TaskOutputs.

* The TaskDestroyables.file() and TaskDestroyables.files() methods have been removed
— use TaskDestroyables.register() instead.

» SimpleWorkResult has been removed — use WorkResult.didWork.

* Overriding built-in tasks deprecated in 4.8 now produces an error.

Attempting to replace a built-in task will produce an error similar to the following:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-
task_configuration_avoidance.pdf#sec:task_configuration_avoidance_migration_guidelines
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/options/Option.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/options/OptionValues.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html#file-java.lang.Object-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html#dir-java.lang.Object-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputs.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskDestroyables.html#register-java.lang.Object...-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/WorkResult.html#getDidWork--

> Cannot add task 'wrapper' as a task with that name already exists.

Scala & Play
 Play 2.2 is no longer supported — please upgrade the version of Play you are using.
» The ScalaDocOptions.styleSheet property has been removed — the Scaladoc Ant task in Scala
2.11.8 and later no longer supports this property.

Kotlin DSL

* Artifact configuration accessors now have the type
NamedDomainObjectProvider<Configuration> instead of Configuration

* PluginAware.apply<T>(to) was renamed PluginAware.applyTo<T>(target).

Both changes could cause script compilation errors. See the Gradle Kotlin DSL release notes for
more information and how to fix builds broken by the changes described above.

Miscellaneous

» The ConfigurableReport.setDestination(Object) method has been removed — use
ConfigurableReport.setDestination(File) instead.

* The Signature.setFile(File) method has been removed — Gradle does not support changing
the output file for the generated signature.

» The read-only Signature.toSignArtifact property has been removed — it should never have
been part of the public APIL

* The @DeferredConfigurable annotation has been removed.
* The method isDeferredConfigurable() was removed from ExtensionSchema.

» IdeaPlugin.performPostEvaluationActions() and
EclipsePlugin.performPostEvaluationActions() have been removed.

* The ‘BroadcastingCollectionEventRegister.getAddAction() method has been removed with no
replacement.

* The internal org.gradle.util package is no longer imported by default.
Ideally you shouldn’t use classes from this package, but, as a quick fix, you can add explicit
imports to your build scripts for those classes.

» The gradlePluginPortal() repository no longer looks for JARs without a POM by default.

» The Tooling API can no longer connect to builds using a Gradle version below Gradle 2.6. The
same applies to builds run through TestKit.

* Gradle 5.0 requires a minimum Tooling API client version of 3.0. Older client libraries can no
longer run builds with Gradle 5.0.

* The IdeaModule Tooling API model element contains methods to retrieve resources and test
resources so those elements were removed from the result of IdeaModule.getSourceDirs()
and IdeaModule.getTestSourceDirs().

* In previous Gradle versions, the source field in SourceTask was accessible from subclasses.

https://github.com/gradle/kotlin-dsl-samples/releases/tag/v1.0.2#breaking-changes
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/reporting/ConfigurableReport.html#setDestination-java.io.File-

This is not the case anymore as the source field is now declared as private.
* In the Worker API, the working directory of a worker can no longer be set.

* A change in behavior related to dependency and version constraints may impact a small
number of users.

* There have been several changes to property factory methods on DefaultTask that may
impact the creation of custom tasks.

Upgrading from 4.9 and earlier

If you are not already on version 4.9, skip down to the section that applies to your current Gradle
version and work your way up until you reach here. Then, apply these changes when upgrading to
Gradle 4.10.

Deprecated classes, methods and properties

Follow the API links to learn how to deal with these deprecations (if no extra information is
provided here):

» TaskContainer.add() and TaskContainer.addA11() —use TaskContainer.create() or
TaskContainer.register() instead

Potential breaking changes

* There have been several potentially breaking changes in Kotlin DSL — see the Breaking changes
section of that project’s release notes.

* You can no longer use any of the Project.beforeEvaluate() or Project.afterEvaluate() methods
with lazy task configuration, for example inside a TaskContainer.register() block.

» Publishing to AWS S3 requires new permissions.

* Both PluginUnderTestMetadata and GeneratePluginDescriptors — classes used by the Java
Gradle Plugin Development Plugin — have been updated to use the Provider API.

Use the Property.sset() method to modify their values rather than using standard property
assignment syntax, unless you are doing so in a Groovy build script. Standard property
assignment still works in that one case.

Upgrading from 4.8 and earlier

* Consider trying the lazy API for task creation and configuration

Potential breaking changes

* You can no longer use GPath syntax with tasks.withType().

Use Groovy’s spread operator instead. For example, you would replace
tasks.withType(JavaCompile).name with tasks.withType(JavaCompile)*.name.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html#create-java.lang.String-java.lang.Class-org.gradle.api.Action-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html#register-java.lang.String-java.lang.Class-org.gradle.api.Action-
https://github.com/gradle/kotlin-dsl/releases/tag/v1.0-RC3
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:beforeEvaluate(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:afterEvaluate(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html#register-java.lang.String-java.lang.Class-org.gradle.api.Action-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/PluginUnderTestMetadata.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/GeneratePluginDescriptors.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html#set-T-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskCollection.html#withType-java.lang.Class-
https://docs.groovy-lang.org/latest/html/documentation/#_spread_operator

Upgrading from 4.7 and earlier

Switch to the Maven Publish and Ivy Publish plugins
Use deferred configuration with the publishing plugins
Configure existing wrapper and init tasks rather than defining your own

Consider migrating to the built-in dependency locking mechanism if you are currently using a
plugin or custom solution for this

Potential breaking changes

Build will now fail if a specified init script is not found.

TaskContainer.remove() now actually removes the given task — some plugins may have
accidentally relied on the old behavior.

Gradle now honors implicit wildcards in Maven POM exclusions.

The Kotlin DSL now respects JSR-305 package annotations.

This will lead to some types annotated according to JSR-305 being treated as nullable where
they were treated as non-nullable before. This may lead to compilation errors in the build
script. See the relevant Kotlin DSL release notes for details.

Error messages will be directed to standard error rather than standard output now, unless a
console is attached to both standard output and standard error. This may affect tools that scrape
a build’s plain console output. Ignore this change if you’re upgrading from an earlier version of
Gradle.

Deprecations

Prior to this release, builds were allowed to replace built-in tasks. This feature has been deprecated.

The full list of built-in tasks that should not be replaced is: wrapper, init, help, tasks, projects,

buildEnvironment, components, dependencies, dependencyInsight, dependentComponents, model,
properties.

Upgrading from 4.6 and earlier

Potential breaking changes

Gradle will now, by convention, look for Checkstyle configuration files in the root project’s
config/checkstyle directory.

Checkstyle configuration files in subprojects — the old by-convention location — will be ignored
unless you explicitly configure their path via checkstyle.configDir or checkstyle.config.

The structure of Gradle’s plain console output has changed, which may break tools that scrape
that output.

The APIs of many native tasks related to compilation, linking and installation have changed in
breaking ways.

https://github.com/gradle/kotlin-dsl/releases/tag/v0.17.4
https://docs.gradle.org/4.8/release-notes.html#overwriting-gradle's-built-in-tasks
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html#org.gradle.api.plugins.quality.CheckstyleExtension:configDir
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html#org.gradle.api.plugins.quality.CheckstyleExtension:config

[Kotlin DSL] Delegated properties used to access Gradle’s build properties — defined in
gradle.properties for example — must now be explicitly typed.

[Kotlin DSL] Declaring a plugins {} block inside a nested scope now throws an exception.
[Kotlin DSL] Only one pluginManagement {} block is allowed now.

The cache control DSL provided by the org.gradle.api.artifacts.cache.* interfaces are no
longer available.

getEnabledDirectoryReportDestinations(), getEnabledFileReportDestinations() and
getEnabledReportNames() have all been removed from org.gradle.api.reporting.ReportContainer.

StartParameter.projectProperties and StartParameter.systemPropertiesArgs now return
immutable maps.

Upgrading from 4.5 and earlier

Deprecations

You should not put annotation processors on the compile classpath or declare them with the
-processorpath compiler argument.

They should be added to the annotationProcessor configuration instead. If you don’t want any
processing, but your compile classpath contains a processor unintentionally (e.g. as part of a
library you depend on), use the -proc:none compiler argument to ignore it.

Use CommandLineArgumentProvider in place of CompilerArgumentProvider.

Potential breaking changes

The Java plugins now add a sourceSetAnnotationProcessor configuration for each source set,
which might break if any of them match existing configurations you have. We recommend you
remove your conflicting configuration declarations.

The StartParameter.taskOutputCacheEnabled property has been replaced by
StartParameter.setBuildCacheEnabled(boolean).

The Visual Studio integration now only configures a single solution for all components in a
build.

Gradle has replaced HttpClient 4.4.1 with version 4.5.5.

Gradle now bundles the kotlin-stdlib-jdk8 artifact instead of kotlin-stdlib-jre8. This may
affect your build. Please see the Kotlin documentation for more details.

Upgrading from 4.4 and earlier

Make sure you have a settings.gradle file: it avoids a performance penalty and allows you to set
the root project’s name.

Gradle now ignores the build cache configuration of included builds (composite builds) and
instead uses the root build’s configuration for all the builds.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/StartParameter.html#getProjectProperties--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/StartParameter.html#getSystemPropertiesArgs--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/process/CommandLineArgumentProvider.html
https://docs.gradle.org/4.10.3/javadoc/org/gradle/api/tasks/compile/CompilerArgumentProvider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/StartParameter.html#setBuildCacheEnabled-boolean-
http://kotlinlang.org/docs/reference/whatsnew12.html#kotlin-standard-library-artifacts-and-split-packages

Potential breaking changes

Two overloaded ValidateTaskProperties.setOutputFile() methods were removed. They are
replaced with auto-generated setters when the task is accessed from a build script, but that
won’t be the case from plugins and other code outside of the build script.

The Maven Publish Plugin now produces more complete maven-metadata.xml files, including
maintaining a list of <snapshotVersion> elements. Some older versions of Maven may not be able
to consume this metadata.

HttpBuildCache no longer follows redirects.
The Depend task type has been removed.

Project.file(Object) no longer normalizes case for file paths on case-insensitive file systems. It
now ignores case in such circumstances and does not touch the file system.

ListProperty no longer extends Property.

Upgrading from 4.3 and earlier

Potential breaking changes

AbstractTestTask is now extended by non-JVM test tasks as well as Test. Plugins should beware
configuring all tasks of type AbstractTestTask because of this.

The default output location for EclipseClasspath.defaultOutputDir has changed from
$projectDir/bin to $projectDir/bin/default.

The deprecated InstallExecutable.setDestinationDir(Provider) was removed — use
InstallExecutable.installDirectory instead.

The deprecated InstallExecutable.setExecutable(Provider) was removed — use
InstallExecutable.executableFile instead.

Gradle will no longer prefer a version of Visual Studio found on the path over other locations. It

is now a last resort.

You can bypass the toolchain discovery by specifying the installation directory of the version of
Visual Studio you want via VisualCpp.setInstallDir(Object).

pluginManagement.repositories is now of type RepositoryHandler rather than
PluginRepositoriesSpec, which has been removed.

5xx HTTP errors during dependency resolution will now trigger exceptions in the build.

The embedded Apache Ant has been upgraded from 1.9.6 to 1.9.9.

Several third-party libraries used by Gradle have been upgraded to fix security issues.

Upgrading from 4.2 and earlier

The plugins {} block can now be used in subprojects and for plugins in the buildSrc directory.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ListProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.AbstractTestTask.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html#org.gradle.plugins.ide.eclipse.model.EclipseClasspath:defaultOutputDir
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.InstallExecutable.html#org.gradle.nativeplatform.tasks.InstallExecutable:installDirectory
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.InstallExecutable.html#org.gradle.nativeplatform.tasks.InstallExecutable:executableFile
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html#org.gradle.nativeplatform.toolchain.VisualCpp:installDir
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Other deprecations

* You should no longer run Gradle versions older than 2.6 via the Tooling API.
* You should no longer run any version of Gradle via an older version of the Tooling API than 3.0.

* You should no longer chain TaskInputs.property(String,Object) and TaskInputs.properties(Map)
methods.

Potential breaking changes

* DefaultTask.newOutputDirectory() now returns a DirectoryProperty instead of a DirectoryVar.
* DefaultTask.newOutputFile() now returns a ReqularFileProperty instead of a ReqularFileVar.

* DefaultTask.newInputFile() now returns a ReqularFileProperty instead of a ReqularFileVar.

* ProjectLayout.buildDirectory now returns a DirectoryProperty instead of a DirectoryVar.

» AbstractNativeCompileTask.compilerArgs is now of type ListProperty<String> instead of
List<String>.

» AbstractNativeCompileTask.objectFileDir is now of type DirectoryProperty instead of File.

» AbstractLinkTask.linkerArgs is now of type ListProperty<String> instead of List<String>.

» TaskDestroyables.getFiles() is no longer part of the public APIL

* Overlapping version ranges for a dependency now result in Gradle picking a version that

satisfies all declared ranges.

For example, if a dependency on some-module is found with a version range of [3,6] and also
transitively with a range of [4,8], Gradle now selects version 6 instead of 8. The prior behavior
was to select 8.

* The order of elements in Iterable properties marked with either @OutputFiles or
@OutputDirectories now matters. If the order changes, the property is no longer considered up
to date.

Prefer using separate properties with @0utputFile/@OutputDirectory annotations or use Map
properties with @0utputFiles/@OutputDirectories instead.

* Gradle will no longer ignore dependency resolution errors from a repository when there is
another repository it can check. Dependency resolution will fail instead. This results in more
deterministic behavior with respect to resolution results.

Upgrading from 4.1 and earlier

Potential breaking changes

e The withPathSensitivity() methods on TaskFilePropertyBuilder and
TaskOutputFilePropertyBuilder have been removed.
* The bundled bndlib has been upgraded from 3.2.0 to 3.4.0.

* The FindBugs Plugin no longer renders progress information from its analysis. If you rely on
that output in any way, you can enable it with FindBugs.showProgress.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html#property-java.lang.String-java.lang.Object-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html#properties-java.util.Map-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/DefaultTask.html#newOutputDirectory--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/DefaultTask.html#newOutputFile--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/DefaultTask.html#newInputFile--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#getBuildDirectory--
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask.html#org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask:compilerArgs
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask.html#org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask:objectFileDir
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.AbstractLinkTask.html#org.gradle.nativeplatform.tasks.AbstractLinkTask:linkerArgs
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskFilePropertyBuilder.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputFilePropertyBuilder.html

Upgrading from 4.0

* Consider using the new Worker API to enable units of work within your build to run in parallel.

Deprecated classes, methods and properties

Follow the API links to learn how to deal with these deprecations (if no extra information is
provided here):

e Nullable

Potential breaking changes

* Non-Java projects that have a project dependency on a Java project now consume the
runtimeElements configuration by default instead of the default configuration.

To override this behavior, you can explicitly declare the configuration to use in the project
dependency. For example: project(path: ':myJavaProject', configuration: 'default').

* Default Zinc compiler upgraded from 0.3.13 to 0.3.15.

* [Kotlin DSL] Base package renamed from org.gradle.script.lang.kotlin to
org.gradle.kotlin.dsl.

Changes in detail

[5.0] Default memory settings changed

The command line client now starts with 64MB of heap instead of 1GB. This may affect builds
running directly inside the client VM using --no-daemon mode. We discourage the use of --no-daemon,
but if you must use it, you can increase the available memory using the GRADLE_OPTS environment
variable.

The Gradle daemon now starts with 512MB of heap instead of 1GB. Large projects may have to
increase this setting using the org.gradle.jvmargs property.

All workers, including compilers and test executors, now start with 512MB of heap. The previous
default was 1/4th of physical memory. Large projects may have to increase this setting on the
relevant tasks, e.g. JavaCompile or Test.

[5.0] New default versions for code quality plugins

The default tool versions of the following code quality plugins have been updated:

The Checkstyle Plugin now uses 8.12 instead of 6.19 by default.

The CodeNarc Plugin now uses 1.2.1 instead of 1.1 by default.

The JaCoCo Plugin now uses 0.8.2 instead of 0.8.1 by default.

The PMD Plugin now uses 6.8.0 instead of 5.6.1 by default.

In addition, the default ruleset was changed from the now deprecated java-basic to

https://docs.gradle.org/4.10.3/javadoc/org/gradle/api/Nullable.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
http://checkstyle.sourceforge.net
http://checkstyle.sourceforge.net/releasenotes.html#Release_8.12
http://codenarc.sourceforge.net
https://github.com/CodeNarc/CodeNarc/blob/master/CHANGELOG.md#version-121-aug-2018
https://www.jacoco.org/jacoco/
https://www.jacoco.org/jacoco/trunk/doc/changes.html
https://pmd.github.io/
https://pmd.github.io/pmd-6.8.0/pmd_release_notes.html#30-september-2018---680

category/java/errorprone.xml.

We recommend configuring a ruleset explicitly, though.

[5.0] Library upgrades

Several libraries that are used by Gradle have been upgraded:

* Groovy was upgraded from 2.4.15 to 2.5.4.
* Ant has been upgraded from 1.9.11 to 1.9.13.

» The AWS SDK used to access S3-backed Maven/Ivy repositories has been upgraded from 1.11.267
to 1.11.407.

* The BND library used by the OSGi Plugin has been upgraded from 3.4.0 to 4.0.0.

* The Google Cloud Storage JSON API Client Library used to access Google Cloud Storage backed
Maven/Ivy repositories has been upgraded from v1-rev116-1.23.0 to v1-rev136-1.25.0.

* Ivy has been upgraded from 2.2.0 to 2.3.0.
* The JUnit Platform libraries used by the Test task have been upgraded from 1.0.3 to 1.3.1.

* The Maven Wagon libraries used to access Maven repositories have been upgraded from 2.4 to
3.0.0.

» SLF4] has been upgraded from 1.7.16 to 1.7.25.

[5.0] Improved support for dependency and version constraints

Through the Gradle 4.x release stream, new @Incubating features were added to the dependency
resolution engine. These include sophisticated version constraints (prefer, strictly, reject),
dependency constraints, and platform dependencies.

If you have been using the IMPROVED_POM_SUPPORT feature preview, playing with constraints or prefer,
reject and other specific version indications, then make sure to take a good look at your
dependency resolution results.

[5.0] BOM import

Gradle now provides support for importing bill of materials (BOM) files, which are effectively POM
files that use <dependencyManagement> sections to control the versions of direct and transitive
dependencies. All you need to do is declare the POM as a platform dependency.

The following example picks the versions of the gson and dom4j dependencies from the declared
Spring Boot BOM:

https://groovy-lang.org/releasenotes/groovy-2.5.html
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.9.13.html
https://github.com/aws/aws-sdk-java/blob/master/CHANGELOG.md#111407-2018-09-11
https://github.com/bndtools/bnd/wiki/Changes-in-4.0.0
http://ant.apache.org/ivy/history/2.3.0/release-notes.html
https://www.slf4j.org/news.html

dependencies {

// import a BOM

implementation platform('org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE")

// define dependencies without versions
implementation 'com.google.code.gson:gson'
implementation 'dom4j:dom4;j’

[5.0] Separation of compile and runtime dependencies when consuming POMs

Since Gradle 1.0, runtime-scoped dependencies have been included in the Java compilation
classpath, which has some drawbacks:

* The compilation classpath is much larger than it needs to be, slowing down compilation.

* The compilation classpath includes runtime-scoped files that do not impact compilation,
resulting in unnecessary re-compilation when those files change.

With this new behavior, the Java and Java Library plugins both honor the separation of compile
and runtime scopes. This means that the compilation classpath only includes compile-scoped
dependencies, while the runtime classpath adds the runtime-scoped dependencies as well. This is
particularly useful if you develop and publish Java libraries with Gradle where the separation
between api and implementation dependencies is reflected in the published scopes.

[5.0] Changes to property factory methods on DefaultTask

Property factory methods on DefaultTask are now final

The property factory methods such as newInputFile() are intended to be called from the constructor
of a type that extends DefaultTask. These methods are now final to avoid subclasses overriding
these methods and using state that is not initialized.

Inputs and outputs are not automatically registered

The Property instances that are returned by these methods are no longer automatically registered
as inputs or outputs of the task. The Property instances need to be declared as inputs or outputs in
the usual ways, such as attaching annotations such as @0utputFile or using the runtime API to
register the property.

For example, you could previously use the following syntax and have both outputFile instances
registered as declared outputs:

build.gradle

class MyTask extends DefaultTask {
// note: no annotation here
final ReqularFileProperty outputFile = newOutputFile()

}

task myOtherTask {
def outputFile = newOutputFile()
dolast { ... }

build.gradle.kts

open class MyTask : DefaultTask() {
// note: no annotation here
val outputFile: ReqularFileProperty = newOutputFile()

}
task("myOtherTask") {

val outputFile = newOutputFile()
dolLast { ... }

Now you have to explicitly register outputFile, like this:

build.gradle

class MyTask extends DefaultTask {
// property needs an annotation
final ReqularFileProperty outputFile = project.objects.fileProperty()

}

task myOtherTask {
def outputFile = project.objects.fileProperty()
outputs.file(outputFile) // or to be registered using the runtime API
doLast { ... }

build.gradle.kts

open class MyTask : DefaultTask() {
@OutputFile // property needs an annotation
val outputFile: ReqularFileProperty = project.objects.fileProperty()

}

task("myOtherTask") {
val outputFile = project.objects.fileProperty()
outputs.file(outputFile) // or to be registered using the runtime API
dolLast { ... }

[5.0] Gradle now bundles JAXB for Java 9 and above

In order to use S3 backed artifact repositories, you previously had to add --add-modules
java.xml.bind to org.gradle.jvmargs when running on Java 9 and above.

Since Java 11 no longer contains the java.xml.bind module, Gradle now bundles JAXB 2.3.1
(com.sun.xml.bind:jaxb-impl) and uses it on Java 9 and above.

Please remove the --add-modules java.xml.bind option from org.gradle.jvmargs, if set.

[5.0] The gradlePluginPortal() repository no longer looks for JARs without a POM by default

With this new behavior, if a plugin or a transitive dependency of a plugin found in the
gradlePluginPortal() repository has no Maven POM it will fail to resolve.

Artifacts published to a Maven repository without a POM should be fixed. If you encounter such
artifacts, please ask the plugin or library author to publish a new version with proper metadata.

If you are stuck with a bad plugin, you can work around by re-enabling JARs as metadata source for

the gradlePluginPortal() repository:

settings.gradle

pluginManagement {
repositories {
gradlePluginPortal().tap {
metadataSources {
mavenPom()
artifact()

settings.gradle.kts

pluginManagement {
repositories {
gradlePluginPortal().apply {
(this as MavenArtifactRepository).metadataSources {
mavenPom()
artifact()

Java Library Distribution Plugin utilizes Java Library Plugin

The Java Library Distribution Plugin is now based on the Java Library Plugin instead of the Java
Plugin.

Additionally, the default distribution created by the plugin will contain all artifacts of the
runtimeClasspath configuration instead of the deprecated runtime configuration.

Configuration Avoidance API disallows common configuration errors

The configuration avoidance API introduced in Gradle 4.9 allows you to avoid creating and
configuring tasks that are never used.

With the existing API, this example adds two tasks (foo and bar):

task_configuration_avoidance.pdf#task_configuration_avoidance

build.gradle

tasks.create("foo") {
tasks.create("bar")

build.gradle.kts

tasks.create("foo") {
tasks.create("bar")

When converting this to use the new API, something surprising happens: bar doesn’t exist. The new
API only executes configuration actions when necessary, so the register() for task bar only
executes when foo is configured.

build.gradle

tasks.register("foo") {
tasks.register("bar") // WRONG

}

build.gradle.kts

tasks.register("foo") {
tasks.register("bar") // WRONG
}

To avoid this, Gradle now detects this and prevents modification to the underlying container
(through create() or register()) when using the new API.

[5.0] Worker API: working directory of a worker can no longer be set

Since JDK 11 no longer supports changing the working directory of a running process, setting the
working directory of a worker via its fork options is now prohibited.

All workers now use the same working directory to enable reuse.

Please pass files and directories as arguments instead.

[4.10] Publishing to AWS S3 requires new permissions

The S3 repository transport protocol allows Gradle to publish artifacts to AWS S3 buckets. Starting
with this release, every artifact uploaded to an S3 bucket will be equipped with the bucket-owner-
full-control canned ACL. Make sure that the AWS account used to publish artifacts has the
s3:PutObjectAcl and s3:PutObjectVersionAcl permissions, otherwise the upload will fail.

{
"Version":"2012-10-17",
"Statement":[
/] ...
{
"Effect":"Allow",
"Action":[
"s3:PutObject", // necessary for uploading objects
"s3:PutObjectAcl", // required starting with this release
"s3:PutObjectVersionAcl" // if S3 bucket versioning is enabled
1
"Resource":"arn:aws:s3:::myCompanyBucket/*"
}
]
}

See AWS S3 Cross Account Access for more information.

[4.9] Consider trying the lazy API for task creation and configuration

Gradle 4.9 introduced a new way to create and configure tasks that works lazily. When you use this
approach for tasks that are expensive to configure, or when you have many, many tasks, your build
configuration time can drop significantly when those tasks don’t run.

You can learn more about lazily creating tasks in the Task Configuration Avoidance chapter. You
can also read about the background to this new feature in this blog post.

[4.8] Switch to the Maven Publish and Ivy Publish Plugins

Now that the publishing plugins are stable, we recommend that you migrate from the legacy
publishing mechanism for standard Java projects, i.e. those based on the Java Plugin. That includes
projects that use any one of: Java Library Plugin, Application Plugin or War Plugin.

To use the new approach, simply replace any upload<Conf> configuration with a publishing {} block.
See the publishing overview chapter for more information.

[4.8] Use deferred configuration for publishing plugins

Prior to Gradle 4.8, the publishing {} block was implicitly treated as if all the logic inside it was
executed after the project was evaluated. This was confusing, because it was the only block that
behaved that way. As part of the stabilization effort in Gradle 4.8, we are deprecating this behavior
and asking all users to migrate their build.

task_configuration_avoidance.pdf#task_configuration_avoidance
https://blog.gradle.org/preview-avoiding-task-configuration-time

The new, stable behavior can be switched on by adding the following to your settings file:

settings.gradle

enableFeaturePreview('STABLE PUBLISHING')

settings.gradle.kts

enableFeaturePreview("STABLE _PUBLISHING")

We recommend doing a test run with a local repository to see whether all artifacts still have the
expected coordinates. In most cases everything should work as before and you are done. However,
your publishing block may rely on the implicit deferred configuration, particularly if it relies on
values that may change during the configuration phase of the build.

For example, under the new behavior, the following logic assumes that jar.archiveBaseName doesn’t
change after artifactId is set:

build.gradle

subprojects {
publishing {
publications {
mavenJava {
from components.java
artifactId = jar.archiveBaseName

build.gradle.kts

subprojects {
publishing {
publications {
named<MavenPublication>("mavenlava") {
from(components["java"])
artifactId = tasks.jar.get().archiveBaseName.get()

If that assumption is incorrect or might possibly be incorrect in the future, the artifactId must be
set within an afterEvaluate {} block, like so:

build.gradle

subprojects {
publishing {
publications {
mavenJava {
from components.java
afterEvaluate {
artifactId = jar.archiveBaseName

}

build.gradle.kts

subprojects {
publishing {
publications {
named<MavenPublication>("mavenJava") {
from(components["java"])
afterEvaluate {
artifactId = tasks.jar.get().archiveBbaseName.get()

}

[4.8] Configure existing wrapper and init tasks

You should no longer define your own wrapper and init tasks. Configure the existing tasks instead,
for example by converting this:

build.gradle
task wrapper(type: Wrapper) {

}

build.gradle.kts

task<Wrapper>("wrapper") {

}

to this:

build.gradle

wrapper {

}

build.gradle.kts

tasks.wrapper {

}

[4.8] Gradle now honors implicit wildcards in Maven POM exclusions

If an exclusion in a Maven POM was missing either a groupId or artifactId, Gradle used to ignore
the exclusion. Now the missing elements are treated as implicit wildcards —e.g.
<groupld>*</groupId> — which means that some of your dependencies may now be excluded where
they weren’t before.

You will need to explicitly declare any missing dependencies that you need.

[4.7] Changes to the structure of Gradle’s plain console output

The plain console mode now formats output consistently with the rich console, which means that
the output format has changed. For example:

* The output produced by a given task is now grouped together, even when other tasks execute in
parallel with it.

» Task execution headers are printed with a "> Task" prefix.

* All output produced during build execution is written to the standard output file handle. This
includes messages written to System.err unless you are redirecting standard error to a file or
any other non-console destination.

This may break tools that scrape details from the plain console output.

[4.6] Changes to the APIs of native tasks related to compilation, linking and installation

Many tasks related to compiling, linking and installing native libraries and applications have been
converted to the Provider API so that they support lazy configuration. This conversion has
introduced some breaking changes to the APIs of the tasks so that they match the conventions of
the Provider API.

The following tasks have been changed:

AbstractLinkTask and its subclasses

» getDestinationDir() was replaced by getDestinationDirectory().

» getBinaryFile(), getOutputFile() was replaced by getLinkedFile().

» setOutputFile(File) was removed. Use Property.set() instead.

e setOutputFile(Provider) was removed. Use Property.set() instead.

» getTargetPlatform() was changed to return a Property.

» setTargetPlatform(NativePlatform) was removed. Use Property.set() instead.
* getToolChain() was changed to return a Property.

e setToolChain(NativeToolChain) was removed. Use Property.set() instead.

CreateStaticLibrary

» getOutputFile() was changed to return a Property.

» setOutputFile(File) was removed. Use Property.set() instead.

o setOutputFile(Provider) was removed. Use Property.set() instead.

» getTargetPlatform() was changed to return a Property.

» setTargetPlatform(NativePlatform) was removed. Use Property.set() instead.
» getToolChain() was changed to return a Property.

* setToolChain(NativeToolChain) was removed. Use Property.set() instead.

» getStaticLibArgs() was changed to return a ListProperty.

» setStaticLibArgs(List) was removed. Use ListProperty.set() instead.

InstallExecutable

» getSourceFile() was replaced by getExecutableFile().
» getPlatform() was replaced by getTargetPlatform().

https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.AbstractLinkTask.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.CreateStaticLibrary.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.InstallExecutable.html

» setTargetPlatform(NativePlatform) was removed. Use Property.set() instead.
» getToolChain() was changed to return a Property.

* setToolChain(NativeToolChain) was removed. Use Property.set() instead.
The following have also seen similar changes:

» Assemble

* WindowsResourceCompile
* StripSymbols

* ExtractSymbols

» SwiftCompile

LinkMachOBundle

[4.6] Visual Studio integration only supports a single solution file for all components of a
build

VisualStudioExtension no longer has a solutions property. Instead, you configure a single solution
via VisualStudioRootExtension in the root project, like so:

build.gradle

model {
visualStudio {
solution {
solutionFile.location = "vs/${name}.sln"

In addition, there are no longer individual tasks to generate the solution files for each component,
but rather a single visualStudio task that generates a solution file that encompasses all components
in the build.

[4.5] HttpBuildCache no longer follows redirects

When connecting to an HTTP build cache backend via HttpBuildCache, Gradle does not follow
redirects any more, treating them as errors instead. Getting a redirect from the build cache
backend is mostly a configuration error — using an "http" URL instead of "https" for example — and
has negative effects on performance.

[4.4] Third-party dependency upgrades

This version includes several upgrades of third-party dependencies:

https://docs.gradle.org/7.3.2/dsl/org.gradle.language.assembler.tasks.Assemble.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.rc.tasks.WindowsResourceCompile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/tasks/StripSymbols.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/tasks/ExtractSymbols.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/swift/tasks/SwiftCompile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/tasks/LinkMachOBundle.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.ide.visualstudio.VisualStudioRootExtension.html

jackson: 2.6.6 - 2.8.9
* plexus-utils: 2.0.6 - 2.1
» xerceslmpl: 2.9.1 - 2.11.0

bsh: 2.0b4 — 2.0b6

* bouncycastle: 1.57 - 1.58
This fix the following security issues:

e CVE-2017-7525 (critical)
» SONATYPE-2017-0359 (critical)
* SONATYPE-2017-0355 (critical)
* SONATYPE-2017-0398 (critical)
e CVE-2013-4002 (critical)
* CVE-2016-2510 (severe)
* SONATYPE-2016-0397 (severe)
* CVE-2009-2625 (severe)
e SONATYPE-2017-0348 (severe)

Gradle does not expose public APIs for these 3rd-party dependencies, but those who customize
Gradle will want to be aware.

Migrating Builds From Apache Maven

TIP Suffering from slow Maven builds? Register here for our Build Cache training session
to learn how Gradle Enterprise can speed up Maven builds by up to 90%.

Apache Maven is a build tool for Java and other JVM-based projects that’s in widespread use, and so

people that want to use Gradle often have to migrate an existing Maven build. This guide will help

with such a migration by explaining the differences and similarities between the two tools' models

and providing steps that you can follow to ease the process.

Converting a build can be scary, but you don’t have to do it alone. You can search docs, forums, and
StackOverflow from help.gradle.org or reach out to the Gradle community on the forums if you get
stuck.

Making a case for migration

The primary differences between Gradle and Maven are flexibility, performance, user experience,
and dependency management. A visual overview of these aspects is available in the Maven vs
Gradle feature comparison.

Since Gradle 3.0, Gradle has invested heavily in making Gradle builds much faster, with features
such as build caching, compile avoidance, and an improved incremental Java compiler. Gradle is
now 2-10x faster than Maven for the vast majority of projects, even without using a build cache. In-

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7525
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4002
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2510
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2625
https://gradle.com/training/build-cache-deep-dive/?bid=docs-migrating-maven
https://maven.apache.org
https://gradle.org/help
https://discuss.gradle.org/c/help-discuss
https://gradle.org/maven-vs-gradle
https://gradle.org/maven-vs-gradle
https://blog.gradle.org/introducing-gradle-build-cache
https://blog.gradle.org/incremental-compiler-avoidance

depth performance comparison and business cases for switching from Maven to Gradle can be
found here.

General guidelines

Gradle and Maven have fundamentally different views on how to build a project. Gradle provides a
flexible and extensible build model that delegates the actual work to a graph of task dependencies.
Maven uses a model of fixed, linear phases to which you can attach goals (the things that do the
work). This may make migrating between the two seem intimidating, but migrations can be
surprisingly easy because Gradle follows many of the same conventions as Maven —such as the
standard project structure — and its dependency management works in a similar way.

Here we lay out a series of steps for you to follow that will help facilitate the migration of any
Maven build to Gradle:

Keep the old Maven build and new Gradle build side by side. You know the Maven
build works, so you should keep it until you are confident that the Gradle build
produces all the same artifacts and otherwise does what you need. This also means
that users can try the Gradle build without getting a new copy of the source tree.

TIP

1. Create a build scan for the Maven build.

A build scan will make it easier to visualize what’s happening in your existing Maven build. For
Maven builds, you’ll be able to see the project structure, what plugins are being used, a timeline
of the build steps, and more. Keep this handy so you can compare it to the Gradle build scans
you get while converting the project.

2. Develop a mechanism to verify that the two builds produce the same artifacts

This is a vitally important step to ensure that your deployments and tests don’t break. Even
small changes, such as the contents of a manifest file in a JAR, can cause problems. If your
Gradle build produces the same output as the Maven build, this will give you and others
confidence in switching over and make it easier to implement the big changes that will provide
the greatest benefits.

This doesn’t mean that you need to verify every artifact at every stage, although doing so can
help you quickly identify the source of a problem. You can just focus on the critical output such
as final reports and the artifacts that are published or deployed.

You will need to factor in some inherent differences in the build output that Gradle produces
compared to Maven. Generated POMs will contain only the information needed for
consumption and they will use <compile> and <runtime> scopes correctly for that scenario. You
might also see differences in the order of files in archives and of files on classpaths. Most
differences will be benign, but it’s worth identifying them and verifying that they are OK.

3. Run an automatic conversion

This will create all the Gradle build files you need, even for multi-module builds. For simpler
Maven projects, the Gradle build will be ready to run!

https://gradle.org/gradle-vs-maven-performance/
https://scans.gradle.com#maven

4, Create a build scan for the Gradle build.

A build scan will make it easier to visualize what’s happening in the build. For Gradle builds,
you’ll be able to see the project structure, the dependencies (regular and inter-project ones),
what plugins are being used and the console output of the build.

Your build may fail at this point, but that’s ok; the scan will still run. Compare the build scan for
the Gradle build to the one for the Maven build and continue down this list to troubleshoot the
failures.

We recommend that you regularly generate build scans during the migration to help you
identify and troubleshoot problems. If you want, you can also use a Gradle build scan to identify
opportunities to improve the performance of the build, after all performance is a big reason for
switching to Gradle in the first place.

5. Verify your dependencies and fix any problems

6. Configure integration and functional tests

Many tests can simply be migrated by configuring an extra source set. If you are using a third-
party library, such as FitNesse, look to see whether there is a suitable community plugin
available on the Gradle Plugin Portal.

7. Replace Maven plugins with Gradle equivalents

In the case of popular plugins, Gradle often has an equivalent plugin that you can use. You
might also find that you can replace a plugin with built-in Gradle functionality. As a last resort,
you may need to reimplement a Maven plugin via your own custom plugins and task types.

The rest of this chapter looks in more detail at specific aspects of migrating a build from Maven to
Gradle.

Understanding the build lifecycle

Maven builds are based around the concept of build lifecycles that consist of a set of fixed phases.
This can prove an impediment for users migrating to Gradle because its build lifecycle is something
different, although it’s important to understand how Gradle builds fit into the structure of
initialization, configuration, and execution phases. Fortunately, Gradle has a feature that can mimic
Maven’s phases: lifecycle tasks.

These allow you to define your own "lifecycles" by creating no-action tasks that simply depend on
the tasks you’re interested in. And to make the transition to Gradle easier for Maven users, the Base
Plugin — applied by all the JVM language plugins like the Java Library Plugin — provides a set of
lifecycle tasks that correspond to the main Maven phases.

Here is a list of some of the main Maven phases and the Gradle tasks that they map to:

clean

Use the clean task provided by the Base Plugin.

https://scans.gradle.com
performance.pdf#performance_gradle
http://docs.fitnesse.org/FrontPage
https://plugins.gradle.org/
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

compile
Use the classes task provided by the Java Plugin and other JVM language plugins. This compiles

all classes for all source files of all languages and also performs resource filtering via the
processResources task.

test

Use the test task provided by the Java Plugin. It runs just the unit tests, or more specifically, the
tests that make up the test source set.

package

Use the assemble task provided by the Base Plugin. This builds whatever is the appropriate
package for the project, for example a JAR for Java libraries or a WAR for traditional Java
webapps.

verify

Use the check task provided by the Base Plugin. This runs all verification tasks that are attached
to it, which typically includes the unit tests, any static analysis tasks — such as Checkstyle —and
others. If you want to include integration tests, you will have to configure these manually, which
is a simple process.

install
Use the publishToMavenLocal task provided by the Maven Publish Plugin.

Note that Gradle builds don’t require you to "install" artifacts as you have access to more
appropriate features like inter-project dependencies and composite builds. You should only use
publishToMavenLocal for interoperating with Maven builds.

Gradle also allows you to resolve dependencies against the local Maven cache, as described in
the Declaring repositories section.

deploy
Use the publish task provided by the Maven Publish Plugin —making sure you switch from the
older Maven Plugin (ID: maven) if your build is using that one. This will publish your package to
all configured publication repositories. There are also other tasks that allow you to publish to a
single repository even when multiple ones are defined.

Note that the Maven Publish Plugin does not publish source and Javadoc JARs by default, but
this can easily be activated as explained in the guide for building java projects.

Performing an automatic conversion

Gradle’s init task is typically used to create a new skeleton project, but you can also use it to
convert an existing Maven build to Gradle automatically. Once Gradle is installed on your system,
all you have to do is run the command

> gradle init

from the root project directory and let Gradle do its thing. That basically consists of parsing the

existing POMs and generating the corresponding Gradle build scripts. Gradle will also create a
settings script if you’re migrating a multi-project build.

You’ll find that the new Gradle build includes the following:

* All the custom repositories that are specified in the POM

* Your external and inter-project dependencies

* The appropriate plugins to build the project (limited to one or more of the Maven Publish, Java
and War Plugins)

See the Build Init Plugin chapter for a complete list of the automatic conversion features.

One thing to bear in mind is that assemblies are not automatically converted. They aren’t
necessarily problematic to convert, but you will need to do some manual work. Options include:

Using the Distribution Plugin

» Using the Java Library Distribution Plugin

Using the Application Plugin
* Creating custom archive tasks
* Using a suitable community plugin from the Gradle Plugin Portal

If your Maven build does not have many plugins or much in the way of customisation, you can
simply run

> gradle build

once the migration has completed. This will run the tests and produce the required artifacts
without any extra intervention on your part.

Migrating dependencies

Gradle’s dependency management system is more flexible than Maven’s, but it still supports the
same concepts of repositories, declared dependencies, scopes (dependency configurations in
Gradle), and transitive dependencies. In fact, Gradle works perfectly with Maven-compatible
repositories, which makes it easy to migrate your dependencies.

One notable difference between the two tools is in how they manage version
conflicts. Maven uses a "closest" match algorithm, whereas Gradle picks the newest.
Don’t worry though, you have a lot of control over which versions are selected, as
documented in Managing Transitive Dependencies.

NOTE

Over the following sections, we will show you how to migrate the most common elements of a
Maven build’s dependency management information.

https://plugins.gradle.org/

Declaring dependencies

Gradle uses the same dependency identifier components as Maven: group ID, artifact ID and
version. It also supports classifiers. So all you need to do is substitute the identifier information for
a dependency into Gradle’s syntax, which is described in the Declaring Dependencies chapter.

For example, consider this Maven-style dependency on Log4]J:

<dependencies>
<dependency>
<groupId>log4j</groupld>
<artifactId>log4j</artifactld>
<version>1.2.12</version>
</dependency>
</dependencies>

This dependency would look like the following in a Gradle build script:

Example 1. Declaring a simple compile-time dependency

build.gradle

dependencies {
implementation 'log4j:log4j:1.2.12" @
}

build.gradle.kts

dependencies {
implementation("log4j:10g4j:1.2.12") @
}

@ Attaches version 1.2.12 of Log4] to the implementation configuration (scope)

The string identifier takes the Maven values of groupld, artifactId and version, although Gradle
refers to them as group, module and version.

The above example raises an obvious question: what is that implementation configuration? It’s one
of the standard dependency configurations provided by the Java Plugin and is often used as a
substitute for Maven’s default compile scope.

Several of the differences between Maven’s scopes and Gradle’s standard configurations come
down to Gradle distinguishing between the dependencies required to build a module and the
dependencies required to build a module that depends on it. Maven makes no such distinction, so
published POMs typically include dependencies that consumers of a library don’t actually need.

Here are the main Maven dependency scopes and how you should deal with their migration:

compile
Gradle has two configurations that can be used in place of the compile scope: implementation and

api. The former is available to any project that applies the Java Plugin, while api is only available
to projects that specifically apply the Java Library Plugin.

In most cases you should simply use the implementation configuration, particularly if you’re
building an application or webapp. But if you’re building a library, you can learn about which
dependencies should be declared using api in the section on Building Java libraries. Even more
information on the differences between api and implementation is provided in the Java Library
Plugin chapter linked above.

runtime

Use the runtimeOnly configuration.

test

Gradle distinguishes between those dependencies that are required to compile a project’s tests
and those that are only needed to run them.

Dependencies required for test compilation should be declared against the testImplementation
configuration. Those that are only required for running the tests should use testRuntimeOnly.

provided

Use the compileOnly configuration.

Note that the War Plugin adds providedCompile and providedRuntime dependency configurations.
These behave slightly differently from compileOnly and simply ensure that those dependencies
aren’t packaged in the WAR file. However, the dependencies are included on runtime and test
runtime classpaths, so use these configurations if that’s the behavior you need.

import
The import scope is mostly used within <dependencyManagement> blocks and applies solely to POM-
only publications. Read the section on Using bills of materials to learn more about how to
replicate this behavior.

You can also specify a regular dependency on a POM-only publication. In this case, the
dependencies declared in that POM are treated as normal transitive dependencies of the build.

For example, imagine you want to use the groovy-all POM for your tests. It's a POM-only
publication that has its own dependencies listed inside a <dependencies> block. The appropriate
configuration in the Gradle build looks like this:

Example 2. Consuming a POM-only dependency

build.gradle

dependencies {
testImplementation 'org.codehaus.groovy:groovy-all:2.5.4"

}

build.gradle.kts

dependencies {
testImplementation("org.codehaus.groovy:groovy-all:2.5.4")

}

The result of this will be that all compile and runtime scope dependencies in the groovy-all POM
get added to the test runtime classpath, while only the compile scope dependencies get added to
the test compilation classpath. Dependencies with other scopes will be ignored.

Declaring repositories

Gradle allows you to retrieve declared dependencies from any Maven-compatible or Ivy-compatible
repository. Unlike Maven, it has no default repository and so you have to declare at least one. In
order to have the same behavior as your Maven build, just configure Maven Central in your Gradle
build, like this:

Example 3. Configuring the build to use Maven Central

build.gradle
repositories {

mavenCentral()

}

build.gradle.kts
repositories {

mavenCentral()

}

You can also use the repositories {} block to configure custom repositories, as described in the

Repository Types chapter.

Lastly, Gradle allows you to resolve dependencies against the local Maven cache/repository. This
helps Gradle builds interoperate with Maven builds, but it shouldn’t be a technique that you use if
you don’t need that interoperability. If you want to share published artifacts via the filesystem,
consider configuring a custom Maven repository with a file:// URL.

You might also be interested in learning about Gradle’s own dependency cache, which behaves
more reliably than Maven’s and can be used safely by multiple concurrent Gradle processes.

Controlling dependency versions

The existence of transitive dependencies means that you can very easily end up with multiple
versions of the same dependency in your dependency graph. By default, Gradle will pick the newest
version of a dependency in the graph, but that’s not always the right solution. That’s why it
provides several mechanisms for controlling which version of a given dependency is resolved.

On a per-project basis, you can use:

* Dependency constraints
* Bills of materials (Maven BOMs)

* Overriding transitive versions
There are even more, specialized options listed in the controlling transitive dependencies chapter.

If you want to ensure consistency of versions across all projects in a multi-project build, similar to
how the <dependencyManagement> block in Maven works, you can use the Java Platform Plugin. This
allows you declare a set of dependency constraints that can be applied to multiple projects. You can
even publish the platform as a Maven BOM or using Gradle’s metadata format. See the plugin page
for more information on how to do that, and in particular the section on Consuming platforms to
see how you can apply a platform to other projects in the same build.

Excluding transitive dependencies

Maven builds use exclusions to keep unwanted dependencies—or unwanted versions of
dependencies — out of the dependency graph. You can do the same thing with Gradle, but that’s not
necessarily the right thing to do. Gradle provides other options that may be more appropriate for a
given situation, so you really need to understand why an exclusion is in place to migrate it properly.

If you want to exclude a dependency for reasons unrelated to versions, then check out the section
on Excluding transitive dependencies. It shows you how to attach an exclusion either to an entire
configuration (often the most appropriate solution) or to a dependency. You can even easily apply
an exclusion to all configurations.

If you’re more interested in controlling which version of a dependency is actually resolved, see the
previous section.

Handling optional dependencies

You are likely to encounter two situations regarding optional dependencies:

» Some of your transitive dependencies are declared as optional

* You want to declare some of your direct dependencies as optional in your project’s published
POM

For the first scenario, Gradle behaves the same way as Maven and simply ignores any transitive
dependencies that are declared as optional. They are not resolved and have no impact on the
versions selected if the same dependencies appear elsewhere in the dependency graph as non-
optional.

As for publishing dependencies as optional, Gradle provides a richer model called feature variants,
which will let you declare the "optional features" your library provides.

Using bills of materials (BOMs)

Maven allows you to share dependency constraints by defining dependencies inside a
<dependencyManagement> section of a POM file that has a packaging type of pom. This special type of
POM (a BOM) can then be imported into other POMs so that you have consistent library versions
across your projects.

Gradle can use such BOMs for the same purpose, using a special dependency syntax based on
platform() and enforcedPlatform() methods. You simply declare the dependency in the normal way,
but wrap the dependency identifier in the appropriate method, as shown in this example that
"imports" the Spring Boot Dependencies BOM:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:platform(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:enforcedPlatform(java.lang.Object)

Example 4. Importing a BOM in a Gradle build

build.gradle

dependencies {
implementation platform('org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE') @

implementation 'com.google.code.gson:gson' @
implementation 'dom4j:dom4;j'

build.gradle.kts

dependencies {
implementation(platform("org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE")) @

implementation("com.google.code.gson:gson") @
implementation("dom4j:dom4j")

@ Applies the Spring Boot Dependencies BOM
@ Adds a dependency whose version is defined by that BOM

You can learn more about this feature and the difference between platform() and
enforcedPlatform() in the section on importing version recommendations from a Maven BOM.

You can use this feature to apply the <dependencyManagement> information from any

NOTE

dependency’s POM to the Gradle build, even those that don’t have a packaging type

of pom. Both platform() and enforcedPlatform() will ignore any dependencies

declared in the <dependencies> block.

Migrating multi-module builds (project aggregation)

Maven’s multi-module builds map nicely to Gradle’s multi-project builds. Try the corresponding

sample to see how a basic multi-project Gradle build is set up.
To migrate a multi-module Maven build, simply follow these steps:
1. Create a settings script that matches the <modules> block of the root POM.

For example, this <modules> block:

../samples/sample_structuring_software_projects.html

<modules>
<module>simple-weather</module>
<module>simple-webapp</module>
</modules>

can be migrated by adding the following line to the settings script:

Example 5. Declaring which projects are part of the build

settings.gradle
rootProject.name = 'simple-multi-module' @

include 'simple-weather', 'simple-webapp' @

settings.gradle.kts
rootProject.name = "simple-multi-module" @

include("simple-weather", "simple-webapp") @

@ Sets the name of the overall project

@ Configures two subprojects as part of this build

Output of gradle projects

> gradle projects

Root project 'simple-multi-module'
+--- Project ':simple-weather'
\--- Project ':simple-webapp’

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :simple-weather:tasks

2. Replace cross-module dependencies with project dependencies.

3. Replicate project inheritance with convention plugins.

This basically involves creating a root project build script that injects shared configuration into

the appropriate subprojects.

Sharing versions across projects

If you want to replicate the Maven pattern of having dependency versions declared in the
dependencyManagement section of the root POM file, the best approach is to leverage the java-platform
plugin. You will need to add a dedicated project for this and consume it in the regular projects of
your build. See the documentation for more details on this pattern.

Migrating Maven profiles and properties

Maven allows you parameterize builds using properties of various sorts. Some are read-only
properties of the project model, others are user-defined in the POM. It even allows you to treat
system properties as project properties.

Gradle has a similar system of project properties, although it differentiates between those and
system properties. You can, for example, define properties in:

¢ the build script
» agradle.properties file in the root project directory

* agradle.properties file in the $HOME/.gradle directory

Those aren’t the only options, so if you are interested in finding out more about how and where you
can define properties, check out the Build Environment chapter.

One important piece of behavior you need to be aware of is what happens when the same property
is defined in both the build script and one of the external properties files: the build script value
takes precedence. Always. Fortunately, you can mimic the concept of profiles to provide overridable
default values.

Which brings us on to Maven profiles. These are a way to enable and disable different
configurations based on environment, target platform, or any other similar factor. Logically, they
are nothing more than limited ‘if' statements. And since Gradle has much more powerful ways to
declare conditions, it does not need to have formal support for profiles (except in the POMs of
dependencies). You can easily get the same behavior by combining conditions with secondary build
scripts, as you’ll see.

Let’s say you have different deployment settings depending on the environment: local development
(the default), a test environment, and production. To add profile-like behavior, you first create build
scripts for each environment in the project root: profile-default.gradle, profile-test.gradle, and
profile-prod.gradle. You can then conditionally apply one of those profile scripts based on a project
property of your own choice.

The following example demonstrates the basic technique using a project property called
buildProfile and profile scripts that simply initialize an extra project property called message:

Example 6. Mimicking the behavior of Maven profiles in Gradle

build.gradle
if (!hasProperty('buildProfile')) ext.buildProfile = 'default’ @
apply from: "profile-§{buildProfile}.gradle" @
tasks.register('greeting') {

dolast {
println message ®

}

profile-default.gradle

ext.message = 'foobar' @

profile-test.gradle

ext.message = 'testing 12 3" @

profile-prod.gradle

ext.message = 'Hello, world!" @

build.gradle.kts
val buildProfile: String? by project @

apply(from = "profile-${buildProfile ?: "default"}.gradle.kts") @
tasks.register("greeting") {
val message: String by project.extra

dolLast {

println(message) ®
}

profile-default.gradle.kts

val message by extra("foobar") @

profile-test.gradle.kts

val message by extra("testing 12 3") @

profile-prod.gradle.kts

val message by extra("Hello, world!") @

@ Checks for the existence of (Groovy) or binds (Kotlin) the buildProfile project property

@ Applies the appropriate profile script, using the value of buildProfile in the script filename

® Prints out the value of the message extra project property

@ Initializes the message extra project property, whose value can then be used in the main build

script

With this setup in place, you can activate one of the profiles by passing a value for the project
property you’re using —buildProfile in this case:

Output of gradle greeting

> gradle greeting
foobar

Output of gradle -PbuildProfile=test greeting

> gradle -PbuildProfile=test greeting
testing 1 2 3

You’re not limited to checking project properties. You could also check environment variables, the
JDK version, the OS the build is running on, or anything else you can imagine.

One thing to bear in mind is that high level condition statements make builds harder to understand
and maintain, similar to the way they complicate object-oriented code. The same applies to profiles.
Gradle offers you many better ways to avoid the extensive use of profiles that Maven often
requires, for example by configuring multiple tasks that are variants of one another. See the
publishPubNamePublicationToRepoNameRepository tasks created by the Maven Publish Plugin.

For a lengthier discussion on working with Maven profiles in Gradle, look no further than this blog
post.

Filtering resources

Maven has a phase called process-resources that has the goal resources:resources bound to it by
default. This gives the build author an opportunity to perform variable substitution on various files,
such as web resources, packaged properties files, etc.

The Java plugin for Gradle provides a processResources task to do the same thing. This is a Copy task
that copies files from the configured resources directory —src/main/resources by default—to an
output directory. And as with any Copy task, you can configure it to perform file filtering, renaming,
and content filtering.

As an example, here’s a configuration that treats the source files as Groovy SimpleTemplateEngine
templates, providing version and buildNumber properties to those templates:

Example 7. Filtering the content of resources via the processResources task

build.gradle

processResources {
expand(version: version, buildNumber: currentBuildNumber)

}

build.gradle.kts

tasks {
processResources {
expand("version" to version, "buildNumber" to currentBuildNumber)

}

See the API docs for CopySpec to see all the options available to you.

https://blog.gradle.org/maven-pom-profiles
https://blog.gradle.org/maven-pom-profiles
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html
https://docs.groovy-lang.org/docs/next/html/documentation/template-engines.html#_simpletemplateengine
https://docs.groovy-lang.org/docs/next/html/documentation/template-engines.html#_simpletemplateengine
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html

Configuring integration tests

Many Maven builds incorporate integration tests of some sort, which Maven supports through an
extra set of phases: pre-integration-test, integration-test, post-integration-test, and verify. It
also uses the Failsafe plugin in place of Surefire so that failed integration tests don’t automatically
fail the build (because you may need to clean up resources, such as a running application server).

This behavior is easy to replicate in Gradle with source sets, as explained in our chapter on Testing
in Java & JVM projects. You can then configure a clean-up task, such as one that shuts down a test
server for example, to always run after the integration tests regardless of whether they succeed or
fail using Task.finalizedBy().

If you really don’t want your integration tests to fail the build, then you can use the
Test.ignoreFailures setting described in the Test execution section of the Java testing chapter.

Source sets also give you a lot of flexibility on where you place the source files for your integration
tests. You can easily keep them in the same directory as the unit tests or, more preferably, in a
separate source directory like src/integTest/java. To support other types of tests, you just add more
source sets and Test tasks!

Migrating common plugins

Maven and Gradle share a common approach of extending the build through plugins. Although the
plugin systems are very different beneath the surface, they share many feature-based plugins, such
as:

» Shade/Shadow
o Jetty
* Checkstyle
* JaCoCo
* AntRun (see further down)
Why does this matter? Because many plugins rely on standard Java conventions, so migration is

just a matter of replicating the configuration of the Maven plugin in Gradle. As an example, here’s a
simple Maven Checkstyle plugin configuration:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:ignoreFailures
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
<version>2.17</version>
<executions>
<execution>
<id>validate</id>
<phase>validate</phase>
<configuration>
<configlocation>checkstyle.xml</configlocation>
<encoding>UTF-8</encoding>
<consoleOutput>true</consoleOutput>
<failsOnError>true</failsOnError>
<linkXRef>false</1linkXRef>
</configuration>
<goals>
<goal>check</goal>
</goals>
</execution>
</executions>
</plugin>

Everything outside of the configuration block can safely be ignored when migrating to Gradle. In
this case, the corresponding Gradle configuration looks like the following:

Example 8. Configuring the Gradle Checkstyle Plugin

build.gradle

checkstyle {
config = resources.text.fromFile('checkstyle.xml', "UTF-8")
showViolations = true
ignoreFailures = false

build.gradle.kts

checkstyle {
config = resources.text.fromFile("checkstyle.xml", "UTF-8")
isShowViolations = true
isIgnoreFailures = false

The Checkstyle tasks are automatically added as dependencies of the check task, which also includes
test. If you want to ensure that Checkstyle runs before the tests, then just specify an ordering with
the mustRunAfter() method:

Example 9. Controlling when the checkstyle task runs

build.gradle

test.mustRunAfter checkstyleMain, checkstyleTest

build.gradle.kts

tasks {
test {
mustRunAfter(checkstyleMain, checkstyleTest)

As you can see, the Gradle configuration is often much shorter than the Maven equivalent. You also
have a much more flexible execution model since you are no longer constrained by Maven’s fixed
phases.

While migrating a project from Maven, don’t forget about source sets. These often provide a more
elegant solution for handling integration tests or generated sources than Maven can provide, so you
should factor them into your migration plans.

Ant goals

Many Maven builds rely on the AntRun plugin to customize the build without the overhead of
implementing a custom Maven plugin. Gradle has no equivalent plugin because Ant is a first-class
citizen in Gradle builds, via the ant object. For example, you can use Ant’s Echo task like this:

Example 10. Invoking Ant tasks

build.gradle

tasks.register('sayHello') {
dolast {
ant.echo message: 'Hello!'

build.gradle.kts

tasks.register("sayHello") {
dolast {
ant.withGroovyBuilder {
"echo"("message" to "Hello!")

}

Even Ant properties and filesets are supported natively. To learn more, see Using Ant from Gradle.

It may be simpler and cleaner to just create custom task types to replace the work that
TIP Ant is doing for you. You can then more readily benefit from incremental build and
other useful Gradle features.

Understanding which plugins you don’t need

It’s worth remembering that Gradle builds are typically easier to extend and customize than Maven
ones. In this context, that means you may not need a Gradle plugin to replace a Maven one. For
example, the Maven Enforcer plugin allows you to control dependency versions and environmental
factors, but these things can easily be configured in a normal Gradle build script.

Dealing with uncommon and custom plugins

You may come across Maven plugins that have no counterpart in Gradle, particularly if you or
someone in your organisation has written a custom plugin. Such cases rely on you understanding
how Gradle (and potentially Maven) works, because you will usually have to write your own
plugin.

For the purposes of migration, there are two key types of Maven plugins:

* Those that use the Maven project object.

e Those that don’t.

Why is this important? Because if you use one of the latter, you can trivially reimplement it as a
custom Gradle task type. Simply define task inputs and outputs that correspond to the mojo
parameters and convert the execution logic into a task action.

If a plugin depends on the Maven project, then you will have to rewrite it. Don’t start by
considering how the Maven plugin works, but look at what problem it is trying to solve. Then try to
work out how to solve that problem in Gradle. You’ll probably find that the two build models are
different enough that "transcribing" Maven plugin code into a Gradle plugin just won’t be effective.
On the plus side, the plugin is likely to be much easier to write than the original Maven one because
Gradle has a much richer build model and API.

If you do need to implement custom logic, either via build scripts or plugins, check out the Guides
related to plugin development. Also be sure to familiarize yourself with Gradle’s Groovy DSL
Reference, which provides comprehensive documentation on the API that you’ll be working with. It
details the standard configuration blocks (and the objects that back them), the core types in the
system (Project, Task, etc.), and the standard set of task types. The main entry point is the Project
interface as that’s the top-level object that backs the build scripts.

Further reading

This chapter has covered the major topics that are specific to migrating Maven builds to Gradle. All
that remain are a few other areas that may be useful during or after a migration:

* Learn how to configure Gradle’s build environment, including the JVM settings used to run it
* Learn how to structure your builds effectively

» Configure Gradle’s logging and use it from your builds

As a final note, this guide has only touched on a few of Gradle’s features and we encourage you to
learn about the rest from the other chapters of the user manual and from our step-by-step samples.

Migrating Builds From Apache Ant

Apache Ant is a build tool with a long history in the Java world that is still widely used, albeit by a
decreasing number of teams. While flexible, it lacks conventions and many of the powerful features
that Gradle can provide. Migrating to Gradle is worthwhile so that your builds can become slimmer,
simpler and faster, while still retaining the flexibility you enjoy with Ant. Yow’ll also benefit from
robust support for multi-project builds and easy-to-use, flexible dependency management.

The biggest challenge in migrating from Ant to Gradle is that there is no such thing as a standard
Ant build. That makes it difficult to provide specific instructions. Fortunately, Gradle has some great
integration features with Ant that can make the process relatively smooth. And even migrating
from Ivy-based dependency management isn’t particularly hard because Gradle has a similar
model based on dependency configurations that works with Ivy-compatible repositories.

We will start by outlining the things you should consider at the outset of migrating a build from Ant
to Gradle and offer some general guidelines on how to proceed.

https://gradle.org/guides/?q=Plugin%20Development
https://gradle.org/guides/?q=Plugin%20Development
https://docs.gradle.org/7.3.2/dsl/
https://docs.gradle.org/7.3.2/dsl/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
../samples/index.html
https://ant.apache.org/
https://ant.apache.org/ivy/

General guidelines

When you undertake to migrate a build from Ant to Gradle, you should keep in mind the nature of
both what you already have and where you would like to end up. Do you want a Gradle build that
mirrors the structure of the existing Ant build? Or do you want to move to something that is more
idiomatic to Gradle? What are the main benefits you are looking for?

To understand the implications, consider the two extreme endpoints that you could aim for:
* An imported build via ant. importBuild()

This approach is quick, simple and works for many Ant-based builds. You end up with a build
that’s effectively identical to the original Ant build, except your Ant targets become Gradle
tasks. Even the dependencies between targets are retained.

The downside is that you're still using the Ant build, which you must continue to maintain. You
also lose the advantages of Gradle’s conventions, many of its plugins, its dependency
management, and so on. You can still enhance the build with incremental build information,
but it’s more effort than would be the case for a normal Gradle build.

¢ An idiomatic Gradle build

If you want to future proof your build, this is where you want to end up. Making use of Gradle’s
conventions and plugins will result in a smaller, easier-to-maintain build, with a structure that
is familiar to many Java developers. You will also find it easier to take advantage of Gradle’s
power features to improve build performance.

The main downside is the extra work required to perform the migration, particularly if the
existing build is complex and has many inter-project dependencies. But such builds often
benefit the most from a switch to idomatic Gradle. In addition, Gradle provides many features
that can ease the migration, such as the ability to use core and custom Ant tasks directly from a
Gradle build.

You ideally want to end up somewhere close to the second option in the long term, but you don’t
have to get there in one fell swoop.

What follows is a series of steps to help you decide the approach you want to take and how to go
about it:

1. Keep the old Ant build and new Gradle build side by side

You know the Ant build works, so you should keep it until you are confident that the Gradle
build produces all the same artifacts and otherwise does what you need. This also means that
users can try the Gradle build without getting a new copy of the source tree.

Don’t try to change the directory and file structure of the build until after you’re ready to make
the switch.

2. Develop a mechanism to verify that the two builds produce the same artifacts

This is a vitally important step to ensure that your deployments and tests don’t break. Even

small changes, such as the contents of a manifest file in a JAR, can cause problems. If your
Gradle build produces the same output as the Ant build, this will give you and others confidence
in switching over and make it easier to implement the big changes that will provide the greatest
benefits.

. Decide whether you have a multi-project build or not

Multi-project builds are generally harder to migrate and require more work than single-project
ones. We have provided some dedicated advice to help with the process in the Migrating multi-
project builds section.

. Work out what plugins to use for each project

We expect that the vast majority of Ant builds are for JVM-based projects, for which there are a
wealth of plugins that provide a lot of the functionality you need. Not only are there the core
plugins that come packaged with Gradle, but you can also find many useful plugins on the
Plugin Portal.

Even if the Java Plugin or one of its derivatives (such as the Java Library Plugin) aren’t a good
match for your build, you should at least consider the Base Plugin for its lifecycle tasks.

. Import the Ant build or create a Gradle build from scratch

This step very much depends on the requirements of your build. If a selection of Gradle plugins
can do the vast majority of the work your Ant build does, then it probably makes sense to create
a fresh Gradle build script that doesn’t depend on the Ant build and either implements the
missing pieces itself or utilizes existing Ant tasks.

The alternative approach is to import the Ant build into the Gradle build script and gradually
replace the Ant build functionality. This allows you to have a working Gradle build at each
stage, but it requires a bit of work to get the Gradle tasks working properly with the Ant ones.
You can learn more about this approach in Working with an imported build.

. Configure your build for the existing directory and file structure

Gradle makes use of conventions to eliminate much of the boilerplate associated with older
builds and to make it easier for users to work with new builds once they are familiar with those
conventions. But that doesn’t mean you have to follow them.

Gradle provides many configuration options that allow for a good degree of customization.
Those options are typically made available through the plugins that provide the conventions.
For example, the standard source directory structure for production Java code — src/main/java
— is provided by the Java Plugin, which allows you to configure a different source path. Many
paths can be modified via properties on the Project object.

. Migrate to standard Gradle conventions if you wish

Once you’re confident that the Gradle build is producing the same artifacts and other resources
as the Ant build, you can consider migrating to the standard conventions, such as for source
directory paths. Doing so will allow you to remove the extra configuration that was required to
override those conventions. New team members will also find it easier to work with the build

https://plugins.gradle.org/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html

after the change.

It’s up to you to decide whether this step is worth the time, energy and potential disruption that
it might incur, which in turn depends on your specific build and team.

The rest of the chapter covers some common scenarios you will likely deal with during the
migration, such as dependency management and working with Ant tasks.

Working with an imported build

The first step of many migrations will involve importing an Ant build using ant.importBuild(). If
you do that, how do you then move towards a standard Gradle build without replacing everything
at once?

The important thing to remember is that the Ant targets become real Gradle tasks, meaning you can
do things like modify their task dependencies, attach extra task actions, and so on. This allows you
to substitute native Gradle tasks for the equivalent Ant ones, maintaining any links to other existing
tasks.

As an example, imagine that you have a Java library project that you want to migrate from Ant to
Gradle. The Gradle build script has the line that imports the Ant build and now want to use the
standard Gradle mechanism for compiling the Java source files. However, you want to keep using
the existing package task that creates the library’s JAR file.

In diagrammatic form, the scenario looks like the following, where each box represents a
target/task:

Original Ant build Updated Gradle build

prepare prepare
depends on Old Ant task (renamed)
N ” P T T T T T TN
|
build compileJava | ant_build |
| |

A A

package package

assemble

The idea is to substitute the standard Gradle compilelava task for the Ant build task. There are
several steps involved in this substitution:

1. Applying the Java Library Plugin
This provides the compileJava task shown in the diagram.
2. Renaming the old build task

The name build conflicts with the standard build task provided by the Base Plugin (via the Java
Library Plugin).

3. Configuring the compilation to use the existing directory structure

There’s a good chance the Ant build does not conform to the standard Gradle directory
structure, so you need to tell Gradle where to find the source files and where to place the
compiled classes so package can find them.

4. Updating task dependencies

compilelava must depend on prepare, package must depend on compilelava rather than ant_build,
and assemble must depend on package rather than the standard Gradle jar task.

Applying the plugin is as simple as inserting a plugins {} block at the beginning of the Gradle build
script, i.e. before ant.importBuild(). Here’s how to apply the Java Library Plugin:

Example 11. Applying the Java Library Plugin

build.gradle

plugins {
id 'java-library'

}

build.gradle.kts

plugins {
‘java-library®

}

To rename the build task, use the variant of AntBuilder.importBuild() that accepts a transformer,
like this:

Example 12. Renaming targets on import

build.gradle

ant.importBuild('build.xml") { String oldTargetName ->
return oldTargetName == 'build' ? 'ant_build' : oldTargetName @
}

build.gradle.kts

ant.importBuild("build.xml") { oldTargetName ->
if (oldTargetName == "build") "ant_build" else oldTargetName @
}

@ Renames the build target to ant_build and leaves all other targets unchanged

Configuring a different path for the sources is described in the Building Java & JVM projects
chapter, while you can change the output directory for the compiled classes in a similar way.

Let’s say the original Ant build stores these paths in Ant properties, src.dir for the Java source files
and classes.dir for the output. Here’s how you would configure Gradle to use those paths:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object-org.gradle.api.Transformer-

Example 13. Configuring the source sets

build.gradle

sourceSets {

main {
java {
srcDirs = [ant.properties['src.dir']]
destinationDirectory.set(file(ant.properties['classes.dir']))
}
}
}
build.gradle.kts

sourceSets {
main {
java.setSrcDirs(listOf(ant.properties["src.dir"]))
java.destinationDirectory.set(file(ant.properties["classes.dir"] ?:
"$buildDir/classes"))

}
}

You should eventually aim to switch the standard directory structure for your type of project if
possible and then you’ll be able to remove this customization.

The last step is also straightforward and involves using the Task.dependsOn property and
Task.dependsOn() method to detach and link tasks. The property is appropriate for replacing
dependencies, while the method is the preferred way to add to the existing dependencies.

Here is the required task dependency configuration required by the example scenario, which
should come after the Ant build import:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 14. Configuring the task dependencies

build.gradle

compilelava.dependsOn 'prepare’ @
tasks.named('package') { dependsOn = ['compiledava'] } @
assemble.dependsOn = ['package'] ®

build.gradle.kts

tasks {
compileJava {
dependsOn("prepare") @
}
named("package") {
setDependsOn(1istOf(compilelava)) @

}

assemble {
setDependsOn(1ist0f("package")) ®

}

® Makes compilation depend on the prepare task
@ Detaches package from the ant_build task and makes it depend on compileJava

® Detaches assemble from the standard Gradle jar task and makes it depend on package instead

That’s it! These four steps will successfully replace the old Ant compilation with the Gradle
implementation. Even this small migration will be a big help because you’ll be able to take
advantage of Gradle’s incremental Java compilation for faster builds.

This is just a demonstration of how to go about performing a migration in stages. It
may make more sense to include resource processing — like with properties files
— and packaging with the compilation in this stage, since all three aspects are well
integrated in Gradle.

TIP

One important question you will have to ask yourself is how many tasks to migrate in each stage.
The larger the chunks you can migrate in one go the better, but this must be offset against how
many custom steps within the Ant build will be affected by the changes.

For example, if the Ant build follows a fairly standard approach for compilation, static resources,
packaging and unit tests, then it is probably worth migrating all those together. But if the build
performs some extra processing on the compiled classes, or does something unique when
processing the static resources, it is probably worth splitting those tasks into separate stages.

Managing dependencies

Ant builds typically take one of two approaches to dealing with binary dependencies (such as
libraries):

 Storing them with the project in a local "lib" directory

» Using Apache Ivy to manage them

They each require a different technique for the migration to Gradle, but you will find the process
straightforward in either case. We look at the details of each scenario in the following sections.

Serving dependencies from a directory

When you are attempting to migrate a build that stores its dependencies on the filesystem, either
locally or on the network, you should consider whether you want to eventually move to managed
dependencies using remote repositories. That’s because you can incorporate filesystem
dependencies into a Gradle build in one of two ways:

* Define a flat-directory repository and use standard dependency declarations

 Attach the files directly to the appropriate dependency configurations (file dependencies)

It’s easier to migrate to managed dependencies served from Maven- or Ivy-compatible repositories
if you take the first approach, but doing so requires all your files to conform to the naming
convention "<moduleName>-<version>.<extension>".

If you store your dependencies in the standard Maven repository layout
NOTE —<repoDir>/<group>/<module>/<version> — then you can define a custom Maven
repository with a "file://" URL.

To demonstrate the two techniques, consider a project that has the following library JARs in its 1ibs
directory:

libs

—— our-custom. jar
—— log4j-1.2.8.jar
L—— commons-io-2.1.jar

The file our-custom.jar lacks a version number, so it has to be added as a file dependency. But the
other two JARs match the required naming convention and so can be declared as normal module
dependencies that are retrieved from a flat-directory repository.

The following sample build script demonstrates how you can incorporate all of these libraries into a
build:

https://ant.apache.org/ivy/

Example 15. Declaring dependencies served from the filesystem

build.gradle

repositories {
flatDir {
name = 'libs dir'
dir file('libs') @

}

dependencies {
implementation files('libs/our-custom.jar') @
implementation ':log4j:1.2.8", ':commons-io:2.1' @

build.gradle.kts

repositories {
flatDir {
name = "libs dir"
dir(file("1ibs")) @

}

dependencies {
implementation(files("libs/our-custom.jar")) @
implementation(":10g4j:1.2.8") ®
implementation(":commons-i0:2.1") ®

@ Specifies the path to the directory containing the JAR files
@ Declares a file dependency for the unversioned JAR
® Declares dependencies using standard dependency coordinates — note that no group is

specified, but each identifier has a leading :, implying an empty group

The above sample will add our-custom.jar, log4j-1.2.8.jar and commons-io-2.71.jar to the
implementation configuration, which is used to compile the project’s code.

You can also specify a group in these module dependencies, even though they don’t
actually have a group. That’s because the flat-directory repository simply ignores

the information.
NOTE
If you then add a normal Maven- or Ivy-compatible repository at a later date, Gradle

will preferentially download the module dependencies that are declared with a
group from that repository rather than the flat-directory one.

Migrating Ivy dependencies

Apache Ivy is a standalone dependency management tool that is widely used with Ant. It works in a
similar fashion to Gradle. In fact, they both allow you to

* Define your own configurations

» Extend configurations from one another

+ Attach dependencies to configurations

* Resolve dependencies from Ivy-compatible repositories

» Publish artifacts to Ivy-compatible repositories
The most notable difference is that Gradle has standard configurations for specific types of projects.

For example, the Java Plugin defines configurations like implementation, testImplementation and
runtimeOnly. You can still define your own dependency configurations, though.

This similarity means that it’s usually quite straightforward to migrate from Ivy to Gradle:

* Transcribe the dependency declarations from your module descriptors into the dependencies {}
block of your Gradle build script, ideally using the standard configurations provided by any

plugins you apply.

» Transcribe any configuration declarations from your module descriptors into the configurations
{} block of the build script for any custom configurations that can’t be replaced by Gradle’s
standard ones.

» Transcribe the resolvers from your Ivy settings file into the repositories {} block of the build

script.

See the chapters on Managing Dependency Configurations, Declaring Dependencies and Declaring
Repositories for more information.

Ivy provides several Ant tasks that handle Ivy’s process for fetching dependencies. The basic steps
of that process consist of:

1. Configure — applies the configuration defined in the Ivy settings file

2. Resolve — locates the declared dependencies and downloads them to the cache if necessary

3. Retrieve — copies the cached dependencies to another directory
Gradle’s process is similar, but you don’t have to explicitly invoke the first two steps as it performs

them automatically. The third step doesn’t happen at all — unless you create a task to do it —
because Gradle typically uses the files in the dependency cache directly in classpaths and as the

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)

source for assembling application packages.
Let’s look in more detail at how Ivy’s steps map to Gradle:

Configuration

Most of Gradle’s dependency-related configuration is baked into the build script, as you’ve seen
with elements like the dependencies {} block. Another particularly important configuration
element is resolutionStrategy, which can be accessed from dependency configurations. This
provides many of the features you might get from Ivy’s conflict managers and is a powerful way
to control transitive dependencies and caching.

Some Ivy configuration options have no equivalent in Gradle. For example, there are no lock
strategies because Gradle ensures that its dependency cache is concurrency safe, period. Nor are
there "latest strategies" because it’s simpler to have a reliable, single strategy for conflict
resolution. If the "wrong" version is picked, you can easily override it using forced versions or
other resolution strategy options.

See the chapter on controlling transitive dependencies for more information on this aspect of
Gradle.

Resolution

At the beginning of the build, Gradle will automatically resolve any dependencies that you have
declared and download them to its cache. It searches the repositories for those dependencies,
with the search order defined by the order in which the repositories are declared.

It’s worth noting that Gradle supports the same dynamic version syntax as Ivy, so you can still
use versions like 1.0.+. You can also use the special latest.integration and latest.release labels
if you wish. If you decide to use such dynamic and changing dependencies, you can configure
the caching behavior for them via resolutionStrategy.

You might also want to consider dependency locking if you’re using dynamic and/or changing
dependencies. It’s a way to make the build more reliable and allows for reproducible builds.

Retrieval

As mentioned, Gradle does not automatically copy files from the dependency cache. Its standard
tasks typically use the files directly. If you want to copy the dependencies to a local directory, you
can use a Copy task like this in your build script:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://reproducible-builds.org/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html

Example 16. Copying dependencies to a local directory

build.gradle

tasks.register('retrieveRuntimeDependencies', Copy) {
into layout.buildDirectory.dir('libs")
from configurations.runtimeClasspath

build.gradle.kts

tasks.register<Copy>("retrieveRuntimeDependencies") {
into(layout.buildDirectory.dir("libs"))
from(configurations.runtimeClasspath)

A configuration is also a file collection, hence why it can be used in the from() configuration. You
can use a similar technique to attach a configuration to a compilation task or one that produces
documentation. See the chapter on Working with Files for more examples and information on
Gradle’s file APL

Publishing artifacts

Projects that use Ivy to manage dependencies often also use it for publishing JARs and other
artifacts to repositories. If you’re migrating such a build, then you’ll be glad to know that Gradle has
built-in support for publishing artifacts to Ivy-compatible repositories.

Before you attempt to migrate this particular aspect of your build, read the Publishing chapter to
learn about Gradle’s publishing model. That chapter’s examples are based on Maven repositories,
but the same model is used for Ivy repositories as well.

The basic migration process looks like this:

* Apply the Ivy Publish Plugin to your build

» Configure at least one publication, representing what will be published (including additional
artifacts if desired)

* Configure one or more repositories to publish artifacts to

Once that’s all done, you’ll be able to generate an Ivy module descriptor for each publication and
publish them to one or more repositories.

Let’s say you have defined a publication named "myLibrary" and a repository named "myRepo".
Ivy’s Ant tasks would then map to the Gradle tasks like this:

* <deliver> — generateDescriptorFileForMyLibraryPublication

e <publish> — publishMyLibraryPublicationToMyRepoRepository

There is also a convenient publish task that publishes all publications to all repositories. If you’d
prefer to limit which publications go to which repositories, check out the relevant section of the
Publishing chapter.

On dependency versions

Ivy will, by default, automatically replace dynamic versions of dependencies with
the resolved "static" versions when it generates the module descriptor. Gradle does
NOTE not mimic this behavior: declared dependency versions are left unchanged.

You can replicate the default Ivy behavior by using the Nebula Ivy Resolved Plugin.
Alternatively, you can customize the descriptor file so that it contains the versions
you want.

Dealing with custom Ant tasks

One of the advantages of Ant is that it’s fairly easy to create a custom task and incorporate it into a
build. If you have such tasks, then there are two main options for migrating them to a Gradle build:

* Using the custom Ant task from the Gradle build
* Rewriting the task as a custom Gradle task type
The first option is usually quick and easy, but not always. And if you want to integrate the task into

incremental build, you must use the incremental build runtime API. You also often have to work
with Ant paths and filesets, which are clunky.

The second option is preferable in the long term, if you have the time. Gradle task types tend to be
simpler than Ant tasks because they don’t have to work with an XML-based interface. You also gain
access to Gradle’s rich APIs. Lastly, this approach can make use of the type-safe incremental build
API based on typed properties.

Working with files

Ant has many tasks for working with files, most of which have Gradle equivalents. As with other
areas of Ant to Gradle migration, you can use those Ant tasks from within your Gradle build.
However, we strongly recommend migrating to native Gradle constructs where possible so that the
build benefits from:

* Incremental build
» Easier integration with other parts of the build, such as dependency configurations
* More idiomatic build scripts
That said, it can be convenient to use those Ant tasks that have no direct equivalents, such as

<checksum> and <chown>. Even then, in the long run it may be better to convert these to native Gradle
task types that make use of standard Java APIs or third-party libraries to achieve the same thing.

https://plugins.gradle.org/plugin/nebula.ivy-resolved-dependencies
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)

Here are the most common file-related elements used by Ant builds, along with the Gradle
equivalents:

 <copy>— prefer the Gradle Copy task type
* <zip> (plus Java variants) — prefer the Zip task type (plus Jar, War, and Ear)

» <unzip> — prefer using the Project.zipTree() method with a Copy task

You can see several examples of Gradle’s file API and learn more about it in the Working with Files
chapter.

On paths and filesets

Ant makes use of the concepts of path-like structures and filesets to enable users to

work with collections of files and directories. Gradle has a simpler, more powerful

model based on FileCollections and FileTrees that can be treated as objects from

within the build. Both types allow filtering based on Ant’s glob syntax, e.g.

**/books_*. Learn more about these types and other aspects of Gradle’s file API in
NOTE the Working with Files chapter.

You can still construct Ant paths and filesets from within your build via the ant
object if you need to interact with an Ant task that requires them. The chapter on
Ant integration has examples that use both <path> and <fileset>. There is even a
method on FileCollection that will convert a file collection to a fileset or similar Ant

type.

Migrating Ant properties

Ant makes use of a properties map to store values that can be reused throughout the build. The big
downsides to this approach are that property values are all strings and the properties themselves
behave like global variables.

Interacting with Ant properties in Gradle

Sometimes you will want to make use of an Ant task directly from your Gradle build

TIP and that task requires one or more Ant properties to be set. If that’s the case, you can
easily set those properties via the ant object, as described in the Using Ant from Gradle
chapter.

Gradle does use something similar in the form of project properties, which are a reasonable way to
parameterize a build. These can be set from the command line, in a gradle.properties file, or even
via specially named system properties and environment variables.

If you have existing Ant properties files, you can copy their contents into the project’s
gradle.properties file. Just be aware of two important points:

» Properties set in gradle.properties do not override extra project properties defined in the build
script with the same name

* Imported Ant tasks will not automatically "see" the Gradle project properties — you must copy
them into the Ant properties map for that to happen

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Jar.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.War.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ear.Ear.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html#addToAntBuilder-java.lang.Object-java.lang.String-org.gradle.api.file.FileCollection.AntType-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html#addToAntBuilder-java.lang.Object-java.lang.String-org.gradle.api.file.FileCollection.AntType-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html#addToAntBuilder-java.lang.Object-java.lang.String-org.gradle.api.file.FileCollection.AntType-

Another important factor to understand is that a Gradle build script works with an object-oriented
API and it’s often best to use the properties of tasks, source sets and other objects where possible.
For example, this build script fragment creates tasks for packaging Javadoc documentation as a JAR
and unpacking it, linking tasks via their properties:

Example 17. Using task properties in place of project properties

build.gradle

def tmpDistDir = layout.buildDirectory.dir('dist")

tasks.register('javadocJarArchive', Jar) {
from javadoc @
archiveClassifier = 'javadoc'

}

tasks.register('unpackJavadocs', Copy) {
from zipTree(javadocJarArchive.archiveFile) @
into tmpDistDir ®

build.gradle.kts
val tmpDistDir = layout.buildDirectory.dir("dist")

tasks.register<Jar>("javadocJarArchive") {
from(tasks.javadoc) @
archiveClassifier.set("javadoc")

}

tasks.register<Copy>("unpackJavadocs") {
from(zipTree(tasks.named<Jar>("javadocJarArchive").get().archiveFile))

@
into(tmpDistDir) ®

@ Packages all javadoc's output files — equivalent to from javadoc.destinationDir

@ Uses the location of the Javadoc JAR held by the javadocJar task

® Uses an project property called tmpDistDir to define the location of the 'dist' directory

As you can see from the example with tmpDistDir, there is often still a need to define paths and the

like through properties, which is why Gradle also provides extra properties that can be attached to
the project, tasks and some other types of objects.

Migrating multi-project builds

Multi-project builds are a particular challenge to migrate because there is no standard approach in
Ant for either structuring them or handling inter-project dependencies. Most of them likely use the
<ant> task in some way, but that’s about all that one can say.

Fortunately, Gradle’s multi-project support can handle fairly diverse project structures and it
provides much more robust and helpful support than Ant for constructing and maintaining multi-
project builds. The ant.importBuild() method also handles <ant> and <antcall> tasks transparently,
which allows for a phased migration.

We will suggest one process for migration here and hope that it either works for your case or at
least gives you some ideas. It breaks down like this:
1. Start by learning how Gradle configures multi-project builds.

2. Create a Gradle build script in each project of the build, setting their contents to this line:

ant.importBuild 'build.xml'

ant.importBuild("build.xml")

Replace build.xml with the path to the actual Ant build file that corresponds to the project. If
there is no corresponding Ant build file, leave the Gradle build script empty. Your build may not
be suitable in that case for this migration approach, but continue with these steps to see
whether there is still a way to do a phased migration.

3. Create a settings file that includes all the projects that now have a Gradle build script.

4. Implement inter-project dependencies.

Some projects in your multi-project build will depend on artifacts produced by one or more
other projects in that build. Such projects need to ensure that those projects they depend on
have produced their artifacts and that they know the paths to those artifacts.

Ensuring the production of the required artifacts typically means calling into other projects’
builds via the <ant> task. This unfortunately bypasses the Gradle build, negating any changes
you make to the Gradle build scripts. You will need to replace targets that use <ant> tasks with
Gradle task dependencies.

For example, imagine you have a web project that depends on a "util" library that’s part of the
same build. The Ant build file for "web" might have a target like this:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

web/build.xml

<target name="buildRequiredProjects">
<ant dir="${root.dir}/util" target="build"/> @
</target>

@ root.dir would have to be defined by the build

This can be replaced by an inter-project task dependency in the corresponding Gradle build
script, as demonstrated in the following example that assumes the "web" project’s "compile"
task is the thing that requires "util" to be built beforehand:

web/build.gradle
ant.importBuild 'build.xml'

compile.dependsOn = [':util:build']

web/build.gradle.kts
ant.importBuild("build.xml")

tasks {
named<Task>("compile") {
setDependsOn(1listOf(":util:build"))
}

This is not as robust or powerful as Gradle’s project dependencies, but it solves the immediate
problem without big changes to the build. Just be careful to remove or override any
dependencies on tasks that delegate to other subprojects, like the buildRequiredProjects task.

5. Identify the projects that have no dependencies on other projects and migrate them to idiomatic
Gradle builds scripts.

Just follow the advice in the rest of this guide to migrate individual project builds. As mentioned
elsewhere, you should ideally use Gradle standard plugins where possible. This may mean that
you need to add an extra copy task to each build that copies the generated artifacts to the
location expected by the rest of the Ant builds.

6. Migrate projects as and when they depend solely on projects with fully migrated Gradle builds.

At this point, you should be able to switch to using proper project dependencies attached to the
appropriate dependency configurations.

7. Clean up projects once no part of the Ant build depends on them.

We mentioned in step 5 that you might need to add copy tasks to satisfy the requirements of
dependent Ant builds. Once those builds have been migrated, such build logic will no longer be
needed and should be removed.

At the end of the process you should have a Gradle build that you are confident works as it should,
with much less build logic than before.

Further reading

This chapter has covered the major topics that are specific to migrating Ant builds to Gradle. All
that remain are a few other areas that may be useful during or after a migration:

» Learn how to configure Gradle’s build environment, including the JVM settings used to run it

* Learn how to structure your builds effectively

» Configure Gradle’s logging and use it from your builds

As a final note, this guide has only touched on a few of Gradle’s features and we encourage you to
learn about the rest from the other chapters of the user manual and from our step-by-step samples.

../samples/index.html

Running Gradle Builds

Build Environment

Interested in configuring your Build Cache to speed up builds? Register here for our
TIP Build Cache training session to learn some of the tips and tricks top engineering teams
are using to increase build speed.

Gradle provides multiple mechanisms for configuring behavior of Gradle itself
and specific projects. The following is a reference for using these mechanisms.

When configuring Gradle behavior you can use these methods, listed in order of highest to lowest
precedence (first one wins):

* Command-line flags such as --build-cache. These have precedence over properties and
environment variables.

» System properties such as systemProp.http.proxyHost=somehost.org stored in a gradle.properties
file.

* Gradle properties such as org.gradle.caching=true that are typically stored in a
gradle.properties file in a project root directory or GRADLE_USER_HOME environment variable.

* Environment variables such as GRADLE_OPTS sourced by the environment that executes Gradle.

Aside from configuring the build environment, you can configure a given project build using
Project properties such as -PreleaseType=final.

Gradle properties

Gradle provides several options that make it easy to configure the Java process that will be used to
execute your build. While it’s possible to configure these in your local environment via GRADLE_OPTS
or JAVA_OPTS, it is useful to be able to store certain settings like JVM memory configuration and Java
home location in version control so that an entire team can work with a consistent environment. To
do so, place these settings into a gradle.properties file committed to your version control system.

The final configuration taken into account by Gradle is a combination of all Gradle properties set on
the command line and your gradle.properties files. If an option is configured in multiple locations,
the first one found in any of these locations wins:

* command line, as set using the -P/ --project-prop environment options.

» gradle.properties in GRADLE_USER_HOME directory.

* gradle.properties in project root directory.

* gradle.properties in Gradle installation directory.

Note that the location of the Gradle user home may have been changed beforehand via the
-Dgradle.user.home system property passed on the command line.

https://gradle.com/training/build-cache-deep-dive/?bid=docs-build-environment

The following properties can be used to configure the Gradle build environment:

org.gradle.caching=(true,false)

When set to true, Gradle will reuse task outputs from any previous build, when possible,
resulting is much faster builds. Learn more about using the build cache. By default, the build
cache is not enabled.

org.gradle.caching.debug=(true,false)

When set to true, individual input property hashes and the build cache key for each task are
logged on the console. Learn more about task output caching. Default is false.

org.gradle.configureondemand=(true, false)

Enables incubating configuration on demand, where Gradle will attempt to configure only
necessary projects. Default is false.

org.gradle.console=(auto,plain,rich,verbose)

Customize console output coloring or verbosity. Default depends on how Gradle is invoked. See
command-line logging for additional details.

org.gradle.daemon=(true,false)

When set to true the Gradle Daemon is used to run the build. Default is true, builds will be run
using the daemon.

org.gradle.daemon.idletimeout=(# of idle millis)

Gradle Daemon will terminate itself after specified number of idle milliseconds. Default is
10800000 (3 hours).

org.gradle.debug=(true,false)

When set to true, Gradle will run the build with remote debugging enabled, listening on port
5005. Note that this is the equivalent of adding
-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005 to the JVM command line
and will suspend the virtual machine until a debugger is attached. Default is false.

org.gradle.java.home=(path to JDK home)

Specifies the Java home for the Gradle build process. The value can be set to either a jdk or jre
location, however, depending on what your build does, using a JDK is safer. This does not affect
the version of Java used to launch the Gradle client VM (see Environment variables). A
reasonable default is derived from your environment (JAVA_HOME or the path to java) if the setting is
unspecified.

org.gradle.jvmargs=(JVM arguments)

Specifies the JVM arguments used for the Gradle Daemon. The setting is particularly useful for
configuring JVM memory settings for build performance. This does not affect the JVM settings
for the Gradle client VM. The default is -Xmx512m "-XX:MaxMetaspaceSize=256m".

org.gradle.logging.level=(quiet,warn,lifecycle,info,debug)

When set to quiet, warn, lifecycle, info, or debug, Gradle will use this log level. The values are
not case sensitive. See Choosing a log level. The 1ifecycle level is the default.

org.gradle.parallel=(true,false)

When configured, Gradle will fork up to org.gradle.workers.max JVMs to execute projects in
parallel. To learn more about parallel task execution, see the section on Gradle build
performance. Default is false.

org.gradle.priority=(low,normal)

Specifies the scheduling priority for the Gradle daemon and all processes launched by it. See also
performance command-line options. Default is normal.

org.gradle.vfs.verbose=(true,false)

Configures verbose logging when watching the file system. Default is false.

org.gradle.vfs.watch=(true,false)

Toggles watching the file system. When enabled Gradle re-uses information it collects about the
file system between builds. Enabled by default on operating systems where Gradle supports this
feature.

org.gradle.warning.mode=(all,fail,summary,none)

When set to all, summary or none, Gradle will use different warning type display. See Command-
line logging options for details. Default is summary.

org.gradle.workers.max=(max # of worker processes)

When configured, Gradle will use a maximum of the given number of workers. See also
performance command-line options. Default is number of CPU processors.

The following example demonstrates usage of various properties.

Example 18. Setting properties with a gradle.properties file

gradle.properties

gradlePropertiesProp=gradlePropertiesValue
sysProp=shouldBeOverWrittenBySysProp
systemProp.system=systemValue

performance.pdf#parallel_execution
performance.pdf#parallel_execution

build.gradle

tasks.register('printProps') {
dolast {
println commandLineProjectProp
println gradlePropertiesProp
println systemProjectProp
println System.properties['system']

build.gradle.kts

// Project properties can be accessed via delegation
val commandLineProjectProp: String by project

val gradlePropertiesProp: String by project

val systemProjectProp: String by project

tasks.register("printProps") {
dolLast {
println(commandLineProjectProp)
println(gradlePropertiesProp)
println(systemProjectProp)
println(System.getProperty("system"))

$ gradle -q -PcommandLineProjectProp=commandLineProjectPropValue
-Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps
commandLineProjectPropValue

gradlePropertiesValue

systemPropertyValue

systemValue

System properties

Using the -D command-line option, you can pass a system property to the JVM which runs Gradle.
The -D option of the gradle command has the same effect as the -D option of the java command

You can also set system properties in gradle.properties files with the prefix systemProp.

Specifying system properties in gradle.properties

systemProp.gradle.wrapperUser=myuser
systemProp.gradle.wrapperPassword=mypassword

The following system properties are available. Note that command-line options take precedence
over system properties.

gradle.wrapperUser=(myuser)

Specify user name to download Gradle distributions from servers using HTTP Basic
Authentication. Learn more in Authenticated wrapper downloads.

gradle.wrapperPassword=(mypassword)

Specify password for downloading a Gradle distribution using the Gradle wrapper.

gradle.user.home=(path to directory)

Specify the Gradle user home directory.

https.protocols

Specify the supported TLS versions in a comma separated format. For example: TLSv1.2,TLSv1.3.

In a multi project build, “systemProp.” properties set in any project except the root will be ignored.
That is, only the root project’s gradle.properties file will be checked for properties that begin with
the “systemProp.” prefix.

Environment variables

The following environment variables are available for the gradle command. Note that command-
line options and system properties take precedence over environment variables.

GRADLE_OPTS

Specifies JVM arguments to use when starting the Gradle client VM. The client VM only handles
command line input/output, so it is rare that one would need to change its VM options. The
actual build is run by the Gradle daemon, which is not affected by this environment variable.

GRADLE_USER_HOME
Specifies the Gradle user home directory (which defaults to $USER_HOME/.gradle if not set).

JAVA_HOME

Specifies the JDK installation directory to use for the client VM. This VM is also used for the
daemon, unless a different one is specified in a Gradle properties file with org.gradle.java.home.

Project properties
You can add properties directly to your Project object via the -P command line option.

Gradle can also set project properties when it sees specially-named system properties or
environment variables. If the environment variable name looks like ORG_GRADLE PROJECT

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html

_prop=somevalue, then Gradle will set a prop property on your project object, with the value of
somevalue. Gradle also supports this for system properties, but with a different naming pattern,
which looks like org.gradle.project.prop. Both of the following will set the foo property on your
Project object to "bar".

Setting a project property via a system property

org.gradle.project.foo=bar

Setting a project property via an environment variable

ORG_GRADLE_PROJECT_foo=bar

The properties file in the user’s home directory has precedence over property files

NOTE
in the project directories.

This feature is very useful when you don’t have admin rights to a continuous integration server and
you need to set property values that should not be easily visible. Since you cannot use the -P option
in that scenario, nor change the system-level configuration files, the correct strategy is to change
the configuration of your continuous integration build job, adding an environment variable setting
that matches an expected pattern. This won’t be visible to normal users on the system.

You can access a project property in your build script simply by using its name as you would use a
variable.

If a project property is referenced but does not exist, an exception will be thrown

and the build will fail.
NOTE
You should check for existence of optional project properties before you access

them using the Project.hasProperty(java.lang.String) method.
Configuring JVM memory

You can adjust JVM options for Gradle in the following ways:

The org.gradle.jvmargs Gradle property controls the VM running the build. It defaults to -Xmx512m
"-XX:MaxMetaspaceSize=256m"

Changing JVM settings for the build VM

org.gradle.jvmargs=-Xmx2g -XX:MaxMetaspaceSize=512m -XX:+HeapDumpOnOutOfMemoryError
-Dfile.encoding=UTF-8

The JAVA_OPTS environment variable controls the command line client, which is only used to display
console output. It defaults to -Xmx64m

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:hasProperty(java.lang.String)

Changing JVM settings for the client VM

JAVA_OPTS="-Xmx64m -XX:MaxPermSize=64m -XX:+HeapDumpOnOutOfMemoryError
-Dfile.encoding=UTF-8"

There is one case where the client VM can also serve as the build VM: If you
deactivate the Gradle Daemon and the client VM has the same settings as required
for the build VM, the client VM will run the build directly. Otherwise the client VM
will fork a new VM to run the actual build in order to honor the different settings.

NOTE

Certain tasks, like the test task, also fork additional JVM processes. You can configure these through
the tasks themselves. They all use -Xmx512m by default.

Example 19. Set Java compile options for JavaCompile tasks

build.gradle

plugins {
id 'java'

}

tasks.withType(JavaCompile) {
options.compilerArgs += ['-Xdoclint:none', '-Xlint:none', '-nowarn']

}

build.gradle.kts

plugins {
java

}

tasks.withType<JavaCompile>().configureEach {
options.compilerArgs = listOf("-Xdoclint:none", "-XLlint:none", "-nowarn")

}

See other examples in the Test API documentation and test execution in the Java plugin reference.

Build scans will tell you information about the JVM that executed the build when you use the --scan

option.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
https://scans.gradle.com

0@ < (im] & scans.gradle.com]] a E
‘ Build Scan ° v/ transitive-de... compileDebugCpp Oct 11, 2017 11:55:37 AM MST
2EE€ an swWItCnes
Console log
. 13 infrastructure properties
st Timeline
Operating system Mac OS5 X 10.12.6
W Performance CPU cores 4 cores
ﬁ'& Projects Max Gradle workers 4 workers
; Java runtime Oracle Java({TM) SE Runtime
% Dependencies Environment 1.8.0_144-b01
[Plugins Java WM Oracle Java HG?EIpotL'TN] -fvl.-BiL Server
WM 25.144-b01 (mixed mode)
8 Switches Max JZVM memory heap size 954 MB

Infrastructure
See all items

£ Gradle Inc. 2018 | Terms of Service | Status | Help and Feedback

Configuring a task using project properties

It’s possible to change the behavior of a task based on project properties specified at invocation
time.

Suppose you’d like to ensure release builds are only triggered by CI. A simple way to handle this is
through an isCI project property.

https://scans.gradle.com/s/sample/cpp-parallel/infrastructure

Example 20. Prevent releasing outside of CI

build.gradle

tasks.register('performRelease') {
dolast {
if (project.hasProperty("isCI")) {
println("Performing release actions")
} else {

throw new InvalidUserDataException("Cannot perform release
outside of CI")

}
}

build.gradle.kts

tasks.register("performRelease") {
dolast {
if (project.hasProperty("isCI")) {

println("Performing release actions")
} else {

throw InvalidUserDataException("Cannot perform release outside of
CI")

$ gradle performRelease -PisCI=true --quiet
Performing release actions

Accessing the web through a HTTP proxy

Configuring an HTTP or HTTPS proxy (for downloading dependencies, for example) is done via
standard JVM system properties. These properties can be set directly in the build script; for
example, setting the HTTP proxy host would be done with System.setProperty('http.proxyHost',
"www.somehost.org"). Alternatively, the properties can be specified in gradle.properties.

Configuring an HTTP proxy using gradle.properties

systemProp.http.proxyHost=www.somehost.org
systemProp.http.proxyPort=8080
systemProp.http.proxyUser=userid
systemProp.http.proxyPassword=password
systemProp.http.nonProxyHosts=*.nonproxyrepos.com|localhost

There are separate settings for HTTPS.

Configuring an HTTPS proxy using gradle.properties

systemProp.https.proxyHost=www.somehost.org
systemProp.https.proxyPort=8080
systemProp.https.proxyUser=userid
systemProp.https.proxyPassword=password
systemProp.http.nonProxyHosts=*.nonproxyrepos.com|localhost

You may need to set other properties to access other networks. Here are 2 references that may be
helpful:
* ProxySetup.java in the Ant codebase

* JDK 7 Networking Properties

NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain
as well as the username and password. There are 2 ways that you can provide the domain for
authenticating to a NTLM proxy:

 Set the http.proxyUser system property to a value like domain/username.

* Provide the authentication domain via the http.auth.ntlm.domain system property.

The Gradle Daemon

A daemon is a computer program that runs as a background process, rather
than being under the direct control of an interactive user.

— Wikipedia

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries that require a
non-trivial initialization time. As a result, it can sometimes seem a little slow to start. The solution
to this problem is the Gradle Daemon: a long-lived background process that executes your builds
much more quickly than would otherwise be the case. We accomplish this by avoiding the
expensive bootstrapping process as well as leveraging caching, by keeping data about your project
in memory. Running Gradle builds with the Daemon is no different than without. Simply configure
whether you want to use it or not — everything else is handled transparently by Gradle.

https://git-wip-us.apache.org/repos/asf?p=ant.git;a=blob;f=src/main/org/apache/tools/ant/util/ProxySetup.java;hb=HEAD
http://download.oracle.com/javase/7/docs/technotes/guides/net/properties.html

Why the Gradle Daemon is important for performance

The Daemon is a long-lived process, so not only are we able to avoid the cost of JVM startup for
every build, but we are able to cache information about project structure, files, tasks, and more in
memory.

The reasoning is simple: improve build speed by reusing computations from previous builds.
However, the benefits are dramatic: we typically measure build times reduced by 15-75% on
subsequent builds. We recommend profiling your build by using --profile to get a sense of how
much impact the Gradle Daemon can have for you.

The Gradle Daemon is enabled by default starting with Gradle 3.0, so you don’t have to do anything
to benefit from it.

Running Daemon Status
To get a list of running Gradle Daemons and their statuses use the --status command.

Sample output:

PID VERSION STATUS
28411 3.0 IDLE
34247 3.0 BUSY

Currently, a given Gradle version can only connect to daemons of the same version. This means the
status output will only show Daemons for the version of Gradle being invoked and not for any other
versions. Future versions of Gradle will lift this constraint and will show the running Daemons for
all versions of Gradle.

Disabling the Daemon

The Gradle Daemon is enabled by default, and we recommend always enabling it. You can disable
the long-lived Gradle daemon via the --no-daemon command-line option, or by adding
org.gradle.daemon=false to your gradle.properties file. You can find details of other ways to disable
(and enable) the Daemon in Daemon FAQ further down.

In order to honour the required JVM options for your build, Gradle will normally
spawn a separate process for build invocation, even when the Daemon is disabled.

NOTE You can prevent this "single-use Daemon" by ensuring that the JVM settings for the
client VM match those required for the build VM. See Configuring JVM Memory for
more details.

Note that having the Daemon enabled, all your builds will take advantage of the speed boost,
regardless of the version of Gradle a particular build uses.

Continuous integration

Since Gradle 3.0, we enable Daemon by default and recommend using it for both

TIP developers' machines and Continuous Integration servers. However, if you suspect
that Daemon makes your CI builds unstable, you can disable it to use a fresh runtime
for each build since the runtime is completely isolated from any previous builds.

Stopping an existing Daemon

As mentioned, the Daemon is a background process. You needn’t worry about a build up of Gradle
processes on your machine, though. Every Daemon monitors its memory usage compared to total
system memory and will stop itself if idle when available system memory is low. If you want to
explicitly stop running Daemon processes for any reason, just use the command gradle --stop.

This will terminate all Daemon processes that were started with the same version of Gradle used to
execute the command. If you have the Java Development Kit (JDK) installed, you can easily verify
that a Daemon has stopped by running the jps command. You’ll see any running Daemons listed
with the name GradleDaemon.

FAQ

How do I disable the Gradle Daemon?

There are two recommended ways to disable the Daemon persistently for an environment:

* Via environment variables: add the flag -Dorg.gradle.daemon=false to the GRADLE_OPTS
environment variable

 Via properties file: add org.gradle.daemon=false to the «GRADLE_USER_HOME»/gradle.properties file

Note, «GRADLE_USER_HOME» defaults to «USER_HOME»/.gradle, where «USER_HOME» is the
home directory of the current user. This location can be configured via the -g and
--gradle-user-home command line switches, as well as by the GRADLE_USER_HOME
environment variable and org.gradle.user.home JVM system property.

NOTE

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle
users choose the second option and add the entry to the user gradle.properties file.

On Windows, this command will disable the Daemon for the current user:

(if not exist "%USERPROFILE%/.gradle" mkdir "%USERPROFILE%/.gradle") && (echo. >>
"%USERPROFILE%/.gradle/gradle.properties"” && echo org.gradle.daemon=false >>
"%USERPROFILE%/.gradle/gradle.properties")

On UNIX-like operating systems, the following Bash shell command will disable the Daemon for the
current user:

mkdir -p ~/.gradle && echo "org.gradle.daemon=false" >> ~/.gradle/gradle.properties

Once the Daemon is disabled for a build environment in this way, a Gradle Daemon will not be
started unless explicitly requested using the --daemon option.

The --daemon and --no-daemon command line options enable and disable usage of the Daemon for
individual build invocations when using the Gradle command line interface. These command line
options have the highest precedence when considering the build environment. Typically, it is more
convenient to enable the Daemon for an environment (e.g. a user account) so that all builds use the
Daemon without requiring to remember to supply the --daemon option.

Why is there more than one Daemon process on my machine?

There are several reasons why Gradle will create a new Daemon, instead of using one that is
already running. The basic rule is that Gradle will start a new Daemon if there are no existing idle
or compatible Daemons available. Gradle will kill any Daemon that has been idle for 3 hours or
more, so you don’t have to worry about cleaning them up manually.

idle

An idle Daemon is one that is not currently executing a build or doing other useful work.

compatible

A compatible Daemon is one that can (or can be made to) meet the requirements of the
requested build environment. The Java runtime used to execute the build is an example aspect
of the build environment. Another example is the set of JVM system properties required by the
build runtime.

Some aspects of the requested build environment may not be met by an Daemon. If the Daemon is
running with a Java 8 runtime, but the requested environment calls for Java 10, then the Daemon is
not compatible and another must be started. Moreover, certain properties of a Java runtime cannot
be changed once the JVM has started. For example, it is not possible to change the memory
allocation (e.g. -Xmx1024m), default text encoding, default locale, etc of a running JVM.

The “requested build environment” is typically constructed implicitly from aspects of the build
client’s (e.g. Gradle command line client, IDE etc.) environment and explicitly via command line
switches and settings. See Build Environment for details on how to specify and control the build
environment.

The following JVM system properties are effectively immutable. If the requested build environment
requires any of these properties, with a different value than a Daemon’s JVM has for this property,
the Daemon is not compatible.

* file.encoding

* user.language

* user.country

* user.variant

* java.io.tmpdir

* javax.net.ssl.keyStore

* javax.net.ssl.keyStorePassword

* javax.net.ssl.keyStoreType

* javax.net.ssl.trustStore

* javax.net.ssl.trustStorePassword

* javax.net.ssl.trustStoreType

* com.sun.management.jmxremote
The following JVM attributes, controlled by startup arguments, are also effectively immutable. The
corresponding attributes of the requested build environment and the Daemon’s environment must
match exactly in order for a Daemon to be compatible.

* The maximum heap size (i.e. the -Xmx JVM argument)

* The minimum heap size (i.e. the -Xms JVM argument)

* The boot classpath (i.e. the -Xbootclasspath argument)

* The “assertion” status (i.e. the -ea argument)
The required Gradle version is another aspect of the requested build environment. Daemon
processes are coupled to a specific Gradle runtime. Working on multiple Gradle projects during a

session that use different Gradle versions is a common reason for having more than one running
Daemon process.

How much memory does the Daemon use and can I give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up
to 512MB of heap. It will use the JVM’s default minimum heap size. 512MB is more than enough for
most builds. Larger builds with hundreds of subprojects, lots of configuration, and source code may
require, or perform better, with more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the
requested build environment. Please see Build Environment for details.

How can I stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity or less. If you
wish to stop a Daemon process before this, you can either kill the process via your operating system
or run the gradle --stop command. The --stop switch causes Gradle to request that all running
Daemon processes, of the same Gradle version used to run the command, terminate themselves.

What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and
unobtrusive during day to day development. However, Daemon processes can occasionally be
corrupted or exhausted. A Gradle build executes arbitrary code from multiple sources. While
Gradle itself is designed for and heavily tested with the Daemon, user build scripts and third party
plugins can destabilize the Daemon process through defects such as memory leaks or global state
corruption.

It is also possible to destabilize the Daemon (and build environment in general) by running builds

that do not release resources correctly. This is a particularly poignant problem when using
Microsoft Windows as it is less forgiving of programs that fail to close files after reading or writing.

Gradle actively monitors heap usage and attempts to detect when a leak is starting to exhaust the
available heap space in the daemon. When it detects a problem, the Gradle daemon will finish the
currently running build and proactively restart the daemon on the next build. This monitoring is
enabled by default, but can be disabled by setting the org.gradle.daemon.performance.enable-
monitoring system property to false.

If it is suspected that the Daemon process has become unstable, it can simply be killed. Recall that
the --no-daemon switch can be specified for a build to prevent use of the Daemon. This can be useful
to diagnose whether or not the Daemon is actually the culprit of a problem.

Tools & IDEs

The Gradle Tooling API that is used by IDEs and other tools to integrate with Gradle always uses the
Gradle Daemon to execute builds. If you are executing Gradle builds from within your IDE you are
using the Gradle Daemon and do not need to enable it for your environment.

How does the Gradle Daemon make builds faster?

The Gradle Daemon is a long lived build process. In between builds it waits idly for the next build.
This has the obvious benefit of only requiring Gradle to be loaded into memory once for multiple
builds, as opposed to once for each build. This in itself is a significant performance optimization,
but that’s not where it stops.

A significant part of the story for modern JVM performance is runtime code optimization. For
example, HotSpot (the JVM implementation provided by Oracle and used as the basis of OpenJDK)
applies optimization to code while it is running. The optimization is progressive and not
instantaneous. That is, the code is progressively optimized during execution which means that
subsequent builds can be faster purely due to this optimization process. Experiments with HotSpot
have shown that it takes somewhere between 5 and 10 builds for optimization to stabilize. The
difference in perceived build time between the first build and the 10th for a Daemon can be quite
dramatic.

The Daemon also allows more effective in memory caching across builds. For example, the classes
needed by the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly,
Gradle can maintain in-memory caches of build data such as the hashes of task inputs and outputs,
used for incremental building.

To detect changes on the file system, and to calculate what needs to be rebuilt, Gradle collects a lot
of information about the state of the file system during every build. On supported operating
systems the Daemon re-uses the already collected information from the last build (see watching the
file system). This can save a significant amount of time for incremental builds, where the number
of changes to the file system between two builds is typically low.

Watching the file system

To detect changes on the file system, and to calculate what needs to be rebuilt, Gradle collects

information about the file system in-memory during every build (aka Virtual File System). By
watching the file system, Gradle can keep the Virtual File System in sync with the file system even
between builds. Doing so allows the Daemon to save the time to rebuild the Virtual File System
from disk for the next build. For incremental builds, there are typically only a few changes between
builds. Therefore, incremental builds can re-use most of the Virtual File System from the last build
and benefit the most from watching the file system.

Gradle uses native operating system features for watching the file system. It supports the feature on
these operating systems:
 Windows 10, version 1709 and later,

* Linux (Ubuntu 16.04 or later, CentOS 8 or later, Red Hat Enterprise Linux 8 or later, Amazon
Linux 2 are tested),

* macOS 10.14 (Mojave) or later (Intel and ARM Macs included).

The feature supports the following file system types:

APFS
* btrfs
* ext3
* ext4

* HFS+

NTES
File system watching supports working through VirtualBox’s shared folders, too.

Network file systems like Samba and NFS are not supported.

If you have symlinks in your build, you won’t get the performance benefits for those

NOTE .
locations.

Enabling and disabling file system watching

File system watching is enabled by default for operating systems supported by Gradle.

When the feature is enabled by default, Gradle acts conservatively when it encounters content on
unsupported file systems. This can happen for example if a project directory, or one of its
subdirectories is mounted from a network drive. In default mode information about unsupported
file systems will not be retained in the Virtual File System between builds.

To force Gradle to keep information about unsupported file systems between builds, the feature
must be enabled explicitly by one of these methods:

Run with --watch-fs on the command line

This forces watching the file system for this build only.

Put org.gradle.vfs.watch=true in your gradle.properties

This forces watching the file system for all builds, unless explicitly disabled with --no-watch-fs.

File system watching can also be disabled completely regardless of file systems by supplying --no
-watch-fs on the command-line, or by specifying org.gradle.vfs.watch=false in gradle.properties.

Troubleshooting file system watching

Enable verbose logging

You can instruct Gradle to some more information about the state of the virtual file system, and the
events received from the file system using the org.gradle.vfs.verbose flag. This produces the
following output at the start and end of the build:

+

$ gradle assemble --watch-fs -Dorg.gradle.vfs.verbose=true

Received 3 file system events since last build while watching 1 locations

Virtual file system retained information about 2 files, 2 directories and @ missing
files since last build

> Task :compileJava NO-SOURCE

Task :processResources NO-SOURCE

Task :classes UP-TO-DATE

Task :jar UP-TO-DATE

Task :assemble UP-TO-DATE

vV V V V

BUILD SUCCESSFUL in 58ms

1 actionable task: 1 up-to-date

Received 5 file system events during the current build while watching 1 locations
Virtual file system retains information about 3 files, 2 directories and 2 missing
files until next build

+ Note that on Windows and macOS Gradle might report changes received since the last build even
if you haven’t changed anything. These are harmless notifications about changes to Gradle’s own
caches and can be ignored safely.

Common problems

Gradle does not pick up some of my changes

Please let us know on the Gradle community Slack if that happens to you. If your build declares its
inputs and outputs correctly, this should not happen. So it’s either a bug we need to fix, or your
build is lacking the declaration of some inputs or outputs.

VES state is dropped due to lost state

If you receive the Dropped VFS state due to lost state message during the build, please let us
know on the Gradle community Slack if that happens to you. This message means that either:

* the daemon received some unknown file system event,

* too many changes happened, and the watching API couldn’t handle it.

https://gradle-community.slack.com/app_redirect?channel=file-system-watching
https://gradle-community.slack.com/app_redirect?channel=file-system-watching
https://gradle-community.slack.com/app_redirect?channel=file-system-watching

In both cases the build cannot benefit from file system watching.

Too many open files on macOS

If you receive the java.io.I0Exception: Too many open files error on macOS, you need to raise
your open files limit, see here.

Linux-specific notes

File system watching uses inotify on Linux. Depending on the size of your build, it may be
necessary to increase inotify limits. If you are using an IDE, then you probably already had to
increase the limits in the past.

File system watching uses one inotify watch per watched directory. You can see the current limit of
inotify watches per user by running:

cat /proc/sys/fs/inotify/max_user_watches
To increase the limit to e.g. 512K watches run the following:

echo fs.inotify.max_user_watches=524288 | sudo tee -a /etc/sysctl.conf
sudo sysctl -p --system

Each used inotify watch takes up to 1KB of memory. Assuming inotify uses all the 512K watches
then around 500MB will be used for watching the file system. If your environment is memory
constraint, you may want to disable file system watching.

Initialization Scripts

Gradle provides a powerful mechanism to allow customizing the build based on the current
environment. This mechanism also supports tools that wish to integrate with Gradle.

Note that this is completely different from the “init” task provided by the “build-init” plugin (see
Build Init Plugin).

Basic usage

Initialization scripts (a.k.a. init scripts) are similar to other scripts in Gradle. These scripts, however,
are run before the build starts. Here are several possible uses:
* Set up enterprise-wide configuration, such as where to find custom plugins.

* Set up properties based on the current environment, such as a developer’s machine vs. a
continuous integration server.

» Supply personal information about the user that is required by the build, such as repository or
database authentication credentials.

» Define machine specific details, such as where JDKs are installed.

https://superuser.com/a/443168/8117
http://en.wikipedia.org/wiki/Inotify

» Register build listeners. External tools that wish to listen to Gradle events might find this useful.

» Register build loggers. You might wish to customize how Gradle logs the events that it generates.

One main limitation of init scripts is that they cannot access classes in the buildSrc project (see
Using buildSrc to extract imperative logic for details of this feature).

Using an init script
There are several ways to use an init script:

» Specify a file on the command line. The command line option is -I or --init-script followed by
the path to the script. The command line option can appear more than once, each time adding
another init script. The build will fail if any of the files specified on the command line does not
exist.

» Put a file called init.gradle (or init.gradle.kts for Kotlin) in the USER_HOME/.gradle/ directory.

e Put a file that ends with .gradle (or .init.gradle.kts for Kotlin) in the
USER_HOME/.gradle/init.d/ directory.

* Put a file that ends with .gradle (or .init.gradle.kts for Kotlin) in the GRADLE_HOME/init.d/
directory, in the Gradle distribution. This allows you to package up a custom Gradle distribution
containing some custom build logic and plugins. You can combine this with the Gradle wrapper
as a way to make custom logic available to all builds in your enterprise.

If more than one init script is found they will all be executed, in the order specified above. Scripts
in a given directory are executed in alphabetical order. This allows, for example, a tool to specify an
init script on the command line and the user to put one in their home directory for defining the
environment and both scripts will run when Gradle is executed.

Writing an init script

Similar to a Gradle build script, an init script is a Groovy or Kotlin script. Each init script has a
Gradle instance associated with it. Any property reference and method call in the init script will
delegate to this Gradle instance.

Each init script also implements the Script interface.

Configuring projects from an init script

You can use an init script to configure the projects in the build. This works in a similar way to
configuring projects in a multi-project build. The following sample shows how to perform extra
configuration from an init script before the projects are evaluated. This sample uses this feature to
configure an extra repository to be used only for certain environments.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.invocation.Gradle.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Script.html

Example 21. Using init script to perform extra configuration before projects are evaluated

build.gradle

repositories {
mavenCentral()

}

tasks.register('showRepos') {
dolast {
println "A1l repos:"
println repositories.collect { it.name }

init.gradle

allprojects {
repositories {
mavenlLocal()

}

build.gradle.kts

repositories {
mavenCentral()

}

tasks.register("showRepos") {
dolast {
println("A1l repos:")
println(repositories.map { it.name })

init.gradle.kts

allprojects {
repositories {
mavenlLocal()

}

Output when applying the init script

> gradle --init-script init.gradle -q showRepos
A1l repos:
[MavenLocal, MavenRepo]

> gradle --init-script init.gradle.kts -q showRepos
All repos:
[MavenLocal, MavenRepo]

External dependencies for the init script

In External dependencies for the build script it was explained how to add external dependencies to
a build script. Init scripts can also declare dependencies. You do this with the initscript() method,
passing in a closure which declares the init script classpath.

Example 22. Declaring external dependencies for an init script

init.gradle

initscript {
repositories {
mavenCentral()
}
dependencies {
classpath 'org.apache.commons:commons-math:2.0'

}

init.gradle.kts

initscript {
repositories {
mavenCentral()

}

dependencies {
classpath("org.apache.commons:commons-math:2.0")

}

The closure passed to the initscript() method configures a ScriptHandler instance. You declare the
init script classpath by adding dependencies to the classpath configuration. This is the same way
you declare, for example, the Java compilation classpath. You can use any of the dependency types

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

described in Declaring Dependencies, except project dependencies.

Having declared the init script classpath, you can use the classes in your init script as you would
any other classes on the classpath. The following example adds to the previous example, and uses
classes from the init script classpath.

Example 23. An init script with external dependencies

init.gradle
import org.apache.commons.math.fraction.Fraction

initscript {
repositories {
mavenCentral()

}
dependencies {
classpath 'org.apache.commons:commons-math:2.0'
}
}

println Fraction.ONE_FIFTH.multiply(2)

build.gradle

tasks.register('doNothing")

init.gradle.kts
import org.apache.commons.math.fraction.Fraction

initscript {
repositories {
mavenCentral()

}
dependencies {
classpath("org.apache.commons:commons-math:2.0")
}
}

println(Fraction.ONE_FIFTH.multiply(2))

build.gradle.kts

tasks.register("doNothing")

Output when applying the init script

> gradle --init-script init.gradle -q doNothing
2/5

> gradle --init-script init.gradle.kts -q doNothing
2/5

Init script plugins

Similar to a Gradle build script or a Gradle settings file, plugins can be applied on init scripts.

Example 24. Using plugins in init scripts

init.gradle
apply plugin: EnterpriseRepositoryPlugin
class EnterpriseRepositoryPlugin implements Plugin<Gradle> {

private static String ENTERPRISE_REPOSITORY_URL =
"https://repo.gradle.org/gradle/repo"

void apply(Gradle gradle) {
// ONLY USE ENTERPRISE REPO FOR DEPENDENCIES
gradle.allprojects { project ->
project.repositories {

// Remove all repositories not pointing to the enterprise
repository url
all { ArtifactRepository repo ->
if (!(repo instanceof MavenArtifactRepository) ||
repo.url.toString() != ENTERPRISE_REPOSITORY_URL) {
project.logger.lifecycle "Repository ${repo.url}
removed. Only S$ENTERPRISE_REPOSITORY_URL is allowed"
remove repo
}
}

// add the enterprise repository
maven {
name "STANDARD_ENTERPRISE_REPOQ"
url ENTERPRISE_REPOSITORY_URL

}
}
}

}

+
build.gradle

repositories{

mavenCentral()
}

tasks.register('showRepositories') {
dolast {
repositories.each {
println "repository: ${it.name} ('${it.url}')"
}

init.gradle.kts
apply<EnterpriseRepositoryPlugin>()

class EnterpriseRepositoryPlugin : Plugin<Gradle> {
companion object {
const val ENTERPRISE_REPOSITORY_URL =
"https://repo.gradle.org/gradle/repo"
}

override fun apply(gradle: Gradle) {
// ONLY USE ENTERPRISE REPO FOR DEPENDENCIES
gradle.allprojects {
repositories {

// Remove all repositories not pointing to the enterprise
repository url
all {
if (this !is MavenArtifactRepository || url.toString() !=
ENTERPRISE_REPOSITORY_URL) {
project.logger.lifecycle("Repository ${(this as?
MavenArtifactRepository)?.url ?: name} removed. Only
$ENTERPRISE_REPOSITORY_URL is allowed")
remove(this)
}
}

// add the enterprise repository
add(maven {
name = "STANDARD_ENTERPRISE_REPOQ"
url = uri(ENTERPRISE_REPOSITORY_URL)

1))

build.gradle.kts

repositories{
mavenCentral()

}

tasks.register("showRepositories") {
dolLast {
repositories.map { it as MavenArtifactRepository }.forEach {
println("repository: ${it.name} ('${it.url}')")
}

Output when applying the init script

> gradle --init-script init.gradle -q showRepositories
repository: STANDARD_ENTERPRISE_REPO ('https://repo.gradle.org/gradle/repo")

> gradle --init-script init.gradle.kts -q showRepositories
repository: STANDARD_ENTERPRISE_REPO ('https://repo.gradle.org/gradle/repo")

The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin
instance’s Plugin.apply(T) method. The gradle object is passed as a parameter, which can be used to
configure all aspects of a build. Of course, the applied plugin can be resolved as an external
dependency as described in External dependencies for the init script

Executing Multi-Project Builds

Only the smallest of projects has a single build file and source tree, unless it happens to be a
massive, monolithic application. It’s often much easier to digest and understand a project that has
been split into smaller, inter-dependent modules. The word “inter-dependent” is important, though,
and is why you typically want to link the modules together through a single build.

Gradle supports this scenario through multi-project builds.

For details about authoring multi-project builds, consult the Authoring Multi-Project Builds section
of the user manual.

Identifying project structure

To identify the project structure, you can use gradle projects command. As an example, let’s use a
multi-project build with the following structure:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html#apply-T-

> gradle -q projects

Root project 'multiproject’

+--- Project ':api'

+--- Project ':services'

| +--- Project ':services:shared'

| \--- Project ':services:webservice'
\--- Project ':shared'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :api:tasks

From a user’s perspective, multi-project builds are still collections of tasks you can run. The
difference is that you may want to control which project’s tasks get executed. The following sections
will cover the two options you have for executing tasks in a multi-project build.

Executing tasks by name

The command gradle test will execute the test task in any subprojects, relative to the current
working directory, that have that task. If you run the command from the root project directory,
you’ll run test in api, shared, services:shared and services:webservice. If you run the command from
the services project directory, you’ll only execute the task in services:shared and services:webservice.

The basic rule behind Gradle’s behavior is: execute all tasks down the hierarchy which have this
name. Only complain if there is no such task found in any of the subprojects traversed.

Some tasks selectors, like help or dependencies, will only run the task on the project
they are invoked on and not on all the subprojects. The main motivation for this is
that these tasks print out information that would be hard to process if it combined
the information from all projects.

NOTE

Gradle looks down the hierarchy, starting with the current dir, for tasks with the given name and
executes them. One thing is very important to note. Gradle always evaluates every project of the
multi-project build and creates all existing task objects. Then, according to the task name
arguments and the current directory, Gradle filters the tasks which should be executed. Because of
Gradle’s cross project configuration, every project has to be evaluated before any task gets executed.

When you’re using the Gradle wrapper, executing a task for a specific subproject by running Gradle
from the subproject’s directory doesn’t work well because you have to specify the path to the
wrapper script if you’re not in the project root. For example, if want to run build task for the
webservice subproject and you’re in the webservice subproject directory, you would have to run
../../gradlew build. The next section shows how this can be achieved directly from the project’s
root directory.

Executing tasks by fully qualified name

You can use task’s fully qualified name to execute a specific task in a specific subproject. For
example: gradle :services:webservice:build will run the build task of the webservice subproject.
The fully qualified name of a task is simply its project path plus the task name.

A project path has the following pattern: It starts with an optional colon, which denotes the root
project. The root project is the only project in a path that is not specified by its name. The rest of a
project path is a colon-separated sequence of project names, where the next project is a subproject
of the previous project. You can see the project paths when running gradle projects as shown in
identifying project structure section.

This approach works for any task, so if you want to know what tasks are in a particular subproject,
just use the tasks task, e.g. gradle :services:webservice:tasks.

Regardless of which technique you use to execute tasks, Gradle will take care of building any
subprojects that the target depends on. You don’t have to worry about the inter-project
dependencies yourself. If you’re interested in how this is configured, you can read about writing
multi-project builds later in the user manual.

That’s all you really need to know about multi-project builds as a build user. You can now identify
whether a build is a multi-project one and you can discover its structure. And finally, you can
execute tasks within specific subprojects.

Multi-Project Building and Testing

The build task of the Java plugin is typically used to compile, test, and perform code style checks (if
the CodeQuality plugin is used) of a single project. In multi-project builds you may often want to do
all of these tasks across a range of projects. The buildNeeded and buildDependents tasks can help with
this.

In this example, the :services:person-service project depends on both the :api and :shared
projects. The :api project also depends on the :shared project.

Assume you are working on a single project, the :api project. You have been making changes, but
have not built the entire project since performing a clean. You want to build any necessary
supporting jars, but only perform code quality and unit tests on the project you have changed. The
build task does this.

Example 25. Build and Test Single Project

Output of gradle :api:build

gradle :api:build

Task :shared:compilelava

Task :shared:processResources
Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources
Task :api:classes

Task :api:jar

Task :api:assemble

Task :api:compileTest]ava
Task :api:processTestResources
Task :api:testClasses

Task :api:test

Task :api:check

Task :api:build

V V V V V V V V V V V V V V V V

BUILD SUCCESSFUL in 0s

If you have just gotten the latest version of source from your version control system which included
changes in other projects that :api depends on, you might want to not only build all the projects
you depend on, but test them as well. The buildNeeded task also tests all the projects from the project
dependencies of the testRuntime configuration.

Example 26. Build and Test Depended On Projects

Output of gradle :api:buildNeeded

gradle :api:buildNeeded

Task :shared:compilelava

Task :shared:processResources
Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources
Task :api:classes

Task :api:jar

Task :api:assemble

Task :api:compileTest]ava
Task :api:processTestResources
Task :api:testClasses

Task :api:test

Task :api:check

Task :api:build

Task :shared:assemble

Task :shared:compileTestJava
Task :shared:processTestResources
Task :shared:test(Classes

Task :shared:test

Task :shared:check

Task :shared:build

Task :shared:buildNeeded

Task :api:buildNeeded

V V.V

BUILD SUCCESSFUL in 0@s

You also might want to refactor some part of the :api project that is used in other projects. If you
make these types of changes, it is not sufficient to test just the :api project, you also need to test all
projects that depend on the :api project. The buildDependents task also tests all the projects that
have a project dependency (in the testRuntime configuration) on the specified project.

Example 27. Build and Test Dependent Projects

Output of gradle :api:buildDependents

gradle :api:buildDependents

Task :shared:compilelava

Task :shared:processResources

Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources

Task :api:classes

Task :api:jar

Task :api:assemble

Task :api:compileTest]ava

Task :api:processTestResources

Task :api:testClasses

Task :api:test

Task :api:check

Task :api:build

Task :services:person-service:compilelava
Task :services:person-service:processResources
Task :services:person-service:classes

Task :services:person-service:jar

Task :services:person-service:assemble

Task :services:person-service:compileTestJava
Task :services:person-service:processTestResources
Task :services:person-service:testClasses
Task :services:person-service:test

Task :services:person-service:check

Task :services:person-service:build

Task :services:person-service:buildDependents
Task :api:buildDependents

V V.V

BUILD SUCCESSFUL in 0s

Finally, you may want to build and test everything in all projects. Any task you run in the root
project folder will cause that same named task to be run on all the children. So you can just run
gradle build to build and test all projects.

Build Cache

Want to learn the tips and tricks top engineering teams use to keep builds fast and

TIP
performant? Register here for our Build Cache Training.

https://gradle.com/training/build-cache-deep-dive/?bid=docs-build-cache

The build cache feature described here is different from the Android plugin build

NOTE
cache.

Overview

The Gradle build cache is a cache mechanism that aims to save time by reusing outputs produced by
other builds. The build cache works by storing (locally or remotely) build outputs and allowing
builds to fetch these outputs from the cache when it is determined that inputs have not changed,
avoiding the expensive work of regenerating them.

A first feature using the build cache is task output caching. Essentially, task output caching
leverages the same intelligence as up-to-date checks that Gradle uses to avoid work when a
previous local build has already produced a set of task outputs. But instead of being limited to the
previous build in the same workspace, task output caching allows Gradle to reuse task outputs from
any earlier build in any location on the local machine. When using a shared build cache for task
output caching this even works across developer machines and build agents.

Apart from tasks, artifact transforms can also leverage the build cache and re-use their outputs
similarly to task output caching.

For a hands-on approach to learning how to use the build cache, start with reading
through the use cases for the build cache and the follow up sections. It covers the

TIP
different scenarios that caching can improve and has detailed discussions of the
different caveats you need to be aware of when enabling caching for a build.
Enable the Build Cache

By default, the build cache is not enabled. You can enable the build cache in a couple of ways:

Run with --build-cache on the command-line

Gradle will use the build cache for this build only.

Put org.gradle.caching=true in your gradle.properties

Gradle will try to reuse outputs from previous builds for all builds, unless explicitly disabled
with --no-build-cache.

When the build cache is enabled, it will store build outputs in the Gradle user home. For
configuring this directory or different kinds of build caches see Configure the Build Cache.

Task Output Caching

Beyond incremental builds described in up-to-date checks, Gradle can save time by reusing outputs
from previous executions of a task by matching inputs to the task. Task outputs can be reused
between builds on one computer or even between builds running on different computers via a
build cache.

We have focused on the use case where users have an organization-wide remote build cache that is
populated regularly by continuous integration builds. Developers and other continuous integration

https://developer.android.com/studio/build/build-cache.html
https://developer.android.com/studio/build/build-cache.html
build_cache_use_cases.pdf#use_cases_cache

agents should load cache entries from the remote build cache. We expect that developers will not
be allowed to populate the remote build cache, and all continuous integration builds populate the
build cache after running the clean task.

For your build to play well with task output caching it must work well with the incremental build
feature. For example, when running your build twice in a row all tasks with outputs should be UP-
TO-DATE. You cannot expect faster builds or correct builds when enabling task output caching when
this prerequisite is not met.

Task output caching is automatically enabled when you enable the build cache, see Enable the
Build Cache.

What does it look like

Let us start with a project using the Java plugin which has a few Java source files. We run the build
the first time.

> gradle --build-cache compileJava
:compileJlava

:processResources

:classes

jjar

:assemble

BUILD SUCCESSFUL

We see the directory used by the local build cache in the output. Apart from that the build was the
same as without the build cache. Let’s clean and run the build again.

> gradle clean
:clean

BUILD SUCCESSFUL

> gradle --build-cache assemble
:compileJava FROM-CACHE
:processResources

:classes

jar

:assemble

BUILD SUCCESSFUL

Now we see that, instead of executing the :compilelava task, the outputs of the task have been
loaded from the build cache. The other tasks have not been loaded from the build cache since they
are not cacheable. This is due to :classes and :assemble being lifecycle tasks and :processResources
and :jar being Copy-like tasks which are not cacheable since it is generally faster to execute them.

Cacheable tasks

Since a task describes all of its inputs and outputs, Gradle can compute a build cache key that
uniquely defines the task’s outputs based on its inputs. That build cache key is used to request
previous outputs from a build cache or store new outputs in the build cache. If the previous build
outputs have been already stored in the cache by someone else, e.g. your continuous integration
server or other developers, you can avoid executing most tasks locally.

The following inputs contribute to the build cache key for a task in the same way that they do for
up-to-date checks:

» The task type and its classpath

* The names of the output properties

* The names and values of properties annotated as described in the section called "Custom task

types"

* The names and values of properties added by the DSL via TaskInputs

* The classpath of the Gradle distribution, buildSrc and plugins

* The content of the build script when it affects execution of the task

Task types need to opt-in to task output caching using the @CacheableTask annotation. Note that
@CacheableTask is not inherited by subclasses. Custom task types are not cacheable by default.

Built-in cacheable tasks

Currently, the following built-in Gradle tasks are cacheable:

Java toolchain: JavaCompile, Javadoc

* Groovy toolchain: GroovyCompile, Groovydoc

Scala toolchain: ScalaCompile, PlatformScalaCompile, ScalaDoc

* Native toolchain: CppCompile, CCompile, SwiftCompile

Testing: Test

Code quality tasks: Checkstyle, CodeNarc, Pmd

JaCoCo: JacocoMerge, JacocoReport

* Other tasks: AntlrTask, ValidatePlugins, WriteProperties
All other built-in tasks are currently not cacheable.

Some tasks, like Copy or Jar, usually do not make sense to make cacheable because Gradle is only
copying files from one location to another. It also doesn’t make sense to make tasks cacheable that
do not produce outputs or have no task actions.

Third party plugins

There are third party plugins that work well with the build cache. The most prominent examples
are the Android plugin 3.1+ and the Kotlin plugin 1.2.21+. For other third party plugins, check their

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/CacheableTask.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/CacheableTask.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/scala/tasks/PlatformScalaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.scala.ScalaDoc.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/cpp/tasks/CppCompile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/c/tasks/CCompile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/swift/tasks/SwiftCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.Checkstyle.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.CodeNarc.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.Pmd.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoMerge.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.WriteProperties.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Jar.html
https://developer.android.com/studio/releases/gradle-plugin.html
https://blog.gradle.org/kotlin-build-cache-use

documentation to find out whether they support the build cache.

Declaring task inputs and outputs

It is very important that a cacheable task has a complete picture of its inputs and outputs, so that
the results from one build can be safely re-used somewhere else.

Missing task inputs can cause incorrect cache hits, where different results are treated as identical
because the same cache key is used by both executions. Missing task outputs can cause build
failures if Gradle does not completely capture all outputs for a given task. Wrongly declared task
inputs can lead to cache misses especially when containing volatile data or absolute paths. (See the
section called "Task inputs and outputs" on what should be declared as inputs and outputs.)

The task path is not an input to the build cache key. This means that tasks with
NOTE different task paths can re-use each other’s outputs as long as Gradle determines
that executing them yields the same result.

In order to ensure that the inputs and outputs are properly declared use integration tests (for
example using TestKit) to check that a task produces the same outputs for identical inputs and
captures all output files for the task. We suggest adding tests to ensure that the task inputs are
relocatable, i.e. that the task can be loaded from the cache into a different build directory (see
@PathSensitive).

In order to handle volatile inputs for your tasks consider configuring input normalization.

Marking tasks as non-cacheable by default

There are certain tasks that don’t benefit from using the build cache. One example is a task that
only moves data around the file system, like a Copy task. You can signify that a task is not to be
cached by adding the @DisableCachingByDefault annotation to it. You can also give a human-
readable reason for not caching the task by default. The annotation can be used on its own, or
together with @CacheableTask.

This annotation is only for documenting the reason behind not caching the task by

NOTE
default. Build logic can override this decision via the runtime API (see below).

Enable caching of non-cacheable tasks

As we have seen, built-in tasks, or tasks provided by plugins, are cacheable if their class is
annotated with the Cacheable annotation. But what if you want to make cacheable a task whose
class is not cacheable? Let’s take a concrete example: your build script uses a generic NpmTask task to
create a JavaScript bundle by delegating to NPM (and running npm run bundle). This process is
similar to a complex compilation task, but NpmTask is too generic to be cacheable by default: it just
takes arguments and runs npm with those arguments.

The inputs and outputs of this task are simple to figure out. The inputs are the directory containing
the JavaScript files, and the NPM configuration files. The output is the bundle file generated by this
task.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/PathSensitive.html

Using annotations

We create a subclass of the NpmTask and use annotations to declare the inputs and outputs.

When possible, it is better to use delegation instead of creating a subclass. That is the case for the
built in JavaExec, Exec, Copy and Sync tasks, which have a method on Project to do the actual work.

If you’re a modern JavaScript developer, you know that bundling can be quite long, and is worth
caching. To achieve that, we need to tell Gradle that it’s allowed to cache the output of that task,
using the @CacheableTask annotation.

This is sufficient to make the task cacheable on your own machine. However, input files are
identified by default by their absolute path. So if the cache needs to be shared between several
developers or machines using different paths, that won’t work as expected. So we also need to set
the path sensitivity. In this case, the relative path of the input files can be used to identify them.

Note that it is possible to override property annotations from the base class by overriding the getter
of the base class and annotating that method.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/CacheableTask.html
build_cache_concepts.pdf#relocatability

Example 28. Custom cacheable BundleTask

build.gradle

@CacheableTask O)
abstract class BundleTask extends NpmTask {

@0verride @Internal @
ListProperty<String> getArgs() {

super.getArgs()
}

@InputDirectory

@SkipWhenEmpty
@PathSensitive(PathSensitivity.RELATIVE) ®
abstract DirectoryProperty getScripts()

@InputFiles
@PathSensitive(PathSensitivity.RELATIVE) @
abstract ConfigurableFileCollection getConfigFiles()

@OutputFile
abstract RegularFileProperty getBundle()

BundleTask() {
args.addA11("run", "bundle")
bundle.set(project.layout.buildDirectory.file("bundle.js"))
scripts.set(project.layout.projectDirectory.dir("scripts"))
configFiles.from(project.layout.projectDirectory.file("package.json'

))

configFiles.from(project.layout.projectDirectory.file("package-
lock.json"))

}
}

tasks.register('bundle', BundleTask)

build.gradle.kts

@CacheableTask ©)
abstract class BundleTask : NpmTask() {

@get:Internal @
override val args
get() = super.args

@get:InputDirectory

@get:SkipWhenEmpty
@get:PathSensitive(PathSensitivity.RELATIVE) ®
abstract val scripts: DirectoryProperty

@get:InputFiles
@get:PathSensitive(PathSensitivity.RELATIVE) @
abstract val configFiles: ConfigurableFileCollection

@get:OutputFile
abstract val bundle: RegularFileProperty

init {
args.addA11("run", "bundle")

bundle.set(project.layout.buildDirectory.file("bundle.js"))
scripts.set(project.layout.projectDirectory.dir("scripts"))

configFiles.from(project.layout.projectDirectory.file("package.json"))
configFiles.from(project.layout.projectDirectory.file("package-
lock.json"))
}
}

tasks.register<BundleTask>("bundle")

* (1) Add @CacheableTask to enable caching for the task.

* (2) Override the getter of a property of the base class to change the input annotation to
@Internal.

* (3) (4) Declare the path sensitivity.
Using the runtime API

If for some reason you cannot create a new custom task class, it is also possible to make a task
cacheable using the runtime API to declare the inputs and outputs.

For enabling caching for the task you need to use the TaskOutputs.cachelIf() method.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputs.html#cacheIf-org.gradle.api.specs.Spec-

The declarations via the runtime API have the same effect as the annotations described above. Note
that you cannot override file inputs and outputs via the runtime API. Input properties can be
overridden by specifying the same property name.

Example 29. Make the bundle task cacheable

build.gradle

tasks.register('bundle', NpmTask) {
args = ['run', 'bundle']

outputs.cachelf { true }

inputs.dir(file("scripts"))
.withPropertyName("scripts")
.withPathSensitivity(PathSensitivity.RELATIVE)

inputs.files("package.json", "package-lock.json")
.withPropertyName("configFiles")
.withPathSensitivity(PathSensitivity.RELATIVE)

outputs.file("$buildDir/bundle.js")
.withPropertyName("bundle")

build.gradle.kts

tasks.register<NpmTask>("bundle") {
args.set(listOf("run", "bundle"))

outputs.cacheIf { true }

inputs.dir(file("scripts"))
.withPropertyName("scripts")
.withPathSensitivity(PathSensitivity.RELATIVE)

inputs.files("package.json", "package-lock.json")
.withPropertyName("configFiles")
.withPathSensitivity(PathSensitivity.RELATIVE)

outputs.file("$buildDir/bundle.js")
.withPropertyName("bundle")

Configure the Build Cache

You can configure the build cache by using the Settings.buildCache(org.gradle.api.Action) block in
settings.gradle.

Gradle supports a local and a remote build cache that can be configured separately. When both
build caches are enabled, Gradle tries to load build outputs from the local build cache first, and
then tries the remote build cache if no build outputs are found. If outputs are found in the remote
cache, they are also stored in the local cache, so next time they will be found locally. Gradle stores
("pushes") build outputs in any build cache that is enabled and has BuildCache.isPush() set to true.

By default, the local build cache has push enabled, and the remote build cache has push disabled.

The local build cache is pre-configured to be a DirectoryBuildCache and enabled by default. The
remote build cache can be configured by specifying the type of build cache to connect to
(BuildCacheConfiguration.remote(java.lang.Class)).

Built-in local build cache

The built-in local build cache, DirectoryBuildCache, uses a directory to store build cache artifacts.
By default, this directory resides in the Gradle user home directory, but its location is configurable.

Gradle will periodically clean-up the local cache directory by removing entries that have not been
used recently to conserve disk space. Note that cache entries are cleaned-up regardless of the
project they were produced by.

For more details on the configuration options refer to the DSL documentation of
DirectoryBuildCache. Here is an example of the configuration.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:buildCache(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/caching/configuration/BuildCache.html#isPush--
https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.local.DirectoryBuildCache.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.local.DirectoryBuildCache.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.local.DirectoryBuildCache.html

Example 30. Configure the local cache

settings.gradle

buildCache {
local {
directory = new File(rootDir, 'build-cache')
removeUnusedEntriesAfterDays = 30

settings.gradle.kts

buildCache {
local {
directory = File(rootDir, "build-cache")
removeUnusedEntriesAfterDays = 30

Remote HTTP build cache

HttpBuildCache provides the ability read to and write from a remote cache via HTTP.

With the following configuration, the local build cache will be used for storing build outputs while
the local and the remote build cache will be used for retrieving build outputs.

https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.http.HttpBuildCache.html

Example 31. Load from HttpBuildCache

settings.gradle

buildCache {
remote(HttpBuildCache) {
url = "https://example.com:8123/cache/"
}

settings.gradle.kts

buildCache {
remote<HttpBuildCache> {
url = uri("https://example.com:8123/cache/")
}

When attempting to load an entry, a GET request is made to https://example.com:8123/cache/«cache-
key». The response must have a 2xx status and the cache entry as the body, or a 404 Not Found status
if the entry does not exist.

When attempting to store an entry, a PUT request is made to https://example.com:8123/cache/«cache-
key». Any 2xx response status is interpreted as success. A 413 Payload Too Large response may be

returned to indicate that the payload is larger than the server will accept, which will not be treated
as an error.

Specifying access credentials

HTTP Basic Authentication is supported, with credentials being sent preemptively.

https://en.wikipedia.org/wiki/Basic_access_authentication

Example 32. Specifying access credentials

settings.gradle

buildCache {
remote(HttpBuildCache) {
url = "https://example.com:8123/cache/"
credentials {
username = 'build-cache-user'
password = 'some-complicated-password'

settings.gradle.kts

buildCache {
remote<HttpBuildCache> {
url = uri("https://example.com:8123/cache/")
credentials {
username = "build-cache-user"
password = "some-complicated-password"

Redirects

3xx redirecting responses will be followed automatically.

Servers must take care when redirecting PUT requests as only 307 and 308 redirect responses will be
followed with a PUT request. All other redirect responses will be followed with a GET request, as per

RFC 7231, without the entry payload as the body.

Network error handling

Requests that fail during request transmission, after having established a TCP connection, will be

retried automatically.

This prevents temporary problems, such as connection drops, read or write timeouts, and low level
network failures such as a connection resets, causing cache operations to fail and disabling the

remote cache for the remainder of the build.

Requests will be retried up to 3 times. If the problem persists, the cache operation will fail and the

remote cache will be disabled for the remainder of the build.

https://datatracker.ietf.org/doc/html/rfc7231#page-54

Using SSL

By default, use of HTTPS requires the server to present a certificate that is trusted by the build’s
Java runtime. If your server’s certificate is not trusted, you can:

1. Update the trust store of your Java runtime to allow it to be trusted
2. Change the build environment to use an alternative trust store for the build runtime

3. Disable the requirement for a trusted certificate

The trust requirement can be disabled by setting HttpBuildCache.isAllowUntrustedServer() to true.
Enabling this option is a security risk, as it allows any cache server to impersonate the intended
server. It should only be used as a temporary measure or in very tightly controlled network
environments.

Example 33. Allow untrusted cache server

settings.gradle

buildCache {
remote(HttpBuildCache) {
url = "https://example.com:8123/cache/’
allowUntrustedServer = true

settings.gradle.kts

buildCache {
remote<HttpBuildCache> {
url = uri("https://example.com:8123/cache/")
isAllowUntrustedServer = true

HTTP expect-continue

Use of HTTP Expect-Continue can be enabled. This causes upload requests to happen in two parts:
first a check whether a body would be accepted, then transmission of the body if the server
indicates it will accept it.

This is useful when uploading to cache servers that routinely redirect or reject upload requests, as
it avoids uploading the cache entry just to have it rejected (e.g. the cache entry is larger than the
cache will allow) or redirected. This additional check incurs extra latency when the server accepts
the request, but reduces latency when the request is rejected or redirected.

https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer
https://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.2.3

Not all HTTP servers and proxies reliably implement Expect-Continue. Be sure to check that your
cache server does support it before enabling.

To enable, set HttpBuildCache.isUseExpectContinue() to true.

Example 34. Use Expect-Continue

settings.gradle

buildCache {
remote(HttpBuildCache) {
url = "https://example.com:8123/cache/"
useExpectContinue = true

settings.gradle.kts

buildCache {
remote<HttpBuildCache> {
url = uri("https://example.com:8123/cache/")
isUseExpectContinue = true

Configuration use cases

The recommended use case for the remote build cache is that your continuous integration server
populates it from clean builds while developers only load from it. The configuration would then
look as follows.

https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:useExpectContinue

Example 35. Recommended setup for CI push use case

settings.gradle
boolean isCiServer = System.getenv().containsKey("CI")

buildCache {
remote(HttpBuildCache) {
url = "https://example.com:8123/cache/’
push = isCiServer

settings.gradle.kts
val isCiServer = System.getenv().containsKey("CI")

buildCache {
remote<HttpBuildCache> {
url = uri("https://example.com:8123/cache/")
isPush = isCiServer

It is also possible to configure the build cache from an init script, which can be used from the
command line, added to your Gradle user home or be a part of your custom Gradle distribution.

Example 36. Init script to configure the build cache

init.gradle

gradle.settingsEvaluated { settings ->
settings.buildCache {
// vvv Your custom configuration goes here
remote(HttpBuildCache) {
url = "https://example.com:8123/cache/’

}
// MM Your custom configuration goes here
}
}
init.gradle.kts

gradle.settingsEvaluated {
buildCache {
// vvv Your custom configuration goes here
remote<HttpBuildCache> {
url = uri("https://example.com:8123/cache/")
}

// MM Your custom configuration goes here

Build cache, composite builds and buildSrc

Gradle’s composite build feature allows including other complete Gradle builds into another. Such
included builds will inherit the build cache configuration from the top level build, regardless of
whether the included builds define build cache configuration themselves or not.

The build cache configuration present for any included build is effectively ignored, in favour of the
top level build’s configuration. This also applies to any buildSrc projects of any included builds.

The buildSrc directory is treated as an included build, and as such it inherits the build cache
configuration from the top-level build.

How to set up an HTTP build cache backend

Gradle provides a Docker image for a build cache node, which can connect with Gradle Enterprise
for centralized management. The cache node can also be used without a Gradle Enterprise
installation with restricted functionality.

https://hub.docker.com/r/gradle/build-cache-node/

Implement your own Build Cache

Using a different build cache backend to store build outputs (which is not covered by the built-in
support for connecting to an HTTP backend) requires implementing your own logic for connecting
to your custom build cache backend. To this end, custom build cache types can be registered via
BuildCacheConfiguration.registerBuildCacheService(java.lang.Class, java.lang.Class).

Gradle Enterprise includes a high-performance, easy to install and operate, shared build cache
backend.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class-java.lang.Class-
https://gradle.com/build-cache

Authoring Gradle Builds

Build Script Basics

This chapter introduces you to the basics of writing Gradle build scripts. It uses toy examples to
explain basic functionality of Gradle, which is helpful to get an understanding of the basic concepts.
Especially if you move to Gradle from other build tools like Ant and want to understand differences
and advantages.

However, to get started with a standard project setup, you don’t even need to go into these concepts
in detail. Instead, you can have a quick hands-on introduction, through our step-by-step samples.

Projects, plugins and tasks

Every Gradle build is made up of one or more projects. What a project represents depends on what
it is that you are doing with Gradle. For example, a project might represent a library JAR or a web
application. It might represent a distribution ZIP assembled from the JARs produced by other
projects. A project does not necessarily represent a thing to be built. It might represent a thing to be
done, such as deploying your application to staging or production environments. Don’t worry if this
seems a little vague for now. Gradle’s build-by-convention support adds a more concrete definition
for what a project is.

The work that Gradle can do on a project is defined by one or more tasks. A task represents some
atomic piece of work which a build performs. This might be compiling some classes, creating a JAR,
generating Javadoc, or publishing some archives to a repository.

Typically, tasks are provided by applying a plugin so that you do not have to define them yourself.
Still, to give you an idea of what a task is, we will look at defining some simple tasks in a build with
one project in this chapter.

Hello world

You run a Gradle build using the gradle command. The gradle command looks for a file called
build.gradle in the current directory.”! We call this build.gradle file a build script, although strictly
speaking it is a build configuration script, as we will see later. The build script defines a project and
its tasks.

To try this out, create the following build script named build.gradle.

You run a Gradle build using the gradle command. The gradle command looks for a file called
build.gradle.kts in the current directory.”’ We call this build.gradle.kts file a build script, although
strictly speaking it is a build configuration script, as we will see later. The build script defines a
project and its tasks.

To try this out, create the following build script named build.gradle.kts.

Example 37. Your first build script

build.gradle

tasks.register('hello') {
dolast {
println 'Hello world!’

build.gradle.kts

tasks.register("hello") {
dolast {
println("Hello world!")

In a command-line shell, move to the containing directory and execute the build script with gradle
-q hello:

What does -q do?

Most of the examples in this user guide are run with the -q command-line option. This
suppresses Gradle’s log messages, so that only the output of the tasks is shown. This
keeps the example output in this user guide a little clearer. You don’t need to use this
option if you don’t want to. See Logging for more details about the command-line
options which affect Gradle’s output.

TIP

Example 38. Execution of a build script
Output of gradle -q hello

> gradle -q hello
Hello world!

What’s going on here? This build script defines a single task, called hello, and adds an action to it.
When you run gradle hello, Gradle executes the hello task, which in turn executes the action
you’ve provided. The action is simply a block containing some code to execute.

If you think this looks similar to Ant’s targets, you would be right. Gradle tasks are the equivalent to
Ant targets, but as you will see, they are much more powerful. We have used a different
terminology than Ant as we think the word task is more expressive than the word target.
Unfortunately this introduces a terminology clash with Ant, as Ant calls its commands, such as

javac or copy, tasks. So when we talk about tasks, we always mean Gradle tasks, which are the
equivalent to Ant’s targets. If we talk about Ant tasks (Ant commands), we explicitly say Ant task.

Build scripts are code

Gradle’s build scripts give you the full power of Groovy and Kotlin. As an appetizer, have a look at

this:

Example 39. Using Groovy or Kotlin in Gradle’s tasks

or

build.gradle

tasks.register('upper') {
dolast {
String someString = 'mY_nAmE'
println "Original: $someString"
println "Upper case: ${someString.toUpperCase()}"

build.gradle.kts

tasks.register("upper") {
dolast {
val someString = "mY_nAmE"
println("Original: $someString")
println("Upper case: ${someString.toUpperCase()}")

Output of gradle -q upper

> gradle -q upper
Original: mY_nAmE
Upper case: MY_NAME

Example 40. Using Groovy or Kotlin in Gradle’s tasks

build.gradle

tasks.register('count') {
dolast {
4.times { print "¢it " }
}

build.gradle.kts

tasks.register("count") {
dolast {
repeat(4) { print("$it ") }
}

Output of gradle -q count

> gradle -q count
0123

Task dependencies

As you probably have guessed, you can declare tasks that depend on other tasks.

Example 41. Declaration of task that depends on other task

build.gradle

tasks.register('hello') {
dolast {
println 'Hello world!’
}
}
tasks.register('intro') {
dependsOn tasks.hello
dolLast {
println "I'm Gradle"

}

build.gradle.kts

tasks.register("hello") {
dolast {
println("Hello world!")
}
}

tasks.register("intro") {
dependsOn("hello")
dolast {
println("I'm Gradle")
}

Output of gradle -q intro
> gradle -q intro

Hello world!
I'm Gradle

To add a dependency, the corresponding task does not need to exist.

Example 42. Lazy dependsOn - the other task does not exist (yet)

build.gradle

tasks.register('taskX') {
dependsOn 'taskY'
dolLast {
println 'taskX'

}

}

tasks.register('taskY') {
dolLast {

println 'taskY'

}

}

build.gradle.kts

tasks.register("taskX") {
dependsOn("taskY")
dolast {
println("taskX")

}
}
tasks.register("taskY") {
dolast {
println("taskY")
}
}

Output of gradle -q taskX

> gradle -q taskX
tasky
taskX

The dependency of taskX to taskY may be declared before taskY is defined. Task dependencies are
discussed in more detail in Adding dependencies to a task.

Flexible task registration

The power of Groovy or Kotlin can be used for more than defining what a task does For example,
you can use it to register multiple tasks of the same type in a loop.

Example 43. Flexible registration of a task

build.gradle

4.times { counter ->
tasks.register("taskfcounter") {
dolast {
println "I'm task number $counter"

}

build.gradle.kts

repeat(4) { counter ->
tasks.register("task$counter") {
dolLast {
println("I'm task number $counter")

}

Output of gradle -q task1l

> gradle -q task1
I'm task number 1

Manipulating existing tasks

Once tasks are registered, they can be accessed via an API. For instance, you could use this to
dynamically add dependencies to a task, at runtime. Ant doesn’t allow anything like this.

Example 44. Accessing a task via API - adding a dependency

build.gradle

4.times { counter ->
tasks.register("taskfcounter") {
dolast {
println "I'm task number $counter"
}
}

}
tasks.named('task@') { dependsOn('task2', 'task3') }

build.gradle.kts

repeat(4) { counter ->
tasks.register("task$counter") {
dolast {
println("I'm task number $counter")
}
}

}
tasks.named("task0") { dependsOn("task2", "task3") }

Output of gradle -q task@

> gradle -q task®
I'm task number 2
I'm task number 3
I'm task number 0

Or you can add behavior to an existing task.

Example 45. Accessing a task via API - adding behaviour

build.gradle

tasks.register('hello') {
dolast {
println 'Hello Earth'

}
}
tasks.named('hello') {
doFirst {
println 'Hello Venus'
}
}
tasks.named('hello') {
dolLast {
println 'Hello Mars'
}
}
tasks.named('hello') {
dolLast {
println 'Hello Jupiter'
}

build.gradle.kts

tasks.register("hello") {
dolast {
println("Hello Earth")

}
+
tasks.named("hello") {
doFirst {
println("Hello Venus")
}
+
tasks.named("hello") {
dolast {
println("Hello Mars")
}
}
tasks.named("hello") {
dolLast {
println("Hello Jupiter")
}
}

Output of gradle -q hello

> gradle -q hello
Hello Venus

Hello Earth

Hello Mars

Hello Jupiter

The calls doFirst and dolLast can be executed multiple times. They add an action to the beginning or
the end of the task’s actions list. When the task executes, the actions in the action list are executed
in order.

Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by
simply relying on Groovy. Groovy is shipped with the fantastic AntBuilder. Using Ant tasks from
Gradle is as convenient and more powerful than using Ant tasks from a build.xml file. And it is
usable from Kotlin too. From the example below, you can learn how to execute Ant tasks and how
to access Ant properties:

Example 46. Using AntBuilder to execute ant.loadfile target

build.gradle

tasks.register('loadfile') {
dolast {
def files = file('./antlLoadfileResources').listFiles().sort()
files.each { File file ->
if (file.isFile()) {

ant.loadfile(srcFile: file, property: file.name)
println " *** {file.name ***"
println "${ant.properties[file.name]}"

build.gradle.kts

tasks.register("loadfile") {
dolast {
val files = file("./antLoadfileResources").listFiles().sorted()
files.forEach { file ->
if (file.isFile) {
ant.withGroovyBuilder {
"loadfile"("srcFile" to file, "property" to file.name)

}
println(" *** ${file.name} ***")
println("${ant.properties[file.name]}")

Output of gradle -q loadfile

> gradle -q loadfile

*** 3gile.manifesto.txt ***
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

*** gradle.manifesto.txt ***
Make the impossible possible, make the possible easy and make the easy elegant.
(inspired by Moshe Feldenkrais)

There is lots more you can do with Ant in your build scripts. You can find out more in Ant.

Using methods

Gradle scales in how you can organize your build logic. The first level of organizing your build logic
for the example above, is extracting a method.

Example 47. Using methods to organize your build logic

build.gradle

tasks.register('checksum') {
dolast {
fileList('./antLoadfileResources').each { File file ->
ant.checksum(file: file, property: "cs_§file.name")
println "$file.name Checksum: ${ant.properties["cs_§file.name"]}"

}

tasks.register('loadfile') {
dolast {
fileList('./antLoadfileResources').each { File file ->
ant.loadfile(srcFile: file, property: file.name)
println "I'm fond of $file.name"

}

File[] fileList(String dir) {
file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()
}

build.gradle.kts

tasks.register("checksum") {
dolast {
fileList("./antLoadfileResources").forEach { file ->
ant.withGroovyBuilder {
"checksum"("file" to file, "property" to "cs_${file.name}")
}
println("$file.name Checksum:
${ant.properties["cs_${file.name}"]}")
}
}
}

tasks.register("loadfile") {
dolast {
fileList("./antLoadfileResources").forEach { file ->
ant.withGroovyBuilder {
"loadfile"("srcFile" to file, "property" to file.name)

}
println("I'm fond of ${file.name}")

}

fun filelist(dir: String): List<File> =
file(dir).listFiles { file: File -> file.isFile }.sorted()

Output of gradle -q loadfile

> gradle -q loadfile
I'm fond of agile.manifesto.txt
I'm fond of gradle.manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If
your build logic becomes more complex, Gradle offers you other very convenient ways to organize
it. We have devoted a whole chapter to this. See Organizing Gradle Projects.

Default tasks

Gradle allows you to define one or more default tasks that are executed if no other tasks are
specified.

Example 48. Defining a default task

build.gradle

defaultTasks 'clean', 'run

tasks.register('clean') {
dolast {
println 'Default Cleaning!'
}
+

tasks.register('run') {
dolast {
println 'Default Running!'
}
}

tasks.register('other') {
dolast {
println "I'm not a default task!"

}

build.gradle.kts
defaultTasks("clean", "run")

tasks.register("clean") {
dolast {
println("Default Cleaning!")
}
}

tasks.register("run") {
dolast {
println("Default Running!")
}
}

tasks.register("other") {
dolast {
println("I'm not a default task!")
}

Output of gradle -q

> gradle -q
Default Cleaning!
Default Running!

This is equivalent to running gradle clean run. In a multi-project build every subproject can have
its own specific default tasks. If a subproject does not specify default tasks, the default tasks of the
parent project are used (if defined).

External dependencies for the build script

Instead of manipulating the script classpath directly, it is recommended to apply
NOTE plugins that come with their own classpath. For custom build logic, the
recommendation is to use a custom plugin.

If your build script needs to use external libraries, you can add them to the script’s classpath in the
build script itself. You do this using the buildscript() method, passing in a block which declares the
build script classpath.

Example 49. Declaring external dependencies for the build script

build.gradle

buildscript {
repositories {
mavenCentral()

}
dependencies {
classpath group: 'commons-codec', name: 'commons-codec', version:
1.2
}

build.gradle.kts

buildscript {
repositories {
mavenCentral()

}

dependencies {
"classpath"(group = "commons-codec", name = "commons-codec", version
= "1.2")
}
}

The block passed to the buildscript() method configures a ScriptHandler instance. You declare the
build script classpath by adding dependencies to the classpath configuration. This is the same way
you declare, for example, the Java compilation classpath. You can use any of the dependency types
except project dependencies.

Having declared the build script classpath, you can use the classes in your build script as you would
any other classes on the classpath. The following example adds to the previous example, and uses
classes from the build script classpath.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Example 50. A build script with external dependencies

build.gradle
import org.apache.commons.codec.binary.Base64

buildscript {
repositories {
mavenCentral()
}
dependencies {
classpath group: 'commons-codec', name: 'commons-codec', version:

1.2
}
}
tasks.register('encode') {
dolast {
def byte[] encodedString = new Base64().encode('hello world\n'
.getBytes())
println new String(encodedString)
}
+
build.gradle.kts

import org.apache.commons.codec.binary.Base64

buildscript {
repositories {
mavenCentral()
}
dependencies {
"classpath"(group = "commons-codec", name = "commons-codec", version
= "1.2")
}
}

tasks.register("encode") {
dolast {
val encodedString = Base64().encode("hello world\n".toByteArray())
println(String(encodedString))

Output of gradle -q encode

> gradle -q encode
aGVsbG8gd29ybGQK

For multi-project builds, the dependencies declared with a project’s buildscript() method are
available to the build scripts of all its sub-projects.

Build script dependencies may be Gradle plugins. Please consult Using Gradle Plugins for more
information on Gradle plugins.

Every project automatically has a buildEnvironment task of type BuildEnvironmentReportTask that
can be invoked to report on the resolution of the build script dependencies.

Further Reading

This chapter only scratched the surface with what’s possible. Here are some other topics that may
be interesting:

* Authoring maintainable build scripts

* Organizing your Gradle projects

* Writing Custom tasks

Authoring Tasks

In the introductory tutorial you learned how to create simple tasks. You also learned how to add
additional behavior to these tasks later on, and you learned how to create dependencies between
tasks. This was all about simple tasks, but Gradle takes the concept of tasks further. Gradle supports
tasks that have their own properties and methods. Such tasks are either provided by you or built
into Gradle.

Task outcomes

When Gradle executes a task, it can label the task with different outcomes in the console UI and via
the Tooling API. These labels are based on if a task has actions to execute, if it should execute those
actions, if it did execute those actions and if those actions made any changes.

(no label) or EXECUTED

Task executed its actions.

 Task has actions and Gradle has determined they should be executed as part of a build.
» Task has no actions and some dependencies, and any of the dependencies are executed. See

also Lifecycle Tasks.

UP-TO-DATE

Task’s outputs did not change.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html

» Task has outputs and inputs and they have not changed. See Incremental Builds.
» Task has actions, but the task tells Gradle it did not change its outputs.

» Task has no actions and some dependencies, but all of the dependencies are up-to-date,
skipped or from cache. See also Lifecycle Tasks.

» Task has no actions and no dependencies.

FROM-CACHE

Task’s outputs could be found from a previous execution.
» Task has outputs restored from the build cache. See Build Cache.

SKIPPED

Task did not execute its actions.

» Task has been explicitly excluded from the command-line. See Excluding tasks from
execution.

» Task has an onlyIf predicate return false. See Using a predicate.

NO-SOURCE

Task did not need to execute its actions.

» Task has inputs and outputs, but no sources. For example, source files are .java files for
JavaCompile.

Defining tasks

We have already seen how to define tasks using strings for task names in this chapter. There are a
few variations on this style, which you may need to use in certain situations.

The task configuration APIs are described in more detail in the task configuration

NOTE
avoidance chapter.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html
task_configuration_avoidance.pdf#task_configuration_avoidance
task_configuration_avoidance.pdf#task_configuration_avoidance

Example 51. Defining tasks using strings for task names

build.gradle

tasks.register('hello') {
dolast {
println "hello'
}
}

tasks.register('copy', Copy) {
from(file('srcDir'))
into(buildDir)

build.gradle.kts

tasks.register("hello") {
dolast {
println("hello")
}
+

tasks.register<Copy>("copy") {
from(file("sreDir"))
into(buildDir)

We add the tasks to the tasks collection. Have a look at TaskContainer for more variations of the
register() method.

In the Kotlin DSL there is also a specific delegated properties syntax that is useful if you need the
registered task for further reference.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html
https://kotlinlang.org/docs/reference/delegated-properties.html

Example 52. Assigning tasks to variables with DSL specific syntax

build.gradle

// Assigning registered tasks to a variable in Groovy

def hello = tasks.register('hello') {
dolast {
println 'hello’
}
}

def copy = tasks.register('copy', Copy) {
from(file('srcDir"))
into(buildDir)

build.gradle.kts
// Using Kotlin delegated properties

val hello by tasks.registering {
dolast {
println("hello")
}
}

val copy by tasks.registering(Copy::class) {
from(file("srcDir"))
into(buildDir)

If you look at the API of the tasks container you may notice that there are
additional methods to create tasks. The use of these methods is discouraged

WARNING and will be deprecated in future versions. These methods only exist for
backward compatibility as they were introduced before task configuration
avoidance was added to Gradle.

Locating tasks

You often need to locate the tasks that you have defined in the build file, for example, to configure
them or use them for dependencies. There are a number of ways of doing this. Firstly, just like with
defining tasks there are language specific syntaxes for the Groovy and Kotlin DSL:

In general, tasks are available through the tasks collection. You should use of the methods that

task_configuration_avoidance.pdf#task_configuration_avoidance
task_configuration_avoidance.pdf#task_configuration_avoidance

return a task provider — register() or named() — to make sure you do not break task configuration
avoidance.

Example 53. Accessing tasks via tasks collection

build.gradle

tasks.register('hello")
tasks.register('copy', Copy)

println tasks.named('hello').get().name

println tasks.named('copy').get().destinationDir

build.gradle.kts

tasks.register("hello")
tasks.register<Copy>("copy")

println(tasks.named("hello").get().name) // or just 'tasks.hello' if the task
was added by a plugin

println(tasks.named<Copy>("copy").get().destinationDir)

Tasks of a specific type can also be accessed by using the tasks.withType() method. This enables to
easily avoid duplication of code and reduce redundancy.

task_configuration_avoidance.pdf#task_configuration_avoidance
task_configuration_avoidance.pdf#task_configuration_avoidance

Example 54. Accessing tasks by their type

build.gradle

tasks.withType(Tar).configureEach {
enabled = false

}

tasks.register('test') {
dependsOn tasks.withType(Copy)
}

build.gradle.kts

tasks.withType<Tar>().configureEach {
enabled = false

}

tasks.register("test") {
dependsOn(tasks.withType<Copy>())
}

The following shows how to access a task by path. This is not a recommended
WARNING practice anymore as it breaks task configuration avoidance and project
isolation. Dependencies between projects should be declared as dependencies.

You can access tasks from any project using the task’s path using the tasks.getByPath() method. You
can call the getByPath() method with a task name, or a relative path, or an absolute path.

task_configuration_avoidance.pdf#task_configuration_avoidance

Example 55. Accessing tasks by path

project-a/build.gradle

tasks.register('hello')

build.gradle
tasks.register('hello")

println tasks.getByPath('hello").path
println tasks.getByPath(':hello").path
println tasks.getByPath('project-a:hello").path
println tasks.getByPath(':project-a:hello').path

project-a/build.gradle.kts

tasks.register("hello")

build.gradle.kts
tasks.register("hello")

println(tasks.getByPath("hello").path)
println(tasks.getByPath(":hello").path)
println(tasks.getByPath("project-a:hello").path)
println(tasks.getByPath(":project-a:hello").path)

Output of gradle -q hello

> gradle -q hello
:hello
hello
:project-a:hello
:project-a:hello

Have a look at TaskContainer for more options for locating tasks.

Configuring tasks

As an example, let’s look at the Copy task provided by Gradle. To register a Copy task for your build,
you can declare in your build script:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html

Example 56. Registering a copy task

build.gradle

tasks.register('myCopy', Copy)

build.gradle.kts

tasks.register<Copy>("myCopy")

This registers a copy task with no default behavior. The task can be configured using its API (see
Copy). The following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of this task is myCopy, but it is of type Copy. You can have
multiple tasks of the same type, but with different names. You’ll find this gives you a lot of power to
implement cross-cutting concerns across all tasks of a particular type.

Example 57. Configuring a task

build.gradle

tasks.named('myCopy') {
from 'resources'
into 'target'
include('**/*.txt", "**/*.xml', "**/*.properties')

build.gradle.kts

tasks.named<Copy>("myCopy") {
from("resources")
into("target")
include("**/*. txt", "**/*.xml", "**/* . properties")

You can also store the task reference in a variable and use to configure the task further at a later
point in the script.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html

Example 58. Retrieve a task reference and use it to configuring the task

build.gradle

// Configure task through a task provider
def myCopy = tasks.named('myCopy') {
from 'resources’
into 'target'
}
myCopy.configure {
include('**/*.txt', "**/*.xml', "**/* . properties')

}

build.gradle.kts

// Configure task using Kotlin delegated properties and a lambda
val myCopy by tasks.existing(Copy::class) {

from("resources")

into("target")

}
myCopy {

include("**/*. txt", "**/*.xml", "**/* . properties")
}

Have alook at TaskContainer for more options for configuring tasks.
If you use the Kotlin DSL and the task you want to configure was added by a plugin,
TIP you can use a convenient accessor for the task. That is, instead of tasks.named("test")

you can just write tasks.test.

You can also use a configuration block when you define a task.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html

Example 59. Defining a task with a configuration block

build.gradle

tasks.register('copy', Copy) {
from 'resources'
into 'target'
include('**/*.txt', "**/*.xml', "**/*.properties')

build.gradle.kts

tasks.register<Copy>("copy") {
from("resources")
into("target")
include("**/*.txt", "**/*.xml", "**/*.properties")

Don’t forget about the build phases

A task has both configuration and actions. When using the dolLast, you are simply

TIP using a shortcut to define an action. Code defined in the configuration section of your
task will get executed during the configuration phase of the build regardless of what
task was targeted. See Build Lifecycle for more details about the build lifecycle.

Passing arguments to a task constructor

As opposed to configuring the mutable properties of a Task after creation, you can pass argument
values to the Task class’s constructor. In order to pass values to the Task constructor, you must
annotate the relevant constructor with @javax.inject.Inject.

Example 60. Task class with @Inject constructor

build.gradle
abstract class CustomTask extends DefaultTask {

final String message
final int number

CustomTask(String message, int number) {
this.message = message
this.number = number

build.gradle.kts
abstract class CustomTask @Inject constructor(
private val message: String,

private val number: Int
) : DefaultTask()

You can then create a task, passing the constructor arguments at the end of the parameter list.

Example 61. Registering a task with constructor arguments using TaskContainer

build.gradle

tasks.register('myTask', CustomTask, 'hello', 42)

build.gradle.kts

tasks.register<CustomTask>("myTask", "hello", 42)

NOTE I’'s recommended to use the Task Configuration Avoidance APIs to improve
configuration time.

In all circumstances, the values passed as constructor arguments must be non-null. If you attempt

to pass a null value, Gradle will throw a NullPointerException indicating which runtime value is

null.

task_configuration_avoidance.pdf#task_configuration_avoidance

Adding dependencies to a task

There are several ways you can define the dependencies of a task. In Task dependencies you were
introduced to defining dependencies using task names. Task names can refer to tasks in the same
project as the task, or to tasks in other projects. To refer to a task in another project, you prefix the
name of the task with the path of the project it belongs to. The following is an example which adds
a dependency from project-a:taskX to project-b:taskY:

Example 62. Adding dependency on task from another project

build.gradle

project('project-a') {
tasks.register('taskX') {
dependsOn ':project-b:taskY'
dolast {
println 'taskX'
}

}

project('project-b") {
tasks.register('taskY') {
dolLast {
println 'taskY'
}

build.gradle.kts

project("project-a") {
tasks.register("taskX") {
dependsOn(":project-b:taskY")
dolast {
println("taskX")
}

}

project("project-b") {
tasks.register("taskY") {
dolast {
println("taskY")

}

Output of gradle -q taskX

> gradle -q taskX
tasky
taskX

Instead of using a task name, you can define a dependency using a TaskProvider object, as shown in
this example:

Example 63. Adding dependency using task provider object

build.gradle

def taskX = tasks.register('taskX') {
dolast {
println 'taskX'
}
}

def taskY = tasks.register('taskY') {
dolLast {
println 'taskY'
}
}

taskX.configure {
dependsOn taskY
}

build.gradle.kts

val taskX by tasks.registering {
dolast {
println("taskX")
}
}

val taskY by tasks.registering {
dolast {
println("taskY")

}
}
taskX {
dependsOn(taskY)
+

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

For more advanced uses, you can define a task dependency using a lazy block. When evaluated, the

block is passed the task whose dependencies are being calculated. The lazy block should return a
single Task or collection of Task objects, which are then treated as dependencies of the task. The
following example adds a dependency from taskX to all the tasks in the project whose name starts

with 1ib:

Example 64. Adding dependency using a lazy block

build.gradle

def taskX = tasks.register('taskX') {
dolast {
println 'taskX'
}
}

// Using a Gradle Provider
taskX.configure {
dependsOn(provider {
tasks.findAll { task -> task.name.startsWith('lib") }
b
+

tasks.register('1ib1") {
dolLast {
println('1ib1")
}
}

tasks.register('1ib2") {
dolast {
println('1ib2")
hy
+

tasks.register('notALib") {
dolLast {
println('notALib")
}

build.gradle.kts

val taskX by tasks.registering {
dolast {
println("taskX")
}
¥

// Using a Gradle Provider
taskX {
dependsOn(provider {
tasks.filter { task -> task.name.startsWith("1ib") }
b
}

tasks.register("1ib1") {
dolast {
println("1ib1")
}
}

tasks.register("1ib2") {
dolast {
println("1ib2")
}
}

tasks.register("notALib") {
dolast {
println("notALib")

}

Output of gradle -q taskX

> gradle -q taskX
1ib1

1ib2

taskX

For more information about task dependencies, see the Task API.

Ordering tasks

In some cases it is useful to control the order in which 2 tasks will execute, without introducing an
explicit dependency between those tasks. The primary difference between a task ordering and a
task dependency is that an ordering rule does not influence which tasks will be executed, only the

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html

order in which they will be executed.
Task ordering can be useful in a number of scenarios:

* Enforce sequential ordering of tasks: e.g. 'build' never runs before 'clean'.

* Run build validations early in the build: e.g. validate I have the correct credentials before
starting the work for a release build.

Get feedback faster by running quick verification tasks before long verification tasks: e.g. unit
tests should run before integration tests.

A task that aggregates the results of all tasks of a particular type: e.g. test report task combines
the outputs of all executed test tasks.

There are two ordering rules available: “must run after” and “should run after”.

When you use the “must run after” ordering rule you specify that taskB must always run after
taskA, whenever both taskA and taskB will be run. This is expressed as taskB.mustRunAfter(taskA).
The “should run after” ordering rule is similar but less strict as it will be ignored in two situations.
Firstly if using that rule introduces an ordering cycle. Secondly when using parallel execution and
all dependencies of a task have been satisfied apart from the “should run after” task, then this task
will be run regardless of whether its “should run after” dependencies have been run or not. You
should use “should run after” where the ordering is helpful but not strictly required.

With these rules present it is still possible to execute taskA without taskB and vice-versa.

Example 65. Adding a 'must run after' task ordering

build.gradle

def taskX = tasks.register('taskX') {
dolast {
println 'taskX'

}
}
def taskY = tasks.register('taskY') {
dolLast {
println 'taskY'
}
}

taskY.configure {
mustRunAfter taskX

}

build.gradle.kts

val taskX by tasks.registering {
dolLast {
println("taskX")

}
}
val taskY by tasks.registering {
dolLast {
println("taskY")
}
}
taskY {
mustRunAfter (taskX)
}

Output of gradle -q taskY taskX

> gradle -q taskY taskX
taskX
taskY

Example 66. Adding a 'should run after' task ordering

build.gradle

def taskX = tasks.register('taskX') {
dolast {
println 'taskX'

}
}
def taskY = tasks.register('taskY') {
dolLast {
println 'taskY'
}
}

taskY.configure {
shouldRunAfter taskX

}

build.gradle.kts

val taskX by tasks.registering {
dolLast {
println("taskX")

}
}
val taskY by tasks.registering {
dolLast {
println("taskY")
}
}
taskY {
shouldRunAfter (taskX)
}

Output of gradle -q taskY taskX
> gradle -q taskY taskX

taskX
tasky

In the examples above, it is still possible to execute taskY without causing taskX to run:

Example 67. Task ordering does not imply task execution
Output of gradle -q taskY

> gradle -q taskY
taskY

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the
Task.mustRunAfter(java.lang.Object...) and Task.shouldRunAfter(java.lang.Object...) methods. These
methods accept a task instance, a task name or any other input accepted by
Task.dependsOn(java.lang.Object...).

Note that “B.mustRunAfter (A)” or “B.shouldRunAfter(A)” does not imply any execution dependency
between the tasks:

* It is possible to execute tasks A and B independently. The ordering rule only has an effect when
both tasks are scheduled for execution.
* When run with --continue, it is possible for B to execute in the event that A fails.

As mentioned before, the “should run after” ordering rule will be ignored if it introduces an
ordering cycle:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Task.html#shouldRunAfter-java.lang.Object...-
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 68. A 'should run after’' task ordering is ignored if it introduces an ordering cycle

build.gradle

def taskX = tasks.register('taskX') {
dolast {
println 'taskX'

}
}
def taskY = tasks.register('taskY') {
dolLast {
println 'taskY'
}
}
def taskZ = tasks.register('taskZ') {
dolLast {
println 'taskZ'
}
}

taskX.configure { dependsOn(taskY) }
taskY.configure { dependsOn(taskZ) }
taskZ.configure { shouldRunAfter(taskX) }

build.gradle.kts

val taskX by tasks.registering {
dolLast {
println("taskX")

}
}
val taskY by tasks.registering {
dolast {
println("taskY")
}
}
val taskZ by tasks.registering {
dolast {
println("taskz")
}
}

taskX { dependsOn(taskY) }
taskY { dependsOn(taskZ) }
taskZ { shouldRunAfter(taskX) }

Output of gradle -q taskX

> gradle -q taskX
taskZ
tasky
taskX

Adding a description to a task
You can add a description to your task. This description is displayed when executing gradle tasks.

Example 69. Adding a description to a task

build.gradle

tasks.register('copy', Copy) {
description 'Copies the resource directory to the target directory.'
from 'resources’
into 'target'
include('**/*.txt"', "**/*.xml', "**/*.properties')

build.gradle.kts

tasks.register<Copy>("copy") {
description = "Copies the resource directory to the target directory.”
from("resources")
into("target")
include("**/* . txt", "**/*.xml", "**/*.properties")

Skipping tasks

Gradle offers multiple ways to skip the execution of a task.

Using a predicate

You can use the onlyIf() method to attach a predicate to a task. The task’s actions are only executed
if the predicate evaluates to true. You implement the predicate as a closure. The closure is passed
the task as a parameter, and should return true if the task should execute and false if the task
should be skipped. The predicate is evaluated just before the task is due to be executed.

Example 70. Skipping a task using a predicate

build.gradle

def hello = tasks.register('hello') {
dolast {
println "hello world'
}
}

hello.configure {
onlyIf { !project.hasProperty('skipHello") }
}

build.gradle.kts

val hello by tasks.registering {
dolast {
println("hello world")

}
}
hello {

onlyIf { !project.hasProperty("skipHello") }
}

Output of gradle hello -PskipHello

> gradle hello -PskipHello
> Task :hello SKIPPED

BUILD SUCCESSFUL in 0s

Using StopExecutionException

If the logic for skipping a task can’t be expressed with a predicate, you can use the
StopExecutionException. If this exception is thrown by an action, the further execution of this
action as well as the execution of any following action of this task is skipped. The build continues
with executing the next task.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/StopExecutionException.html

Example 71. Skipping tasks with StopExecutionException

build.gradle

def compile = tasks.register('compile") {
dolLast {
println 'We are doing the compile.'

}
}
compile.configure {
doFirst {
// Here you would put arbitrary conditions in real life.
if (true) {

throw new StopExecutionException()
+
}
}
tasks.register('myTask') {
dependsOn('compile")
dolLast {
println 'I am not affected'

}

build.gradle.kts

val compile by tasks.registering {
dolast {
println("We are doing the compile.")

Iy
+
compile {
doFirst {
// Here you would put arbitrary conditions in real life.
if (true) A
throw StopExecutionException()
}
}
}
tasks.register("myTask") {
dependsOn(compile)
dolLast {
println("I am not affected")
}
}

Output of gradle -q myTask

> gradle -q myTask
I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add conditional
execution of the built-in actions of such a task."”

Enabling and disabling tasks

Every task has an enabled flag which defaults to true. Setting it to false prevents the execution of
any of the task’s actions. A disabled task will be labelled SKIPPED.

Example 72. Enabling and disabling tasks

build.gradle

def disableMe = tasks.register('disableMe’) {
dolast {
println 'This should not be printed if the task is disabled.'
}
}

disableMe.configure {
enabled = false

}

build.gradle.kts

val disableMe by tasks.registering {
dolast {

println("This should not be printed if the task is disabled.")
}
}

disableMe {
enabled = false

}

Output of gradle disableMe

> gradle disableMe
> Task :disableMe SKIPPED

BUILD SUCCESSFUL in 0s

Task timeouts

Every task has a timeout property which can be used to limit its execution time. When a task
reaches its timeout, its task execution thread is interrupted. The task will be marked as failed.
Finalizer tasks will still be run. If --continue is used, other tasks can continue running after it. Tasks
that don’t respond to interrupts can’t be timed out. All of Gradle’s built-in tasks respond to timeouts
in a timely manner.

Example 73. Specifying task timeouts

build.gradle

tasks.register("hangingTask") {
dolast {
Thread.sleep(100000)

}
timeout = Duration.ofMillis(500)
}
build.gradle.kts

tasks.register("hangingTask") {
dolLast {
Thread.sleep(100000)

}
timeout.set(Duration.ofMillis(500))

Up-to-date checks (AKA Incremental Build)

An important part of any build tool is the ability to avoid doing work that has already been done.
Consider the process of compilation. Once your source files have been compiled, there should be no
need to recompile them unless something has changed that affects the output, such as the
modification of a source file or the removal of an output file. And compilation can take a significant
amount of time, so skipping the step when it’s not needed saves a lot of time.

Gradle supports this behavior out of the box through a feature it calls incremental build. You have
almost certainly already seen it in action: it’s active nearly every time the UP-TO-DATE text appears
next to the name of a task when you run a build. Task outcomes are described in Task outcomes.

How does incremental build work? And what does it take to make use of it in your own tasks? Let’s
take a look.

Task inputs and outputs

In the most common case, a task takes some inputs and generates some outputs. If we use the
compilation example from earlier, we can see that the source files are the inputs and, in the case of
Java, the generated class files are the outputs. Other inputs might include things like whether debug
information should be included.

Green: inputs

Blue: outputs
Target JDK
version \
Source JavaCompile _
files > task » Class files

Fork /
N\

An internal property - it may affect
the execution of the task, but never
the task outputs

Figure 7. Example task inputs and outputs

An important characteristic of an input is that it affects one or more outputs, as you can see from
the previous figure. Different bytecode is generated depending on the content of the source files
and the minimum version of the Java runtime you want to run the code on. That makes them task
inputs. But whether compilation has 500MB or 600MB of maximum memory available, determined
by the memoryMaximumSize property, has no impact on what bytecode gets generated. In Gradle
terminology, memoryMaximumSize is just an internal task property.

As part of incremental build, Gradle tests whether any of the task inputs or outputs has changed
since the last build. If they haven’t, Gradle can consider the task up to date and therefore skip
executing its actions. Also note that incremental build won’t work unless a task has at least one task
output, although tasks usually have at least one input as well.

What this means for build authors is simple: you need to tell Gradle which task properties are
inputs and which are outputs. If a task property affects the output, be sure to register it as an input,
otherwise the task will be considered up to date when it’s not. Conversely, don’t register properties
as inputs if they don’t affect the output, otherwise the task will potentially execute when it doesn’t
need to. Also be careful of non-deterministic tasks that may generate different output for exactly
the same inputs: these should not be configured for incremental build as the up-to-date checks
won’t work.

Let’s now look at how you can register task properties as inputs and outputs.

Custom task types

If you’re implementing a custom task as a class, then it takes just two steps to make it work with
incremental build:

1. Create typed properties (via getter methods) for each of your task inputs and outputs

2. Add the appropriate annotation to each of those properties

Annotations must be placed on getters or on Groovy properties. Annotations placed

NOTE
on setters, or on a Java field without a corresponding annotated getter, are ignored.

Gradle supports three main categories of inputs and outputs:
» Simple values

Things like strings and numbers. More generally, a simple value can have any type that
implements Serializable.

* Filesystem types

These consist of the standard File class but also derivatives of Gradle’s FileCollection type and
anything else that can be passed to either the Project.file(java.lang.Object) method — for single
file/directory properties — or the Project.files(java.lang.Object...) method.

* Nested values

Custom types that don’t conform to the other two categories but have their own properties that
are inputs or outputs. In effect, the task inputs or outputs are nested inside these custom types.

As an example, imagine you have a task that processes templates of varying types, such as
FreeMarker, Velocity, Moustache, etc. It takes template source files and combines them with some
model data to generate populated versions of the template files.

This task will have three inputs and one output:

» Template source files
* Model data
* Template engine
* Where the output files are written
When you’re writing a custom task class, it’s easy to register properties as inputs or outputs via

annotations. To demonstrate, here is a skeleton task implementation with some suitable inputs and
outputs, along with their annotations:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Example 74. Custom task class
buildSrc/src/main/java/org/example/ProcessTemplates.java

package org.example;
import java.util.HashMap;
import org.gradle.api.DefaultTask;
import org.gradle.api.file.ConfigurableFileCollection;
import org.gradle.api.file.DirectoryProperty;
import org.gradle.api.provider.Property;

import org.gradle.api.tasks.*;

public abstract class ProcessTemplates extends DefaultTask {

public abstract Property<TemplateEngineType> getTemplateEngine();

public abstract ConfigurableFileCollection getSourceFiles();

public abstract TemplateData getTemplateData();

public abstract DirectoryProperty getOutputDir();

public void processTemplates() {
/] ...
}

buildSrc/src/main/java/org/example/TemplateData.java
package org.example;
import org.gradle.api.provider.MapProperty;
import org.gradle.api.provider.Property;

import org.gradle.api.tasks.Input;

public abstract class TemplateData {

public abstract Property<String> getName();

public abstract MapProperty<String, String> getVariables();

Output of gradle processTemplates

> gradle processTemplates
> Task :processTemplates

BUILD SUCCESSFUL in 0s
3 actionable tasks: 3 up-to-date

Output of gradle processTemplates (run again)

> gradle processTemplates
> Task :processTemplates UP-TO-DATE

BUILD SUCCESSFUL in 0s
3 actionable tasks: 3 up-to-date

There’s plenty to talk about in this example, so let’s work through each of the input and output
properties in turn:

» templateEngine

Represents which engine to use when processing the source templates, e.g. FreeMarker,
Velocity, etc. You could implement this as a string, but in this case we have gone for a custom
enum as it provides greater type information and safety. Since enums implement Serializable
automatically, we can treat this as a simple value and use the @Input annotation, just as we
would with a String property.

* sourceFiles

The source templates that the task will be processing. Single files and collections of files need
their own special annotations. In this case, we’re dealing with a collection of input files and so
we use the @InputFiles annotation. You’ll see more file-oriented annotations in a table later.

* templateData

For this example, we’re using a custom class to represent the model data. However, it does not
implement Serializable, so we can’t use the @Input annotation. That’s not a problem as the
properties within TemplateData — a string and a hash map with serializable type parameters —
are serializable and can be annotated with @Input. We use @Nested on templateData to let Gradle
know that this is a value with nested input properties.

o outputDir

The directory where the generated files go. As with input files, there are several annotations for
output files and directories. A property representing a single directory requires
@0utputDirectory. You’ll learn about the others soon.

These annotated properties mean that Gradle will skip the task if none of the source files, template
engine, model data or generated files has changed since the previous time Gradle executed the task.

This will often save a significant amount of time. You can learn how Gradle detects changes later.

This example is particularly interesting because it works with collections of source files. What
happens if only one source file changes? Does the task process all the source files again or just the
modified one? That depends on the task implementation. If the latter, then the task itself is
incremental, but that’s a different feature to the one we’re discussing here. Gradle does help task
implementers with this via its incremental task inputs feature.

Now that you have seen some of the input and output annotations in practice, let’s take a look at all
the annotations available to you and when you should use them. The table below lists the available
annotations and the corresponding property type you can use with each one.

Table 3. Incremental build property type annotations

Annotation Expected property type Description

@Input Any Serializable type A simple input value

@InputFile File* A single input file (not
directory)

@InputDirectory File* A single input directory (not
file)

@InputFiles Iterable<File>* An iterable of input files and

directories

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Input.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/InputFile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/InputDirectory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/InputFiles.html

Annotation

@Classpath

Expected property type

Iterable<File>*

Description

An iterable of input files and
directories that represent a
Java classpath. This allows the
task to ignore irrelevant
changes to the property, such as
different names for the same
files. It is similar to annotating
the property
@PathSensitive(RELATIVE) but it
will ignore the names of JAR
files directly added to the
classpath, and it will consider
changes in the order of the files
as a change in the classpath.
Gradle will inspect the contents
of jar files on the classpath and
ignore changes that do not
affect the semantics of the
classpath (such as file dates and
entry order). See also Using the
classpath annotations.

Note: The @Classpath
annotation was introduced in
Gradle 3.2. To stay compatible
with earlier Gradle versions,
classpath properties should also
be annotated with @InputFiles.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Classpath.html

Annotation

@CompileClasspath

Expected property type

Iterable<File>*

Description

An iterable of input files and
directories that represent a
Java compile classpath. This
allows the task to ignore
irrelevant changes that do not
affect the API of the classes in
classpath. See also Using the
classpath annotations.

The following kinds of changes
to the classpath will be ignored:

* Changes to the path of jar or
top level directories.

* Changes to timestamps and
the order of entries in Jars.

* Changes to resources and
Jar manifests, including
adding or removing
resources.

* Changes to private class
elements, such as private
fields, methods and inner
classes.

* Changes to code, such as
method bodies, static

initializers and field
initializers (except for
constants).

* Changes to debug

information, for example
when a change to a
comment affects the line
numbers in class debug
information.

* Changes to directories,
including directory entries
in Jars.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/CompileClasspath.html

Annotation
@0utputFile

@0utputDirectory

@0utputFiles

@0utputDirectories

@Destroys

@LocalState

@Nested

@Console

@Internal

Expected property type
File*

File*

Map<String, File>**

Tterable<File>*

Map<String, File>**

Iterable<File>*

File or Iterable<File>*

File or Iterable<File>*

Any custom type

Any type

Any type

or

or

Description

A single output file (not
directory)

A single output directory (not
file)

An iterable or map of output
files. Using a file tree turns
caching off for the task.

An iterable of output
directories. Using a file tree
turns caching off for the task.

Specifies one or more files that
are removed by this task. Note
that a task can define either
inputs/outputs or destroyables,
but not both.

Specifies one or more files that
represent the local state of the
task. These files are removed
when the task is loaded from
cache.

A custom type that may not
implement Serializable but
does have at least one field or
property marked with one of
the annotations in this table. It
could even be another @Nested.

Indicates that the property is
neither an input nor an output.
It simply affects the console
output of the task in some way,
such as increasing or
decreasing the verbosity of the
task.

Indicates that the property is
used internally but is neither
an input nor an output.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/OutputFile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/OutputDirectory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/OutputFiles.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/OutputDirectories.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Destroys.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/LocalState.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Console.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Internal.html

Annotation

@ReplacedBy

@SkipWhenEmpty

@Incremental

@0ptional

Expected property type
Any type

File or Iterable<File>*

Provider<FileSystemLocation>
or FileCollection

Any type

Description

Indicates that the property has
been replaced by another and
should be ignored as an input
or output.

Used with @InputFiles or
@InputDirectory to tell Gradle to
skip the task if the
corresponding files or directory
are empty, along with all other
input files declared with this
annotation. Tasks that have
been skipped due to all of their
input files that were declared
with this annotation being
empty will result in a distinct
‘no source” outcome. For
example, NO-SOURCE will be
emitted in the console output.

Implies @Incremental.

Used with @InputFiles or
@InputDirectory to instruct
Gradle to track changes to the
annotated file property, so the
changes can be queried via
@InputChanges.getFileChanges().
Required for incremental tasks.

Used with any of the property
type annotations listed in the
Optional API documentation.
This annotation disables
validation checks on the
corresponding property. See the
section on validation for more
details.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ReplacedBy.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/work/Incremental.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Optional.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Optional.html

Annotation

@PathSensitive

@IgnoreEmptyDirectories

@NormalizelineEndings

NOTE

ke

Expected property type

File or Iterable<File>*

File or Iterable<File>*

File or Iterable<File>*

Description

Used with any input file
property to tell Gradle to only
consider the given part of the
file paths as important. For
example, if a property is
annotated with
@PathSensitive(PathSensitivity
.NAME_ONLY), then moving the
files around without changing
their contents will not make the
task out-of-date.

Used with @InputFiles or
@InputDirectory to instruct
Gradle to track only changes to
the contents of directories and
not differences in the
directories themselves. For
example, removing, renaming
or adding an empty directory
somewhere in the directory
structure will not make the task
out-of-date.

Used with @InputFiles,
@InputDirectory or @Classpath to
instruct Gradle to normalize
line endings when calculating
up-to-date checks or build
cache keys. For example,
switching a file between Unix
line endings and Windows line
endings (or vice-versa) will not
make the task out-of-date.

In fact, File can be any type accepted by Project.file(java.lang.Object) and
Iterable<File> can be any type accepted by Project.files(java.lang.Object...
). This includes instances of Callable, such as closures, allowing for lazy
evaluation of the property values. Be aware that the types FileCollection
and FileTree are Iterable<File>s.

Similar to the above, File can be any type accepted by
Project.file(java.lang.Object). The Map itself can be wrapped in Callables,
such as closures.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/PathSensitive.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/IgnoreEmptyDirectories.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/work/NormalizeLineEndings.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Annotations are inherited from all parent types including implemented interfaces. Property type
annotations override any other property type annotation declared in a parent type. This way an
@InputFile property can be turned into an @InputDirectory property in a child task type.

Annotations on a property declared in a type override similar annotations declared by the
superclass and in any implemented interfaces. Superclass annotations take precedence over
annotations declared in implemented interfaces.

The Console and Internal annotations in the table are special cases as they don’t declare either task
inputs or task outputs. So why use them? It’s so that you can take advantage of the Java Gradle
Plugin Development plugin to help you develop and publish your own plugins. This plugin checks
whether any properties of your custom task classes lack an incremental build annotation. This
protects you from forgetting to add an appropriate annotation during development.

Using the classpath annotations

Besides @InputFiles, for JVM-related tasks Gradle understands the concept of classpath inputs. Both
runtime and compile classpaths are treated differently when Gradle is looking for changes.

As opposed to input properties annotated with @InputFiles, for classpath properties the order of the
entries in the file collection matter. On the other hand, the names and paths of the directories and
jar files on the classpath itself are ignored. Timestamps and the order of class files and resources
inside jar files on a classpath are ignored, too, thus recreating a jar file with different file dates will
not make the task out of date.

Runtime classpaths are marked with @Classpath, and they offer further customization via classpath
normalization.

Input properties annotated with @CompileClasspath are considered Java compile classpaths.
Additionally to the aforementioned general classpath rules, compile classpaths ignore changes to
everything but class files. Gradle uses the same class analysis described in Java compile avoidance
to further filter changes that don’t affect the class' ABIs. This means that changes which only touch
the implementation of classes do not make the task out of date.

Nested inputs

When analyzing @Nested task properties for declared input and output sub-properties Gradle uses
the type of the actual value. Hence it can discover all sub-properties declared by a runtime sub-

type.

When adding @Nested to a Provider, the value of the Provider is treated as a nested input.

When adding @Nested to an iterable, each element is treated as a separate nested input. Each nested
input in the iterable is assigned a name, which by default is the dollar sign followed by the index in
the iterable, e.g. $2. If an element of the iterable implements Named, then the name is used as
property name. The ordering of the elements in the iterable is crucial for for reliable up-to-date
checks and caching if not all of the elements implement Named. Multiple elements which have the
same name are not allowed.

When adding @Nested to a map, then for each value a nested input is added, using the key as name.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Console.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Internal.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/InputFiles.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Classpath.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/CompileClasspath.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Named.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Named.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html

The type and classpath of nested inputs is tracked, too. This ensures that changes to the
implementation of a nested input causes the build to be out of date. By this it is also possible to add
user provided code as an input, e.g. by annotating an @Action property with @Nested. Note that any
inputs to such actions should be tracked, either by annotated properties on the action or by
manually registering them with the task.

Using nested inputs allows richer modeling and extensibility for tasks, as e.g. shown by
Test.getJvmArgumentProviders().

This allows us to model the JaCoCo Java agent, thus declaring the necessary JVM arguments and
providing the inputs and outputs to Gradle:

JacocoAgent.java

class JacocoAgent implements CommandlLineArgumentProvider {
private final JacocoTaskExtension jacoco;

public JacocoAgent(JacocoTaskExtension jacoco) {
this.jacoco = jacoco;

}

@Nested

@Optional

public JacocoTaskExtension getJacoco() {
return jacoco.isEnabled() ? jacoco : null;

}

@0verride
public Iterable<String> asArguments() {
return jacoco.isEnabled() ? Immutablelist.of(jacoco.getAsJvmArg()) :
Collections.<String>emptylList();

}
}

test.getJvmArgumentProviders().add(new JacocoAgent(extension));

For this to work, JacocoTaskExtension needs to have the correct input and output annotations.

The approach works for Test JVM arguments, since Test.getJvmArgumentProviders() is an Iterable
annotated with @Nested.

There are other task types where this kind of nested inputs are available:

* JavaExec.getArgumentProviders() - model e.g. custom tools
» JavaExec.getfJvmArgumentProviders() - used for Jacoco Java agent
» CompileOptions.getCompilerArgumentProviders() - model e.g. annotation processors

* Exec.getArgumentProviders() - model e.g. custom tools

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Action.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:jvmArgumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:jvmArgumentProviders
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:argumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:jvmArgumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:compilerArgumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Exec.html#org.gradle.api.tasks.Exec:argumentProviders

» JavaCompile.getOptions().getForkOptions().getjvmArgumentProviders() - model Java compiler
daemon command line arguments

* GroovyCompile.getGroovyOptions().getForkOptions().getfjvmArgumentProviders() - model
Groovy compiler daemon command line arguments

» ScalaCompile.getScalaOptions().getForkOptions().getjvmArgumentProviders() - model Scala

compiler daemon command line arguments

In the same way, this kind of modelling is available to custom tasks.

Runtime validation

When executing the build Gradle checks if task types are declared with the proper annotations. It
tries to identify problems where e.g. annotations are used on incompatible types, or on setters etc.
Any getter not annotated with an input/output annotation is also flagged. These problems then fail
the build or are turned into deprecation warnings when the task is executed.

Tasks that have a validation warning are executed without any optimizations.
Specifically, they never can be:
* up-to-date,
e Joaded from or stored in the build cache,
NOTE
 executed in parallel with other tasks, even if parallel execution is enabled,
* executed incrementally.

The in-memory representation of the file system state (aka Virtual File System) is
also invalidated before an invalid task is executed.

Runtime API

Custom task classes are an easy way to bring your own build logic into the arena of incremental
build, but you don’t always have that option. That’s why Gradle also provides an alternative API
that can be used with any tasks, which we look at next.

When you don’t have access to the source for a custom task class, there is no way to add any of the
annotations we covered in the previous section. Fortunately, Gradle provides a runtime API for
scenarios just like that. It can also be used for ad-hoc tasks, as you’ll see next.

Using it for ad-hoc tasks

This runtime API is provided through a couple of aptly named properties that are available on
every Gradle task:

» Task.getInputs() of type TaskInputs
* Task.getOutputs() of type TaskOutputs
» Task.getDestroyables() of type TaskDestroyables

These objects have methods that allow you to specify files, directories and values which constitute

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.ForkOptions.html#org.gradle.api.tasks.compile.ForkOptions:jvmArgumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.GroovyForkOptions.html#org.gradle.api.tasks.compile.GroovyForkOptions:jvmArgumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.scala.ScalaForkOptions.html#org.gradle.api.tasks.scala.ScalaForkOptions:jvmArgumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:inputs
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:outputs
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputs.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:destroyables
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskDestroyables.html

the task’s inputs and outputs. In fact, the runtime API has almost feature parity with the
annotations. All it lacks is an equivalent for @Nested.

Let’s take the template processing example from before and see how it would look as an ad-hoc task
that uses the runtime API:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html

Example 75. Ad-hoc task

build.gradle

tasks.register('processTemplatesAdHoc') {
inputs.property('engine', TemplateEngineType.FREEMARKER)
inputs.files(fileTree('src/templates"’))
.withPropertyName('sourceFiles")
.withPathSensitivity(PathSensitivity.RELATIVE)
inputs.property('templateData.name', 'docs')
inputs.property('templateData.variables', [year: '2013'])
outputs.dir(layout.buildDirectory.dir("'genOutput2"))
.withPropertyName('outputDir")

dolast {
// Process the templates here
}
}
build.gradle.kts

tasks.register("processTemplatesAdHoc") {

inputs.property("engine", TemplateEngineType.FREEMARKER)

inputs.files(fileTree("src/templates"))
.withPropertyName("sourceFiles")
.withPathSensitivity(PathSensitivity.RELATIVE)

inputs.property("templateData.name", "docs")

inputs.property("templateData.variables", mapOf("year" to "2013"))

outputs.dir(layout.buildDirectory.dir("genOutput2"))
.withPropertyName("outputDir")

dolast {
// Process the templates here

}

Output of gradle processTemplatesAdHoc

> gradle processTemplatesAdHoc
> Task :processTemplatesAdHoc

BUILD SUCCESSFUL in @s
3 actionable tasks: 3 executed

As before, there’s much to talk about. To begin with, you should really write a custom task class for

this as it’s a non-trivial implementation that has several configuration options. In this case, there
are no task properties to store the root source folder, the location of the output directory or any of
the other settings. That’s deliberate to highlight the fact that the runtime API doesn’t require the
task to have any state. In terms of incremental build, the above ad-hoc task will behave the same as
the custom task class.

All the input and output definitions are done through the methods on inputs and outputs, such as
property(), files(), and dir(). Gradle performs up-to-date checks on the argument values to
determine whether the task needs to run again or not. Each method corresponds to one of the
incremental build annotations, for example inputs.property() maps to @Input and outputs.dir()
maps to @0utputDirectory.

The files that a task removes can be specified through destroyables.register().

Example 76. Ad-hoc task declaring a destroyable

build.gradle

tasks.register('removeTempDir') {
destroyables.register(layout.projectDirectory.dir("tmpDir"))
dolast {
delete(layout.projectDirectory.dir('tmpDir"))

build.gradle.kts

tasks.register("removeTempDir") {
destroyables.register(layout.projectDirectory.dir("tmpDir"))
dolast {
delete(layout.projectDirectory.dir("tmpDir"))

One notable difference between the runtime API and the annotations is the lack of a method that
corresponds directly to @Nested. That’s why the example uses two property() declarations for the
template data, one for each TemplateData property. You should utilize the same technique when
using the runtime API with nested values. Any given task can either declare destroyables or
inputs/outputs, but cannot declare both.

Fine-grained configuration

The runtime API methods only allow you to declare your inputs and outputs in themselves.
However, the file-oriented ones return a builder — of type TaskinputFilePropertyBuilder — that
lets you provide additional information about those inputs and outputs.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputFilePropertyBuilder.html

You can learn about all the options provided by the builder in its API documentation, but we’ll
show you a simple example here to give you an idea of what you can do.

Let’s say we don’t want to run the processTemplates task if there are no source files, regardless of
whether it’s a clean build or not. After all, if there are no source files, there’s nothing for the task to
do. The builder allows us to configure this like so:

Example 77. Using skipWhenEmpty() via the runtime API

build.gradle

tasks.register('processTemplatesAdHocSkipWhenEmpty"') {
/] ...

inputs.files(fileTree('src/templates’) {
include '**/*.fm'

1))

.skipWhenEmpty()

.withPropertyName('sourceFiles")
.withPathSensitivity(PathSensitivity.RELATIVE)

/] ...

build.gradle.kts

tasks.register("processTemplatesAdHocSkipWhenEmpty") {
!/ ...

inputs.files(fileTree("src/templates”) {
include("**/*.fm")

1))

.skipWhenEmpty()
.withPropertyName("sourceFiles")
.withPathSensitivity(PathSensitivity.RELATIVE)

/] ...

Output of gradle clean processTemplatesAdHocSkipWhenEmpty

> gradle clean processTemplatesAdHocSkipWhenEmpty
> Task :processTemplatesAdHocSkipWhenEmpty NO-SOURCE

BUILD SUCCESSFUL in @s
3 actionable tasks: 2 executed, 1 up-to-date

The TaskInputs.files() method returns a builder that has a skipWhenEmpty() method. Invoking this
method is equivalent to annotating to the property with @SkipWhenEmpty.

Now that you have seen both the annotations and the runtime API, you may be wondering which
API you should be using. Our recommendation is to use the annotations wherever possible, and it’s

sometimes worth creating a custom task class just so that you can make use of them. The runtime
API is more for situations in which you can’t use the annotations.

Using it for custom task types

Another type of example involves registering additional inputs and outputs for instances of a
custom task class. For example, imagine that the ProcessTemplates task also needs to read
src/headers/headers.txt (e.g. because it is included from one of the sources). You’d want Gradle to
know about this input file, so that it can re-execute the task whenever the contents of this file
change. With the runtime API you can do just that:

Example 78. Using runtime API with custom task type

build.gradle

tasks.register('processTemplatesWithExtralnputs', ProcessTemplates) {
/] ...

inputs.file('src/headers/headers.txt")
.withPropertyName('headers")
.withPathSensitivity(PathSensitivity.NONE)

build.gradle.kts

tasks.register<ProcessTemplates>("processTemplatesWithExtralnputs") {
/] ...

inputs.file("src/headers/headers.txt")
.withPropertyName("headers")
.withPathSensitivity(PathSensitivity.NONE)

Using the runtime API like this is a little like using dolLast() and doFirst() to attach extra actions to
a task, except in this case we’re attaching information about inputs and outputs.

If the task type is already using the incremental build annotations, registering

WARNING
inputs or outputs with the same property names will result in an error.

Important beneficial side effects

Once you declare a task’s formal inputs and outputs, Gradle can then infer things about those
properties. For example, if an input of one task is set to the output of another, that means the first
task depends on the second, right? Gradle knows this and can act upon it.

We’ll look at this feature next and also some other features that come from Gradle knowing things
about inputs and outputs.

Inferred task dependencies

Consider an archive task that packages the output of the processTemplates task. A build author will
see that the archive task obviously requires processTemplates to run first and so may add an explicit
dependsOn. However, if you define the archive task like so:

Example 79. Inferred task dependency via task outputs

build.gradle

tasks.register('packageFiles', Zip) {
from processTemplates.map {it.outputs }

}

build.gradle.kts

tasks.register<Zip>("packageFiles") {
from(processTemplates.map {it.outputs })

}

Output of gradle clean packageFiles

> gradle clean packageFiles
> Task :processTemplates
> Task :packageFiles

BUILD SUCCESSFUL in @s
5 actionable tasks: 4 executed, 1 up-to-date

Gradle will automatically make packageFiles depend on processTemplates. It can do this because it’s
aware that one of the inputs of packageFiles requires the output of the processTemplates task. We
call this an inferred task dependency.

The above example can also be written as

Example 80. Inferred task dependency via a task argument

build.gradle

tasks.register('packageFiles2', Zip) {
from processTemplates

}

build.gradle.kts

tasks.register<Zip>("packageFiles2") {
from(processTemplates)

}

Output of gradle clean packageFiles2

> gradle clean packageFiles?
> Task :processTemplates
> Task :packageFiles2

BUILD SUCCESSFUL in @s
5 actionable tasks: 4 executed, 1 up-to-date

This is because the from() method can accept a task object as an argument. Behind the scenes,
from() uses the project.files() method to wrap the argument, which in turn exposes the task’s
formal outputs as a file collection. In other words, it’s a special case!

Input and output validation

The incremental build annotations provide enough information for Gradle to perform some basic
validation on the annotated properties. In particular, it does the following for each property before
the task executes:

* @InputFile - verifies that the property has a value and that the path corresponds to a file (not a
directory) that exists.

* @InputDirectory - same as for @InputFile, except the path must correspond to a directory.

* @OutputDirectory - verifies that the path doesn’t match a file and also creates the directory if it
doesn’t already exist.

If one task produces an output in a location and another task consumes that location by referring to
it as an input, then Gradle checks that the consumer task depends on the producer task. When the
producer and the consumer tasks are executing at the same time, the build fails to avoid capturing
an incorrect state.

Such validation improves the robustness of the build, allowing you to identify issues related to
inputs and outputs quickly.

You will occasionally want to disable some of this validation, specifically when an input file may
validly not exist. That’s why Gradle provides the @0ptional annotation: you use it to tell Gradle that
a particular input is optional and therefore the build should not fail if the corresponding file or
directory doesn’t exist.

Continuous build

Another benefit of defining task inputs and outputs is continuous build. Since Gradle knows what
files a task depends on, it can automatically run a task again if any of its inputs change. By
activating continuous build when you run Gradle — through the --continuous or -t options — you
will put Gradle into a state in which it continually checks for changes and executes the requested
tasks when it encounters such changes.

You can find out more about this feature in Continuous build.

Task parallelism

One last benefit of defining task inputs and outputs is that Gradle can use this information to make
decisions about how to run tasks when the "--parallel” option is used. For instance, Gradle will
inspect the outputs of tasks when selecting the next task to run and will avoid concurrent execution
of tasks that write to the same output directory. Similarly, Gradle will use the information about
what files a task destroys (e.g. specified by the Destroys annotation) and avoid running a task that
removes a set of files while another task is running that consumes or creates those same files (and
vice versa). It can also determine that a task that creates a set of files has already run and that a
task that consumes those files has yet to run and will avoid running a task that removes those files
in between. By providing task input and output information in this way, Gradle can infer
creation/consumption/destruction relationships between tasks and can ensure that task execution
does not violate those relationships.

How does it work?

Before a task is executed for the first time, Gradle takes a fingerprint of the inputs. This fingerprint
contains the paths of input files and a hash of the contents of each file. Gradle then executes the
task. If the task completes successfully, Gradle takes a fingerprint of the outputs. This fingerprint
contains the set of output files and a hash of the contents of each file. Gradle persists both
fingerprints for the next time the task is executed.

Each time after that, before the task is executed, Gradle takes a new fingerprint of the inputs and
outputs. If the new fingerprints are the same as the previous fingerprints, Gradle assumes that the
outputs are up to date and skips the task. If they are not the same, Gradle executes the task. Gradle
persists both fingerprints for the next time the task is executed.

If the stats of a file (i.e. lastModified and size) did not change, Gradle will reuse the file’s fingerprint
from the previous run. That means that Gradle does not detect changes when the stats of a file did
not change.

Gradle also considers the code of the task as part of the inputs to the task. When a task, its actions,

or its dependencies change between executions, Gradle considers the task as out-of-date.

Gradle understands if a file property (e.g. one holding a Java classpath) is order-sensitive. When
comparing the fingerprint of such a property, even a change in the order of the files will result in
the task becoming out-of-date.

Note that if a task has an output directory specified, any files added to that directory since the last
time it was executed are ignored and will NOT cause the task to be out of date. This is so unrelated
tasks may share an output directory without interfering with each other. If this is not the behaviour
you want for some reason, consider using TaskOutputs.upToDateWhen(groovy.lang.Closure)

Note also that changing the availability of an unavailable file (e.g. modifying the target of a broken
symlink to a valid file, or vice versa), will be detected and handled by up-to-date check.

The inputs for the task are also used to calculate the build cache key used to load task outputs when
enabled. For more details see Task output caching.

For tracking the implementation of tasks, task actions and nested inputs, Gradle
uses the class name and an identifier for the classpath which contains the
implementation. There are some situations when Gradle is not able to track the
implementation precisely:

Unknown classloader

When the classloader which loaded the implementation has not been created by
Gradle, the classpath cannot be determined.
NOTE
Java lambda
Java lambda classes are created at runtime with a non-deterministic classname.
Therefore, the class name does not identify the implementation of the lambda
and changes between different Gradle runs.

When the implementation of a task, task action or a nested input cannot be tracked
precisely, Gradle disables any caching for the task. That means that the task will
never be up-to-date or loaded from the build cache.

Advanced techniques

Everything you’ve seen so far in this section will cover most of the use cases you’ll encounter, but
there are some scenarios that need special treatment. We’ll present a few of those next with the
appropriate solutions.

Adding your own cached input/output methods

Have you ever wondered how the from() method of the Copy task works? It’s not annotated with
@InputFiles and yet any files passed to it are treated as formal inputs of the task. What’s
happening?

The implementation is quite simple and you can use the same technique for your own tasks to
improve their APIs. Write your methods so that they add files directly to the appropriate annotated
property. As an example, here’s how to add a sources() method to the custom ProcessTemplates class

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-

we introduced earlier:

Example 81. Declaring a method to add task inputs

build.gradle

tasks.register('processTemplates', ProcessTemplates) {
templateEngine = TemplateEngineType.FREEMARKER
templateData.name = 'test'’
templateData.variables = [year: '2012']
outputDir = file(layout.buildDirectory.dir('genOutput'))

sources fileTree('src/templates")

build.gradle.kts

tasks.register<ProcessTemplates>("processTemplates") {
templateEngine.set(TemplateEngineType.FREEMARKER)
templateData.name.set("test")
templateData.variables.set(mapOf("year" to "2012"))
outputDir.set(file(layout.buildDirectory.dir("genOutput")))

sources(fileTree("src/templates"))

ProcessTemplates.java
public abstract class ProcessTemplates extends DefaultTask {
/] ...
(PathSensitivity.NONE)

public abstract ConfigurableFileCollection getSourceFiles();

public void sources(FileCollection sourceFiles) {
getSourceFiles().from(sourceFiles);

}

/] ...

Output of gradle processTemplates

> gradle processTemplates
> Task :processTemplates

BUILD SUCCESSFUL in @s
3 actionable tasks: 3 executed

In other words, as long as you add values and files to formal task inputs and outputs during the
configuration phase, they will be treated as such regardless from where in the build you add them.

If we want to support tasks as arguments as well and treat their outputs as the inputs, we can use
the project.layout.files() method like so:

Example 82. Declaring a method to add a task as an input

build.gradle

def copyTemplates = tasks.register('copyTemplates', Copy) {
into file(layout.buildDirectory.dir('tmp"'))
from 'src/templates’

}

tasks.register('processTemplates2', ProcessTemplates) {
/] ...
sources copyTemplates

build.gradle.kts

val copyTemplates by tasks.registering(Copy::class) {
into(file(layout.buildDirectory.dir("tmp")))
from("src/templates")

}

tasks.register<ProcessTemplates>("processTemplates2") {
/] ...
sources(copyTemplates)

ProcessTemplates.java

/] ...
public void sources(TaskProvider<?> inputTask) {
getSourceFiles().from(getProject().getLayout().files(inputTask));

}
/] ...

Output of gradle processTemplates?

> gradle processTemplates?
> Task :copyTemplates
> Task :processTemplates2

BUILD SUCCESSFUL in @s
4 actionable tasks: 4 executed

This technique can make your custom task easier to use and result in cleaner build files. As an

added benefit, our use of getProject().getlLayout().files() means that our custom method can set
up an inferred task dependency.

One last thing to note: if you are developing a task that takes collections of source files as inputs,
like this example, consider using the built-in SourceTask. It will save you having to implement some
of the plumbing that we put into ProcessTemplates.

Linking an @OutputDirectory to an @InputFiles

When you want to link the output of one task to the input of another, the types often match and a
simple property assignment will provide that link. For example, a File output property can be
assigned to a File input.

Unfortunately, this approach breaks down when you want the files in a task’s @0utputDirectory (of
type File) to become the source for another task’s @InputFiles property (of type FileCollection).
Since the two have different types, property assignment won’t work.

As an example, imagine you want to use the output of a Java compilation task — via the
destinationDir property — as the input of a custom task that instruments a set of files containing
Java bytecode. This custom task, which we’ll call Instrument, has a classFiles property annotated
with @InputFiles. You might initially try to configure the task like so:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.SourceTask.html

Example 83. Failed attempt at setting up an inferred task dependency

build.gradle

plugins {
id 'java-library'

}

tasks.register('badInstrumentClasses', Instrument) {
classFiles.from fileTree(tasks.named('compilelava').map { it
.destinationDir })
destinationDir = file(layout.buildDirectory.dir('instrumented"))

}

build.gradle.kts

plugins {
id("java-library")
}

tasks.register<Instrument>("badInstrumentClasses") {
classFiles.from(fileTree(tasks.compileJava.map { it.destinationDir }))
destinationDir.set(file(layout.buildDirectory.dir("instrumented")))

Output of gradle clean badInstrumentClasses

> gradle clean badInstrumentClasses
> Task :clean UP-TO-DATE
> Task :badInstrumentClasses NO-SOURCE

BUILD SUCCESSFUL in @s
3 actionable tasks: 2 executed, 1 up-to-date

There’s nothing obviously wrong with this code, but you can see from the console output that the
compilation task is missing. In this case you would need to add an explicit task dependency
between instrumentClasses and compileJava via dependsOn. The use of fileTree() means that Gradle
can’t infer the task dependency itself.

One solution is to use the TaskOutputs.files property, as demonstrated by the following example:

Example 84. Setting up an inferred task dependency between output dir and input files

build.gradle

tasks.register('instrumentClasses', Instrument) {
classFiles.from tasks.named('compilelava').map { it.outputs.files }
destinationDir = file(layout.buildDirectory.dir('instrumented"))

build.gradle.kts

tasks.register<Instrument>("instrumentClasses") {
classFiles.from(tasks.compileJava.map { it.outputs.files })
destinationDir.set(file(layout.buildDirectory.dir("instrumented")))

Output of gradle clean instrument(Classes

> gradle clean instrumentClasses
> Task :clean UP-TO-DATE

> Task :compilelava

> Task :instrumentClasses

BUILD SUCCESSFUL in @s
5 actionable tasks: 4 executed, 1 up-to-date

Alternatively, you can get Gradle to access the appropriate property itself by using one of
project.files(), project.layout.files() or project.objects.fileCollection() in place of
project.fileTree():

Example 85. Setting up an inferred task dependency with layout.files()

build.gradle

tasks.register('instrumentClasses2', Instrument) {
classFiles.from layout.files(tasks.named('compileJava'))
destinationDir = file(layout.buildDirectory.dir('instrumented"))

build.gradle.kts

tasks.register<Instrument>("instrumentClasses2") {
classFiles.from(layout.files(tasks.compilelava))
destinationDir.set(file(layout.buildDirectory.dir("instrumented")))

Output of gradle clean instrumentClasses2

> gradle clean instrumentClasses?
> Task :clean UP-TO-DATE

> Task :compilelava

> Task :instrumentClasses?

BUILD SUCCESSFUL in @s
5 actionable tasks: 4 executed, 1 up-to-date

Remember that files(), layout.files() and objects.fileCollection() can take tasks as arguments,
whereas fileTree() cannot.

The downside of this approach is that all file outputs of the source task become the input files of the
target — instrumentClasses in this case. That’s fine as long as the source task only has a single file-
based output, like the JavaCompile task. But if you have to link just one output property among
several, then you need to explicitly tell Gradle which task generates the input files using the builtBy
method:

Example 86. Setting up an inferred task dependency with builtBy()

build.gradle

tasks.register('instrumentClassesBuiltBy', Instrument) {
classFiles.from fileTree(tasks.named('compilelava').map { it
.destinationDir }) {
builtBy tasks.named('compileJava')

}
destinationDir = file(layout.buildDirectory.dir('instrumented"))
}
build.gradle.kts

tasks.register<Instrument>("instrumentClassesBuiltBy") {
classFiles.from(fileTree(tasks.compileJava.map { it.destinationDir }) {
builtBy(tasks.compileJava)

9]
destinationDir.set(file(layout.buildDirectory.dir("instrumented")))

Output of gradle clean instrumentClassesBuiltBy

> gradle clean instrumentClassesBuiltBy
> Task :clean UP-TO-DATE

> Task :compilelava

> Task :instrumentClassesBuiltBy

BUILD SUCCESSFUL in @s
5 actionable tasks: 4 executed, 1 up-to-date

You can of course just add an explicit task dependency via dependsOn, but the above approach
provides more semantic meaning, explaining why compileJava has to run beforehand.

Disabling up-to-date checks

Gradle automatically handles up-to-date checks for output files and directories, but what if the task
output is something else entirely? Perhaps it’s an update to a web service or a database table. Or
sometimes you have a task which should always run.

That’s where the doNoTrackState() method on Task comes in. One can use this to disable up-to-date
checks completely for a task, like so:

Example 87. Ignoring up-to-date checks

build.gradle

tasks.register('alwaysInstrumentClasses', Instrument) {
classFiles.from layout.files(tasks.named('compileJava'))
destinationDir = file(layout.buildDirectory.dir('instrumented"))
doNotTrackState("Instrumentation needs to re-run every time")

build.gradle.kts

tasks.register<Instrument>("alwaysInstrumentClasses") {
classFiles.from(layout.files(tasks.compileJava))
destinationDir.set(file(layout.buildDirectory.dir("instrumented")))
doNotTrackState("Instrumentation needs to re-run every time")

Output of gradle clean alwaysInstrument(lasses

> gradle clean alwaysInstrumentClasses
> Task :compilelava
> Task :alwaysInstrumentClasses

BUILD SUCCESSFUL in @s
4 actionable tasks: 1 executed, 3 up-to-date

Output of gradle alwaysInstrument(Classes

> gradle alwaysInstrumentClasses
> Task :compileJava UP-TO-DATE
> Task :alwaysInstrumentClasses

BUILD SUCCESSFUL in @s
4 actionable tasks: 1 executed, 3 up-to-date

If you are writing your own task that always should run, then you can also use the @UntrackedTask
annotation on the task class instead of calling Task.doNotTrackState().

Integrate an external tool which does its own up-to-date checking

Sometimes you want to integrate an external tool like Git or Npm, both of which do their own up-to-
date checking. In that case it doesn’t make much sense for Gradle to also do up-to-date checks. You
can disable Gradle’s up-to-date checks by using the @UntrackedTask annotation on the task wrapping

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/UntrackedTask.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/UntrackedTask.html

the tool. Alternatively, you can use the runtime API method @Task.doNotTrackState().

For example, let’s say you want to implement a task which clones a Git repository.

{groovyDslDoc}/org.gradle.api.Task.html#org.gradle.api.Task:doNotTrackState(java.lang.String)

Example 88. Task for Git clone
buildSrc/src/main/java/org/example/GitClone.java

@UntrackedTask(because = "Git tracks the state")

@
public abstract class GitClone extends DefaultTask {

@Input
public abstract Property<String> getRemotelUri();

@Input
public abstract Property<String> getCommitId();

@OutputDirectory
public abstract DirectoryProperty getDestinationDir();

@TaskAction
public void gitClone() throws IOException {
File destinationDir = getDestinationDir().get().getAsFile()
.getAbsoluteFile(); @
String remoteUri = getRemoteUri().get();
// Fetch origin or clone and checkout
/] ...

build.gradle

tasks.register("cloneGradleProfiler", GitClone) {
destinationDir = layout.buildDirectory.dir("gradle-profiler")

®
remoteUri = "https://github.com/gradle/gradle-profiler.git"
commitId = "d6c18a21cabc45fd8a9db321de4478948bdf801b"
}
build.gradle.kts

tasks.register<GitClone>("cloneGradleProfiler") {
destinationDir.set(layout.buildDirectory.dir("gradle-profiler"))
®
remoteUri.set("https://qgithub.com/gradle/gradle-profiler.git")
commitId.set("d6c18a21cabec45fd8a9db321de4478948bdf801b")

* (1) Declare the task as untracked.
* (2) Use the output directory to run the external tool.

* (3) Add the task and configure the output directory in your build.

Configure input normalization

For up to date checks and the build cache Gradle needs to determine if two task input properties
have the same value. In order to do so, Gradle first normalizes both inputs and then compares the
result. For example, for a compile classpath, Gradle extracts the ABI signature from the classes on
the classpath and then compares signatures between the last Gradle run and the current Gradle run
as described in Java compile avoidance.

Normalization applies to all zip files on the classpath (e.g. jars, wars, aars, apks, etc). This allows
Gradle to recognize when two zip files are functionally the same, even though the zip files
themselves might be slightly different due to metadata (such as timestamps or file order).
Normalization applies not only to zip files directly on the classpath, but also to zip files nested
inside directories or inside other zip files on the classpath.

It is possible to customize Gradle’s built-in strategy for runtime classpath normalization. All inputs
annotated with @Classpath are considered to be runtime classpaths.

Let’s say you want to add a file build-info.properties to all your produced jar files which contains
information about the build, e.g. the timestamp when the build started or some ID to identify the CI
job that published the artifact. This file is only for auditing purposes, and has no effect on the
outcome of running tests. Nonetheless, this file is part of the runtime classpath for the test task and
changes on every build invocation. Therefore, the test would be never up-to-date or pulled from
the build cache. In order to benefit from incremental builds again, you are able tell Gradle to ignore
this file on the runtime classpath at the project level by using
Project.normalization(org.gradle.api.Action) (in the consuming project):

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Classpath.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:normalization(org.gradle.api.Action)

Example 89. Runtime classpath normalization

build.gradle

normalization {
runtimeClasspath {
ignore 'build-info.properties

}

build.gradle.kts

normalization {
runtimeClasspath {
ignore("build-info.properties")

}

If adding such a file to your jar files is something you do for all of the projects in your build, and
you want to filter this file for all consumers, you should consider configuring such normalization in
a convention plugin to share it between subprojects.

The effect of this configuration would be that changes to build-info.properties would be ignored
for up-to-date checks and build cache key calculations. Note that this will not change the runtime
behavior of the test task — i.e. any test is still able to load build-info.properties and the runtime
classpath is still the same as before.

Properties file normalization

By default, properties files (i.e. files that end in a .properties extension) will be normalized to
ignore differences in comments, whitespace and the order of properties. Gradle does this by
loading the properties files and only considering the individual properties during up-to-date checks
or build cache key calculations.

It is sometimes the case, though, that certain properties have a runtime impact, while others do not.
If a property is changing that does not have an impact on the runtime classpath, it may be desirable
to exclude it from up-to-date checks and build cache key calculations. However, excluding the
entire file would also exclude the properties that do have a runtime impact. In this case, properties
can be excluded selectively from any or all properties files on the runtime classpath.

A rule for ignoring properties can be applied to a specific set of files using the patterns described in
RuntimeClasspathNormalization. In the event that a file matches a rule, but cannot be loaded as a
properties file (e.g. because it is not formatted properly or uses a non-standard encoding), it will be
incorporated into the up-to-date or build cache key calculation as a normal file. In other words, if
the file cannot be loaded as a properties file, any changes to whitespace, property order, or

https://docs.gradle.org/7.3.2/dsl/org.gradle.normalization.RuntimeClasspathNormalization.html

comments may cause the task to become out-of-date or cause a cache miss.

Example 90. Ignore a property in selected properties files

build.gradle

normalization {
runtimeClasspath {
properties('**/build-info.properties') {
ignoreProperty 'timestamp'

}

build.gradle.kts

normalization {
runtimeClasspath {
properties("**/build-info.properties") {
ignoreProperty("timestamp")

}

Example 91. Ignore a property in all properties files

build.gradle

normalization {
runtimeClasspath {
properties {
ignoreProperty 'timestamp’

}

build.gradle.kts

normalization {
runtimeClasspath {
properties {
ignoreProperty("timestamp")

}

Java META-INF normalization

For files in the META-INF directory of jar archives it’s not always possible to ignore files completely
due to their runtime impact.

Manifest files within META-INF are normalized to ignore comments, whitespace and order
differences. Manifest attribute names are compared case-and-order insensitively. Manifest
properties files are normalized according to Properties File Normalization.

Example 92. Ignore META-INF manifest attributes

build.gradle

normalization {
runtimeClasspath {
metalnf {
ignoreAttribute("Implementation-Version")

build.gradle.kts

normalization {
runtimeClasspath {
metalnf {
ignoreAttribute("Implementation-Version")

Example 93. Ignore META-INF property keys

build.gradle

normalization {
runtimeClasspath {
metalnf {
ignoreProperty("app.version")

}

build.gradle.kts

normalization {
runtimeClasspath {
metalnf {
ignoreProperty("app.version")

}

Example 94. Ignore META-INF/MANIFEST.MF

build.gradle

normalization {
runtimeClasspath {

metalnf {
ignoreManifest()
}
}
+
build.gradle.kts

normalization {
runtimeClasspath {
metalnf {
ignoreManifest()

}

Example 95. Ignore all files and directories inside META-INF

build.gradle

normalization {
runtimeClasspath {

metalnf {
ignoreCompletely()
}
}
}
build.gradle.kts

normalization {
runtimeClasspath {
metalnf {
ignoreCompletely()

Providing custom up-to-date logic

Gradle automatically handles up-to-date checks for output files and directories, but what if the task
output is something else entirely? Perhaps it’s an update to a web service or a database table.
Gradle has no way of knowing how to check whether the task is up to date in such cases.

That’s where the upToDateWhen() method on TaskOutputs comes in. This takes a predicate function
that is used to determine whether a task is up to date or not. For example, you could read the
version number of your database schema from the database. Or, you could check whether a
particular record in a database table exists or has changed for example.

Just be aware that up-to-date checks should save you time. Don’t add checks that cost as much or
more time than the standard execution of the task. In fact, if a task ends up running frequently
anyway, because it’s rarely up to date, then it may not be worth having no up-to-date checks at all
as described in Disabling up-to-date checks. Remember that your checks will always run if the task
is in the execution task graph.

One common mistake is to use upToDateWhen() instead of Task.onlyIf(). If you want to skip a task on
the basis of some condition unrelated to the task inputs and outputs, then you should use onlyIf().
For example, in cases where you want to skip a task when a particular property is set or not set.

Stale task outputs

When the Gradle version changes, Gradle detects that outputs from tasks that ran with older
versions of Gradle need to be removed to ensure that the newest version of the tasks are starting
from a known clean state.

Automatic clean-up of stale output directories has only been implemented for the

NOTE
output of source sets (Java/Groovy/Scala compilation).

Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value
range of parameters. A very nice and expressive way to provide such tasks are task rules:

Example 96. Task rule

build.gradle
tasks.addRule("Pattern: ping<ID>") { String taskName ->

if (taskName.startsWith("ping")) {
task(taskName) {
dolLast {
println "Pinging:

+ (taskName - 'ping')
}

build.gradle.kts

tasks.addRule("Pattern: ping<ID>") {
val taskName = this
if (startsWith("ping")) {
task(taskName) {
dolast {
println("Pinging:

+ (taskName.replace("ping", "")))
}

Output of gradle -q pingServer1

> gradle -q pingServer]
Pinging: Server1

The String parameter is used as a description for the rule, which is shown with gradle tasks.

Rules are not only used when calling tasks from the command line. You can also create dependsOn
relations on rule based tasks:

Example 97. Dependency on rule based tasks

build.gradle
tasks.addRule("Pattern: ping<ID>") { String taskName ->

if (taskName.startsWith("ping")) {
task(taskName) {
dolLast {
println "Pinging:

+ (taskName - 'ping')
}

}

tasks.register('groupPing') {
dependsOn 'pingServer1', 'pingServer2'

}

build.gradle.kts

tasks.addRule("Pattern: ping<ID>") {
val taskName = this
if (startsWith("ping")) {
task(taskName) {
dolLast {
println("Pinging:

+ (taskName.replace("ping", "")))
}

}

tasks.register("groupPing") {
dependsOn("pingServer1", "pingServer2")

}

Output of gradle -q groupPing

> gradle -q groupPing
Pinging: Server1
Pinging: Server?2

If yourun gradle -q tasks you won’t find a task named pingServer1 or pingServer2, but this script is
executing logic based on the request to run those tasks.

Finalizer tasks

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to
run.

Example 98. Adding a task finalizer

build.gradle

def taskX = tasks.register('taskX') {
dolLast {
println 'taskX'

}
}
def taskY = tasks.register('taskY') {
dolLast {
println 'taskY'
}
}

taskX.configure { finalizedBy taskY }

build.gradle.kts

val taskX by tasks.registering {
dolast {
println("taskX")

}
}
val taskY by tasks.registering {
dolast {
println("taskY")
}
}

taskX { finalizedBy(taskY) }

Output of gradle -q taskX
> gradle -q taskX

taskX
taskY

Finalizer tasks will be executed even if the finalized task fails.

Example 99. Task finalizer for a failing task

build.gradle

def taskX = tasks.register('taskX') {
dolast {
println 'taskX'
throw new RuntimeException()

}
}
def taskY = tasks.register('taskY') {
dolLast {
println 'taskY'
}
}

taskX.configure { finalizedBy taskY }

build.gradle.kts

val taskX by tasks.registering {
dolLast {
println("taskX")
throw RuntimeException()

}
¥
val taskY by tasks.registering {
dolast {
println("taskY")
}
by

taskX { finalizedBy(taskY) }

Output of gradle -q taskX

> gradle -q taskX
taskX
taskY

FAILURE: Build failed with an exception.

* Where:
Build file '/home/user/gradle/samples/build.gradle' line: 4

* What went wrong:
Execution failed for task ':taskX'.
> java.lang.RuntimeException (no error message)

* Try:

> Run with --stacktrace option to get the stack trace.

> Run with --info or --debug option to get more log output.
> Run with --scan to get full insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 0s

On the other hand, finalizer tasks are not executed if the finalized task didn’t do any work, for
example if it is considered up to date or if a dependent task fails.

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up
regardless of the build failing or succeeding. An example of such a resource is a web container that
is started before an integration test task and which should be always shut down, even if some of the
tests fail.

To specify a finalizer task you use the Task.finalizedBy(java.lang.Object...) method. This method
accepts a task instance, a task name, or any other input accepted by
Task.dependsOn(java.lang.Object...).

Lifecycle tasks

Lifecycle tasks are tasks that do not do work themselves. They typically do not have any task
actions. Lifecycle tasks can represent several concepts:
» a work-flow step (e.g., run all checks with check)

* a buildable thing (e.g., create a debug 32-bit executable for native components with
debug32MainExecutable)

* a convenience task to execute many of the same logical tasks (e.g., run all compilation tasks with
compileAll)

The Base Plugin defines several standard lifecycle tasks, such as build, assemble, and check. All the

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

core language plugins, like the Java Plugin, apply the Base Plugin and hence have the same base set
of lifecycle tasks.

Unless a lifecycle task has actions, its outcome is determined by its task dependencies. If any of
those dependencies are executed, the lifecycle task will be considered EXECUTED. If all of the task
dependencies are up to date, skipped or from cache, the lifecycle task will be considered UP-T0O-DATE.

Summary

If you are coming from Ant, an enhanced Gradle task like Copy seems like a cross between an Ant
target and an Ant task. Although Ant’s tasks and targets are really different entities, Gradle
combines these notions into a single entity. Simple Gradle tasks are like Ant’s targets, but enhanced
Gradle tasks also include aspects of Ant tasks. All of Gradle’s tasks share a common API and you can
create dependencies between them. These tasks are much easier to configure than an Ant task.
They make full use of the type system, and are more expressive and easier to maintain.

Writing Build Scripts

This chapter looks at some of the details of writing a build script.

The Gradle build language

Gradle provides a domain specific language, or DSL, for describing builds. This build language is
available in Groovy and Kotlin.

A Groovy build script can contain any Groovy language element.”! A Kotlin build script can contain
any Kotlin language element. Gradle assumes that each build script is encoded using UTF-8.

The Project API

Build scripts describe your build by configuring projects. A project is an abstract concept, but you
typically map a Gradle project to a software component that needs to be built, like a library or an
application. Each build script you have is associated with an object of type Project and as the build
script executes, it configures this Project.

In fact, almost all top-level properties and blocks in a build script are part of the Project APIL To
demonstrate, take a look at this example build script that prints the name of its project, which is
accessed via the Project.name property:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name

Example 100. Accessing property of the Project object

build.gradle

println name
println project.name

build.gradle.kts

println(name)
println(project.name)

Output of gradle -q check

> gradle -q check
project-api
project-api

Both println statements print out the same property. The first uses the top-level reference to the
name property of the Project object. The other statement uses the project property available to any
build script, which returns the associated Project object. Only if you define a property or a method
which has the same name as a member of the Project object, would you need to use the project

property.

Standard project properties

The Project object provides some standard properties, which are available in your build script. The
following table lists a few of the commonly used ones.

Table 4. Project Properties

Name Type Default Value

project Project The Project instance

name String The name of the project directory.

path String The absolute path of the project.
description String A description for the project.

projectDir File The directory containing the build script.
buildDir File projectDir/build

group Object unspecified

version Object unspecified

ant AntBuilder An AntBuilder instance

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html

Script with other targets

The build scripts described here target Project objects. There are also
settings scripts and init scripts that respectively target Settings and Gradle
objects.

IMPORTANT

The script API

When Gradle executes a Groovy build script (.gradle), it compiles the script into a class which
implements Script. This means that all of the properties and methods declared by the Script
interface are available in your script.

When Gradle executes a Kotlin build script (.gradle.kts), it compiles the script into a subclass of
KotlinBuildScript. This means that all of the visible properties and functions declared by the
KotlinBuildScript type are available in your script. Also see the KotlinSettingsScript and
KotlinInitScript types respectively for settings scripts and init scripts.

Declaring variables

There are two kinds of variables that can be declared in a build script: local variables and extra
properties.

Local variables

Local variables are declared with the def keyword. They are only visible in the scope where they
have been declared. Local variables are a feature of the underlying Groovy language.

Local variables are declared with the val keyword. They are only visible in the scope where they
have been declared. Local variables are a feature of the underlying Kotlin language.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.invocation.Gradle.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Script.html
https://gradle.github.io/kotlin-dsl-docs/api/org.gradle.kotlin.dsl/-kotlin-build-script/index.html
https://gradle.github.io/kotlin-dsl-docs/api/org.gradle.kotlin.dsl/-kotlin-settings-script/index.html
https://gradle.github.io/kotlin-dsl-docs/api/org.gradle.kotlin.dsl/-kotlin-init-script/index.html

Example 101. Using local variables

build.gradle
def dest = 'dest'

tasks.register('copy', Copy) {
from 'source'
into dest

build.gradle.kts
val dest = "dest"

tasks.register<Copy>("copy") {
from("source")
into(dest)

Extra properties

All enhanced objects in Gradle’s domain model can hold extra user-defined properties. This
includes, but is not limited to, projects, tasks, and source sets.

Extra properties can be added, read and set via the owning object’s ext property. Alternatively, an
ext block can be used to add multiple properties at once.

Extra properties can be added, read and set via the owning object’s extra property. Alternatively,
they can be addressed via Kotlin delegated properties using by extra.

Example 102. Using extra properties

build.gradle

plugins {
id 'java-library'

}

ext {
springVersion = "3.1.0.RELEASE"
emailNotification = "build@master.org'

}

sourceSets.all { ext.purpose = null }

sourceSets {

main {

purpose = "production”
}
test {

purpose = "test"
}
plugin {

purpose = "production”
}

}

tasks.register('printProperties’) {
dolast {
println springVersion
println emailNotification
sourceSets.matching { it.purpose == "production” }.each { println it
.name }
}
}

build.gradle.kts

plugins {
id("java-library")
}

val springVersion by extra("3.1.0.RELEASE")
val emailNotification by extra { "build@emaster.org" }

sourceSets.all { extra["purpose"] = null }

sourceSets {
main {

extra["purpose"] = "production”
}
test {
extra["purpose"] = "test"
}
create("plugin") {
extra["purpose"] = "production”

}
}

tasks.register("printProperties") {
dolast {
println(springVersion)
println(emailNotification)
sourceSets.matching { it.extra["purpose"] == "production" }.forEach {
println(it.name) }
Iy
+

Output of gradle -q printProperties

> gradle -q printProperties
3.1.0.RELEASE
build@master.org

main

plugin

In this example, an ext block adds two extra properties to the project object. Additionally, a
property named purpose is added to each source set by setting ext.purpose to null (null is a
permissible value). Once the properties have been added, they can be read and set like predefined
properties.

In this example, two extra properties are added to the project object using by extra. Additionally, a
property named purpose is added to each source set by setting extra["purpose"] to null (null is a

permissible value). Once the properties have been added, they can be read and set on extra.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to
set a (predefined or extra) property but the property is misspelled or does not exist. Extra
properties can be accessed from anywhere their owning object can be accessed, giving them a
wider scope than local variables. Extra properties on a project are visible from its subprojects.

For further details on extra properties and their API, see the ExtraPropertiesExtension class in the
API documentation.

Configuring arbitrary objects

You can configure arbitrary objects in the following very readable way.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

Example 103. Configuring arbitrary objects

build.gradle
import java.text.FieldPosition

tasks.register('configure') {
dolast {

def pos = configure(new FieldPosition(10)) {
beginIndex = 1
endIndex = 5

}

println pos.beginIndex

println pos.endIndex

build.gradle.kts
import java.text.FieldPosition

tasks.register("configure") {
dolast {

val pos = FieldPosition(10).apply {
beginIndex = 1
endIndex = 5

}

println(pos.beginIndex)

println(pos.endIndex)

Output of gradle -q configure

> gradle -q configure
1
5

Configuring arbitrary objects using an external script

You can also configure arbitrary objects using an external script.

Only supported from a Groovy script

CAUTION Configuring arbitrary objects using an external script is not yet supported by
the Kotlin DSL. See gradle/kotlin-dsl#659 for more information.

Example 104. Configuring arbitrary objects using a script

build.gradle

tasks.register('configure') {
dolast {
def pos = new java.text.FieldPosition(10)
// Apply the script
apply from: 'other.gradle', to: pos
println pos.beginIndex
println pos.endIndex

other.gradle

// Set properties.
beginIndex = 1
endIndex = 5

Output of gradle -q configure

> gradle -q configure
1
5

Some Groovy basics

TIP Looking for some Kotlin basics, the Kotlin reference documentation and Kotlin Koans
should be useful to you.

The Groovy language provides plenty of features for creating DSLs, and the Gradle build language

takes advantage of these. Understanding how the build language works will help you when you

write your build script, and in particular, when you start to write custom plugins and tasks.

Groovy JDK

Groovy adds lots of useful methods to the standard Java classes. For example, Iterable gets an each
method, which iterates over the elements of the Iterable:

https://github.com/gradle/kotlin-dsl/issues/659
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/tutorials/koans.html
https://docs.groovy-lang.org/latest/html/documentation/index.html

Example 105. Groovy JDK methods

build.gradle

// Iterable gets an each() method
configurations.runtimeClasspath.each { File f -> println f }

Have a look at https://groovy-lang.org/gdk.html for more details.

Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter
method.

Example 106. Property accessors

build.gradle

// Using a getter method
println project.buildDir
println getProject().getBuildDir()

// Using a setter method
project.buildDir = 'target'
getProject().setBuildDir('target")

Optional parentheses on method calls

Parentheses are optional for method calls.

Example 107. Method call without parentheses

build.gradle

test.systemProperty 'some.prop', 'value'
test.systemProperty('some.prop', 'value')

List and map literals

Groovy provides some shortcuts for defining List and Map instances. Both kinds of literals are
straightforward, but map literals have some interesting twists.

https://groovy-lang.org/gdk.html

For instance, the “apply” method (where you typically apply plugins) actually takes a map
parameter. However, when you have a line like “apply plugin:'java'”, you aren’t actually using a
map literal, you're actually using “named parameters”, which have almost exactly the same syntax
as a map literal (without the wrapping brackets). That named parameter list gets converted to a
map when the method is called, but it doesn’t start out as a map.

Example 108. List and map literals

build.gradle

// List literal
test.includes = ['org/gradle/api/**', 'org/gradle/internal/**']

List<String> list = new ArraylList<String>()
list.add('org/gradle/api/**")
list.add('org/gradle/internal/**")
test.includes = list

// Map literal.
Map<String, String> map = [key1:'valuel', key2: 'value2']

// Groovy will coerce named arquments
// into a single map argument
apply plugin: 'java'

Closures as the last parameter in a method

The Gradle DSL uses closures in many places. You can find out more about closures here. When the
last parameter of a method is a closure, you can place the closure after the method call:

Example 109. Closure as method parameter

build.gradle

repositories {
println "in a closure"

}
repositories() { println "in a closure" }
repositories({ println "in a closure" })

Closure delegate

Each closure has a delegate object, which Groovy uses to look up variable and method references
which are not local variables or parameters of the closure. Gradle uses this for configuration

https://docs.groovy-lang.org/latest/html/documentation/index.html#_closures

closures, where the delegate object is set to the object to be configured.

Example 110. Closure delegates

build.gradle

dependencies {
assert delegate == project.dependencies
testImplementation('junit:junit:4.13")
delegate.testImplementation('junit:junit:4.13")

Default imports

To make build scripts more concise, Gradle automatically adds a set of import statements to the
Gradle scripts. This means that instead of using throw new
org.gradle.api.tasks.StopExecutionException() you can just type throw new
StopExecutionException() instead.

Listed below are the imports added to each script:

Gradle default imports

import org.gradle.*

import org.gradle.api.*

import org.gradle.api.artifacts.*

import org.gradle.api.artifacts.component.*
import org.gradle.api.artifacts.dsl.*

import org.gradle.api.artifacts.ivy.*

import org.gradle.api.artifacts.maven.*

import org.gradle.api.artifacts.query.*

import org.gradle.api.artifacts.repositories.*
import org.gradle.api.artifacts.result.”*
import org.gradle.api.artifacts.transform.*
import org.gradle.api.artifacts.type.*

import org.gradle.api.artifacts.verification.*
import org.gradle.api.attributes.*

import org.gradle.api.attributes.java.*

import org.gradle.api.attributes.plugin.*
import org.gradle.api.capabilities.*

import org.gradle.api.component.*

import org.gradle.api.credentials.*

import org.gradle.api.distribution.*

import org.gradle.api.distribution.plugins.*
import org.gradle.api.execution.*

import org.gradle.api.file.*

import org.gradle.api.initialization.*

import org.gradle.api.initialization.definition.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.
.gradle.
org.
.gradle.
org.
.gradle.
org.
org.
org.
org.
org.
org.
org.
org.
.gradle.
org.
.gradle.
org.
.gradle.
org.
org.
org.
org.
org.
org.
org.
org.
.gradle.
org.
.gradle.
org.
.gradle.

org

org

org

org

org

org

org

org

org

org.
org.
org.
org.
org.
org.
org.
org.
.gradle.
org.
.gradle.
org.
.gradle.
org.

org

org

org

gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

gradle.
gradle.

gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

gradle.
gradle.

gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

gradle.
gradle.

gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

gradle.
gradle.

gradle.

api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api

api

api.
.tasks.

api

api.
.tasks.
.tasks.
.tasks

api
api
api

tasks

tasks

tasks

.initialization.dsl.*
.initialization.resolve.*
.invocation.*
.java.archives.*

.jvm.*
.logging.*
.logging.configuration.*
.model.
.plugins.*
.plugins.antlr.*
.plugins.catalog.*
.plugins.jvm.*
.plugins.quality.*
.plugins.scala.*
.provider.*

.publish.*

.publish.ivy.*
.publish.ivy.plugins.*
.publish.ivy.tasks.*
.publish.maven.*
.publish.maven.plugins.*
.publish.maven.tasks.*
.publish.plugins.*
.publish.tasks.*
.reflect.*

.reporting.*
.reporting.components.*
.reporting.dependencies.*
.reporting.dependents.*
.reporting.model.*
.reporting.plugins.*
.resources.*

.services.*

.Specs.
.tasks.
.tasks.
.tasks.
.tasks.
.tasks.
.tasks.
.tasks.
.tasks.
api.
.tasks.
.testing.*

*

*

*

ant.*
application.*
bundling.*
compile.*
diagnostics.*
incremental.*
javadoc.*

.options.*

scala.*

testing.junit.*

.testing.junitplatform.*

testing.testng.*
util.*

.wrapper.*

authentication.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.

gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.

authentic
authentic
build.eve
buildinit
buildinit
buildinit
caching.*
caching.c
caching.h
caching.1
concurren
external.
ide.visua
ide.visua
ide.visua
ide.xcode
ide.xcode
ide.xcode
ivy.*

jvm.*

jvm.appli
jvm.appli
jvm.tasks
jvm.toolc
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language.
language
language.
language.
language.
language.
language.

ation.aws.*
ation.http.*
nt.*

.*
.plugins.*
.tasks.*

onfiguration.*
ttp.*

ocal.*

t.*

javadoc.*
lstudio.*
1studio.plugins.*
lstudio.tasks.*
.*

.plugins.*
.tasks.*

cation.scripts.*
cation.tasks.*

.*

hain.*

*

assembler.*
assembler.plugins.*
assembler.tasks.*
base.*
base.artifact.*
base.compile.*
base.plugins.*
base.sources.*

c.*

c.plugins.*
c.tasks.*

cpp.*

cpp.plugins.*
cpp.tasks.*
java.artifact.*
jvm.tasks.*
nativeplatform.*
nativeplatform.tasks.*
objectivec.*
objectivec.plugins.*

.objectivec.tasks.*

objectivecpp.*
objectivecpp.plugins.*
objectivecpp.tasks.*
plugins.*

rc.”

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.

gradle

gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.

.language.rc.plugins.*

language.swift
lanquage.swift
maven.*
model.*

nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
nativeplatform
normalization.
platform.base.

plugin.devel.*

plugin.use.*
plugins.ear.*

plugins.ide.*

process.*
swiftpm.*

*

*

lanquage.rc.tasks.*
language.scala.tasks.*
lanquage.swift.*

plugins.*
tasks.*

nativeplatform.*

platform.*

plugins.*

tasks.*

test.*

test.cpp.*
test.cpp.plugins.*
test.cunit.*
test.cunit.plugins.*
test.cunit.tasks.*
test.googletest.*
test.googletest.plugins.*
test.plugins.*
test.tasks.*
test.xctest.*
test.xctest.plugins.*
test.xctest.tasks.*
toolchain.*
toolchain.plugins.*

platform.base.binary.*
platform.base.component.*
platform.base.plugins.*

plugin.devel.plugins.*
plugin.devel.tasks.*
plugin.management.*

plugins.ear.descriptor.*

plugins.ide.api.*
plugins.ide.eclipse.*
plugins.ide.idea.*
plugins.signing.*
plugins.signing.signatory.*
plugins.signing.signatory.pgp.*
plugins.signing.type.*
plugins.signing.type.pgp.*

swiftpm.plugins.*

import org.gradle.swiftpm.tasks.*

import org.gradle.testing.base.*

import org.gradle.testing.base.plugins.*
import org.gradle.testing.jacoco.plugins.*
import org.gradle.testing.jacoco.tasks.*
import org.gradle.testing.jacoco.tasks.rules.*
import org.gradle.testkit.runner.*

import org.gradle.util.*

import org.gradle.vcs.*

import org.gradle.vcs.git.*

import org.gradle.work.*

import org.gradle.workers.*

Working With Files

Almost every Gradle build interacts with files in some way: think source files, file dependencies,
reports and so on. That’'s why Gradle comes with a comprehensive API that makes it simple to
perform the file operations you need.

The API has two parts to it:

» Specifying which files and directories to process
» Specifying what to do with them
The File paths in depth section covers the first of these in detail, while subsequent sections, like File

copying in depth, cover the second. To begin with, we’ll show you examples of the most common
scenarios that users encounter.

Copying a single file

You copy a file by creating an instance of Gradle’s builtin Copy task and configuring it with the
location of the file and where you want to put it. This example mimics copying a generated report
into a directory that will be packed into an archive, such as a ZIP or TAR:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html

Example 111. How to copy a single file

build.gradle

tasks.register('copyReport', Copy) {
from layout.buildDirectory.dir("reports/my-report.pdf")
into layout.buildDirectory.dir("toArchive")

build.gradle.kts

tasks.register<Copy>("copyReport") {
from(layout.buildDirectory.dir("reports/my-report.pdf"))
into(layout.buildDirectory.dir("toArchive"))

The Project.file(java.lang.Object) method is used to create a file or directory path relative to the
current project and is a common way to make build scripts work regardless of the project path. The
file and directory paths are then wused to specify what file to copy using
Copy.from(java.lang.Object...) and which directory to copy it to using Copy.into(java.lang.Object).

You can even use the path directly without the file() method, as explained early in the section File

copying in depth:

Example 112. Using implicit string paths

build.gradle

tasks.register('copyReport2', Copy) {
from "$buildDir/reports/my-report.pdf"
into "$buildDir/toArchive"

build.gradle.kts

tasks.register<Copy>("copyReport2") {
from("$buildDir/reports/my-report.pdf")
into("$buildDir/toArchive™)

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:from(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:into(java.lang.Object)

Although hard-coded paths make for simple examples, they also make the build brittle. It’s better to
use a reliable, single source of truth, such as a task or shared project property. In the following

modified example, we use a report task defined elsewhere that has the report’s location stored in
its outputFile property:

Example 113. Prefer task/project properties over hard-coded paths

build.gradle

tasks.register('copyReport3', Copy) {
from myReportTask.outputFile
into archiveReportsTask.dirToArchive

build.gradle.kts

tasks.register<Copy>("copyReport3") {
val outputFile: File by myReportTask.get().extra
val dirToArchive: File by archiveReportsTask.get().extra
from(outputFile)
into(dirToArchive)

We have also assumed that the reports will be archived by archiveReportsTask, which provides us
with the directory that will be archived and hence where we want to put the copies of the reports.

Copying multiple files

You can extend the previous examples to multiple files very easily by providing multiple arguments
to from():

Example 114. Using multiple arguments with from()

build.gradle

tasks.register('copyReportsForArchiving', Copy) {

from layout.buildDirectory.file("reports/my-report.pdf"), layout
.projectDirectory.file("src/docs/manual.pdf")

into layout.buildDirectory.dir("toArchive")
}

build.gradle.kts

tasks.register<Copy>("copyReportsForArchiving") {
from(layout.buildDirectory.file("reports/my-report.pdf"),

layout.projectDirectory.file("src/docs/manual.pdf"))
into(layout.buildDirectory.dir("toArchive"))

}

Two files are now copied into the archive directory. You can also use multiple from() statements to
do the same thing, as shown in the first example of the section File copying in depth.

Now consider another example: what if you want to copy all the PDFs in a directory without having
to specify each one? To do this, attach inclusion and/or exclusion patterns to the copy specification.
Here we use a string pattern to include PDFs only:

Example 115. Using a flat filter

build.gradle

tasks.register('copyPdfReportsForArchiving', Copy) {
from layout.buildDirectory.dir("reports")
include "*.pdf"
into layout.buildDirectory.dir("toArchive")

build.gradle.kts

tasks.register<Copy>("copyPdfReportsForArchiving") {
from(layout.buildDirectory.dir("reports"))
include("*.pdf")
into(layout.buildDirectory.dir("toArchive"))

One thing to note, as demonstrated in the following diagram, is that only the PDFs that reside
directly in the reports directory are copied:

With *. pdf filter
build/reports ' > build/toArchive

— metrics L my-report.pdf

|—scatterPIot.pdf
— numbers.csv
— my-report.pdf

Figure 8. The effect of a flat filter on copying

You can include files in subdirectories by using an Ant-style glob pattern (**/*), as done in this
updated example:

Example 116. Using a deep filter

build.gradle

tasks.register('copyAl1PdfReportsForArchiving', Copy) {
from layout.buildDirectory.dir("reports")
include "**/*.pdf"
into layout.buildDirectory.dir("toArchive")

build.gradle.kts
tasks.register<Copy>("copyAl1PdfReportsForArchiving") {
from(layout.buildDirectory.dir("reports"))

include("**/*.pdf")
into(layout.buildDirectory.dir("toArchive"))

This task has the following effect:

With *x/* . pdf filter

build/reports ' > build/toArchive
metrics metrics
L scatterPlot.pdf L scatterPlot.pdf
numbers.csv my-report.pdf

my-report.pdf

Figure 9. The effect of a deep filter on copying

One thing to bear in mind is that a deep filter like this has the side effect of copying the directory
structure below reports as well as the files. If you just want to copy the files without the directory
structure, you need to use an explicit fileTree(dir) { includes }.files expression. We talk more
about the difference between file trees and file collections in the File trees section.

This is just one of the variations in behavior you’re likely to come across when dealing with file
operations in Gradle builds. Fortunately, Gradle provides elegant solutions to almost all those use
cases. Read the in-depth sections later in the chapter for more detail on how the file operations
work in Gradle and what options you have for configuring them.

Copying directory hierarchies

You may have a need to copy not just files, but the directory structure they reside in as well. This is
the default behavior when you specify a directory as the from() argument, as demonstrated by the
following example that copies everything in the reports directory, including all its subdirectories, to

the destination:

Example 117. Copying an entire directory

build.gradle

tasks.register('copyReportsDirForArchiving', Copy) {
from layout.buildDirectory.dir("reports")
into layout.buildDirectory.dir("toArchive")

build.gradle.kts

tasks.register<Copy>("copyReportsDirForArchiving") {
from(layout.buildDirectory.dir("reports"))
into(layout.buildDirectory.dir("toArchive"))

The key aspect that users struggle with is controlling how much of the directory structure goes to
the destination. In the above example, do you get a toArchive/reports directory or does everything
in reports go straight into toArchive? The answer is the latter. If a directory is part of the from()
path, then it won’t appear in the destination.

So how do you ensure that reports itself is copied across, but not any other directory in $buildDir?
The answer is to add it as an include pattern:

Example 118. Copying an entire directory, including itself

build.gradle

tasks.register('copyReportsDirForArchiving2', Copy) {
from(layout.buildDirectory) {
include "reports/**"

}
into layout.buildDirectory.dir("toArchive")
}
build.gradle.kts

tasks.register<Copy>("copyReportsDirForArchiving2") {
from(layout.buildDirectory) {
include("reports/**")

}
into(layout.buildDirectory.dir("toArchive"))

You’ll get the same behavior as before except with one extra level of directory in the destination, i.e.
toArchive/reports.

One thing to note is how the include() directive applies only to the from(), whereas the directive in
the previous section applied to the whole task. These different levels of granularity in the copy
specification allow you to easily handle most requirements that you will come across. You can learn
more about this in the section on child specifications.

Creating archives (zip, tar, etc.)

From the perspective of Gradle, packing files into an archive is effectively a copy in which the
destination is the archive file rather than a directory on the file system. This means that creating
archives looks a lot like copying, with all of the same features!

The simplest case involves archiving the entire contents of a directory, which this example
demonstrates by creating a ZIP of the toArchive directory:

Example 119. Archiving a directory as a ZIP

build.gradle

tasks.register('packageDistribution', Zip) {
archiveFileName = "my-distribution.zip"
destinationDirectory = layout.buildDirectory.dir('dist")

from layout.buildDirectory.dir("toArchive")

build.gradle.kts

tasks.register<Zip>("packageDistribution") {
archiveFileName.set("my-distribution.zip")
destinationDirectory.set(layout.buildDirectory.dir("dist"))

from(layout.buildDirectory.dir("toArchive"))

Notice how we specify the destination and name of the archive instead of an into(): both are
required. You often won’t see them explicitly set, because most projects apply the Base Plugin. It
provides some conventional values for those properties. The next example demonstrates this and
you can learn more about the conventions in the archive naming section.

Each type of archive has its own task type, the most common ones being Zip, Tar and Jar. They all
share most of the configuration options of Copy, including filtering and renaming.

One of the most common scenarios involves copying files into specified subdirectories of the
archive. For example, let’s say you want to package all PDFs into a docs directory in the root of the
archive. This docs directory doesn’t exist in the source location, so you have to create it as part of
the archive. You do this by adding an into() declaration for just the PDFs:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Jar.html

Example 120. Using the Base Plugin for its archive name convention

build.gradle

plugins {
id 'base'

}
version = "1.0.0"

tasks.register('packageDistribution', Zip) {
from(layout.buildDirectory.dir("toArchive")) {
exclude "**/* . pdf"

}

from(layout.buildDirectory.dir("toArchive")) {
include "**/*. pdf"
into "docs"

build.gradle.kts

plugins {
base

}

version = "1.0.0"

tasks.register<Zip>("packageDistribution") {
from(layout.buildDirectory.dir("toArchive")) {
exclude("**/*.pdf")
}

from(layout.buildDirectory.dir("toArchive")) {
include("**/*.pdf")
into("docs")

As you can see, you can have multiple from() declarations in a copy specification, each with its own
configuration. See Using child copy specifications for more information on this feature.

Unpacking archives

Archives are effectively self-contained file systems, so unpacking them is a case of copying the files
from that file system onto the local file system — or even into another archive. Gradle enables this
by providing some wrapper functions that make archives available as hierarchical collections of
files (file trees).

The two functions of interest are Project.zipTree(java.lang.Object) and
Project.tarTree(java.lang.Object), which produce a FileTree from a corresponding archive file. That
file tree can then be used in a from() specification, like so:

Example 121. Unpacking a ZIP file

build.gradle

tasks.register('unpackFiles', Copy) {
from zipTree("src/resources/thirdPartyResources.zip")
into layout.buildDirectory.dir("resources")

build.gradle.kts

tasks.register<Copy>("unpackFiles") {
from(zipTree("src/resources/thirdPartyResources.zip"))
into(layout.buildDirectory.dir("resources"))

As with a normal copy, you can control which files are unpacked via filters and even rename files
as they are unpacked.

More advanced processing can be handled by the eachFile() method. For example, you might need
to extract different subtrees of the archive into different paths within the destination directory. The
following sample uses the method to extract the files within the archive’s libs directory into the
root destination directory, rather than into a 1ibs subdirectory:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.AbstractCopyTask.html#eachFile(org.gradle.api.Action)

Example 122. Unpacking a subset of a ZIP file

build.gradle

tasks.register('unpackLibsDirectory', Copy) {
from(zipTree("src/resources/thirdPartyResources.zip")) {
include "libs/**" @
eachFile { fcd ->
fed.relativePath = new RelativePath(true, fcd.relativePath
.segments.drop(1)) @

}
includeEmptyDirs = false ®

}
into layout.buildDirectory.dir("resources")
b
build.gradle.kts

tasks.register<Copy>("unpackLibsDirectory") {
from(zipTree("src/resources/thirdPartyResources.zip")) {
include("1ibs/**") @
eachFile {
relativePath = RelativePath(true,
*relativePath.segments.drop(1).toTypedArray()) @

}
includeEmptyDirs = false ®

}

into(layout.buildDirectory.dir("resources"))

@ Extracts only the subset of files that reside in the 1ibs directory

@ Remaps the path of the extracting files into the destination directory by dropping the 1ibs
segment from the file path

® Ignores the empty directories resulting from the remapping, see Caution note below

You can not change the destination path of empty directories with this

CAUTION . . .
technique. You can learn more in this issue.

If you're a Java developer and are wondering why there is no jarTree() method, that’s because
zipTree() works perfectly well for JARs, WARs and EARs.

Creating "uber" or "fat" JARs

In the Java space, applications and their dependencies typically used to be packaged as separate

https://github.com/gradle/gradle/issues/2940

JARs within a single distribution archive. That still happens, but there is another approach that is

now common: placing the classes and resources of the dependencies directly into the application
JAR, creating what is known as an uber or fat JAR.

Gradle makes this approach easy to accomplish. Consider the aim: to copy the contents of other JAR
files into the application JAR. All you need for this is the Project.zipTree(java.lang.Object) method
and the Jar task, as demonstrated by the uberJar task in the following example:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Jar.html

Example 123. Creating a Java uber or fat JAR

build.gradle

plugins {
id 'java'

}
version = '1.0.0'

repositories {
mavenCentral()

}

dependencies {
implementation 'commons-io:commons-io:2.6'

}

tasks.register('uberJar', Jar) {
archiveClassifier = 'uber'

from sourceSets.main.output

dependsOn configurations.runtimeClasspath
from {
configurations.runtimeClasspath.findAll { it.name.endsWith('jar') }
.collect { zipTree(it) }
}
}

build.gradle.kts

plugins {
java

}

version = "1.0.0"

repositories {
mavenCentral()

}

dependencies {
implementation("commons-io:commons-io:2.6")

}

tasks.register<Jar>("uberJar") {
archiveClassifier.set("uber")

from(sourceSets.main.get().output)

dependsOn(configurations.runtimeClasspath)
from({
configurations.runtimeClasspath.get().filter {
it.name.endsWith("jar") }.map { zipTree(it) }
b
}

In this case, we’re taking the runtime dependencies of the project —
configurations.runtimeClasspath.files — and wrapping each of the JAR files with the zipTree()
method. The result is a collection of ZIP file trees, the contents of which are copied into the uber JAR
alongside the application classes.

Creating directories

Many tasks need to create directories to store the files they generate, which is why Gradle
automatically manages this aspect of tasks when they explicitly define file and directory outputs.
You can learn about this feature in the incremental build section of the user manual. All core
Gradle tasks ensure that any output directories they need are created if necessary using this
mechanism.

In cases where you need to create a directory manuallyy, you can wuse the
Project.mkdir(java.lang.Object) method from within your build scripts or custom task
implementations. Here’s a simple example that creates a single images directory in the project
folder:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:mkdir(java.lang.Object)

Example 124. Manually creating a directory

build.gradle

tasks.register('ensureDirectory') {
dolast {
mkdir "images"

build.gradle.kts

tasks.register("ensureDirectory") {
dolast {
mkdir("images")

As described in the Apache Ant manual, the mkdir task will automatically create all necessary
directories in the given path and will do nothing if the directory already exists.

Moving files and directories

Gradle has no API for moving files and directories around, but you can use the Apache Ant
integration to easily do that, as shown in this example:

https://ant.apache.org/manual/Tasks/mkdir.html

Example 125. Moving a directory using the Ant task

build.gradle

tasks.register('moveReports') {
dolast {
ant.move file: "${buildDir}/reports"”,
todir: "${buildDir}/toArchive"

build.gradle.kts

tasks.register("moveReports") {
dolLast {
ant.withGroovyBuilder {
"move" ("file" to "${buildDir}/reports", "todir" to
"${buildDir}/toArchive")
}
}

This is not a common requirement and should be used sparingly as you lose information and can
easily break a build. It’s generally preferable to copy directories and files instead.

Renaming files on copy

The files used and generated by your builds sometimes don’t have names that suit, in which case
you want to rename those files as you copy them. Gradle allows you to do this as part of a copy
specification using the rename() configuration.

The following example removes the "-staging-" marker from the names of any files that have it:

Example 126. Renaming files as they are copied

build.gradle
tasks.register('copyFromStaging', Copy) {
from "src/main/webapp"

into layout.buildDirectory.dir('explodedWar")

rename '(.+)-staging(.+)', '$1$2'

build.gradle.kts

tasks.register<Copy>("copyFromStaging") {
from("src/main/webapp")
into(layout.buildDirectory.dir("explodedWar"))

rename("(.+)-staging(.+)", "$1$2")

You can use regular expressions for this, as in the above example, or closures that use more
complex logic to determine the target filename. For example, the following task truncates
filenames:

Example 127. Truncating filenames as they are copied

build.gradle

tasks.register('copyWithTruncate', Copy) {
from layout.buildDirectory.dir("reports")
rename { String filename ->
if (filename.size() > 10) {
return filename[0..7] +

mn
~

+ filename.size()

}
else return filename
}
into layout.buildDirectory.dir("toArchive")
+
build.gradle.kts

tasks.register<Copy>("copyWithTruncate") {
from(layout.buildDirectory.dir("reports"))
rename { filename: String ->
if (filename.length > 10) {
filename.slice(0..7) +

mn
~

+ filename.length

}

else filename

}
into(layout.buildDirectory.dir("toArchive"))

As with filtering, you can also apply renaming to a subset of files by configuring it as part of a child
specification on a from().

Deleting files and directories

You can easily delete files and directories using either the Delete task or the
Project.delete(org.gradle.api.Action) method. In both cases, you specify which files and directories
to delete in a way supported by the Project.files(java.lang.Object...) method.

For example, the following task deletes the entire contents of a build’s output directory:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:delete(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Example 128. Deleting a directory

build.gradle

tasks.register('myClean', Delete) {
delete buildDir

}

build.gradle.kts

tasks.register<Delete>("myClean") {
delete(buildDir)

}

If you want more control over which files are deleted, you can’t use inclusions and exclusions in
the same way as for copying files. Instead, you have to use the builtin filtering mechanisms of
FileCollection and FileTree. The following example does just that to clear out temporary files from

a source directory:

Example 129. Deleting files matching a specific pattern

build.gradle

tasks.register('cleanTempFiles', Delete) {
delete fileTree("src").matching {
include "**/*.tmp"

}

build.gradle.kts

tasks.register<Delete>("cleanTempFiles") {
delete(fileTree("src").matching {
include("**/*.tmp")
3]

You’ll learn more about file collections and file trees in the next section.

File paths in depth

In order to perform some action on a file, you need to know where it is, and that’s the information
provided by file paths. Gradle builds on the standard Java File class, which represents the location
of a single file, and provides new APIs for dealing with collections of paths. This section shows you
how to use the Gradle APIs to specify file paths for use in tasks and file operations.

But first, an important note on using hard-coded file paths in your builds.

On hard-coded file paths

Many examples in this chapter use hard-coded paths as string literals. This makes them easy to
understand, but it’s not good practice for real builds. The problem is that paths often change and
the more places you need to change them, the more likely you are to miss one and break the build.

Where possible, you should use tasks, task properties, and project properties — in that order of
preference — to configure file paths. For example, if you were to create a task that packages the
compiled classes of a Java application, you should aim for something like this:

Example 130. How to minimize the number of hard-coded paths in your build

build.gradle
def archivesDirPath = layout.buildDirectory.dir('archives")
tasks.register('packageClasses', Zip) {
archiveAppendix = "classes"

destinationDirectory = archivesDirPath

from compilelava

build.gradle.kts
val archivesDirPath = layout.buildDirectory.dir("archives")
tasks.register<Zip>("packageClasses") {
archiveAppendix.set("classes")

destinationDirectory.set(archivesDirPath)

from(tasks.compileJava)

See how we’re using the compileJava task as the source of the files to package and we’ve created a
project property archivesDirPath to store the location where we put archives, on the basis we’re

https://docs.oracle.com/javase/8/docs/api/java/io/File.html

likely to use it elsewhere in the build.

Using a task directly as an argument like this relies on it having defined outputs, so it won’t always
be possible. In addition, this example could be improved further by relying on the Java plugin’s
convention for destinationDirectory rather than overriding it, but it does demonstrate the use of
project properties.

Single files and directories

Gradle provides the Project.file(java.lang.Object) method for specifying the location of a single file
or directory. Relative paths are resolved relative to the project directory, while absolute paths
remain unchanged.

Never use new File(relative path) because this creates a path relative to the
CAUTION current working directory (CWD). Gradle can make no guarantees about the

location of the CWD, which means builds that rely on it may break at any time.

Here are some examples of using the file() method with different types of argument:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Example 131. Locating files

build.gradle

// Using a relative path
File configFile = file('src/config.xml")

// Using an absolute path
configFile = file(configFile.absolutePath)

// Using a File object with a relative path
configFile = file(new File('src/config.xml"))

// Using a java.nio.file.Path object with a relative path
configFile = file(Paths.get('src', 'config.xml'))

// Using an absolute java.nio.file.Path object
configFile = file(Paths.get(System.getProperty('user.home')).resolve('global-
config.xml'))

build.gradle.kts

// Using a relative path
var configFile = file("src/config.xml")

// Using an absolute path
configFile = file(configFile.absolutePath)

// Using a File object with a relative path
configFile = file(File("src/config.xml"))

// Using a java.nio.file.Path object with a relative path
configFile = file(Paths.get("src", "config.xml"))

// Using an absolute java.nio.file.Path object
configFile = file(Paths.get(System.getProperty("user.home")).resolve("global-
config.xml"))

As you can see, you can pass strings, File instances and Path instances to the file() method, all of
which result in an absolute File object. You can find other options for argument types in the
reference guide, linked in the previous paragraph.

What happens in the case of multi-project builds? The file() method will always turn relative
paths into paths that are relative to the current project directory, which may be a child project. If
you want to use a path that’s relative to the root project directory, then you need to use the special

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html

Project.getRootDir() property to construct an absolute path, like so:

Example 132. Creating a path relative to a parent project

build.gradle

File configFile = file("$rootDir/shared/config.xml")

build.gradle.kts

val configFile = file("$rootDir/shared/config.xml")

Let’s say you're working on a multi-project build in a dev/projects/AcmeHealth directory. You use the
above example in the build of the library you're fixing — at
AcmeHealth/subprojects/AcmePatientRecordLib/build.gradle. The file path will resolve to the
absolute version of dev/projects/AcmeHealth/shared/config.xml.

The file() method can be used to configure any task that has a property of type File. Many tasks,
though, work on multiple files, so we look at how to specify sets of files next.

File collections

A file collection is simply a set of file paths that’s represented by the FileCollection interface. Any file
paths. It’s important to understand that the file paths don’t have to be related in any way, so they
don’t have to be in the same directory or even have a shared parent directory. You will also find
that many parts of the Gradle API use FileCollection, such as the copying API discussed later in this
chapter and dependency configurations.

The recommended way to specify a collection of files is to wuse the
ProjectLayout.files(java.lang.Object...) method, which returns a FileCollection instance. This
method is very flexible and allows you to pass multiple strings, File instances, collections of strings,
collections of Files, and more. You can even pass in tasks as arguments if they have defined
outputs. Learn about all the supported argument types in the reference guide.

Although the files() method accepts File instances, never use new
File(relative path) with it because this creates a path relative to the current
working directory (CWD). Gradle can make no guarantees about the location of
the CWD, which means builds that rely on it may break at any time.

CAUTION

As with the Project.file(java.lang.Object) method covered in the previous section, all relative paths
are evaluated relative to the current project directory. The following example demonstrates some
of the variety of argument types you can use — strings, File instances, a list and a Path:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:rootDir
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html

Example 133. Creating a file collection

build.gradle

FileCollection collection = layout.files('src/filel.txt",
new File('src/file2.txt'),
['src/file3.csv', 'src/filed.csv'],
Paths.get('src', 'file5.txt"))

build.gradle.kts

val collection: FileCollection = layout.files(
"src/filel.txt",
File("src/file2.txt"),
1istOf("src/file3.csv", "src/file4.csv"),
Paths.get("src", "fileb.txt")

File collections have some important attributes in Gradle. They can be:

* created lazily
* iterated over
» filtered
* combined
Lazy creation of a file collection is useful when you need to evaluate the files that make up a

collection at the time a build runs. In the following example, we query the file system to find out
what files exist in a particular directory and then make those into a file collection:

Example 134. Implementing a file collection

build.gradle

tasks.register('list"') {
dolast {
File srcDir

// Create a file collection using a closure
collection = layout.files { srcDir.listFiles() }

srcDir = file('src')
println "Contents of $srcDir.name"
collection.collect { relativePath(it) }.sort().each { println it }

sreDir = file('src2")
println "Contents of $srcDir.name"
collection.collect { relativePath(it) }.sort().each { println it }

build.gradle.kts

tasks.register("list") {
dolast {
var srcDir: File? = null

val collection = layout.files({
srcDir?.listFiles()

b

srcDir = file("src")
println("Contents of ${srcDir.name}")
collection.map { relativePath(it) }.sorted().forEach { println(it) }

sreDir = file("src2")
println("Contents of ${srcDir.name}")
collection.map { relativePath(it) }.sorted().forEach { println(it) }

Output of gradle -q list

> gradle -q list
Contents of src
src/dir1
src/filel.txt
Contents of src2
src2/dir1
src2/dir?2

The key to lazy creation is passing a closure (in Groovy) or a Provider (in Kotlin) to the files()
method. Your closure/provider simply needs to return a value of a type accepted by files(), such as
List<File>, String, FileCollection, etc.

Iterating over a file collection can be done through the each() method (in Groovy) of forEach method
(in Kotlin) on the collection or using the collection in a for loop. In both approaches, the file
collection is treated as a set of File instances, i.e. your iteration variable will be of type File.

The following example demonstrates such iteration as well as how you can convert file collections
to other types using the as operator or supported properties:

Example 135. Using a file collection

build.gradle

// Iterate over the files in the collection
collection.each { File file ->
println file.name

}

// Convert the collection to various types
Set set = collection.files

Set set2 = collection as Set

List list = collection as List

String path = collection.asPath

File file = collection.singleFile

// Add and subtract collections
def union = collection + layout.files('src/file2.txt")
def difference = collection - layout.files('src/file2.txt")

build.gradle.kts

// Iterate over the files in the collection
collection.forEach { file: File ->
println(file.name)

}

// Convert the collection to various types
val set: Set<File> = collection.files

val list: List<File> = collection.tolist()
val path: String = collection.asPath

val file: File = collection.singleFile

// Add and subtract collections
val union = collection + layout.files("src/file2.txt")
val difference = collection - layout.files("src/file2.txt")

You can also see at the end of the example how to combine file collections using the + and -
operators to merge and subtract them. An important feature of the resulting file collections is that
they are live. In other words, when you combine file collections in this way, the result always
reflects what’s currently in the source file collections, even if they change during the build.

For example, imagine collection in the above example gains an extra file or two after union is
created. As long as you use union after those files are added to collection, union will also contain
those additional files. The same goes for the different file collection.

Live collections are also important when it comes to filtering. If you want to use a subset of a file
collection, you can take advantage of the FileCollection.filter(org.gradle.api.specs.Spec) method to
determine which files to "keep". In the following example, we create a new collection that consists
of only the files that end with .txt in the source collection:

Example 136. Filtering a file collection

build.gradle

FileCollection textFiles = collection.filter { File f ->
f.name.endsWith(".txt")

build.gradle.kts

val textFiles: FileCollection = collection.filter { f: File ->
f.name.endsWith(".txt")

Output of gradle -q filterTextFiles

> gradle -q filterTextFiles
src/filel.txt
src/file2.txt
src/fileb.txt

If collection changes at any time, either by adding or removing files from itself, then textFiles will
immediately reflect the change because it is also a live collection. Note that the closure you pass to
filter() takes a File as an argument and should return a boolean.

File trees

A file tree is a file collection that retains the directory structure of the files it contains and has the
type FileTree. This means that all the paths in a file tree must have a shared parent directory. The
following diagram highlights the distinction between file trees and file collections in the common
case of copying files:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html#filter-org.gradle.api.specs.Spec-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html

File collection

src/resources/img/logo.png Copy src/resources/** build/resources
src/resources/img/banner.jpg - > logo.png
src/resources/data.txt tobuild/resources/ banner.jpg
data.txt
File tree

src/resources build/resources

img Copy src/resources/** img

i: logo.png : i > |: logo.png
banner.jpg to build/resources/ banner.jpg
data.txt data.txt

Figure 10. The differences in how file trees and file collections behave when copying files

Although FileTree extends FileCollection (an is-a relationship), their behaviors do
differ. In other words, you can use a file tree wherever a file collection is required,

NOTE but remember: a file collection is a flat list/set of files, while a file tree is a file and
directory hierarchy. To convert a file tree to a flat collection, use the
FileTree.getFiles() property.

The simplest way to create a file tree is to pass a file or directory path to the
Project.fileTree(java.lang.Object) method. This will create a tree of all the files and directories in
that base directory (but not the base directory itself). The following example demonstrates how to
use the basic method and, in addition, how to filter the files and directories using Ant-style
patterns:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html#getFiles--
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

Example 137. Creating a file tree

build.gradle

// Create a file tree with a base directory
ConfigurableFileTree tree = fileTree(dir: 'src/main')

// Add include and exclude patterns to the tree
tree.include '**/*.java’
tree.exclude '**/Abstract*'

// Create a tree using closure
tree = fileTree('src') {
include '**/*. java’

}

// Create a tree using a map
tree = fileTree(dir: 'src', include: '**/*.java')

tree = fileTree(dir: 'src', includes: ['**/*.java', "**/*.xml'])
tree = fileTree(dir: 'src', include: '**/*.java', exclude: '**/*test*/**")
build.gradle.kts

// Create a file tree with a base directory
var tree: ConfigurableFileTree = fileTree("src/main")

// Add include and exclude patterns to the tree
tree.include("**/*.java")
tree.exclude("**/Abstract*")

// Create a tree using closure
tree = fileTree("src") {
include("**/*.java")

}

// Create a tree using a map

tree = fileTree("dir" to "src", "include" to "**/*.java")

tree = fileTree("dir" to "src", "includes" to 1istOf("**/*.java",
tEE/x xml"))

tree = fileTree("dir" to "src", "include" to "**/*.java", "exclude" to
"HE/xtagtr /)

You can see more examples of supported patterns in the API docs for PatternFilterable. Also, see the
API documentation for fileTree() to see what types you can pass as the base directory.

By default, fileTree() returns a FileTree instance that applies some default exclude patterns for

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/util/PatternFilterable.html

convenience — the same defaults as Ant in fact. For the complete default exclude list, see the Ant
manual.

If those default excludes prove problematic, you can workaround the issue by changing the default
excludes in the settings script:

Example 138. Changing default excludes in the settings script

settings.gradle
import org.apache.tools.ant.DirectoryScanner

DirectoryScanner.removeDefaultExclude('**/.qit")
DirectoryScanner.removeDefaultExclude('**/.qit/**")

settings.gradle.kts
import org.apache.tools.ant.DirectoryScanner

DirectoryScanner.removeDefaultExclude("**/.qgit")
DirectoryScanner.removeDefaultExclude("**/.git/**")

NOTE Currently, Gradle’s default excludes are configured via Ant’s DirectoryScanner class.

NOTE Gradle does not support changing default excludes during the execution phase.

You can do many of the same things with file trees that you can with file collections:

* iterate over them (depth first)
* filter them (using FileTree.matching(org.gradle.api.Action) and Ant-style patterns)
* merge them

You can also traverse file trees using the FileTree.visit(org.gradle.api.Action) method. All of these
techniques are demonstrated in the following example:

http://ant.apache.org/manual/dirtasks.html#defaultexcludes
http://ant.apache.org/manual/dirtasks.html#defaultexcludes
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html#matching-org.gradle.api.Action-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html#visit-org.gradle.api.Action-

Example 139. Using a file tree

build.gradle

// Iterate over the contents of a tree
tree.each {File file ->

println file
}

// Filter a tree

FileTree filtered = tree.matching {
include 'org/gradle/api/**'

}

// Add trees together
FileTree sum = tree + fileTree(dir: 'src/test')

// Visit the elements of the tree
tree.visit {element ->
println "Selement.relativePath => Selement.file"

}

build.gradle.kts

// Iterate over the contents of a tree

tree.forEach{ file: File ->
println(file)

}

// Filter a tree

val filtered: FileTree = tree.matching {
include("org/gradle/api/**")

}

// Add trees together
val sum: FileTree = tree + fileTree("src/test")

// Visit the elements of the tree
tree.visit {

println("${this.relativePath} => ${this.file}")
}

We’ve discussed how to create your own file trees and file collections, but it’s also worth bearing in
mind that many Gradle plugins provide their own instances of file trees, such as Java’s source sets.
These can be used and manipulated in exactly the same way as the file trees you create yourself.

Another specific type of file tree that users commonly need is the archive, i.e. ZIP files, TAR files, etc.
We look at those next.

Using archives as file trees

An archive is a directory and file hierarchy packed into a single file. In other words, it’s a special
case of a file tree, and that’s exactly how Gradle treats archives. Instead of using the fileTree()
method, which only works on normal file systems, you use the Project.zipTree(java.lang.Object) and
Project.tarTree(java.lang.Object) methods to wrap archive files of the corresponding type (note that
JAR, WAR and EAR files are ZIPs). Both methods return FileTree instances that you can then use in
the same way as normal file trees. For example, you can extract some or all of the files of an archive
by copying its contents to some directory on the file system. Or you can merge one archive into
another.

Here are some simple examples of creating archive-based file trees:

Example 140. Using an archive as a file tree

build.gradle

// Create a ZIP file tree using path
FileTree zip = zipTree('someFile.zip')

// Create a TAR file tree using path
FileTree tar = tarTree('someFile.tar')

//tar tree attempts to guess the compression based on the file extension
//however if you must specify the compression explicitly you can:
FileTree someTar = tarTree(resources.gzip('someTar.ext"))

build.gradle.kts

// Create a ZIP file tree using path
val zip: FileTree = zipTree("someFile.zip")

// Create a TAR file tree using path
val tar: FileTree = tarTree("someFile.tar")

// tar tree attempts to guess the compression based on the file extension
// however if you must specify the compression explicitly you can:
val someTar: FileTree = tarTree(resources.gzip("someTar.ext"))

You can see a practical example of extracting an archive file in among the common scenarios we
cover.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

Understanding implicit conversion to file collections

Many objects in Gradle have properties which accept a set of input files. For example, the
JavaCompile task has a source property that defines the source files to compile. You can set the
value of this property using any of the types supported by the files() method, as mentioned in the
api docs. This means you can, for example, set the property to a File, String, collection,
FileCollection or even a closure or Provider.

This is a feature of specific tasks! That means implicit conversion will not happen for just any
task that has a FileCollection or FileTree property. If you want to know whether implicit
conversion happens in a particular situation, you will need to read the relevant documentation,
such as the corresponding task’s API docs. Alternatively, you can remove all doubt by explicitly
using ProjectLayout.files(java.lang.Object...) in your build.

Here are some examples of the different types of arguments that the source property can take:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-

Example 141. Specifying a set of files

build.gradle
tasks.register('compile', JavaCompile) {

// Use a File object to specify the source directory
source = file('src/main/java')

// Use a String path to specify the source directory
source = 'src/main/java’

// Use a collection to specify multiple source directories
source = ['src/main/java’, '../shared/java'l

// Use a FileCollection (or FileTree in this case) to specify the source
files

source = fileTree(dir: 'src/main/java').matching { include
'org/gradle/api/**' }

// Using a closure to specify the source files.
source = {
// Use the contents of each zip file in the src dir
file('src').listFiles().findA1l {it.name.endsWith('.zip')}.collect {
zipTree(it) }
}
¥

build.gradle.kts

tasks.register<JavaCompile>("compile") {
// Use a File object to specify the source directory
source = fileTree(file("src/main/java"))

// Use a String path to specify the source directory
source = fileTree("src/main/java")

// Use a collection to specify multiple source directories
source = fileTree(listOf("src/main/java", "../shared/java"))

// Use a FileCollection (or FileTree in this case) to specify the source
files

source = fileTree("src/main/java").matching {
include("org/gradle/api/**") }

// Using a closure to specify the source files.
setSource({
// Use the contents of each zip file in the src dir
file("src").listFiles().filter { it.name.endsWith(".zip") }.map {
zipTree(it) }
b
}

One other thing to note is that properties like source have corresponding methods in core Gradle
tasks. Those methods follow the convention of appending to collections of values rather than
replacing them. Again, this method accepts any of the types supported by the files() method, as
shown here:

Example 142. Appending a set of files

build.gradle

compile {
// Add some source directories use String paths
source 'src/main/java’, 'src/main/groovy’

// Add a source directory using a File object
source file('../shared/java')

// Add some source directories using a closure
source { file('src/test/").listFiles() }

build.gradle.kts

tasks.named<JavaCompile>("compile") {
// Add some source directories use String paths
source("src/main/java", "src/main/groovy")

// Add a source directory using a File object
source(file("../shared/java"))

// Add some source directories using a closure
setSource({ file("src/test/").listFiles() })

As this is a common convention, we recommend that you follow it in your own custom tasks.
Specifically, if you plan to add a method to configure a collection-based property, make sure the
method appends rather than replaces values.

File copying in depth
The basic process of copying files in Gradle is a simple one:
* Define a task of type Copy

 Specify which files (and potentially directories) to copy
» Specify a destination for the copied files
But this apparent simplicity hides a rich API that allows fine-grained control of which files are

copied, where they go, and what happens to them as they are copied — renaming of the files and
token substitution of file content are both possibilities, for example.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html

Let’s start with the last two items on the list, which form what is known as a copy specification. This
is formally based on the CopySpec interface, which the Copy task implements, and offers:

» A CopySpec.from(java.lang.Object...) method to define what to copy

* An CopySpec.into(java.lang.Object) method to define the destination
CopySpec has several additional methods that allow you to control the copying process, but these
two are the only required ones. into() is straightforward, requiring a directory path as its

argument in any form supported by the Project.file(java.lang.Object) method. The from()
configuration is far more flexible.

Not only does from() accept multiple arguments, it also allows several different types of argument.
For example, some of the most common types are:

* A String — treated as a file path or, if it starts with "file://", a file URI

* AFile —used as a file path

A FileCollection or FileTree — all files in the collection are included in the copy

A task — the files or directories that form a task’s defined outputs are included

In fact, from() accepts all the same arguments as Project.files(java.lang.Object...) so see that method
for a more detailed list of acceptable types.

Something else to consider is what type of thing a file path refers to:

* A file — the file is copied as is

* A directory — this is effectively treated as a file tree: everything in it, including subdirectories,
is copied. However, the directory itself is not included in the copy.

* A non-existent file — the path is ignored
Here is an example that uses multiple from() specifications, each with a different argument type.

You will probably also notice that into() is configured lazily using a closure (in Groovy) or a
Provider (in Kotlin) — a technique that also works with from():

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object...-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#into-java.lang.Object-
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Example 143. Specifying copy task source files and destination directory

build.gradle

tasks.register('anotherCopyTask', Copy) {
// Copy everything under src/main/webapp
from 'src/main/webapp’
// Copy a single file
from 'src/staging/index.html’
// Copy the output of a task
from copyTask
// Copy the output of a task using Task outputs explicitly.
from copyTaskWithPatterns.outputs
// Copy the contents of a Zip file
from zipTree('src/main/assets.zip")
// Determine the destination directory later
into { getDestDir() }

build.gradle.kts

tasks.register<Copy>("anotherCopyTask") {
// Copy everything under src/main/webapp
from("src/main/webapp")
// Copy a single file
from("src/staging/index.html")
// Copy the output of a task
from(copyTask)
// Copy the output of a task using Task outputs explicitly.
from(tasks["copyTaskWithPatterns"].outputs)
// Copy the contents of a Zip file
from(zipTree("src/main/assets.zip"))
// Determine the destination directory later
into({ getDestDir() })

Note that the lazy configuration of into() is different from a child specification, even though the
syntax is similar. Keep an eye on the number of arguments to distinguish between them.

Filtering files

You've already seen that you can filter file collections and file trees directly in a Copy task, but you
can also apply filtering in any copy specification through the CopySpec.include(java.lang.String...)
and CopySpec.exclude(java.lang.String...) methods.

Both of these methods are normally used with Ant-style include or exclude patterns, as described in

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#include-java.lang.String...-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#exclude-java.lang.String...-

PatternFilterable. You can also perform more complex logic by using a closure that takes a
FileTreeElement and returns true if the file should be included or false otherwise. The following
example demonstrates both forms, ensuring that only .html and .jsp files are copied, except for
those .html files with the word "DRAFT" in their content:

Example 144. Selecting the files to copy

build.gradle

tasks.register('copyTaskWithPatterns', Copy) {
from 'src/main/webapp’
into layout.buildDirectory.dir('explodedWar")
include "**/*. html'
include "**/*.jsp'
exclude { FileTreeElement details ->
details.file.name.endsWith('.html") &&
details.file.text.contains('DRAFT")

build.gradle.kts

tasks.register<Copy>("copyTaskWithPatterns") {
from("src/main/webapp")
into(layout.buildDirectory.dir("explodedWar"))
include("**/* . html")
include("**/*.jsp")
exclude { details: FileTreeElement ->

details.file.name.endsWith(".html") &&
details.file.readText().contains("DRAFT")

A question you may ask yourself at this point is what happens when inclusion and exclusion
patterns overlap? Which pattern wins? Here are the basic rules:
* If there are no explicit inclusions or exclusions, everything is included

« If at least one inclusion is specified, only files and directories matching the patterns are
included

* Any exclusion pattern overrides any inclusions, so if a file or directory matches at least one

exclusion pattern, it won’t be included, regardless of the inclusion patterns

Bear these rules in mind when creating combined inclusion and exclusion specifications so that
you end up with the exact behavior you want.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTreeElement.html

Note that the inclusions and exclusions in the above example will apply to all from() configurations.
If you want to apply filtering to a subset of the copied files, youw’ll need to use child specifications.

Renaming files

The example of how to rename files on copy gives you most of the information you need to perform
this operation. It demonstrates the two options for renaming:

* Using a regular expression

» Using a closure

Regular expressions are a flexible approach to renaming, particularly as Gradle supports regex
groups that allow you to remove and replaces parts of the source filename. The following example
shows how you can remove the string "-staging-" from any filename that contains it using a simple
regular expression:

Example 145. Renaming files as they are copied

build.gradle

tasks.register('rename’', Copy) {
from 'src/main/webapp’
into layout.buildDirectory.dir('explodedWar")
// Use a closure to convert all file names to upper case
rename { String fileName ->
fileName.toUpperCase()
}
// Use a regular expression to map the file name
rename '(.+)-staging-(.+)', '$1$2'
rename(/(.+)-staging-(.+)/, '$1$2")

build.gradle.kts

tasks.register<Copy>("rename") {
from("src/main/webapp")
into(layout.buildDirectory.dir("explodedWar"))
// Use a closure to convert all file names to upper case
rename { fileName: String ->

fileName.toUpperCase()

}
// Use a regular expression to map the file name
rename("(.+)-staging-(.+)", "$1$2")
rename("(.+)-staging-(.+)".toRegex().pattern, "$1§2")

You can use any regular expression supported by the Java Pattern class and the substitution string
(the second argument of rename() works on the same principles as the Matcher.appendReplacement()
method.

Regular expressions in Groovy build scripts

There are two common issues people come across when using regular expressions
in this context:

1. If you use a slashy string (those delimited by '/') for the first argument, you must
include the parentheses for rename() as shown in the above example.

NOTE 2. It’s safest to use single quotes for the second argument, otherwise you need to

escape the '$' in group substitutions, i.e. "\§1\$2"

The first is a minor inconvenience, but slashy strings have the advantage that you
don’t have to escape backslash ('\') characters in the regular expression. The second
issue stems from Groovy’s support for embedded expressions using ${ } syntax in
double-quoted and slashy strings.

The closure syntax for rename() is straightforward and can be used for any requirements that
simple regular expressions can’t handle. You're given the name of a file and you return a new name
for that file, or null if you don’t want to change the name. Do be aware that the closure will be
executed for every file that’s copied, so try to avoid expensive operations where possible.

Filtering file content (token substitution, templating, etc.)

Not to be confused with filtering which files are copied, file content filtering allows you to transform
the content of files while they are being copied. This can involve basic templating that uses token
substitution, removal of lines of text, or even more complex filtering using a full-blown template
engine.

The following example demonstrates several forms of filtering, including token substitution using
the CopySpec.expand(java.util. Map) method and another using CopySpec.filter(java.lang.Class) with
an Ant filter:

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#appendReplacement(java.lang.StringBuffer,%20java.lang.String)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#expand-java.util.Map-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#filter-java.lang.Class-
https://ant.apache.org/manual/Types/filterchain.html

Example 146. Filtering files as they are copied

build.gradle

import org.apache.tools.ant.filters.FixCrLfFilter
import org.apache.tools.ant.filters.ReplaceTokens

tasks.register('filter', Copy) {

from 'src/main/webapp’
into layout.buildDirectory.dir('explodedWar")
// Substitute property tokens in files
expand(copyright: '2009', version: '2.3.1")
expand(project.properties)
// Use some of the filters provided by Ant
filter(FixCrLfFilter)
filter (ReplaceTokens, tokens: [copyright: '2009', version: '2.3.1'])
// Use a closure to filter each line
filter { String line ->

"[$1ine]"
}
// Use a closure to remove lines
filter { String line ->

line.startsWith('-') ? null : line

}
filteringCharset = "UTF-8'

build.gradle.kts

import org.apache.tools.ant.filters.FixCrLfFilter
import org.apache.tools.ant.filters.ReplaceTokens
tasks.register<Copy>("filter") {
from("src/main/webapp")
into(layout.buildDirectory.dir("explodedWar"))
// Substitute property tokens in files
expand("copyright" to "2009", "version" to "2.3.1")
expand(project.properties)
// Use some of the filters provided by Ant
filter(FixCrLfFilter::class)
filter(ReplaceTokens::class, "tokens" to mapOf("copyright" to "2009",
"version" to "2.3.1"))
// Use a closure to filter each line
filter { line: String ->
"[$1line]"
}

// Use a closure to remove lines
filter { line: String ->
if (line.startsWith('-")) null else line

}
filteringCharset = "UTF-8"

The filter() method has two variants, which behave differently:

* one takes a FilterReader and is designed to work with Ant filters, such as ReplaceTokens

¢ one takes a closure or Transformer that defines the transformation for each line of the source
file

Note that both variants assume the source files are text based. When you use the ReplaceTokens
class with filter(), the result is a template engine that replaces tokens of the form @tokenName@ (the
Ant-style token) with values that you define.

The expand() method treats the source files as Groovy templates, which evaluate and expand
expressions of the form ${expression}. You can pass in property names and values that are then
expanded in the source files. expand() allows for more than basic token substitution as the
embedded expressions are full-blown Groovy expressions.

It’s good practice to specify the character set when reading and writing the file,
otherwise the transformations won’t work properly for non-ASCII text. You

NOTE configure the character set with the CopySpec.getFilteringCharset() property. If it’s
not specified, the JVM default character set is used, which is likely to be different
from the one you want.

https://docs.oracle.com/javase/8/docs/api/java/io/FilterReader.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Transformer.html
https://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#getFilteringCharset--

Using the CopySpec class

A copy specification (or copy spec for short) determines what gets copied to where, and what
happens to files during the copy. You’ve alread seen many examples in the form of configuration for
Copy and archiving tasks. But copy specs have two attributes that are worth covering in more detail:

1. They can be independent of tasks

2. They are hierarchical

The first of these attributes allows you to share copy specs within a build. The second provides fine-
grained control within the overall copy specification.

Sharing copy specs

Consider a build that has several tasks that copy a project’s static website resources or add them to
an archive. One task might copy the resources to a folder for a local HTTP server and another might
package them into a distribution. You could manually specify the file locations and appropriate
inclusions each time they are needed, but human error is more likely to creep in, resulting in
inconsistencies between tasks.

One solution Gradle provides is the Project.copySpec(org.gradle.api.Action) method. This allows you
to create a copy spec outside of a task, which can then be attached to an appropriate task using the
CopySpec.with(org.gradle.api.file.CopySpec...) method. The following example demonstrates how
this is done:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#with-org.gradle.api.file.CopySpec...-

Example 147. Sharing copy specifications

build.gradle

CopySpec webAssetsSpec = copySpec {
from 'src/main/webapp’
include "**/*.html', "**/*.png', '**/*.jpg’
rename '(.+)-staging(.+)', '$1$2'

}

tasks.register('copyAssets', Copy) {
into layout.buildDirectory.dir("inPlaceApp")
with webAssetsSpec

}

tasks.register('distApp', Zip) {
archiveFileName = 'my-app-dist.zip'
destinationDirectory = layout.buildDirectory.dir('dists")

from appClasses
with webAssetsSpec

build.gradle.kts

val webAssetsSpec: CopySpec = copySpec {
from("src/main/webapp")
include("**/*.html", "**/*.png", "**/*.jpg")
rename("(.+)-staging(.+)", "$1$2")

}

tasks.register<Copy>("copyAssets") {
into(layout.buildDirectory.dir("inPlaceApp"))
with(webAssetsSpec)

}

tasks.register<Zip>("distApp") {
archiveFileName.set("my-app-dist.zip")

destinationDirectory.set(layout.buildDirectory.dir("dists"))

from(app(Classes)
with(webAssetsSpec)

Both the copyAssets and distApp tasks will process the static resources under src/main/webapp, as

specified by webAssetsSpec.

The configuration defined by webAssetsSpec will not apply to the app classes
included by the distApp task. That’s because from appClasses is its own child

specification independent of with webAssetsSpec.
NOTE
This can be confusing to understand, so it’s probably best to treat with() as an extra

from() specification in the task. Hence it doesn’t make sense to define a standalone
copy spec without at least one from() defined.

If you encounter a scenario in which you want to apply the same copy configuration to different sets
of files, then you can share the configuration block directly without using copySpec(). Here’s an
example that has two independent tasks that happen to want to process image files only:

Example 148. Sharing copy patterns only

build.gradle

def webAssetPatterns = {
include "**/*.html', "**/*.png', '**/*.jpg’
}

tasks.register('copyAppAssets', Copy) {
into layout.buildDirectory.dir("inPlaceApp")
from 'src/main/webapp', webAssetPatterns

}

tasks.register('archiveDistAssets', Zip) {
archiveFileName = 'distribution-assets.zip'
destinationDirectory = layout.buildDirectory.dir('dists")

from 'distResources', webAssetPatterns

build.gradle.kts

val webAssetPatterns = Action<CopySpec> {
include("**/*.html", "**/*.png", "**/*.jpg")
}

tasks.register<Copy>("copyAppAssets") {
into(layout.buildDirectory.dir("inPlaceApp"))
from("src/main/webapp", webAssetPatterns)

}

tasks.register<Zip>("archiveDistAssets") {
archiveFileName.set("distribution-assets.zip")
destinationDirectory.set(layout.buildDirectory.dir("dists"))

from("distResources", webAssetPatterns)

In this case, we assign the copy configuration to its own variable and apply it to whatever from()
specification we want. This doesn’t just work for inclusions, but also exclusions, file renaming, and
file content filtering.

Using child specifications

If you only use a single copy spec, the file filtering and renaming will apply to all the files that are
copied. Sometimes this is what you want, but not always. Consider the following example that

copies files into a directory structure that can be used by a Java Servlet container to deliver a
website:

Copy HTML and image files here

build/explodedWar Copy runtime

WEB-INF / dependencies (JARs) here
|: lib/
classes/ <.\,
I/ Copy compiled app classes here

Copy JavaScript files here

Figure 11. Creating an exploded WAR for a Servlet container

This is not a straightforward copy as the WEB-INF directory and its subdirectories don’t exist within
the project, so they must be created during the copy. In addition, we only want HTML and image
files going directly into the root folder — build/explodedWar — and only JavaScript files going into
the js directory. So we need separate filter patterns for those two sets of files.

The solution is to use child specifications, which can be applied to both from() and into()
declarations. The following task definition does the necessary work:

Example 149. Nested copy specs

build.gradle

tasks.register('nestedSpecs', Copy) {
into layout.buildDirectory.dir("explodedWar")
exclude '**/*staging*’
from('src/dist') {
include "**/*.html', "**/*.png', '**/*.jpqg’
}
from(sourceSets.main.output) {
into 'WEB-INF/classes'
}
into('WEB-INF/1ib") {
from confiqgurations.runtimeClasspath

}

build.gradle.kts

tasks.register<Copy>("nestedSpecs") {
into(layout.buildDirectory.dir("explodedWar"))
exclude("**/*staging*")
from("src/dist") {
include("**/*.html", "**/*.png", "**/*.jpg")
}
from(sourceSets.main.get().output) {
into("WEB-INF/classes")

}
into("WEB-INF/1ib") {
from(confiqurations.runtimeClasspath)

}

Notice how the src/dist configuration has a nested inclusion specification: that’s the child copy
spec. You can of course add content filtering and renaming here as required. A child copy spec is
still a copy spec.

The above example also demonstrates how you can copy files into a subdirectory of the destination
either by using a child into() on a from() or a child from() on an into(). Both approaches are
acceptable, but you may want to create and follow a convention to ensure consistency across your
build files.

Don’t get your into() specifications mixed up! For a normal copy — one to the
filesystem rather than an archive — there should always be one "root" into() that
simply specifies the overall destination directory of the copy. Any other into()
should have a child spec attached and its path will be relative to the root into().

NOTE

One final thing to be aware of is that a child copy spec inherits its destination path, include
patterns, exclude patterns, copy actions, name mappings and filters from its parent. So be careful
where you place your configuration.

Copying files in your own tasks

There might be occasions when you want to copy files or directories as part of a task. For example,
a custom archiving task based on an unsupported archive format might want to copy files to a
temporary directory before they are then archived. You still want to take advantage of Gradle’s
copy API, but without introducing an extra Copy task.

The solution is to use the Project.copy(org.gradle.api.Action) method. It works the same way as the
Copy task by configuring it with a copy spec. Here’s a trivial example:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

Example 150. Copying files using the copy() method without up-to-date check

build.gradle

tasks.register('copyMethod') {
dolast {
copy {
from 'src/main/webapp’
into layout.buildDirectory.dir('explodedWar")
include '**/* html'
include "**/*.jsp'

build.gradle.kts

tasks.register("copyMethod") {
dolast {
copy {
from("src/main/webapp")
into(layout.buildDirectory.dir("explodedWar"))
include("**/*.html")
include("**/*.jsp")

The above example demonstrates the basic syntax and also highlights two major limitations of

using the copy() method:

1. The copy() method is not incremental. The example’s copyMethod task will always execute
because it has no information about what files make up the task’s inputs. You have to manually

define the task inputs and outputs.

2. Using a task as a copy source, i.e. as an argument to from(), won’t set up an automatic task
dependency between your task and that copy source. As such, if you are using the copy()
method as part of a task action, you must explicitly declare all inputs and outputs in order to get

the correct behavior.

The following example shows you how to workaround these limitations by using the dynamic API

for task inputs and outputs:

Example 151. Copying files using the copy() method with up-to-date check

build.gradle

tasks.register('copyMethodWithExplicitDependencies') {
// up-to-date check for inputs, plus add copyTask as dependency
inputs.files(copyTask)

.withPropertyName("inputs")
.withPathSensitivity(PathSensitivity.RELATIVE)
outputs.dir('some-dir') // up-to-date check for outputs
.withPropertyName("outputDir")

dolast{
copy {
// Copy the output of copyTask
from copyTask
into 'some-dir'

build.gradle.kts

tasks.register("copyMethodWithExplicitDependencies") {
// up-to-date check for inputs, plus add copyTask as dependency
inputs.files(copyTask)

.withPropertyName("inputs")
.withPathSensitivity(PathSensitivity.RELATIVE)
outputs.dir("some-dir") // up-to-date check for outputs
.withPropertyName("outputDir")

dolast {
copy {
// Copy the output of copyTask
from(copyTask)
into("some-dir")

These limitations make it preferable to use the Copy task wherever possible, because of its builtin
support for incremental building and task dependency inference. That is why the copy() method is
intended for use by custom tasks that need to copy files as part of their function. Custom tasks that
use the copy() method should declare the necessary inputs and outputs relevant to the copy action.

Mirroring directories and file collections with the Sync task

The Sync task, which extends the Copy task, copies the source files into the destination directory and
then removes any files from the destination directory which it did not copy. In other words, it
synchronizes the contents of a directory with its source. This can be useful for doing things such as
installing your application, creating an exploded copy of your archives, or maintaining a copy of
the project’s dependencies.

Here is an example which maintains a copy of the project’s runtime dependencies in the build/1libs
directory.

Example 152. Using the Sync task to copy dependencies

build.gradle

tasks.register('libs', Sync) {
from configurations.runtime
into layout.buildDirectory.dir('libs")

build.gradle.kts

tasks.register<Sync>("1ibs") {
from(configurations["runtime"])
into(layout.buildDirectory.dir("Llibs"))

You can also perform the same function in your own tasks with the
Project.sync(org.gradle.api.Action) method.

Deploying single files into application servers

When working with application servers, you can use a Copy task to deploy the application archive
(e.g. a WAR file). Since you are deploying a single file, the destination directory of the Copy is the
whole deployment directory. The deployment directory sometimes does contain unreadable files
like named pipes, so Gradle may have problems doing up-to-date checks. In order to support this
use-case, you can use Task.doNotTrackState().

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Sync.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:sync(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doNotTrackState(java.lang.String)

Example 153. Using Copy to deploy a WAR file

build.gradle

plugins {
id 'war'

}

tasks.register("deployToTomcat", Copy) {
from war
into layout.projectDirectory.dir('tomcat/webapps")
doNotTrackState("Deployment directory contains unreadable files")

build.gradle.kts

plugins {
war

}

tasks.register<Copy>("deployToTomcat") {
from(tasks.war)
into(layout.projectDirectory.dir("tomcat/webapps"))
doNotTrackState("Deployment directory contains unreadable files")

Installing executables

When you are building a standalone executable, you may want to install this file on your system, so
it ends up in your path. You can use a Copy task to install the executable into shared directories like
/usr/local/bin. The installation directory probably contains many other executables, some of
which may even be unreadable by Gradle. To support the unreadable files in the Copy task’s
destination directory and to avoid time consuming up-to-date checks, you can use
Task.doNotTrackState().

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doNotTrackState(java.lang.String)

Example 154. Using Copy to install an executable

build.gradle

tasks.register("installExecutable", Copy) {
from "build/my-binary"
into "/usr/local/bin"
doNotTrackState("Installation directory contains unrelated files")

build.gradle.kts

tasks.register<Copy>("installExecutable") {
from("build/my-binary")
into("/usr/local/bin")
doNotTrackState("Installation directory contains unrelated files")

Archive creation in depth

Archives are essentially self-contained file systems and Gradle treats them as such. This is why
working with archives is very similar to working with files and directories, including such things as
file permissions.

Out of the box, Gradle supports creation of both ZIP and TAR archives, and by extension Java’s JAR,
WAR and EAR formats —Java’s archive formats are all ZIPs. Each of these formats has a
corresponding task type to create them: Zip, Tar, Jar, War, and Ear. These all work the same way
and are based on copy specifications, just like the Copy task.

Creating an archive file is essentially a file copy in which the destination is implicit, i.e. the archive
file itself. Here’s a basic example that specifies the path and name of the target archive file:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Jar.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.War.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ear.Ear.html

Example 155. Archiving a directory as a ZIP

build.gradle

tasks.register('packageDistribution', Zip) {
archiveFileName = "my-distribution.zip"
destinationDirectory = layout.buildDirectory.dir('dist")

from layout.buildDirectory.dir("toArchive")

build.gradle.kts

tasks.register<Zip>("packageDistribution") {
archiveFileName.set("my-distribution.zip")
destinationDirectory.set(layout.buildDirectory.dir("dist"))

from(layout.buildDirectory.dir("toArchive"))

In the next section you’ll learn about convention-based archive names, which can save you from
always configuring the destination directory and archive name.

The full power of copy specifications are available to you when creating archives, which means you
can do content filtering, file renaming or anything else that is covered in the previous section. A
particularly common requirement is copying files into subdirectories of the archive that don’t exist
in the source folders, something that can be achieved with into() child specifications.

Gradle does of course allow you create as many archive tasks as you want, but it’s worth bearing in
mind that many convention-based plugins provide their own. For example, the Java plugin adds a
jar task for packaging a project’s compiled classes and resources in a JAR. Many of these plugins
provide sensible conventions for the names of archives as well as the copy specifications used. We
recommend you use these tasks wherever you can, rather than overriding them with your own.

Archive naming

Gradle has several conventions around the naming of archives and where they are created based
on the plugins your project uses. The main convention is provided by the Base Plugin, which
defaults to creating archives in the $buildDir/distributions directory and typically uses archive
names of the form [projectName]-[version].[type].

The following example comes from a project named archive-naming, hence the myZip task creates an
archive named archive-naming-1.0.zip:

Example 156. Creation of ZIP archive

build.gradle

plugins {
id 'base'

}
version = 1.0

tasks.register('myZip', Zip) {
from 'somedir'

dolast {
println archiveFileName.get()
println relativePath(destinationDirectory)
println relativePath(archiveFile)

build.gradle.kts

plugins {
base

}
version = "1.0"

tasks.register<Zip>("myZip") {
from("somedir")

dolast {
println(archiveFileName.get())
println(relativePath(destinationDirectory))
println(relativePath(archiveFile))

Output of gradle -q myZip

> gradle -q myZip

archive-naming-1.0.zip

build/distributions
build/distributions/archive-naming-1.0.zip

Note that the name of the archive does not derive from the name of the task that creates it.

If you want to change the name and location of a generated archive file, you can provide values for
the archiveFileName and destinationDirectory properties of the corresponding task. These override
any conventions that would otherwise apply.

Alternatively, you can make use of the default archive name pattern provided by
AbstractArchiveTask.getArchiveFileName(): [archiveBaseName]-[archiveAppendix]-[archiveVersion]-
[archiveClassifier].[archiveExtension]. You can set each of these properties on the task separately if
you wish. Note that the Base Plugin uses the convention of project name for archiveBaseName,
project version for archiveVersion and the archive type for archiveExtension. It does not provide
values for the other properties.

This example — from the same project as the one above — configures just the archiveBaseName
property, overriding the default value of the project name:

Example 157. Configuration of archive task - custom archive name

build.gradle

tasks.register('myCustomzZip', Zip) {
archiveBaseName = 'customName'
from 'somedir'

dolLast {
println archiveFileName.get()
}
}
build.gradle.kts

tasks.register<Zip>("myCustomZip") {
archiveBaseName.set("customName")
from("somedir")

dolast {
println(archiveFileName.get())

Output of gradle -q myCustomZip

> gradle -q myCustomZip
customName-1.0.zip

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:archiveFileName

You can also override the default archiveBaseName value for all the archive tasks in your build by
using the project property archivesBaseName, as demonstrated by the following example:

Example 158. Configuration of archive task - appendix & classifier

build.gradle

plugins {
id 'base'

}

version = 1.0
// tag::base-plugin-config[]
base {
archivesName = "gradle"
distsDirectory = layout.buildDirectory.dir('custom-dist")
libsDirectory = layout.buildDirectory.dir('custom-1ibs")
}
// end::base-plugin-config[]

tasks.register('myZip', Zip) {
from 'somedir'

}

tasks.register('myOtherZip', Zip) {
archiveAppendix = "wrapper'
archiveClassifier = 'src'
from 'somedir'

}

tasks.register('echoNames') {
dolast {
println "Project name: ${project.name}"
println myZip.archiveFileName.get()
println myOtherZip.archiveFileName.get()

build.gradle.kts

plugins {
base

}

version = "1.0"

// tag::base-plugin-config[]

base {
archivesName.set("gradle")
distsDirectory.set(layout.buildDirectory.dir("custom-dist"))
libsDirectory.set(layout.buildDirectory.dir("custom-1ibs"))

}

// end::base-plugin-config[]

val myZip by tasks.registering(Zip::class) {
from("somedir")

}

val myOtherZip by tasks.registering(Zip::class) {
archiveAppendix.set("wrapper")
archiveClassifier.set("src")
from("somedir")

}

tasks.register("echoNames") {
dolast {
println("Project name: ${project.name}")
println(myZip.get().archiveFileName.get())
println(myOtherZip.get().archiveFileName.get())

Output of gradle -q echoNames

> gradle -q echoNames

Project name: archives-changed-base-name
gradle-1.0.zip
gradle-wrapper-1.0-src.zip

You can find all the possible archive task properties in the API documentation for
AbstractArchiveTask, but we have also summarized the main ones here:

archiveFileName — Property<String>, default: archiveBaseName-archiveAppendix-archiveVersion-
archiveClassifier.archiveExtension

The complete file name of the generated archive. If any of the properties in the default value are

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html

empty, their '-' separator is dropped.

archiveFile — Provider<RegularFile>, read-only, default: destinationDirectory/archiveFileName

The absolute file path of the generated archive.

destinationDirectory — DirectoryProperty, default: depends on archive type

The target directory in which to put the generated archive. By default, JARs and WARs go into
$buildDir/1ibs. ZIPs and TARs go into $buildDir/distributions.

archiveBaseName — Property<String>, default: project.name

The base name portion of the archive file name, typically a project name or some other
descriptive name for what it contains.

archiveAppendix — Property<String>, default: null

The appendix portion of the archive file name that comes immediately after the base name. It is
typically used to distinguish between different forms of content, such as code and docs, or a
minimal distribution versus a full or complete one.

archiveVersion — Property<String>, default: project.version

The version portion of the archive file name, typically in the form of a normal project or product
version.

archiveClassifier — Property<String>, default: null

The classifier portion of the archive file name. Often used to distinguish between archives that
target different platforms.

archiveExtension — Property<String>, default: depends on archive type and compression type

The filename extension for the archive. By default, this is set based on the archive task type and
the compression type (if you're creating a TAR). Will be one of: zip, jar, war, tar, tgz or tbz2. You
can of course set this to a custom extension if you wish.

Sharing content between multiple archives

As described earlier, you can use the Project.copySpec(org.gradle.api.Action) method to share
content between archives.

Reproducible builds

Sometimes it’s desirable to recreate archives exactly the same, byte for byte, on different machines.
You want to be sure that building an artifact from source code produces the same result no matter
when and where it is built. This is necessary for projects like reproducible-builds.org.

Reproducing the same byte-for-byte archive poses some challenges since the order of the files in an
archive is influenced by the underlying file system. Each time a ZIP, TAR, JAR, WAR or EAR is built
from source, the order of the files inside the archive may change. Files that only have a different
timestamp also causes differences in archives from build to build. All AbstractArchiveTask (e.g. Jar,
Zip) tasks shipped with Gradle include support for producing reproducible archives.

For example, to make a Zip task reproducible you need to set Zip.isReproducibleFileOrder() to true

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://reproducible-builds.org/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:reproducibleFileOrder

and Zip.isPreserveFileTimestamps() to false. In order to make all archive tasks in your build
reproducible, consider adding the following configuration to your build file:

Example 159. Activating reproducible archives

build.gradle

tasks.withType(AbstractArchiveTask).configureEach {
preserveFileTimestamps = false
reproducibleFileOrder = true

build.gradle.kts

tasks.withType<AbstractArchiveTask>().configureEach {
isPreserveFileTimestamps = false
isReproducibleFileOrder = true

Often you will want to publish an archive, so that it is usable from another project. This process is
described in Cross-Project publications.

Using Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful
features, like the ability to compile Java code, are added by plugins. Plugins add new tasks (e.g.
JavaCompile), domain objects (e.g. SourceSet), conventions (e.g. Java source is located at
src/main/java) as well as extending core objects and objects from other plugins.

In this chapter we discuss how to use plugins and the terminology and concepts surrounding
plugins.

What plugins do

Applying a plugin to a project allows the plugin to extend the project’s capabilities. It can do things
such as:
* Extend the Gradle model (e.g. add new DSL elements that can be configured)

* Configure the project according to conventions (e.g. add new tasks or configure sensible
defaults)

» Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a number of
benefits. Applying plugins:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:preserveFileTimestamps
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.SourceSet.html

* Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects
» Allows a higher degree of modularization, enhancing comprehensibility and organization

* Encapsulates imperative logic and allows build scripts to be as declarative as possible

Types of plugins

There are two general types of plugins in Gradle, binary plugins and script plugins. Binary plugins
are written either programmatically by implementing Plugin interface or declaratively using one of
Gradle’s DSL languages. Binary plugins can reside within a build script, within the project
hierarchy or externally in a plugin jar. Script plugins are additional build scripts that further
configure the build and usually implement a declarative approach to manipulating the build. They
are typically used within a build although they can be externalized and accessed from a remote
location.

A plugin often starts out as a script plugin (because they are easy to write) and then, as the code
becomes more valuable, it’s migrated to a binary plugin that can be easily tested and shared
between multiple projects or organizations.

Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needs to
resolve the plugin, and then it needs to apply the plugin to the target, usually a Project.

Resolving a plugin means finding the correct version of the jar which contains a given plugin and
adding it to the script classpath. Once a plugin is resolved, its API can be used in a build script.
Script plugins are self-resolving in that they are resolved from the specific file path or URL
provided when applying them. Core binary plugins provided as part of the Gradle distribution are
automatically resolved.

Applying a plugin means actually executing the plugin’s Plugin.apply(T) on the Project you want to
enhance with the plugin. Applying plugins is idempotent. That is, you can safely apply any plugin
multiple times without side effects.

The most common use case for using a plugin is to both resolve the plugin and apply it to the
current project. Since this is such a common use case, it’s recommended that build authors use the
plugins DSL to both resolve and apply plugins in one step.

Binary plugins

You apply plugins by their plugin id, which is a globally unique identifier, or name, for plugins. Core
Gradle plugins are special in that they provide short names, such as 'java' for the core JavaPlugin.
All other binary plugins must use the fully qualified form of the plugin id (e.g. com.github.foo.bar),
although some legacy plugins may still utilize a short, unqualified form. Where you put the plugin
id depends on whether you are using the plugins DSL or the buildscript block.

Locations of binary plugins

A plugin is simply any class that implements the Plugin interface. Gradle provides the core plugins

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html#apply-T-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/JavaPlugin.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html

(e.g. JavaPlugin) as part of its distribution which means they are automatically resolved. However,
non-core binary plugins need to be resolved before they can be applied. This can be achieved in a
number of ways:

* Including the plugin from the plugin portal or a custom repository using the plugins DSL (see
Applying plugins using the plugins DSL).

* Including the plugin from an external jar defined as a buildscript dependency (see Applying
plugins using the buildscript block).

* Defining the plugin as a source file under the buildSrc directory in the project (see Using
buildSrc to extract functional logic).

* Defining the plugin as an inline class declaration inside a build script.
For more on defining your own plugins, see Custom Plugins.

Applying plugins with the plugins DSL

The plugins DSL provides a succinct and convenient way to declare plugin dependencies. It works
with the Gradle plugin portal to provide easy access to both core and community plugins. The
plugins DSL block configures an instance of PluginDependenciesSpec.

To apply a core plugin, the short name can be used:

Example 160. Applying a core plugin

build.gradle
plugins {

id 'java'

}

build.gradle.kts
plugins {

java

}

To apply a community plugin from the portal, the fully qualified plugin id must be used:

http://plugins.gradle.org
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

Example 161. Applying a community plugin

build.gradle

plugins {
id 'com.jfrog.bintray' version '1.8.5'

}

build.gradle.kts

plugins {
id("com.jfrog.bintray") version "1.8.5"

}

See PluginDependenciesSpec for more information on using the Plugin DSL.

Limitations of the plugins DSL

This way of adding plugins to a project is much more than a more convenient syntax. The plugins
DSL is processed in a way which allows Gradle to determine the plugins in use very early and very
quickly. This allows Gradle to do smart things such as:

* Optimize the loading and reuse of plugin classes.
» Allow different plugins to use different versions of dependencies.
* Provide editors detailed information about the potential properties and values in the buildscript

for editing assistance.

This requires that plugins be specified in a way that Gradle can easily and quickly extract, before
executing the rest of the build script. It also requires that the definition of plugins to use be
somewhat static.

There are some key differences between the plugins {} block mechanism and the “traditional”
apply() method mechanism. There are also some constraints, some of which are temporary
limitations while the mechanism is still being developed and some are inherent to the new
approach.

Constrained Syntax

The plugins {} block does not support arbitrary code. It is constrained, in order to be idempotent
(produce the same result every time) and side effect free (safe for Gradle to execute at any time).

The form is:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

build.gradle

plugins {
id «plugin id» @
id «plugin id» version «plugin version» [apply «false»] @

@ for core Gradle plugins or plugins already available to the build script

@ for binary Gradle plugins that need to be resolved

build.gradle.kts
plugins {
‘«plugin id»" @
id(«plugin id») @

id(«plugin id») version «plugin version» [apply «false»] @

@ for core Gradle plugins
@ for core Gradle plugins or plugins already available to the build script

@ for binary Gradle plugins that need to be resolved

Where «plugin id» and «plugin version» must be constant, literal, strings and the apply statement
with a boolean can be used to disable the default behavior of applying the plugin immediately (e.g.
you want to apply it only in subprojects). No other statements are allowed; their presence will
cause a compilation error.

Where «plugin id», in case #1 is a static Kotlin extension property, named after the core plugin ID ;
and in cases #2 and #3 is a string. «plugin version» is also a string. The apply statement with a
boolean can be used to disable the default behavior of applying the plugin immediately (e.g. you
want to apply it only in subprojects).

See plugin version management if you want to use a variable to define a plugin version.

The plugins {} block must also be a top level statement in the buildscript. It cannot be nested inside
another construct (e.g. an if-statement or for-loop).

Can only be used in build scripts and settings file

The plugins {} block can currently only be used in a project’s build script and the settings.gradle
file. It cannot be used in script plugins or init scripts.

Future versions of Gradle will remove this restriction.

If the restrictions of the plugins {} block are prohibitive, the recommended approach is to apply

plugins using the buildscript {} block.

Applying external plugins with same version to subprojects

If you have a multi-project build, you probably want to apply plugins to some or all of the
subprojects in your build, but not to the root project. The default behavior of the plugins {} block is
to immediately resolve and apply the plugins. But, you can use the apply false syntax to tell Gradle
not to apply the plugin to the current project and then use the plugins {} block without the version
in subprojects’ build scripts:

Example 162. Applying plugins only on certain subprojects

settings.gradle

include 'hello-a’
include 'hello-b'
include 'goodbye-c'

build.gradle

plugins {
id 'com.example.hello' version '1.0.0' apply false
id 'com.example.goodbye' version '1.0.0' apply false

hello-a/build.gradle

plugins {
id 'com.example.hello'

}

hello-b/build.gradle

plugins {
id 'com.example.hello'

}

goodbye-c/build.gradle

plugins {
id 'com.example.goodbye'

}

settings.gradle.kts

include("hello-a")
include("hello-b")
include("goodbye-c")

build.gradle.kts

plugins {
id("com.example.hello") version "1.0.0" apply false
id("com.example.goodbye") version "1.0.0" apply false

hello-a/build.gradle.kts

plugins {
id("com.example.hello")

}

hello-b/build.gradle.kts

plugins {
id("com.example.hello")

}

goodbye-c/build.gradle.kts

plugins {
id("com.example.goodbye")

}

Even better - you can encapsulate the versions of external plugins by composing the build logic
using your own convention plugins.

Applying plugins from the buildSrc directory

You can apply plugins that reside in a project’s buildSrc directory as long as they have a defined ID.
The following example shows how to tie a plugin implementation class — my.MyPlugin — defined in
buildSrc to the ID "my-plugin”:

Example 163. Defining a buildSrc plugin with an ID

buildSrc/build.gradle

plugins {
id 'java-gradle-plugin’
}

gradlePlugin {
plugins {
myPlugins {
id = 'my-plugin’
implementationClass = "my.MyPlugin’

buildSrc/build.gradle.kts

plugins {
‘java-gradle-plugin’
I

gradlePlugin {
plugins {
create("myPlugins") {
id = "my-plugin”
implementationClass = "my.MyPlugin"

The plugin can then be applied by ID as normal:

Example 164. Applying a plugin from buildSrc

build.gradle

plugins {
id 'my-plugin’
}

build.gradle.kts

plugins {
id("my-plugin™)
}

Plugin Management

The pluginManagement {} block may only appear in either the settings.gradle file, where it must be
the first block in the file, or in an Initialization Script.

Example 165. Configuring pluginManagement per-project and globally

settings.gradle

pluginManagement {
plugins {
}
resolutionStrategy {
}
repositories {
}

}

rootProject.name = 'plugin-management’

init.gradle

settingsEvaluated { settings ->
settings.pluginManagement {
plugins {
}
resolutionStrategy {
}
repositories {

}

settings.gradle.kts

pluginManagement {
plugins {
}
resolutionStrategy {

}

repositories {
}
+

rootProject.name = "plugin-management"

init.gradle.kts

settingsEvaluated {
pluginManagement {
plugins {
}
resolutionStrategy {

}

repositories {

}

Custom Plugin Repositories

By default, the plugins {} DSL resolves plugins from the public Gradle Plugin Portal. Many build
authors would also like to resolve plugins from private Maven or Ivy repositories because the
plugins contain proprietary implementation details, or just to have more control over what plugins
are available to their builds.

To specify custom plugin repositories, use the repositories {} block inside pluginManagement {}:

https://plugins.gradle.org

Example 166. Example: Using plugins from custom plugin repositories.

settings.gradle

pluginManagement {
repositories {
maven {
url './maven-repo’

}
gradlePluginPortal()
ivy {
url './ivy-repo’
}
}
b
settings.gradle.kts

pluginManagement {
repositories {
maven(url = "./maven-repo")
gradlePluginPortal()
ivy(url = "./ivy-repo")

This tells Gradle to first look in the Maven repository at ../maven-repo when resolving plugins and
then to check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you
don’t want the Gradle Plugin Portal to be searched, omit the gradlePluginPortal() line. Finally, the
Ivy repository at ../ivy-repo will be checked.

Plugin Version Management

A plugins {} block inside pluginManagement {} allows all plugin versions for the build to be defined
in a single location. Plugins can then be applied by id to any build script via the plugins {} block.

One benefit of setting plugin versions this way is that the pluginManagement.plugins {} does not
have the same constrained syntax as the build script plugins {} block. This allows plugin versions
to be taken from gradle.properties, or loaded via another mechanism.

Example 167. Example: Managing plugin versions via pluginManagement.

settings.gradle

pluginManagement {
plugins {
id 'com.example.hello" version "${helloPluginVersion}"

}

build.gradle

plugins {
id 'com.example.hello'

}

gradle.properties

helloPluginVersion=1.0.0

settings.gradle.kts

pluginManagement {
val helloPluginVersion: String by settings
plugins {
id("com.example.hello") version "${helloPluginVersion}"

}
}

build.gradle.kts
plugins {

id("com.example.hello")

}

gradle.properties

helloPluginVersion=1.0.0

The plugin version is loaded from gradle.properties and configured in the settings script, allowing
the plugin to be added to any project without specifying the version.

Plugin Resolution Rules

Plugin resolution rules allow you to modify plugin requests made in plugins {} blocks, e.g.
changing the requested version or explicitly specifying the implementation artifact coordinates.

To add resolution rules, use the resolutionStrategy {} inside the pluginManagement {} block:

Example 168. Plugin resolution strategy.

settings.gradle

pluginManagement {
resolutionStrategy {
eachPlugin {
if (requested.id.namespace == 'com.example') {
useModule('com.example:sample-plugins:1.0.0")

}
}
}
repositories {
maven {
url './maven-repo’
}
gradlePluginPortal()
ivy {
url './ivy-repo’
}
}
}
settings.gradle.kts

pluginManagement {
resolutionStrategy {
eachPlugin {
if (requested.id.namespace == "com.example") {
useModule("com.example:sample-plugins:1.0.0")
}
}
}
repositories {
maven {
url = uri("./maven-repo")
}
gradlePluginPortal()
ivy {
url = uri("./ivy-repo")

}

This tells Gradle to use the specified plugin implementation artifact instead of using its built-in

default mapping from plugin ID to Maven/Ivy coordinates.

Custom Maven and Ivy plugin repositories must contain plugin marker artifacts in addition to the
artifacts which actually implement the plugin. For more information on publishing plugins to
custom repositories read Gradle Plugin Development Plugin.

See PluginManagementSpec for complete documentation for using the pluginManagement {} block.

Plugin Marker Artifacts

Since the plugins {} DSL block only allows for declaring plugins by their globally unique plugin id
and version properties, Gradle needs a way to look up the coordinates of the plugin implementation
artifact. To do so, Gradle will look for a Plugin Marker Artifact with the coordinates
plugin.id:plugin.id.gradle.plugin:plugin.version. This marker needs to have a dependency on the
actual plugin implementation. Publishing these markers is automated by the java-gradle-plugin.

For example, the following complete sample from the sample-plugins project shows how to publish
a com.example.hello plugin and a com.example.goodbye plugin to both an Ivy and Maven repository
using the combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-publish
plugin.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/management/PluginManagementSpec.html

Example 169. Complete Plugin Publishing Sample

build.gradle

plugins {
id 'java-gradle-plugin’
id 'maven-publish’
id "ivy-publish'

}

group 'com.example'
version '1.0.0'

gradlePlugin {
plugins {
hello {
id = 'com.example.hello’
implementationClass = 'com.example.hello.HelloPlugin'

}
goodbye {

id = 'com.example.goodbye'

implementationClass = 'com.example.goodbye.GoodbyePlugin'
}

}

publishing {
repositories {
maven {
url '../../consuming/maven-repo’

}
ivy {

url '../../consuming/ivy-repo’
}

build.gradle.kts

plugins {
‘java-gradle-plugin’
‘maven-publish®
“ivy-publish®

}

group = "com.example"
version = "1.0.0"

gradlePlugin {
plugins {
create("hello") {
id = "com.example.hello"
implementationClass = "com.example.hello.HelloPlugin"
}
create("qoodbye") {
id = "com.example.goodbye"
implementationClass = "com.example.goodbye.GoodbyePlugin"

}

publishing {
repositories {
maven {
url = uri("../../consuming/maven-repo")

}
ivy {

url = uri("../../consuming/ivy-repo")
}

Running gradle publish in the sample directory creates the following Maven repository layout (the
Ivy layout is similar):

maven-repo

groupld com.example.goodbye groupld com.example.hello
artifactld com.example.goodbye.gradle.plugin artifactld com.example.hello.gradle.plugin
version 1.0.0 version 1.0.0

groupld com.example
artifactld sample-plugins
version 1.0.0

k sample-plugins-1.0.0.jar

Legacy Plugin Application

With the introduction of the plugins DSL, users should have little reason to use the legacy method
of applying plugins. It is documented here in case a build author cannot use the plugins DSL due to
restrictions in how it currently works.

Applying Binary Plugins

Example 170. Applying a binary plugin

build.gradle

apply plugin: 'java'

build.gradle.kts

apply(plugin = "java")

Plugins can be applied using a plugin id. In the above case, we are using the short name ‘java’ to
apply the JavaPlugin.

Rather than using a plugin id, plugins can also be applied by simply specifying the class of the
plugin:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/JavaPlugin.html

Example 171. Applying a binary plugin by type

build.gradle

apply plugin: JavaPlugin

build.gradle.kts

apply<JavaPlugin>()

The JavaPlugin symbol in the above sample refers to the JavaPlugin. This class does not strictly need
to be imported as the org.gradle.api.plugins package is automatically imported in all build scripts
(see Default imports).

Furthermore, it is not necessary to append .class to identify a class literal in Groovy as it is in Java.

Furthermore, one need to append the ::class suffix to identify a class literal in Kotlin instead of
.class in Java.

Applying plugins with the buildscript block

Binary plugins that have been published as external jar files can be added to a project by adding
the plugin to the build script classpath and then applying the plugin. External jars can be added to
the build script classpath using the buildscript {} block as described in External dependencies for
the build script.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/JavaPlugin.html

Example 172. Applying a plugin with the buildscript block

build.gradle

buildscript {
repositories {
gradlePluginPortal()
}

dependencies {
classpath 'com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.5'

}
}

apply plugin: 'com.jfrog.bintray’

build.gradle.kts

buildscript {
repositories {
gradlePluginPortal()
}
dependencies {
classpath("com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.5")
}
}

apply(plugin = "com.jfrog.bintray")

Script plugins

Example 173. Applying a script plugin

build.gradle

apply from: 'other.gradle'

build.gradle.kts

apply(from = "other.gradle.kts")

Script plugins are automatically resolved and can be applied from a script on the local filesystem or
at a remote location. Filesystem locations are relative to the project directory, while remote script
locations are specified with an HTTP URL. Multiple script plugins (of either form) can be applied to
a given target.

Finding community plugins

Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of
capabilities. The Gradle plugin portal provides an interface for searching and exploring community
plugins.

More on plugins

This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more
information on the inner workings of plugins, see Custom Plugins.

Build Lifecycle

We said earlier that the core of Gradle is a language for dependency based programming. In Gradle
terms this means that you can define tasks and dependencies between tasks. Gradle guarantees that
these tasks are executed in the order of their dependencies, and that each task is executed only
once. These tasks form a Directed Acyclic Graph. There are build tools that build up such a
dependency graph as they execute their tasks. Gradle builds the complete dependency graph before
any task is executed. This lies at the heart of Gradle and makes many things possible which would
not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build
configuration scripts.

Build phases
A Gradle build has three distinct phases.

Initialization

Gradle supports single and multi-project builds. During the initialization phase, Gradle
determines which projects are going to take part in the build, and creates a Project instance for
each of these projects.

Configuration

During this phase the project objects are configured. The build scripts of all projects which are
part of the build are executed.

Execution

Gradle determines the subset of the tasks, created and configured during the configuration
phase, to be executed. The subset is determined by the task name arguments passed to the gradle
command and the current directory. Gradle then executes each of the selected tasks.

https://plugins.gradle.org
http://en.wikipedia.org/wiki/Directed_acyclic_graph
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html

Settings file

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle
via a naming convention. The default name for this file is settings.gradle. Later in this chapter we
explain how Gradle looks for a settings file.

The settings file is executed during the initialization phase. A multi-project build must have a
settings.gradle file in the root project of the multi-project hierarchy. It is required because the
settings file defines which projects are taking part in the multi-project build (see Authoring Multi-
Project Builds). For a single-project build, a settings file is optional. Besides defining the included
projects, you might need it to add libraries to your build script classpath (see Organizing Gradle
Projects). Let’s first do some introspection with a single project build:

Example 174. Single project build

settings.gradle

rootProject.name = 'basic’
println 'This is executed during the initialization phase.'

build.gradle
println 'This is executed during the configuration phase.'

tasks.register('configured') {
println 'This is also executed during the configuration phase, because
:configured is used in the build.'

}

tasks.register('test') {
dolLast {
println 'This is executed during the execution phase.'

}
}
tasks.register('testBoth') {
doFirst {
println 'This is executed first during the execution phase.'
}
dolLast {
println 'This is executed last during the execution phase.'
}

println 'This is executed during the configuration phase as well, because
:testBoth is used in the build.'

}

settings.gradle.kts

rootProject.name = "basic"
println("This is executed during the initialization phase.")

build.gradle.kts
println("This is executed during the configuration phase.")

tasks.register("configured") {
println("This is also executed during the configuration phase, because
:configured is used in the build.")

}

tasks.register("test") {
dolast {
println("This is executed during the execution phase.")
}
}

tasks.register("testBoth") {
doFirst {
println("This is executed first during the execution phase.")

}
dolLast {

println("This is executed last during the execution phase.")
}

println("This is executed during the configuration phase as well, because
:testBoth is used in the build.")
}

Output of gradle test testBoth

> gradle test testBoth
This is executed during the initialization phase.

> Configure project :

This is executed during the configuration phase.

This is executed during the configuration phase as well, because :testBoth is used in
the build.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

> gradle test testBoth
This is executed during the initialization phase.

> Configure project :

This is executed during the configuration phase.

This is executed during the configuration phase as well, because :testBoth is used in
the build.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

For a build script, the property access and method calls are delegated to a project object. Similarly
property access and method calls within the settings file is delegated to a settings object. Look at the
Settings class in the API documentation for more information.

Initialization

How does Gradle know whether to do a single or multi-project build? If you trigger a multi-project
build from a directory with a settings.gradle file, Gradle uses it to configure the build. Gradle also
allows you to execute the build from within any subproject taking part in the build."” If you execute
Gradle from within a project with no settings.gradle file, Gradle looks for a settings.gradle file in
the following way:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html

o Itlooks for settings.gradle in parent directories.
 If not found, the build is executed as a single project build.

» If a settings.gradle file is found, Gradle checks if the current project is part of the multi-project
hierarchy defined in the found settings.gradle file. If not, the build is executed as a single
project build. Otherwise a multi-project build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you are in is a
subproject of a multi-project build or not. Of course, if it is a subproject, only the subproject and its
dependent projects are built, but Gradle needs to create the build configuration for the whole multi-
project build (see Configuration and Execution). If the current project contains a settings.gradle
file, the build is always executed as:

* a single project build, if the settings.gradle file does not define a multi-project hierarchy

* a multi-project build, if the settings.gradle file does define a multi-project hierarchy.

The automatic search for a settings.gradle file only works for multi-project builds with a default
project layout where project paths match the physical subproject layout on disk. Gradle supports
arbitrary physical layouts for a multi-project build, but for such arbitrary layouts you need to
execute the build from the directory where the settings file is located. For information on how to
run partial builds from the root, see Executing tasks by their fully qualified name.

Gradle creates a Project object for every project taking part in the build. For a multi-project build
these are the projects specified in the Settings object (plus the root project). Each project object has
by default a name equal to the name of its top level directory, and every project except the root
project has a parent project. Any project may have child projects.

Configuration and execution of a single project build

For a single project build, the workflow of the after initialization phases are pretty simple. The build
script is executed against the project object that was created during the initialization phase. Then
Gradle looks for tasks with names equal to those passed as command line arguments. If these task
names exist, they are executed as a separate build in the order you have passed them. The
configuration and execution for multi-project builds is discussed in Configuration and Execution.

Responding to the lifecycle in the build script

Your build script can receive notifications as the build progresses through its lifecycle. These
notifications generally take two forms: You can either implement a particular listener interface, or
you can provide a closure to execute when the notification is fired. The examples below use
closures. For details on how to use the listener interfaces, refer to the API documentation.

Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used
to do things like performing additional configuration once all the definitions in a build script have
been applied, or for some custom logging or profiling.

Below is an example which adds a test task to each project which has a hasTests property value of

true.

Example 175. Adding of test task to each project which has certain property set

build.gradle

allprojects {
afterEvaluate { project ->
if (project.hasTests) {
println "Adding test task to $project"”
project.task('test") {
dolast {
println "Running tests for $project”

}

project-a.gradle

hasTests = true

build.gradle.kts

allprojects {
afterEvaluate {
if (extra["hasTests"] as Boolean) {

println("Adding test task to $project")

tasks.register("test") {
dolLast {

println("Running tests for $project")

}

project-a.gradle.kts

extra["hasTests"] = true

Output of gradle -q test

> gradle -q test
Adding test task to project ':project-a’
Running tests for project ':project-a’

This example uses method Project.afterEvaluate() to add a closure which is executed after the
project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs
some custom logging of project evaluation. Notice that the afterProject notification is received
regardless of whether the project evaluates successfully or fails with an exception.

Example 176. Notifications

build.gradle

gradle.afterProject { project ->
if (project.state.failure) {
println "Evaluation of $project FAILED"
} else {
println "Evaluation of $project succeeded"

}

build.gradle.kts

gradle.afterProject {
if (state.failure != null) {
println("Evaluation of $project FAILED")
} else {
println("Evaluation of $project succeeded")

}

Output of gradle -q test

> gradle -q test

Evaluation of root project 'build-project-evaluate-events' succeeded
Evaluation of project ':project-a' succeeded

Evaluation of project ':project-b"' FAILED

FAILURE: Build failed with an exception.

* Where:
Build file '/home/user/gradle/samples/project-b.gradle' line: 1

* What went wrong:
A problem occurred evaluating project
> broken

:project-b".

* Try:

> Run with --stacktrace option to get the stack trace.

> Run with --info or --debug option to get more log output.
> Run with --scan to get full insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 0s

> gradle -q test

Evaluation of root project 'build-project-evaluate-events' succeeded
Evaluation of project ':project-a' succeeded

Evaluation of project ':project-b' FAILED

FAILURE: Build failed with an exception.

* Where:
Build file '/home/user/gradle/samples/project-b.gradle.kts' line: 1

* What went wrong:

broken

* Try:

> Run with --stacktrace option to get the stack trace.

> Run with --info or --debug option to get more log output.
> Run with --scan to get full insights.

*

Get more help at https://help.gradle.org

BUILD FAILED in 0s

You can also add a ProjectEvaluationListener to the Gradle to receive these events.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/ProjectEvaluationListener.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.invocation.Gradle.html

Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set
some default values or add behaviour before the task is made available in the build file.

The following example sets the srcDir property of each task as it is created.

Example 177. Setting of certain property to all tasks

build.gradle
tasks.whenTaskAdded { task ->
task.ext.sreDir = "src/main/java’
tasks.register('a")

println "source dir is $a.srcDir"

build.gradle.kts
tasks.whenTaskAdded {
extra["sreDir"] = "src/main/java"
val a by tasks.registering

println("source dir is ${a.get().extra["srcDir"1}")

Output of gradle -q a

> gradle -q a
source dir is src/main/java

You can also add an Action to a TaskContainer to receive these events.

Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated.

You can also add a TaskExecutionGraphListener to the TaskExecutionGraph to receive these events.

Task execution

You can receive a notification immediately before and after any task is executed.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Action.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

The following example logs the start and end of each task execution. Notice that the afterTask
notification is received regardless of whether the task completes successfully or fails with an
exception.

Example 178. Logging of start and end of each task execution

build.gradle
tasks.register('ok")

tasks.register('broken') {
dependsOn ok
dolLast {
throw new RuntimeException('broken')
}
}

gradle.taskGraph.beforeTask { Task task ->
println "executing $task ..."

}

gradle.taskGraph.afterTask { Task task, TaskState state ->
if (state.failure) {
println "FAILED"

}
else {

println "done"
}

build.gradle.kts
tasks.register("ok")

tasks.register("broken") {
dependsOn("ok")
dolLast {
throw RuntimeException("broken")
}
}

gradle.taskGraph.beforeTask {
println("executing $this ...")
}

gradle.taskGraph.afterTask {
if (state.failure != null) {
println("FAILED")
} else {
println("done")
}

Output of gradle -q broken

> gradle -q broken
executing task ':ok' ...
done

executing task ':broken' ...
FAILED

FAILURE: Build failed with an exception.

* Where:
Build file '/home/user/gradle/samples/build.gradle' line: 6

* What went wrong:
Execution failed for task ':broken'.

> broken

* Try:

> Run with --stacktrace option to get the stack trace.

> Run with --info or --debug option to get more log output.
> Run with --scan to get full insights.

*

Get more help at https://help.gradle.org

BUILD FAILED in 0s

> gradle -q broken
executing task ':ok' ...
done

executing task ':broken' ...
FAILED

FAILURE: Build failed with an exception.

* What went wrong:
Execution failed for task ':broken'.

> broken

* Try:

> Run with --stacktrace option to get the stack trace.

> Run with --info or --debug option to get more log output.
> Run with --scan to get full insights.

*

Get more help at https://help.gradle.org

BUILD FAILED in 0s

You can also use a TaskExecutionListener to the TaskExecutionGraph to receive these events.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskExecutionListener.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Logging

The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily
hidden by this. On the other hand you need relevant information for figuring out if things have
gone wrong. Gradle defines 6 log levels, as shown in Log levels. There are two Gradle-specific log
levels, in addition to the ones you might normally see. Those levels are QUIET and LIFECYCLE. The
latter is the default, and is used to report build progress.

Log levels
ERROR Error messages
QUIET Important information messages

WARNING Warning messages
LIFECYCLE Progress information messages
INFO Information messages

DEBUG Debug messages

The rich components of the console (build status and work in progress area) are
NOTE displayed regardless of the log level used. Before Gradle 4.0 those rich components
were only displayed at log level LIFECYCLE or below.

Choosing a log level

You can use the command line switches shown in Log level command-line options to choose
different log levels. You can also configure the log level using gradle.properties, see Gradle
properties. In Stacktrace command-line options you find the command line switches which affect
stacktrace logging.

Table 5. Log level command-line options

Option Outputs Log Levels

no logging options LIFECYCLE and higher

-qor --quiet QUIET and higher

-Wor --warn WARN and higher

-i or --info INFO and higher

-d or --debug DEBUG and higher (that is, all log messages)

CAUTION The DEBUG log level can expose security sensitive information to the console.

Stacktrace command-line options

-s or --stacktrace

Truncated stacktraces are printed. We recommend this over full stacktraces. Groovy full
stacktraces are extremely verbose (Due to the underlying dynamic invocation mechanisms. Yet
they usually do not contain relevant information for what has gone wrong in your code.) This
option renders stacktraces for deprecation warnings.

-Sor --full-stacktrace

The full stacktraces are printed out. This option renders stacktraces for deprecation warnings.

<No stacktrace options>

No stacktraces are printed to the console in case of a build error (e.g. a compile error). Only in
case of internal exceptions will stacktraces be printed. If the DEBUG log level is chosen, truncated
stacktraces are always printed.

Logging Sensitive Information

Running Gradle with the DEBUG log level can expose security sensitive information to the console
and build log.

This information can include but is not limited to:

* Environment variables

* Private repository credentials

* Build cache & Gradle Enterprise Credentials

* Plugin Portal publishing credentials
The DEBUG log level should not be used when running on public Continuous Integration services.
Build logs for public Continuous Integration services are world-viewable and can expose this
sensitive information. Depending upon your organization’s threat model, logging sensitive

credentials in private CI may also be a vulnerability. Please discuss this with your organization’s
security team.

Some CI providers attempt to scrub sensitive credentials from logs; however, this will be imperfect
and usually only scrubs exact-matches of pre-configured secrets.

If you believe a Gradle Plugin may be exposing sensitive information, please contact
security@gradle.com for disclosure assistance.

Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle
redirects anything written to standard output to its logging system at the QUIET log level.

https://plugins.gradle.org/
mailto:security@gradle.com

Example 179. Using stdout to write log messages

build.gradle

println "A message which is logged at QUIET level'

build.gradle.kts

println("A message which is logged at QUIET level")

Gradle also provides a logger property to a build script, which is an instance of Logger. This
interface extends the SLF4] Logger interface and adds a few Gradle specific methods to it. Below is
an example of how this is used in the build script:

Example 180. Writing your own log messages

build.gradle

logger.quiet('An info log message which is always logged.')
logger.error('An error log message.')

logger.warn('A warning log message.')

logger.lifecycle('A lifecycle info log message.')

logger.info('An info log message.')

logger.debug('A debug log message.')

logger.trace('A trace log message.') // Gradle never logs TRACE level logs

build.gradle.kts

logger.quiet("An info log message which is always logged.")
logger.error("An error log message.")

logger.warn("A warning log message.")

logger.lifecycle("A lifecycle info log message.")

logger.info("An info log message.")

logger.debug("A debug log message.")

logger.trace("A trace log message.") // Gradle never logs TRACE level logs

Use the typical SLF4] pattern to replace a placeholder with an actual value as part of the log
message.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/logging/Logger.html
https://www.slf4j.org/manual.html#typical_usage

Example 181. Writing a log message with placeholder

build.gradle

logger.info('A {} log message', 'info')

build.gradle.kts

logger.info("A {} log message", "info")

You can also hook into Gradle’s logging system from within other classes used in the build (classes
from the buildSrc directory for example). Simply use an SLF4] logger. You can use this logger the
same way as you use the provided logger in the build script.

Example 182. Using SLF4] to write log messages

build.gradle
import org.s1f4j.LoggerFactory

def slf4jlogger = LoggerFactory.getlLogger('some-logger")
slf4jLogger.info('An info log message logged using SLF4j")

build.gradle.kts
import org.s1f4j.LoggerFactory

val slf4jlogger = LoggerFactory.getLogger("some-logger")
slf4jlogger.info("An info log message logged using SLF4j")

Logging from external tools and libraries

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their
logging output into the Gradle logging system. There is a 1:1 mapping from the Ant/Ivy log levels to
the Gradle log levels, except the Ant/Ivy TRACE log level, which is mapped to Gradle DEBUG log level.
This means the default Gradle log level will not show any Ant/Ivy output unless it is an error or a
warning.

There are many tools out there which still use standard output for logging. By default, Gradle
redirects standard output to the QUIET log level and standard error to the ERROR level. This behavior

is configurable. The project object provides a LoggingManager, which allows you to change the log
levels that standard out or error are redirected to when your build script is evaluated.

Example 183. Configuring standard output capture

build.gradle

logging.captureStandardOutput LoglLevel.INFO
println 'A message which is logged at INFO level'

build.gradle.kts

logging.captureStandardOutput(LogLevel.INFO)
println("A message which is logged at INFO level")

To change the log level for standard out or error during task execution, tasks also provide a
LoggingManager.

Example 184. Configuring standard output capture for a task

build.gradle

tasks.register('logInfo') {
logging.captureStandardOutput Loglevel.INFO
doFirst {
println 'A task message which is logged at INFO level'

}

build.gradle.kts

tasks.register("logInfo") {
logging.captureStandardOutput(LoglLevel.INFO)
doFirst {
println("A task message which is logged at INFO level")

}

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j
logging toolkits. Any log messages which your build classes write using these logging toolkits will be

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/logging/LoggingManager.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/logging/LoggingManager.html

redirected to Gradle’s logging system.

Changing what Gradle logs

You can replace much of Gradle’s logging UI with your own. You might do this, for example, if you
want to customize the Ul in some way - to log more or less information, or to change the formatting.
You replace the logging using the Gradle.uselLogger(java.lang.Object) method. This is accessible
from a build script, or an init script, or via the embedding API. Note that this completely disables
Gradle’s default output. Below is an example init script which changes how task execution and
build completion is logged.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)

Example 185. Customizing what Gradle logs

customLogger.init.gradle
uselLogger (new CustomEventLogger())

class CustomEventLogger extends BuildAdapter implements TaskExecutionlListener

{
void beforeExecute(Task task) {
println "[$task.name]"
}
void afterExecute(Task task, TaskState state) {
println()
}
void buildFinished(BuildResult result) {
println 'build completed'
if (result.failure != null) {
result.failure.printStackTrace()
}
}
}

customLogger.init.gradle.kts
uselLogger (CustomEventLogger())
class CustomEventLogger() : BuildAdapter(), TaskExecutionListener {

override fun beforeExecute(task: Task) {
println("[${task.name}]")
}

override fun afterExecute(task: Task, state: TaskState) {
println()

}

override fun buildFinished(result: BuildResult) {
println("build completed")
if (result.failure !'= null) {
(result.failure as Throwable).printStackTrace()

}

$ gradle -I customlLogger.init.gradle build

> Task :compile
[compile]
compiling source

> Task :testCompile
[testCompile]
compiling test source

> Task :test
[test]
running unit tests

> Task :build
[build]

build completed
3 actionable tasks: 3 executed

$ gradle -I customlLogger.init.gradle.kts build

> Task :compile
[compile]
compiling source

> Task :testCompile
[testCompile]
compiling test source

> Task :test
[test]
running unit tests

> Task :build
[build]

build completed
3 actionable tasks: 3 executed

Your logger can implement any of the listener interfaces listed below. When you register a logger,
only the logging for the interfaces that it implements is replaced. Logging for the other interfaces is

left untouched. You can find out more about the listener interfaces in Build lifecycle events.

* BuildListener

* ProjectEvaluationListener

* TaskExecutionGraphListener
» TaskExecutionListener

* TaskActionListener

Structuring and Building a Software Component with
Gradle

If you are building a software of a certain size with Gradle, you have two basic structuring
mechanisms. First, this chapter describes how to structure your software project using a Gradle
multi-project. In this documentation, we consider this to be a single software component which is
structured internally. Second, you may regard your software as a software product that is composed
of multiple software components where each component is represented by a separate Gradle build.
This is described in detail in the chapter on structuring software products with Gradle

Creating a multi-project build

A multi-project build in Gradle consists of one root project, and one or more subprojects.

A basic multi-project build contains a root project and a single subproject. This is a structure of a
multi-project build that contains a single subproject called app:

Example 186. Basic multi-project build

Project layout

—— app
| ...
| L—— build.gradle
L—— settings.gradle

Project layout

—— app
I
| L—— build.gradle.kts
L—— settings.gradle.kts

https://docs.gradle.org/7.3.2/javadoc/org/gradle/BuildListener.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/ProjectEvaluationListener.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskExecutionListener.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskActionListener.html
structuring_software_products.pdf#structure_large_projects

This is the recommended project structure for starting any Gradle project. The build init plugin also
generates skeleton projects that follow this structure - a root project with a single subproject.

Note that the root project does not have a Gradle build file, only a settings file that defines the
subprojects to include.

settings.gradle

rootProject.name
include 'app'

'basic-multiproject’

settings.gradle.kts

rootProject.name = "basic-multiproject"

include("app")

In this case, Gradle will look for a build file in the app directory.

We can view the structure of a multi-project build by running the gradle projects command.

> gradle -q projects

Root project 'basic-multiproject'’
\--- Project ':app'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :app:tasks

Let’s say the app subproject is a Java application by applying the application plugin and configuring
the main class:

app/build.gradle

plugins {
id 'application’

}

application {
mainClass = 'com.example.Hello'

}

app/build.gradle.kts

plugins {
id("application")
}

application {

mainClass.set("com.example.Hello")

}

app/src/main/java/com/example/Hello.java
package com.example;
public class Hello {
public static void main(String[] args) {

System.out.println("Hello, world!");
}

We can then run the application by executing the run task from the application plugin.

> gradle -q run
Hello, world!

And that’s how simple it is to create a basic multi-project build.

Adding subprojects

Let’s say we want to add another subproject called 1ib to the previously created project. All we
need to do is add another include statement in the root settings file:

settings.gradle

rootProject.name = 'basic-multiproject’
include 'app'
include 'lib’

settings.gradle.kts

rootProject.name = "basic-multiproject”
include("app")
include("1ib")

Gradle will then look for the build file for the new subproject in the 1ib/ subdirectory of the
project:

Example 187. Multi-project build with two subprojects

Project layout

—— app
I
| L—— build.gradle
—— 1ib

| ...
| L—— build.gradle
L—— settings.gradle

Project layout

—— app
[
| L—— build.gradle.kts
F—— 1ib

| e
| L—— build.gradle.kts
L—— settings.gradle.kts

Next, will explore how build logic can be shared between subprojects and how subprojects can
depend on one another.

Naming recommendations

As your project grows, naming and consistency gets increasingly more important. To keep your
builds maintainable, we recommend the following:

1. Keep default project names for subprojects: It is possible to configure custom project names in
the settings file. However, it’s an unnecessary extra effort for the developers to keep track of
which project belongs to what folders.

2. Use kebab case formatting for all project names: A kebab case formatting is when all letters
lowercase, words separated with a dash (“’) character (e.g.kebab-case-formatting). This is
already the de-facto pattern for many large projects. Besides, Gradle supports name
abbreviation for kebab case names.

3. Define the root project name in the settings file: The "rootProject.name” effectively assigns a
name to the build as a whole, which is used in reports like build scans. If the root project name
is not set, the name will be the container directory name, which can be unstable (i.e. you can
check out your project to any directory).

Sharing Build Logic between Subprojects

Convention Plugins

Usually, subprojects in a multi-project build share some common traits. For example, several
subprojects may contain code in a particular programming language while another subproject may
be dedicated for documentation. Code quality rules apply to all of the code subprojects but not the
documentation subproject. At the same time, the subprojects that share one common trait may
serve different purposes - they may produce different artifact types that further differentiate them,
for example:

* public libraries - libraries that are published to some repository

internal libraries - libraries on which other subprojects depend on internally within the project
* command line applications - applications with specific packaging requirements
* web services - applications with specific packaging requirements that are different from above

* etc
Some other code subprojects may be dedicated for testing purposes and so on.

The traits above identify a subproject’s type. Or in other words, a subproject’s type tells us what
traits the project has.

Gradle’s recommended way of organizing build logic is to use its plugin system. A plugin should
define the type of a subproject. In fact, Gradle core plugins are modeled in the same way - for
example, the Java Plugin configures a generic java project, while Java Library Plugin internally
applies the Java Plugin and configures aspects specific to a Java library in addition. Similarly, the

Application Plugin applies and configures the Java Plugin and the Distribution Plugin.

You can compose custom build logic by applying and configuring both core and external plugins
and create custom plugins that define new project types and configure conventions specific to your
project or organization. For each of the example traits from the beginning of this section, we can
write a plugin that encapsulates the logic common to the subproject of a given type.

We recommend putting source code and tests for the convention plugins in the special buildSrc
directory in the root directory of the project. For more information about buildSrc, consult Using
buildSrc to organize build logic.

Have a look at the sample that demonstrates a multi-project build that models the build logic using
convention plugins.

Another, more complex and real-world example of a multi-project build that composes build logic
using convention plugins is the build of the Gradle Build Tool itself.

Cross project configuration

Another, discouraged, way to share build logic between subproject is cross project configuration via
the subprojects {} and allprojects {} DSL constructs. With cross configuration, build logic can be
injected into a subproject and this is not obvious when looking at the subproject’s build script,
making it harder to understand the logic of a particular subproject. In the long run, cross
configuration usually grows complex with more and more conditional logic and a higher
maintenance burden. Cross configuration can also introduce configuration-time coupling between
projects, which can prevent optimizations like configuration-on-demand from working properly.

There are two most common uses of cross-configuration that can be better modelled using
convention plugins:

» Applying plugins or other configuration to subprojects of certain type. Often the cross-
configuration section will do if subproject is of type X, then configure Y. This is equivalent
to applying X-conventions plugin directly to a subproject.

» Extracting information from subprojects of a certain type. This use case can be modelled using
outgoing configuration variants.

Fine Tuning the Project Layout

A multi-project build is a build where you build more than one project during a single execution of
Gradle. You have to declare the projects taking part in the multi-project build in the settings file.

Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree
represents a project. A project has a path which denotes the position of the project in the multi-
project build tree. In most cases the project path is consistent with the physical location of the
project in the file system. However, this behavior is configurable. The project tree is created in the
settings.gradle file. The location of the settings file is also the location of the root project.

../samples/sample_convention_plugins.html
../samples/sample_convention_plugins.html
https://github.com/gradle/gradle

Building the tree
In the settings file you can use the include method to build the project tree.

Example 188. Project layout

settings.gradle

include 'project1', 'project2:child', 'project3:childl’

settings.gradle.kts

include("project1", "project2:child", "project3:child1")

The include method takes project paths as arguments. The project path is assumed to be equal to
the relative physical file system path. For example, a path 'services:api' is mapped by default to a
folder 'services/api' (relative from the project root). You only need to specify the leaves of the tree.
This means that the inclusion of the path 'services:hotels:api' will result in creating 3 projects:
'services', 'services:hotels' and 'services:hotels:api'. More examples of how to work with the project
path can be found in the DSL documentation of Settings.include(java.lang.String[]).

Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called project descriptors. You can
modify these descriptors in the settings file at any time. To access a descriptor you can do:

Example 189. Lookup of elements of the project tree

settings.gradle
include('project-a')

println rootProject.name
println project(':project-a").name

settings.gradle.kts

println(rootProject.name)
println(project(":project-a").name)

Using this descriptor you can change the name, project directory and build file of a project.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

Example 190. Modification of elements of the project tree

settings.gradle

rootProject.name = 'main’

include('project-a')

project(':project-a').projectDir = file('my-project-a')
project(':project-a').buildFileName = 'project-a.gradle’

settings.gradle.kts

rootProject.name = "main"
project(":project-a").projectDir = file("my-project-a")
project(":project-a").buildFileName = "project-a.gradle"”

Look at the ProjectDescriptor class in the API documentation for more information.

Declaring Dependencies between Subprojects

Project dependencies

What if one project needs the jar produced by another project on its compile classpath? What if it
also requires the transitive dependencies of the other project? Obviously this is a very common use
case for Java multi-project builds. As mentioned in Project dependencies, Gradle offers project
dependencies for this.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

Example 191. Project dependencies

Project layout

—— buildSrc
|
—— api

| —— sre

| | ...

| L—— build.gradle

—— services

L—— person-service

|

| —— src

| | ...

| L—— build.gradle
—— shared

| F—— src

| | ...

| L—— build.gradle
L—— settings.gradle

Project layout

—— buildSrc
|
—— api

| F— src

| | —_
| L—— build.gradle.kts

—— services

| L—— person-service

| F—— src

| | ...

| L—— build.gradle.kts
—— shared

| F— src

! \ ...

| L—— build.gradle.kts
L—— settings.gradle.kts

We have the projects shared, api and person-service. The person-service project has a dependency
on the other two projects. The api project has a dependency on the shared project. It has no build
script and gets nothing injected by another build script. We use the : separator to define a project

path. Consult the DSL documentation of Settings.include(java.lang.String[]) for more information
about defining project paths.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

settings.gradle

rootProject.name = 'dependencies-java'
include 'api', 'shared', 'services:person-service'

buildSrc/src/main/groovy/myproject.java-conventions.gradle

plugins {
id "java'

}

group = 'com.example'
version = '1.0'

repositories {
mavenCentral()

}

dependencies {
testImplementation "junit:junit:4.13"

}

api/build.gradle

plugins {
id 'myproject.java-conventions'

}

dependencies {
implementation project(':shared")

}

shared/build.gradle

plugins {
id 'myproject.java-conventions'

}

services/person-service/build.gradle

plugins {
id 'myproject.java-conventions'

}

dependencies {
implementation project(':shared")
implementation project(':api')

settings.gradle.kts

rootProject.name = "dependencies-java"
include("api", "shared", "services:person-service")

buildSrc/src/main/kotlin/myproject.java-conventions.gradle.kts

plugins {
id("java")
¥

group = "com.example"
version = "1.0"

repositories {
mavenCentral()

}

dependencies {
testImplementation("junit:junit:4.13")

}

api/build.gradle.kts

plugins {
id("myproject.java-conventions")

}

dependencies {
implementation(project(":shared"))

}

shared/build.gradle.kts

plugins {
id("myproject.java-conventions")

}

services/person-service/build.gradle.kts

plugins {
id("myproject.java-conventions")

}

dependencies {
implementation(project(":shared"))
implementation(project(":api"))

Shared build logic is extracted into a convention plugin that is applied in the subprojects’ build
scripts that also define project dependencies. A project dependency is a special form of an
execution dependency. It causes the other project to be built first and adds the jar with the classes
of the other project to the classpath. It also adds the dependencies of the other project to the
classpath. You can trigger a gradle :api:compile. First the shared project is built and then the api
project is built. Project dependencies enable partial multi-project builds.

Depending on artifacts produced by another project

Project dependencies model dependencies between modules. Effectively, you are saying that you
depend on the main output of another project. In a Java-based project that’s usually a JAR file.

Sometimes you may want to depend on an output produced by another task. In turn, you’ll want to
make sure that the task is executed beforehand to produce that very output. Declaring a task
dependency from one project to another is a poor way to model this kind of relationship and
introduces unnecessary coupling. The recommended way to model such a dependency is to
produce the output, mark it as an "outgoing" artifact or add it to the output of the main source set
which you can depend on in the consuming project.

Let’s say you are working in a multi-project build with the two subprojects producer and consumer.
The subproject producer defines a task named buildInfo that generates a properties file containing
build information e.g. the project version. You can then map the task provider to its output file and
Gradle will automatically establish a task dependency.

Example 192. Task generating a property file containing build information

build.gradle

plugins {
id 'java-library'

}

version = '1.0'

def buildInfo = tasks.register("buildInfo", BuildInfo) {

version = project.version

outputFile = layout.buildDirectory.file('generated-resources/build-
info.properties')

}

sourceSets {
main {
output.dir(buildInfo.map { it.outputFile.asFile.get().parentFile })
}

build.gradle.kts

plugins {
id("java-library")
}

version = "1.0"

val buildInfo by tasks.registering(BuildInfo::class) {
version.set(project.version.toString())
outputFile.set(layout.buildDirectory.file("generated-resources/build-
info.properties"))

}

sourceSets {
main {
output.dir(buildInfo.map { it.outputFile.asFile.get().parentFile })
}

buildSrc/src/main/java/BuildInfo.java

public abstract class BuildInfo extends DefaultTask {

public abstract Property<String> getVersion();

public abstract RegularFileProperty getOutputFile();

public void create() throws IOException {
Properties prop = new Properties();
prop.setProperty("version", getVersion().get());
try (OutputStream output = new FileOutputStream(getOutputFile().getAsFile

().get())) {
prop.store(output, null);

}

The consuming project is supposed to be able to read the properties file at runtime. Declaring a
project dependency on the producing project takes care of creating the properties beforehand and
making it available to the runtime classpath.

Example 193. Declaring a project dependency on the project producing the properties file

build.gradle

dependencies {
runtimeOnly project(':producer")

}

build.gradle.kts

dependencies {
runtimeOnly(project(":producer"))

}

In the example above, the consumer now declares a dependency on the outputs of the producer
project.

Depending on the main output artifact from another project is only one example. Gradle has one of
the most powerful dependency management engines that allows you to share arbitrary artifacts

between projects and let Gradle build them on demand. For more details see the section on sharing
outputs between projects.

Configuration time and execution time

Build phases describes the phases of every Gradle build. Let’s zoom into the configuration and
execution phases of a multi-project build. Configuration here means evaluating the build script file
of a project, which includes downloading all plugins and build script dependencies. By default, the
configuration of all projects happens before any task is executed. This means that when a single
task, from a single project is requested, all projects of a multi-project build are configured first. The
reason every project needs to be configured is to support the flexibility of accessing and changing
any part of the Gradle project model.

Parallel project execution

With more and more CPU cores available on developer desktops and CI servers, it is important that
Gradle is able to fully utilise these processing resources. More specifically, parallel execution
attempts to:

* Reduce total build time for a multi-project build where execution is IO bound or otherwise does
not consume all available CPU resources.

» Provide faster feedback for execution of small projects without awaiting completion of other
projects.

Although Gradle already offers parallel test execution via Test.setMaxParallelForks(int) the feature
described in this section is parallel execution at a project level.

Parallel project execution allows the separate projects in a decoupled multi-project build to be
executed in parallel (see also Decoupled projects). While parallel execution does not strictly require
decoupling at configuration time, the long-term goal is to provide a powerful set of features that
will be available for fully decoupled projects. Such features include:

» Configuration on-demand.

» Configuration of projects in parallel.

* Re-use of configuration for unchanged projects.
* Project-level up-to-date checks.

» Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use parallel mode. You can use
the --parallel command line argument or configure your build environment (Gradle properties).
Unless you provide a specific number of parallel threads, Gradle attempts to choose the right
number based on available CPU cores. Every parallel worker exclusively owns a given project while
executing a task. Task dependencies are fully supported and parallel workers will start executing
upstream tasks first. Bear in mind that the alphabetical ordering of decoupled tasks, as can be seen
during sequential execution, is not guaranteed in parallel mode. In other words, in parallel mode
tasks will run as soon as their dependencies complete and a task worker is available to run them,
which may be earlier than they would start during a sequential build. You should make sure that

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-

task dependencies and task inputs/outputs are declared correctly to avoid ordering issues.

Decoupled Projects

Gradle allows any project to access any other project during both the configuration and execution
phases. While this provides a great deal of power and flexibility to the build author, it also limits
the flexibility that Gradle has when building those projects. For instance, this effectively prevents
Gradle from correctly building multiple projects in parallel, configuring only a subset of projects, or
from substituting a pre-built artifact in place of a project dependency.

Two projects are said to be decoupled if they do not directly access each other’s project model.
Decoupled projects may only interact in terms of declared dependencies: project dependencies
and/or task dependencies. Any other form of project interaction (i.e. by modifying another project
object or by reading a value from another project object) causes the projects to be coupled. The
consequence of coupling during the configuration phase is that if gradle is invoked with the
‘configuration on demand' option, the result of the build can be flawed in several ways. The
consequence of coupling during execution phase is that if gradle is invoked with the parallel option,
one project task runs too late to influence a task of a project building in parallel. Gradle does not
attempt to detect coupling and warn the user, as there are too many possibilities to introduce
coupling.

A very common way for projects to be coupled is by using configuration injection. It may not be
immediately apparent, but using key Gradle features like the allprojects and subprojects keywords
automatically cause your projects to be coupled. This is because these keywords are used in a
build.gradle file, which defines a project. Often this is a “root project” that does nothing more than
define common configuration, but as far as Gradle is concerned this root project is still a fully-
fledged project, and by using allprojects that project is effectively coupled to all other projects.
Coupling of the root project to subprojects does not impact configuration on-demand, but using the
allprojects and subprojects in any subproject’s build.gradle file will have an impact.

This means that using any form of shared build script logic or configuration injection (allprojects,
subprojects, etc.) will cause your projects to be coupled. As we extend the concept of project
decoupling and provide features that take advantage of decoupled projects, we will also introduce
new features to help you to solve common use cases (like configuration injection) without causing
your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel
and 'configuration on demand' options, follow these recommendations:

* Avoid a subproject’s build script referencing other subprojects; preferring cross configuration
from the root project.

» Avoid changing the configuration of other projects at execution time.

Configuration on demand

The Configuration injection feature and access to the complete project model are possible because
every project is configured before the execution phase. Yet, this approach may not be the most
efficient in a very large multi-project build. There are Gradle builds with a hierarchy of hundreds of
subprojects. The configuration time of huge multi-project builds may become noticeable.

Configuration on demand attempts to configure only projects that are relevant for requested tasks,
i.e. it only executes the build script file of projects that are participating in the build. This way, the
configuration time of a large multi-project build can be reduced.

The configuration on demand feature is incubating, so not every build is guaranteed to work
correctly. The feature should work very well for multi-project builds that have decoupled projects.
In “configuration on demand” mode, projects are configured as follows:

» The root project is always configured.

* The project in the directory where the build is executed is also configured, but only when
Gradle is executed without any tasks. This way the default tasks behave correctly when projects
are configured on demand.

* The standard project dependencies are supported and makes relevant projects configured. If
project A has a compile dependency on project B then building A causes configuration of both
projects.

* The task dependencies declared via task path are supported and cause relevant projects to be
configured. Example: someTask.dependsOn(":some-other-project:someOtherTask")

* A task requested via task path from the command line (or Tooling API) causes the relevant
project to be configured. For example, building 'project-a:project-b:someTask' causes
configuration of project-b.

To configure on demand with every build run see Gradle properties. To configure on demand just
for a given build, see command-line performance-oriented options.

Organizing Gradle Projects

Source code and build logic of every software project should be organized in a meaningful way.
This page lays out the best practices that lead to readable, maintainable projects. The following
sections also touch on common problems and how to avoid them.

Separate language-specific source files

Gradle’s language plugins establish conventions for discovering and compiling source code. For
example, a project applying the Java plugin will automatically compile the code in the directory
src/main/java. Other language plugins follow the same pattern. The last portion of the directory
path usually indicates the expected language of the source files.

Some compilers are capable of cross-compiling multiple languages in the same source directory.
The Groovy compiler can handle the scenario of mixing Java and Groovy source files located in
src/main/groovy. Gradle recommends that you place sources in directories according to their
language, because builds are more performant and both the user and build can make stronger
assumptions.

The following source tree contains Java and Kotlin source files. Java source files live in
src/main/java, whereas Kotlin source files live in src/main/kot1in.

—— build.gradle

—— java
| l—— HelloWor1ld.java
L—— kotlin

L—— Utils.kt

—— build.gradle.kts

—— java
| L—— HelloWor1ld.java
L—— kotlin

L—— Utils.kt

Separate source files per test type

It’s very common that a project defines and executes different types of tests e.g. unit tests,
integration tests, functional tests or smoke tests. Optimally, the test source code for each test type
should be stored in dedicated source directories. Separated test source code has a positive impact
on maintainability and separation of concerns as you can run test types independent from each
other.

Have a look at the sample that demonstrates how a separate integration tests configuration can be
added to a Java-based project.

Use standard conventions as much as possible

All Gradle core plugins follow the software engineering paradigm convention over configuration.
The plugin logic provides users with sensible defaults and standards, the conventions, in a certain
context. Let’s take the Java plugin as an example.

* It defines the directory src/main/java as the default source directory for compilation.

* The output directory for compiled source code and other artifacts (like the JAR file) is build.
By sticking to the default conventions, new developers to the project immediately know how to find
their way around. While those conventions can be reconfigured, it makes it harder to build script

users and authors to manage the build logic and its outcome. Try to stick to the default conventions
as much as possible except if you need to adapt to the layout of a legacy project. Refer to the

../samples/sample_jvm_multi_project_with_additional_test_types.html
https://en.wikipedia.org/wiki/Convention_over_configuration

reference page of the relevant plugin to learn about its default conventions.

Always define a settings file

Gradle tries to locate a settings.gradle (Groovy DSL) or a settings.gradle.kts (Kotlin DSL) file with
every invocation of the build. For that purpose, the runtime walks the hierarchy of the directory
tree up to the root directory. The algorithm stops searching as soon as it finds the settings file.

Always add a settings.gradle to the root directory of your build to avoid the initial performance
impact. This recommendation applies to single project builds as well as multi-project builds. The
file can either be empty or define the desired name of the project.

A typical Gradle project with a settings file look as such:

—— settings.gradle

—— subproject-one

| L—— build.gradle

L—— subproject-two
L—— build.gradle

—— settings.gradle.kts
—— subproject-one
| L—— build.gradle.kts
L—— subproject-two

L—— build.gradle.kts

Use buildSrc to abstract imperative logic

Complex build logic is usually a good candidate for being encapsulated either as custom task or
binary plugin. Custom task and plugin implementations should not live in the build script. It is very
convenient to use buildSrc for that purpose as long as the code does not need to be shared among
multiple, independent projects.

The directory buildSrc is treated as an included build. Upon discovery of the directory, Gradle
automatically compiles and tests this code and puts it in the classpath of your build script. For
multi-project builds there can be only one buildSrc directory, which has to sit in the root project
directory. buildSrc should be preferred over script plugins as it is easier to maintain, refactor and
test the code.

buildSrc uses the same source code conventions applicable to Java and Groovy projects. It also
provides direct access to the Gradle API. Additional dependencies can be declared in a dedicated

build.gradle under buildSrc

Example 194. Custom buildSrc build script

buildSrc/build.gradle

repositories {
mavenCentral()

}

dependencies {
testImplementation 'junit:junit:4.13'
}

buildSrc/build.gradle.kts

repositories {
mavenCentral()

}

dependencies {
testImplementation("junit:junit:4.13")
}

A typical project including buildSrc has the following layout. Any code under buildSrc should use a
package similar to application code. Optionally, the buildSrc directory can host a build script if
additional configuration is needed (e.g. to apply plugins or to declare dependencies).

—— buildSrc
—— build.gradle

—— Deploy.java

|
|
| L—— enterprise
|
| L—— DeploymentPlugin.java

|
|
|
|
|
|
|
|
|
|
|
| L—— enterprise
| L—— DeploymentPluginTest.java
—— settings.gradle
—— subprojecto-one
| L—— build.gradle.kts
L—— subproject-two

L—— build.gradle.kts

—— buildSrc
—— build.gradle.kts

—— Deploy.java

|
|
| L—— enterprise
|
| L—— DeploymentPlugin.java

|
|
|
|
|
|
|
|
|
|
|
| L—— enterprise
| L—— DeploymentPluginTest.java
—— settings.gradle.kts
—— subproject-one
| L—— build.gradle.kts
L—— subproject-two

L—— build.gradle.kts

A change in buildSrc causes the whole project to become out-of-date. Thus, when
making small incremental changes, the --no-rebuild command-line option is often
helpful to get faster feedback. Remember to run a full build regularly or at least
when you’re done, though.

NOTE

Declare properties in gradle.properties file

In Gradle, properties can be defined in the build script, in a gradle.properties file or as parameters
on the command line.

It’s common to declare properties on the command line for ad-hoc scenarios. For example you may
want to pass in a specific property value to control runtime behavior just for this one invocation of
the build. Properties in a build script can easily become a maintenance headache and convolute the
build script logic. The gradle.properties helps with keeping properties separate from the build
script and should be explored as viable option. It’s a good location for placing properties that
control the build environment.

A typical project setup places the gradle.properties file in the root directory of the build.
Alternatively, the file can also live in the GRADLE_USER_HOME directory if you want to it apply to all
builds on your machine.

—— gradle.properties

L—— settings.gradle

—— subproject-a

| L—— build.gradle

L—— subproject-b
L—— build.gradle

—— gradle.properties
L—— settings.gradle.kts
—— subproject-a
| L—— build.gradle.kts
L—— subproject-b

L—— build.gradle.kts

Avoid overlapping task outputs

Tasks should define inputs and outputs to get the performance benefits of incremental build
functionality. When declaring the outputs of a task, make sure that the directory for writing
outputs is unique among all the tasks in your project.

Intermingling or overwriting output files produced by different tasks compromises up-to-date
checking causing slower builds. In turn, these filesystem changes may prevent Gradle’s build cache
from properly identifying and caching what would otherwise be cacheable tasks.

Standardizing builds with a custom Gradle distribution

Often enterprises want to standardize the build platform for all projects in the organization by
defining common conventions or rules. You can achieve that with the help of initialization scripts.
Initialization scripts make it extremely easy to apply build logic across all projects on a single
machine. For example, to declare a in-house repository and its credentials.

There are some drawbacks to the approach. First of all, you will have to communicate the setup
process across all developers in the company. Furthermore, updating the initialization script logic
uniformly can prove challenging.

Custom Gradle distributions are a practical solution to this very problem. A custom Gradle
distribution is comprised of the standard Gradle distribution plus one or many custom initialization
scripts. The initialization scripts come bundled with the distribution and are applied every time the
build is run. Developers only need to point their checked-in Wrapper files to the URL of the custom
Gradle distribution.

Custom Gradle distributions may also contain a gradle.properties file in the root of the distribution,
which provide an organization-wide set of properties that control the build environment.

The following steps are typical for creating a custom Gradle distribution:

. Implement logic for downloading and repackaging a Gradle distribution.

. Define one or many initialization scripts with the desired logic.

1
2
3. Bundle the initialization scripts with the Gradle distribution.
4. Upload the Gradle distribution archive to a HTTP server.

5

. Change the Wrapper files of all projects to point to the URL of the custom Gradle distribution.

Example 195. Building a custom Gradle distribution

build.gradle

plugins {
id 'base'

}

// This 1is defined in buildSrc
import org.gradle.distribution.DownloadGradle

version = '0.1"

tasks.register('downloadGradle', DownloadGradle) {
description = 'Downloads the Gradle distribution with a given version.'
gradleVersion = '4.6'

}

tasks.register('createCustomGradleDistribution', Zip) {
description = 'Builds custom Gradle distribution and bundles
initialization scripts.’

dependsOn downloadGradle

def projectVersion = project.version

archiveFileName = downloadGradle.gradleVersion.map { gradleVersion ->
"mycompany-gradle-${gradleVersion}-${projectVersion}-bin.zip"

}

from zipTree(downloadGradle.destinationFile)

from('src/init.d") {
into "${downloadGradle.distributionNameBase.get()}/init.d"
}

Best practices for authoring maintainable builds

Gradle has a rich API with several approaches to creating build logic. The associated flexibility can
easily lead to unnecessarily complex builds with custom code commonly added directly to build
scripts. In this chapter, we present several best practices that will help you develop expressive and
maintainable builds that are easy to use.

The third-party Gradle lint plugin helps with enforcing a desired code style in build

NOTE
scripts if that’s something that would interest you.

https://github.com/nebula-plugins/gradle-lint-plugin

Avoid using imperative logic in scripts

The Gradle runtime does not enforce a specific style for build logic. For that very reason, it’s easy to
end up with a build script that mixes declarative DSL elements with imperative, procedural code.
Let’s talk about some concrete examples.

* Declarative code: Built-in, language-agnostic DSL elements (e.g. Project.dependencies{} or
Project.repositories{}) or DSLs exposed by plugins

» Imperative code: Conditional logic or very complex task action implementations

The end goal of every build script should be to only contain declarative language elements which
makes the code easier to understand and maintain. Imperative logic should live in binary plugins
and which in turn is applied to the build script. As a side product, you automatically enable your
team to reuse the plugin logic in other projects if you publish the artifact to a binary repository.

The following sample build shows a negative example of using conditional logic directly in the
build script. While this code snippet is small, it is easy to imagine a full-blown build script using
numerous procedural statements and the impact it would have on readability and maintainability.
By moving the code into a class, it can also be tested individually.

Example 196. A build script using conditional logic to create a task

build.gradle

if (project.findProperty('releaseEngineer') != null) {
tasks.register('release’) {
dolast {
logger.quiet 'Releasing to production...'

// release the artifact to production

build.gradle.kts

if (project.findProperty("releaseEngineer") != null) {
tasks.register("release") {
dolLast {

logger.quiet("Releasing to production...")

// release the artifact to production

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
../samples/sample_publishing_convention_plugins.html

Let’s compare the build script with the same logic implemented as a binary plugin. The code might
look more involved at first but clearly looks more like typical application code. This particular
plugin class lives in the buildSrc directory which makes it available to the build script
automatically.

Example 197. A binary plugin implementing imperative logic

ReleasePlugin.java
package com.enterprise;

import org.gradle.api.Action;

import org.gradle.api.Plugin;

import org.gradle.api.Project;

import org.gradle.api.Task;

import org.gradle.api.tasks.TaskProvider;

public class ReleasePlugin implements Plugin<Project> {

private static final String RELEASE_ENG_ROLE_PROP = "releaseEngineer";
private static final String RELEASE_TASK_NAME = "release";

public void apply(Project project) {
if (project.findProperty(RELEASE_ENG_ROLE_PROP) != null) {
Task task = project.getTasks().create(RELEASE_TASK_NAME);
task.dolLast(new Action<Task>() {

public void execute(Task task) {
task.getLogger().quiet("Releasing to production...");

// release the artifact to production

b

Now that the build logic has been translated into a plugin, you can apply it in the build script. The
build script has been shrunk from 8 lines of code to a one liner.

Example 198. A build script applying a plugin that encapsulates imperative logic

build.gradle

plugins {
id 'com.enterprise.release’

}

build.gradle.kts

plugins {
id("com.enterprise.release")

}

Avoid using internal Gradle APIs

Use of Gradle internal APIs in plugins and build scripts has the potential to break builds when
either Gradle or plugins change.

The following packages are listed in the Gradle public API definition, with the exception of any
subpackage with internal in the name:

https://github.com/gradle/gradle/blob/180b9d3fa84b91768364c603380e82947437eda1/buildSrc/subprojects/configuration/src/main/kotlin/org/gradle/gradlebuild/public-api.kt

org/gradle/*
org/gradle/api/**
org/gradle/authentication/**
org/gradle/buildinit/**
org/gradle/caching/**
org/gradle/concurrent/**
org/gradle/deployment/**
org/gradle/external/javadoc/**
org/gradle/ide/**
org/gradle/includedbuild/**
org/gradle/ivy/**
org/gradle/jvm/**
org/gradle/language/**
org/gradle/maven/**
org/gradle/nativeplatform/**
org/gradle/normalization/**
org/gradle/platform/**
org/gradle/play/**
org/gradle/plugin/devel/**
org/gradle/plugin/repository/*
org/gradle/plugin/use/*
org/gradle/plugin/management/*
org/gradle/plugins/**
org/gradle/process/**
org/gradle/testfixtures/**
org/gradle/testing/jacoco/**
org/gradle/tooling/**
org/gradle/swiftpm/**
org/gradle/model/**
org/gradle/testkit/**
org/gradle/testing/**
org/gradle/vcs/**
org/gradle/workers/**

Alternatives for oft-used internal APIs

To provide a nested DSL for your custom task, don’t use org.gradle.internal.reflect.Instantiator;
use ObjectFactory instead. It may also be helpful to read the chapter on lazy configuration.

Don’t use org.gradle.api.internal.ConventionMapping. Use Provider and/or Property. You can find
an example for capturing user input to configure runtime behavior in the implementing plugins
section.

Instead of org.gradle.internal.os.OperatingSystem, use another method to detect operating system,
such as Apache commons-lang SystemUtils or System.getProperty("os.name").

Use other collections or I/0 frameworks instead of org.gradle.util.CollectionUtils,
org.gradle.util.internal.GFileUtils, and other classes under org.gradle.util.*.

Gradle plugin authors may find the Designing Gradle Plugins subsection on restricting the plugin

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
implementing_gradle_plugins.pdf#capturing_user_input_to_configure_plugin_runtime_behavior
implementing_gradle_plugins.pdf#capturing_user_input_to_configure_plugin_runtime_behavior
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/SystemUtils.html
designing_gradle_plugins.pdf#restricting_the_plugin_implementation_to_gradle_s_public_api

implementation to Gradle’s public API helpful.

Follow conventions when declaring tasks

The task API gives a build author a lot of flexibility to declare tasks in a build script. For optimal
readability and maintainability follow these rules:

» The task type should be the only key-value pair within the parentheses after the task name.

» Other configuration should be done within the task’s configuration block.

* Task actions added when declaring a task should only be declared with the methods
Task.doFirst{} or Task.doLast{}.

When declaring an ad-hoc task — one that doesn’t have an explicit type — you should use
Task.doLast{} if you’re only declaring a single action.

A task should define a group and description.

designing_gradle_plugins.pdf#restricting_the_plugin_implementation_to_gradle_s_public_api
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)

Example 199. Definition of tasks following best practices

build.gradle
import com.enterprise.DocsGenerate

def generateHtmlDocs = tasks.register('generateHtmlDocs', DocsGenerate) {
group = JavaBasePlugin.DOCUMENTATION_GROUP
description = 'Generates the HTML documentation for this project.'
title = 'Project docs'
outputDir = layout.buildDirectory.dir('docs")

¥

tasks.register('allDocs') {
group = JavaBasePlugin.DOCUMENTATION_GROUP
description = 'Generates all documentation for this project.'
dependsOn generateHtmlDocs

dolLast {
logger.quiet('Generating all documentation...")
}
}
build.gradle.kts

import com.enterprise.DocsGenerate

tasks.register<DocsGenerate>("generateHtmlDocs") {
group = JavaBasePlugin.DOCUMENTATION_GROUP
description = "Generates the HTML documentation for this project."”
title.set("Project docs")
outputDir.set(layout.buildDirectory.dir("docs"))

}

tasks.register("allDocs") {
group = JavaBasePlugin.DOCUMENTATION_GROUP
description = "Generates all documentation for this project."
dependsOn("generateHtmlDocs")

dolast {
logger.quiet("Generating all documentation...")

}

Improve task discoverability

Even new users to a build should to be able to find crucial information quickly and effortlessly. In
Gradle you can declare a group and a description for any task of the build. The tasks report uses the
assigned values to organize and render the task for easy discoverability. Assigning a group and
description is most helpful for any task that you expect build users to invoke.

The example task generateDocs generates documentation for a project in the form of HTML pages.
The task should be organized underneath the bucket Documentation. The description should express
its intent.

Example 200. A task declaring the group and description

build.gradle

tasks.register('generateDocs') {
group = 'Documentation’
description = 'Generates the HTML documentation for this project.'

dolLast {
// action implementation
}
}
build.gradle.kts

tasks.register("generateDocs") {
group = "Documentation”
description = "Generates the HTML documentation for this project.

dolast {
// action implementation

The output of the tasks report reflects the assigned values.

> gradle tasks
> Task :tasks
Documentation tasks

generateDocs - Generates the HTML documentation for this project.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:description

Minimize logic executed during the configuration phase

It’s important for every build script developer to understand the different phases of the build
lifecycle and their implications on performance and evaluation order of build logic. During the
configuration phase the project and its domain objects should be configured, whereas the execution
phase only executes the actions of the task(s) requested on the command line plus their
dependencies. Be aware that any code that is not part of a task action will be executed with every
single run of the build. A build scan can help you with identifying the time spent during each of the
lifecycle phases. It’s an invaluable tool for diagnosing common performance issues.

Let’s consider the following incantation of the anti-pattern described above. In the build script you
can see that the dependencies assigned to the configuration printArtifactNames are resolved outside
of the task action.

Example 201. Executing logic during configuration should be avoided

build.gradle

dependencies {
implementation 'log4j:log4j:1.2.17'
}

tasks.register('printArtifactNames') {
// always executed
def libraryNames = configurations.compileClasspath.collect { it.name }

dolLast {
logger.quiet libraryNames
}
}
build.gradle.kts

dependencies {
implementation("log4j:1og4j:1.2.17")
}

tasks.register("printArtifactNames") {
// always executed
val libraryNames = configurations.compileClasspath.get().map { it.name }

dolast {
logger.quiet(libraryNames.toString())
}

https://scans.gradle.com/get-started

The code for resolving the dependencies should be moved into the task action to avoid the
performance impact of resolving the dependencies before they are actually needed.

Example 202. Executing logic during execution phase is preferred

build.gradle

dependencies {
implementation 'log4j:log4j:1.2.17'
}

tasks.register('printArtifactNames') {
dolLast {
def libraryNames = configurations.compileClasspath.collect { it.name

}
logger.quiet libraryNames
}
}
build.gradle.kts

dependencies {
implementation("log4j:1og4j:1.2.17")

}
tasks.register("printArtifactNames") {
dolLast {
val libraryNames = configurations.compileClasspath.get().map {
it.name }

logger.quiet(libraryNames.toString())
}

Avoid using the GradleBuild task type

The GradleBuild task type allows a build script to define a task that invokes another Gradle build.
The use of this type is generally discouraged. There are some corner cases where the invoked build
doesn’t expose the same runtime behavior as from the command line or through the Tooling API
leading to unexpected results.

Usually, there’s a better way to model the requirement. The appropriate approach depends on the
problem at hand. Here’re some options:

* Model the build as multi-project build if the intention is to execute tasks from different modules
as unified build.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.GradleBuild.html

» Use composite builds for projects that are physically separated but should occasionally be built
as a single unit.

Avoid inter-project configuration

Gradle does not restrict build script authors from reaching into the domain model from one project
into another one in a multi-project build. Strongly-coupled projects hurts build execution
performance as well as readability and maintainability of code.

The following practices should be avoided:

» Explicitly depending on a task from another project via Task.dependsOn(java.lang.Object...).
* Setting property values or calling methods on domain objects from another project.
* Executing another portion of the build with GradleBuild.

* Declaring unnecessary project dependencies.

Externalize and encrypt your passwords

Most builds need to consume one or many passwords. The reasons for this need may vary. Some
builds need a password for publishing artifacts to a secured binary repository, other builds need a
password for downloading binary files. Passwords should always kept safe to prevent fraud. Under
no circumstance should you add the password to the build script in plain text or declare it in
gradle.properties file in the project’s directory. Those files usually live in a version control
repository and can be viewed by anyone that has access to it.

Passwords together with any other sensitive data should be kept external from the version
controlled project files. Gradle exposes an API for providing credentials in ProviderFactory as well
as Artifact Repositories that allows to supply credential values using Gradle properties when they
are needed by the build. This way the credentials can be stored in the gradle.properties file that
resides in the user’s home directory or be injected to the build using command line arguments or
environment variables.

If you store sensitive credentials in user home’s gradle.properties, consider encrypting them. At the
moment Gradle does not provide a built-in mechanism for encrypting, storing and accessing
passwords. A good solution for solving this problem is the Gradle Credentials plugin.

Lazy Configuration

As a build grows in complexity, knowing when and where a particular value is configured can
become difficult to reason about. Gradle provides several ways to manage this complexity using
lazy configuration.

Lazy properties

Gradle provides lazy properties, which delay the calculation of a property’s value until it’s actually
required. These provide three main benefits to build script and plugin authors:

1. Build authors can wire together Gradle models without worrying when a particular property’s

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ProviderFactory.html#credentials-java.lang.Class-java.lang.String-
https://github.com/etiennestuder/gradle-credentials-plugin

value will be known. For example, you may want to set the input source files of a task based on
the source directories property of an extension but the extension property value isn’t known
until the build script or some other plugin configures them.

2. Build authors can wire an output property of a task into an input property of some other task
and Gradle automatically determines the task dependencies based on this connection. Property
instances carry information about which task, if any, produces their value. Build authors do not
need to worry about keeping task dependencies in sync with configuration changes.

3. Build authors can avoid resource intensive work during the configuration phase, which can
have a large impact on build performance. For example, when a configuration value comes
from parsing a file but is only used when functional tests are run, using a property instance to
capture this means that the file is parsed only when the functional tests are run, but not when,
for example, clean is run.

Gradle represents lazy properties with two interfaces:

* Provider represents a value that can only be queried and cannot be changed.

o Properties with these types are read-only.

o The method Provider.get() returns the current value of the property.

o A Provider can be created from another Provider using Provider.map(Transformer).

- Many other types extend Provider and can be used where-ever a Provider is required.
* Property represents a value that can be queried and also changed.

o Properties with these types are configurable.

o Property extends the Provider interface.

o The method Property.set(T) specifies a value for the property, overwriting whatever value
may have been present.

o The method Property.set(Provider) specifies a Provider for the value for the property,
overwriting whatever value may have been present. This allows you to wire together
Provider and Property instances before the values are configured.

> A Property can be created by the factory method ObjectFactory.property(Class).
Lazy properties are intended to be passed around and only queried when required. Usually, this

will happen during the execution phase. For more information about the Gradle build phases,
please see Build Lifecycle.

The following demonstrates a task with a configurable greeting property and a read-only message
property that is derived from this:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#get--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html#set-T-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html#set-org.gradle.api.provider.Provider-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

Example 203. Using a read-only and configurable property

build.gradle

// A task that displays a greeting

abstract class Greeting extends DefaultTask {
// A configurable greeting
@Input
abstract Property<String> getGreeting()

// Read-only property calculated from the greeting
@Internal
final Provider<String> message = greeting.map { it + ' from Gradle' }

@TaskAction
void printMessage() {
logger.quiet(message.get())
}
}

tasks.register("greeting”, Greeting) {

// Confiqure the greeting

greeting.set('Hi")

greeting = 'Hi' // Alternative notation to calling Property.set() - only
available in Groovy DSL
}

build.gradle.kts

// A task that displays a greeting

abstract class Greeting : DefaultTask() {
// Configurable by the user
@get:Input
abstract val greeting: Property<String>

// Read-only property calculated from the greeting
@Internal
val message: Provider<String> = greeting.map { it + " from Gradle" }

@TaskAction
fun printMessage() {
logger.quiet(message.get())
}
}

tasks.register<Greeting>("greeting") {
// Configure the greeting
greeting.set("Hi")

Output of gradle greeting
$ gradle greeting

> Task :greeting
Hi from Gradle

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

The Greeting task has a property of type Property<String> to represent the configurable greeting
and a property of type Provider<String> to represent the calculated, read-only, message. The
message Provider is created from the greeting Property using the map() method, and so its value is
kept up-to-date as the value of the greeting property changes.

Note that Gradle Groovy DSL generates setter methods for each Property-typed
property in a task implementation. These setter methods allow you to configure the
NOTE property using the assignment (=) operator as a convenience.

In Kotlin DSL, the set() method on the property needs to be used instead of =.

Creating a Property or Provider instance

Neither Provider nor its subtypes such as Property are intended to be implemented by a build script
or plugin author. Gradle provides factory methods to create instances of these types instead. See the
Quick Reference for all of the types and factories available. In the previous example, we have seen
2 factory methods:

* ObjectFactory.property(Class) create a new Property instance. An instance of the ObjectFactory
can be referenced from Project.getObjects() or by injecting ObjectFactory through a constructor
or method.

* Provider.map(Transformer) creates a new Provider from an existing Provider or Property
instance.

A Provider can also be created by the factory method ProviderFactory.provider(Callable). You
should prefer using map() instead, as this has some useful benefits, which we will see later.

There are no specific methods create a provider using a groovy.lang.(Closure. When

writing a plugin or build script with Groovy, you can use the map(Transformer)

method with a closure and Groovy will take care of converting the closure to a
NOTE Transformer. You can see this in action in the previous example.

Similarly, when writing a plugin or build script with Kotlin, the Kotlin compiler will
take care of converting a Kotlin function into a Transformer.

Connecting properties together

An important feature of lazy properties is that they can be connected together so that changes to
one property are automatically reflected in other properties. Here’s an example where the property
of a task is connected to a property of a project extension:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Project.html#getObjects--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-

Example 204. Connecting properties together

build.gradle

// A project extension

interface MessageExtension {
// A configurable greeting
Property<String> getGreeting()

}

// A task that displays a greeting

abstract class Greeting extends DefaultTask {
// Configurable by the user
@Input
abstract Property<String> getGreeting()

// Read-only property calculated from the greeting
@Internal
final Provider<String> message = greeting.map { it + ' from Gradle' }

@TaskAction
void printMessage() {
logger.quiet(message.get())
}
}

// Create the project extension
project.extensions.create('messages', MessageExtension)

// Create the greeting task
tasks.register("greeting”, Greeting) {

// Attach the greeting from the project extension

// Note that the values of the project extension have not been configured
yet

greeting = messages.greeting

}

messages {
// Configure the greeting on the extension
// Note that there is no need to reconfigure the task's ‘greeting'
property. This is automatically updated as the extension property changes
greeting = 'Hi'

}

build.gradle.kts

// A project extension
interface MessageExtension {
// A configurable greeting
abstract val greeting: Property<String>

}

// A task that displays a greeting

abstract class Greeting : DefaultTask() {
// Confiqurable by the user
@get:Input
abstract val greeting: Property<String>

// Read-only property calculated from the greeting
@Internal
val message: Provider<String> = greeting.map { it + " from Gradle" }

@TaskAction
fun printMessage() {
logger.quiet(message.get())
}
¥

// Create the project extension
val messages = project.extensions.create<MessageExtension>("messages")

// Create the greeting task
tasks.register<Greeting>("greeting") {

// Attach the greeting from the project extension

// Note that the values of the project extension have not been configured
yet

greeting.set(messages.greeting)

}

messages.apply {
// Configure the greeting on the extension
// Note that there is no need to reconfigure the task's ‘greeting’
property. This is automatically updated as the extension property changes
greeting.set("Hi")
}

Output of gradle greeting
$ gradle greeting

> Task :greeting
Hi from Gradle

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

This example calls the Property.set(Provider) method to attach a Provider to a Property to supply the
value of the property. In this case, the Provider happens to be a Property as well, but you can
connect any Provider implementation, for example one created using Provider.map()

Working with files
In Working with Files, we introduced four collection types for File-like objects:

Table 6. Collection of files recap

Read-only Configurable Type
Type

FileCollection ConfigurableFileCollection

FileTree ConfigurableFileTree

All of these types are also considered lazy types.

In this section, we are going to introduce more strongly typed models types to represent elements
of the file system: Directory and RegularFile. These types shouldn’t be confused with the standard
Java File type as they are used to tell Gradle, and other people, that you expect more specific values
such as a directory or a non-directory, regular file.

Gradle provides two specialized Property subtypes for dealing with values of these types:
RegularFileProperty and DirectoryProperty. ObjectFactory has methods to create these:
ObjectFactory.fileProperty() and ObjectFactory.directoryProperty().

A DirectoryProperty can also be used to create a lazily evaluated Provider for a Directory and
RegularFile via DirectoryProperty.dir(String) and DirectoryProperty.file(String) respectively. These
methods create providers whose values are calculated relative to the location for the
DirectoryProperty they were created from. The values returned from these providers will reflect
changes to the DirectoryProperty.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html#set-org.gradle.api.provider.Provider-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileTree.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/Directory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/RegularFile.html
https://docs.oracle.com/javase/8/docs/api/java/io/File.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/RegularFileProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#fileProperty--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#directoryProperty--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-

Example 205. Using file and directory property

build.gradle

// A task that generates a source file and writes the result to an output
directory
abstract class GenerateSource extends DefaultTask {
// The configuration file to use to generate the source file
@InputFile
abstract RegularFileProperty getConfigFile()

// The directory to write source files to
@OutputDirectory
abstract DirectoryProperty getOutputDir()

@TaskAction

def compile() {
def inFile = configFile.get().asFile
logger.quiet("configuration file = $inFile")
def dir = outputDir.get().asFile
logger.quiet("output dir = $dir")
def className = inFile.text.trim()
def srcFile = new File(dir, "${className}.java")
srcFile.text = "public class ${className} { ... }"

}

// Create the source generation task

tasks.register('generate', GenerateSource) {
// Configure the locations, relative to the project and build directories
configFile = layout.projectDirectory.file('src/config.txt")
outputDir = layout.buildDirectory.dir('generated-source")

}

// Change the build directory

// Don't need to reconfigure the task properties. These are automatically
updated as the build directory changes

layout.buildDirectory = layout.projectDirectory.dir('output")

build.gradle.kts

// A task that generates a source file and writes the result to an output
directory
abstract class GenerateSource : DefaultTask() {
// The configuration file to use to generate the source file
@get:InputFile
abstract val configFile: ReqularFileProperty

// The directory to write source files to
@get:OutputDirectory
abstract val outputDir: DirectoryProperty

@TaskAction

fun compile() {
val inFile = configFile.get().asFile
logger.quiet("configuration file = $inFile")
val dir = outputDir.get().asFile
logger.quiet("output dir = $dir")
val className = inFile.readText().trim()
val srcFile = File(dir, "${className}.java")
srcFile.writeText("public class ${className} { }")

}

// Create the source generation task
tasks.register<GenerateSource>("generate") {
// Configure the locations, relative to the project and build directories
configFile.set(layout.projectDirectory.file("src/config.txt"))
outputDir.set(layout.buildDirectory.dir("generated-source"))

}

// Change the build directory

// Don't need to reconfigure the task properties. These are automatically
updated as the build directory changes
layout.buildDirectory.set(layout.projectDirectory.dir("output"))

Output of gradle print
$ gradle print
> Task :generate
configuration file = /home/user/gradle/samples/src/config.txt

output dir = /home/user/gradle/samples/output/generated-source

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Output of gradle print
$ gradle print

> Task :generate
configuration file = /home/user/gradle/samples/kotlin/src/config.txt
output dir = /home/user/gradle/samples/kotlin/output/generated-source

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

This example creates providers that represent locations in the project and build directories through
Project.getLayout() with ProjectLayout.getBuildDirectory() and ProjectLayout.getProjectDirectory().

To close the loop, note that a DirectoryProperty, or a simple Directory, can be turned into a FileTree
that allows the files and directories contained in the directory to be queried with
DirectoryProperty.getAsFileTree() or Directory.getAsFileTree(). Moreover, from a DirectoryProperty,
or a Directory, you can also create FileCollection instances containing a set of the files contained in
the directory with DirectoryProperty.files(Object...) or Directory.files(Object...).

Working with task inputs and outputs

Many builds have several tasks connected together, where one task consumes the outputs of
another task as an input. To make this work, we would need to configure each task to know where
to look for its inputs and place its outputs, make sure that the producing and consuming tasks are
configured with the same location, and attach task dependencies between the tasks. This can be
cumbersome and brittle if any of these values are configurable by a user or configured by multiple
plugins, as task properties need to be configured in the correct order and locations and task
dependencies kept in sync as values change.

The Property API makes this easier by keeping track of not just the value for a property, which we
have seen already, but also the task that produces the value, so that you don’t have to specify it as
well. As an example consider the following plugin with a producer and consumer task which are
wired together:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Project.html#getLayout--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#getBuildDirectory--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#getProjectDirectory--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#getAsFileTree--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/Directory.html#getAsFileTree--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#files-java.lang.Object...-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/Directory.html#files-java.lang.Object...-

Example 206. Implicit task input file dependency

build.gradle

abstract class Producer extends DefaultTask {
@OutputFile
abstract RegularFileProperty getOutputFile()

@TaskAction
void produce() {
String message = 'Hello, World!'
def output = outputFile.get().asFile
output.text = message
logger.quiet("Wrote '${message}' to ${output}")

}

abstract class Consumer extends DefaultTask {
@InputFile
abstract RegularFileProperty getInputFile()

@TaskAction
void consume() {
def input = inputFile.get().asFile
def message = input.text
logger.quiet("Read '${message}' from ${input}")

}

def producer = tasks.register("producer", Producer)
def consumer = tasks.register("consumer”, Consumer)

consumer .configure {

// Connect the producer task output to the consumer task input

// Don't need to add a task dependency to the consumer task. This is
automatically added

inputFile = producer.flatMap { it.outputFile }
}

producer.configure {

// Set values for the producer lazily

// Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes

outputFile = layout.buildDirectory.file('file.txt")
}

// Change the build directory.

// Don't need to update producer.outputFile and consumer.inputFile. These are
automatically updated as the build directory changes

layout.buildDirectory = layout.projectDirectory.dir('output’)

build.gradle.kts

abstract class Producer : DefaultTask() {
@get:OutputFile
abstract val outputFile: ReqularFileProperty

@TaskAction
fun produce() {
val message = "Hello, World!"
val output = outputFile.get().asFile
output.writeText(message)
logger.quiet("Wrote '${message}' to ${output}")

}

abstract class Consumer : DefaultTask() {
@get:InputFile
abstract val inputFile: RegularFileProperty

@TaskAction

fun consume() {
val input = inputFile.get().asFile
val message = input.readText()
logger.quiet("Read '${message}' from ${input}")

}

val producer = tasks.register<Producer>("producer")
val consumer = tasks.register<Consumer>("consumer")

consumer {

// Connect the producer task output to the consumer task input

// Don't need to add a task dependency to the consumer task. This is
automatically added

inputFile.set(producer.flatMap { it.outputFile })
}

producer {
// Set values for the producer lazily
// Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes
outputFile.set(layout.buildDirectory.file("file.txt"))
¥

// Change the build directory.

// Don't need to update producer.outputFile and consumer.inputFile. These are
automatically updated as the build directory changes
layout.buildDirectory.set(layout.projectDirectory.dir("output"))

Output of gradle consumer
$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/output/file.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/output/file.txt

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

Output of gradle consumer
$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/output/file.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/kotlin/output/file.txt

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

In the example above, the task outputs and inputs are connected before any location is defined. The
setters can be called at any time before the task is executed and the change will automatically affect
all related input and output properties.

Another important thing to note in this example is the absence of any explicit task dependency.
Task outputs represented using Providers keep track of which task produces their value, and using
them as task inputs will implicitly add the correct task dependencies.

Implicit task dependencies also works for input properties that are not files.

Example 207. Implicit task input dependency

build.gradle

abstract class Producer extends DefaultTask {
@0utputFile
abstract RegularFileProperty getOutputFile()

@TaskAction
void produce() {
String message = 'Hello, World!'
def output = outputFile.get().asFile
output.text = message
logger.quiet("Wrote '${message}' to ${output}")

}

abstract class Consumer extends DefaultTask {
@Input
abstract Property<String> getMessage()

@TaskAction
void consume() {
logger.quiet(message.get())
}
}

def producer = tasks.register('producer', Producer) {
// Set values for the producer lazily
// Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes
outputFile = layout.buildDirectory.file('file.txt")
}
tasks.register('consumer', Consumer) {
// Connect the producer task output to the consumer task input
// Don't need to add a task dependency to the consumer task. This is
automatically added
message = producer.map { it.outputFile.get().asFile.text }
¥

build.gradle.kts

abstract class Producer : DefaultTask() {
@get:OutputFile
abstract val outputFile: ReqularFileProperty

@TaskAction
fun produce() {
val message = "Hello, World!"
val output = outputFile.get().asFile
output.writeText(message)
logger.quiet("Wrote '${message}' to ${output}")

}

abstract class Consumer : DefaultTask() {
@get:Input
abstract val message: Property<String>

@TaskAction
fun consume() {
logger.quiet(message.get())
}
+

val producer = tasks.register<Producer>("producer") {
// Set values for the producer lazily
// Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes
outputFile.set(layout.buildDirectory.file("file.txt"))
}
tasks.register<Consumer>("consumer") {
// Connect the producer task output to the consumer task input
// Don't need to add a task dependency to the consumer task. This is
automatically added
message.set(producer.map { it.outputFile.get().asFile.readText() })

}

Output of gradle consumer
$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/build/file.txt

> Task :consumer
Hello, World!

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

Output of gradle consumer
$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/build/file.txt

> Task :consumer
Hello, World!

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

Working with collections

Gradle provides two lazy property types to help configure Collection properties. These work
exactly like any other Provider and, just like file providers, they have additional modeling around
them:

» For List values the interface is called ListProperty. You can create a new ListProperty using
ObjectFactory.listProperty(Class) and specifying the element type.
» For Set values the interface is called SetProperty. You can create a new SetProperty using

ObjectFactory.setProperty(Class) and specifying the element type.

This type of property allows you to overwrite the entire collection value with
HasMultipleValues.set(Iterable) and HasMultipleValues.set(Provider) or add new elements through
the various add methods:

* HasMultipleValues.add(T): Add a single element to the collection

* HasMultipleValues.add(Provider): Add a lazily calculated element to the collection

* HasMultipleValues.addAll(Provider): Add a lazily calculated collection of elements to the list

Just like every Provider, the collection is calculated when Provider.get() is called. The following
example shows the ListProperty in action:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ListProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/SetProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-java.lang.Iterable-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-org.gradle.api.provider.Provider-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-T-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-org.gradle.api.provider.Provider-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/HasMultipleValues.html#addAll-org.gradle.api.provider.Provider-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#get--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ListProperty.html

Example 208. List property

build.gradle

abstract class Producer extends DefaultTask {
@OutputFile
abstract RegularFileProperty getOutputFile()

@TaskAction
void produce() {
String message = 'Hello, World!'
def output = outputFile.get().asFile
output.text = message
logger.quiet("Wrote '${message}' to ${output}")

}

abstract class Consumer extends DefaultTask {
@InputFiles
abstract ListProperty<RegularFile> getInputFiles()

@TaskAction
void consume() {
inputFiles.get().each { inputFile ->
def input = inputFile.asFile
def message = input.text
logger.quiet("Read '¢{message}' from ${input}")

}

def producerOne = tasks.register('producerOne', Producer)
def producerTwo = tasks.register('producerTwo', Producer)
tasks.register('consumer', Consumer) {
// Connect the producer task outputs to the consumer task input
// Don't need to add task dependencies to the consumer task. These are
automatically added
inputFiles.add(producerOne.get().outputFile)
inputFiles.add(producerTwo.get().outputFile)
}

// Set values for the producer tasks lazily

// Don't need to update the consumer.inputFiles property. This is
automatically updated as producer.outputFile changes

producerOne.configure { outputFile = layout.buildDirectory.file('one.txt"') }
producerTwo.configure { outputFile = layout.buildDirectory.file('two.txt") }

// Change the build directory.

// Don't need to update the task properties. These are automatically updated
as the build directory changes

layout.buildDirectory = layout.projectDirectory.dir('output")

build.gradle.kts

abstract class Producer : DefaultTask() {
@get:OutputFile
abstract val outputFile: ReqularFileProperty

@TaskAction
fun produce() {
val message = "Hello, World!"
val output = outputFile.get().asFile
output.writeText(message)
logger.quiet("Wrote '${message}' to ${output}")

}

abstract class Consumer : DefaultTask() {
@get:InputFiles
abstract val inputFiles: ListProperty<ReqularFile>

@TaskAction
fun consume() {
inputFiles.get().forEach { inputFile ->
val input = inputFile.asFile
val message = input.readText()
logger.quiet("Read '${message}' from ${input}")

}

val producerOne = tasks.register<Producer>("producerOne")
val producerTwo = tasks.register<Producer>("producerTwo")
tasks.register<Consumer>("consumer") {
// Connect the producer task outputs to the consumer task input
// Don't need to add task dependencies to the consumer task. These are
automatically added
inputFiles.add(producerOne.get().outputFile)
inputFiles.add(producerTwo.get().outputFile)
}

// Set values for the producer tasks lazily

// Don't need to update the consumer.inputFiles property. This is
automatically updated as producer.outputFile changes

producerOne { outputFile.set(layout.buildDirectory.file("one.txt")) }
producerTwo { outputFile.set(layout.buildDirectory.file("two.txt")) }

// Change the build directory.

// Don't need to update the task properties. These are automatically updated
as the build directory changes
layout.buildDirectory.set(layout.projectDirectory.dir("output"))

Output of gradle consumer
$ gradle consumer

> Task :producerOne
Wrote 'Hello, World!' to /home/user/gradle/samples/output/one.txt

> Task :producerTwo
Wrote 'Hello, World!' to /home/user/gradle/samples/output/two.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/output/one.txt
Read 'Hello, World!' from /home/user/gradle/samples/output/two.txt

BUILD SUCCESSFUL in @s
3 actionable tasks: 3 executed

Output of gradle consumer
$ gradle consumer

> Task :producerOne
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/output/one.txt

> Task :producerTwo
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/output/two.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/kotlin/output/one.txt
Read 'Hello, World!' from /home/user/gradle/samples/kotlin/output/two.txt

BUILD SUCCESSFUL in @s
3 actionable tasks: 3 executed

Working with maps

Gradle provides a lazy MapProperty type to allow Map values to be configured. You can create a
MapProperty instance using ObjectFactory.mapProperty(Class, Class).

Similar to other property types, a MapProperty has a set() method that you can use to specify the
value for the property. There are some additional methods to allow entries with lazy values to be
added to the map.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/MapProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#mapProperty-java.lang.Class-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/MapProperty.html#set-java.util.Map-

Example 209. Map property

build.gradle

abstract class Generator extends DefaultTask {
@Input
abstract MapProperty<String, Integer> getProperties()

@TaskAction
void generate() {
properties.get().each { key, value ->
logger.quiet("${key} = ${value}")

}
}
}
// Some values to be configured later
def b =0
def c =0

tasks.register('generate', Generator) {
properties.put("a", 1)
// Values have not been configured yet
properties.put("b", providers.provider { b })
properties.putAll(providers.provider { [c: c, d: c + 1] })
}

// Confiqure the values. There is no need to reconfigure the task
b=2
c=3

build.gradle.kts

abstract class Generator: DefaultTask() {
@get:Input
abstract val properties: MapProperty<String, Int>

@TaskAction
fun generate() {
properties.get().forEach { entry ->
logger.quiet("${entry.key} = ${entry.value}")

}
}
}
// Some values to be configured later
var b = 0
var ¢ = 0

tasks.register<Generator>("generate") {
properties.put("a", 1)
// Values have not been configured yet
properties.put("b", providers.provider { b })
properties.putAll(providers.provider { mapOf("c" to c, "d" toc + 1) })

}

// Configure the values. There is no need to reconfigure the task
b=2

c=3

Output of gradle consumer

$ gradle generate

> Task :generate
a =1
b=2
c =3
d=14

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Applying a convention to a property

Often you want to apply some convention, or default value, to a property to be used if no value has
been configured for the property. You can use the convention() method for this. This method
accepts either a value or a Provider and this will be used as the value until some other value is

configured.

Example 210. Property conventions

build.gradle
def property = objects.property(String)

// Set a convention
property.convention("convention 1")
println("value = " + property.get())

// Can replace the convention
property.convention("convention 2")
println("value = " + property.get())

property.set("value")

// Once a value is set, the convention is ignored
property.convention("ignored convention")
println("value = " + property.get())

build.gradle.kts
val property = objects.property(String::class)

// Set a convention
property.convention("convention 1")
println("value = " + property.get())

// Can replace the convention
property.convention("convention 2")
println("value = " + property.get())

property.set("value")

// Once a value is set, the convention is ignored
property.convention("ignored convention")

println("value = " + property.get())

Output of gradle show
$ gradle show

> Task :show
value = convention 1
value = convention 2
value = value

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Making a property unmodifiable

Most properties of a task or project are intended to be configured by plugins or build scripts and
then the resulting value used to do something useful. For example, a property that specifies the
output directory for a compilation task may start off with a value specified by a plugin, then a build
script might change the value to some custom location, then this value is used by the task when it
runs. However, once the task starts to run, we want to prevent any further change to the property.
This way we avoid errors that result from different consumers, such as the task action or Gradle’s
up-to-date checks or build caching or other tasks, using different values for the property.

Lazy properties provide several methods that you can use to disallow changes to their value once
the value has been configured. The finalizeValue() method calculates the final value for the
property and prevents further changes to the property. When the value of the property comes from
a Provider, the provider is queried for its current value and the result becomes the final value for
the property. This final value replaces the provider and the property no longer tracks the value of
the provider. Calling this method also makes a property instance unmodifiable and any further
attempts to change the value of the property will fail. Gradle automatically makes the properties of
a task final when the task starts execution.

The finalizeValueOnRead() method is similar, except that the property’s final value is not calculated
until the value of the property is queried. In other words, this method calculates the final value
lazily as required, whereas finalizeValue() calculates the final value eagerly. This method can be
used when the value may be expensive to calculate or may not have been configured yet, but you
also want to ensure that all consumers of the property see the same value when they query the
value.

Guidelines

This section will introduce guidelines to be successful with the Provider API. To see those guidelines
in action, have a look at gradle-site-plugin, a Gradle plugin demonstrating established techniques
and practices for plugin development.

* The Property and Provider types have all of the overloads you need to query or configure a
value. For this reason, you should follow the following guidelines:
- For configurable properties, expose the Property directly through a single getter.

- For non-configurable properties, expose an Provider directly through a single getter.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html#finalizeValue--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/HasConfigurableValue.html#finalizeValueOnRead--
https://github.com/gradle/gradle-site-plugin
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html

* Avoid simplifying calls like obj.getProperty().get() and obj.getProperty().set(T) in your code
by introducing additional getters and setters.

* When migrating your plugin to use providers, follow these guidelines:
o Ifit’s a new property, expose it as a Property or Provider using a single getter.
o If it’s incubating, change it to use a Property or Provider using a single getter.

o If it’s a stable property, add a new Property or Provider and deprecate the old one. You
should wire the old getter/setters into the new property as appropriate.

Future development

Going forward, new properties will use the Provider API. The Groovy Gradle DSL adds convenience
methods to make the use of Providers mostly transparent in build scripts. Existing tasks will have
their existing "raw" properties replaced by Providers as needed and in a backwards compatible
way. New tasks will be designed with the Provider APIL

Provider Files API Reference
Use these types for read-only values:

Provider<RegularFile>
File on disk

Factories

* Provider.map(Transformer).
* Provider.flatMap(Transformer).

» DirectoryProperty.file(String)

Provider<Directory>

Directory on disk

Factories

* Provider.map(Transformer).
* Provider.flatMap(Transformer).

* DirectoryProperty.dir(String)

FileCollection

Unstructured collection of files

Factories
* Project.files(Object[])

* ProjectLayout.files(Object...)

* DirectoryProperty.files(Object...)

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/RegularFile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#flatMap-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/Directory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#flatMap-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#files-java.lang.Object...-

FileTree

Hierarchy of files

Factories

* Project.fileTree(Object) will produce a ConfigurableFileTree, or you can use
Project.zipTree(Object) and Project.tarTree(Object)

* DirectoryProperty.getAsFileTree()
Property Files API Reference
Use these types for mutable values:

RegularFileProperty
File on disk

Factories

* ObjectFactory.fileProperty()

DirectoryProperty

Directory on disk

Factories

* ObjectFactory.directoryProperty()

ConfigurableFileCollection

Unstructured collection of files

Factories

* ObjectFactory.fileCollection()

ConfigurableFileTree

Hierarchy of files

Factories

* ObjectFactory.fileTree()

SourceDirectorySet

Hierarchy of source directories

Factories

* ObjectFactory.sourceDirectorySet(String, String)

Lazy Collections API Reference

Use these types for mutable values:

ListProperty<T>

a property whose value is List<T>

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileTree.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Project.html#zipTree-java.lang.Object-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Project.html#tarTree-java.lang.Object-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#getAsFileTree--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/RegularFileProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#fileProperty--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#directoryProperty--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#fileCollection--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileTree.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#fileTree--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/SourceDirectorySet.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#sourceDirectorySet-java.lang.String-java.lang.String-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ListProperty.html

Factories

* ObjectFactory.listProperty(Class)

SetProperty<T>

a property whose value is Set<T>
Factories
* ObjectFactory.setProperty(Class)
Lazy Objects API Reference
Use these types for read only values:

Provider<T>

a property whose value is an instance of T

Factories

* Provider.map(Transformer).
* Provider.flatMap(Transformer).

» ProviderFactory.provider(Callable). Always prefer one of the other factory methods over
this method.

Use these types for mutable values:

Property<T>

a property whose value is an instance of T

Factories

* ObjectFactory.property(Class)

Testing Build Logic with TestKit

The Gradle TestKit (a.k.a. just TestKit) is a library that aids in testing Gradle plugins and build logic
generally. At this time, it is focused on functional testing. That is, testing build logic by exercising it
as part of a programmatically executed build. Over time, the TestKit will likely expand to facilitate
other kinds of tests.

Usage

To use the TestKit, include the following in your plugin’s build:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/SetProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#flatMap-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

Example 211. Declaring the TestKit dependency

build.gradle

dependencies {
testImplementation gradleTestKit()
}

build.gradle.kts

dependencies {
testImplementation(gradleTestKit())
+

The gradleTestKit() encompasses the classes of the TestKit, as well as the Gradle Tooling API client.
It does not include a version of JUnit, TestNG, or any other test execution framework. Such a
dependency must be explicitly declared.

Example 212. Declaring the JUnit dependency

build.gradle

dependencies {
testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
¥

tasks.withType(Test).configureEach {
useJUnitPlatform()

}

build.gradle.kts

dependencies {
testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
}

tasks.withType<Test>().configureEach {
useJUnitPlatform()
+

https://junit.org
https://testng.org

Functional testing with the Gradle runner
The GradleRunner facilitates programmatically executing Gradle builds, and inspecting the result.

A contrived build can be created (e.g. programmatically, or from a template) that exercises the
“logic under test”. The build can then be executed, potentially in a variety of ways (e.g. different
combinations of tasks and arguments). The correctness of the logic can then be verified by asserting
the following, potentially in combination:

* The build’s output;
* The build’s logging (i.e. console output);
* The set of tasks executed by the build and their results (e.g. FAILED, UP-TO-DATE etc.).

After creating and configuring a runner instance, the build can be executed via the
GradleRunner.build() or GradleRunner.buildAndFail() methods depending on the anticipated
outcome.

The following demonstrates the usage of the Gradle runner in a Java JUnit test:

Example: Using GradleRunner with Java and JUnit

BuildLogicFunctionalTest.java

import org.gradle.testkit.runner.BuildResult;
import org.gradle.testkit.runner.GradleRunner;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.io.TempDir;

import java.io.BufferedWriter;
import java.io.File;

import java.io.FileWriter;
import java.io.IOException;

import static org.gradle.testkit.runner.TaskOutcome.SUCCESS;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;

public class BuildlLogicFunctionalTest {

File testProjectDir;
private File settingsFile;
private File buildFile;

public void setup() {
settingsFile = new File(testProjectDir, "settings.gradle");
buildFile = new File(testProjectDir, "build.gradle");

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#build--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#buildAndFail--

public void testHelloWorldTask() throws IOException {
writeFile(settingsFile, "rootProject.name = "hello-world'");
String buildFileContent = "task helloWorld {" +
" dolLast {" +
! println 'Hello world!'" +
" 14
i
writeFile(buildFile, buildFileContent);

BuildResult result = GradleRunner.create()
.withProjectDir(testProjectDir)
.withArguments("helloWor1ld")

.build();

assertTrue(result.getOutput().contains("Hello world!"));
assertEquals(SUCCESS, result.task(":helloWor1ld").getOutcome());
}

private void writeFile(File destination, String content) throws IOException {
BufferedWriter output = null;

try {
output = new BufferedWriter(new FileWriter(destination));
output.write(content);
} finally {
if (output != null) {
output.close();
}

Any test execution framework can be used.

As Gradle build scripts can also be written in the Groovy programming language, it is often a
productive choice to write Gradle functional tests in Groovy. Furthermore, it is recommended to
use the (Groovy based) Spock test execution framework as it offers many compelling features over
the use of JUnit.

The following demonstrates the usage of the Gradle runner in a Groovy Spock test:

Example: Using GradleRunner with Groovy and Spock

https://code.google.com/p/spock/

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner

import static org.gradle.testkit.runner.TaskOutcome.*
import spock.lang.TempDir

import spock.lang.Specification

class BuildLogicFunctionalTest extends Specification {
File testProjectDir
File settingsFile
File buildFile

def setup() {
settingsFile = new File(testProjectDir, 'settings.gradle')
buildFile = new File(testProjectDir, 'build.gradle')

def "hello world task prints hello world"() {
given:
settingsFile << "rootProject.name = 'hello-world"'"
buildFile << """
task helloWorld {
dolast {
println 'Hello world!'
}
¥

when:

def result = GradleRunner.create()
.withProjectDir(testProjectDir)
.withArguments('helloWorld")
.build()

then:
result.output.contains('Hello world!")
result.task(":helloWor1ld").outcome == SUCCESS

It is a common practice to implement any custom build logic (like plugins and task types) that is
more complex in nature as external classes in a standalone project. The main driver behind this
approach is bundle the compiled code into a JAR file, publish it to a binary repository and reuse it
across various projects.

Getting the plugin-under-test into the test build

The GradleRunner uses the Tooling API to execute builds. An implication of this is that the builds
are executed in a separate process (i.e. not the same process executing the tests). Therefore, the test
build does not share the same classpath or classloaders as the test process and the code under test

is not implicitly available to the test build.

Starting with version 2.13, Gradle provides a conventional mechanism to inject the code under test
into the test build.

Automatic injection with the Java Gradle Plugin Development plugin

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle
plugins. Starting with Gradle version 2.13, the plugin provides a direct integration with TestKit.
When applied to a project, the plugin automatically adds the gradleTestKit() dependency to the
testApi configuration. Furthermore, it automatically generates the classpath for the code under test
and injects it via GradleRunner.withPluginClasspath() for any GradleRunner instance created by the
user. It’s important to note that the mechanism currently only works if the plugin under test is
applied using the plugins DSL. If the target Gradle version is prior to 2.8, automatic plugin classpath
injection is not performed.

The plugin uses the following conventions for applying the TestKit dependency and injecting the
classpath:

* Source set containing code under test: sourceSets.main

» Source set used for injecting the plugin classpath: sourceSets.test

Any of these conventions can be reconfigured with the help of the class
GradlePluginDevelopmentExtension.

The following Groovy-based sample demonstrates how to automatically inject the plugin classpath
by using the standard conventions applied by the Java Gradle Plugin Development plugin.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html

Example 213. Using the Java Gradle Development plugin for generating the plugin metadata

build.gradle

plugins {

id 'groovy'

id 'java-gradle-plugin’
}

dependencies {
testImplementation('org.spockframework:spock-core:2.0-groovy-3.0"') {
exclude group: 'org.codehaus.groovy'

}

build.gradle.kts

plugins {
groovy
‘java-gradle-plugin’
}

dependencies {
testImplementation("org.spockframework:spock-core:2.0-groovy-3.0") {
exclude(group = "org.codehaus.groovy")

}

Example: Automatically injecting the code under test classes into test builds

src/test/groovy/org/gradle/sample/BuildLogicFunctionalTest.groovy

def "hello world task prints hello world"() {
given:
settingsFile << "rootProject.name = "hello-world""
buildFile << """
plugins {
id 'org.gradle.sample.helloworld’
}

when:

def result = GradleRunner.create()
.withProjectDir(testProjectDir)
.withArguments('helloWorld")
.withPluginClasspath()
.build()

then:
result.output.contains('Hello world!")
result.task(":helloWor1ld").outcome == SUCCESS

The following build script demonstrates how to reconfigure the conventions provided by the Java
Gradle Plugin Development plugin for a project that uses a custom Test source set.

A new configuration DSL for modeling the below functionalTest suite is available

NOTE
via the incubating JVM Test Suite plugin.

jvm_test_suite_plugin.pdf#jvm_test_suite_plugin

Example 214. Reconfiguring the classpath generation conventions of the Java Gradle Development plugin

build.gradle

plugins {

id 'groovy'

id 'java-gradle-plugin’
}

def functionalTest = sourceSets.create('functionalTest"')

def functionalTestTask = tasks.register('functionalTest', Test) {
group = 'verification'
testClassesDirs = sourceSets.functionalTest.output.classesDirs
classpath = sourceSets.functionalTest.runtimeClasspath
useJUnitPlatform()

}

tasks.named("check") {
dependsOn functionalTestTask

}

gradlePlugin {
testSourceSets sourceSets.functionalTest

}

dependencies {
functionalTestImplementation('org.spockframework:spock-core:2.0-groovy-
3.0") {
exclude group: 'org.codehaus.groovy'

}

build.gradle.kts

plugins {
groovy
‘java-gradle-plugin’
}

val functionalTest = sourceSets.create("functionalTest")

val functionalTestTask = tasks.register<Test>("functionalTest") {
group = "verification"
testClassesDirs = functionalTest.output.classesDirs
classpath = functionalTest.runtimeClasspath
useJUnitPlatform()

}

tasks.check {
dependsOn(functionalTestTask)
+

gradlePlugin {
testSourceSets(functionalTest)

}

dependencies {
"functionalTestImplementation"("org.spockframework:spock-core:2.0-groovy-
3.0") {
exclude(group = "org.codehaus.groovy")

}

Controlling the build environment

The runner executes the test builds in an isolated environment by specifying a dedicated "working
directory" in a directory inside the JVM’s temp directory (i.e. the location specified by the
java.io.tmpdir system property, typically /tmp). Any configuration in the default Gradle user home
directory (e.g. ~/.gradle/gradle.properties) is not used for test execution. The TestKit does not
expose a mechanism for fine grained control of all aspects of the environment (e.g., JDK). Future
versions of the TestKit will provide improved configuration options.

The TestKit uses dedicated daemon processes that are automatically shut down after test execution.

The dedicated working directory is not deleted by the runner after the build. The TestKit provides
two ways to specify a location that is regularly cleaned, such as the project’s build folder:

* The org.gradle.testkit.dir system property;

¢ The GradleRunner.withTestKitDir(file testKitDir) method.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withTestKitDir-java.io.File-

The Gradle version used to test

The Gradle runner requires a Gradle distribution in order to execute the build. The TestKit does not
depend on all of Gradle’s implementation.

By default, the runner will attempt to find a Gradle distribution based on where the GradleRunner
class was loaded from. That is, it is expected that the class was loaded from a Gradle distribution, as
is the case when using the gradleTestKit() dependency declaration.

When using the runner as part of tests being executed by Gradle (e.g. executing the test task of a
plugin project), the same distribution used to execute the tests will be used by the runner. When
using the runner as part of tests being executed by an IDE, the same distribution of Gradle that was
used when importing the project will be used. This means that the plugin will effectively be tested
with the same version of Gradle that it is being built with.

Alternatively, a different and specific version of Gradle to use can be specified by the any of the
following GradleRunner methods:

* GradleRunner.withGradleVersion(java.lang.String)
* GradleRunner.withGradlelnstallation(java.io.File)

* GradleRunner.withGradleDistribution(java.net.URI)

This can potentially be used to test build logic across Gradle versions. The following demonstrates a
cross-version compatibility test written as Groovy Spock test:

Example: Specifying a Gradle version for test execution

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleVersion-java.lang.String-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleInstallation-java.io.File-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleDistribution-java.net.URI-

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner

import static org.gradle.testkit.runner.TaskOutcome.*
import spock.lang.TempDir

import spock.lang.Specification

import spock.lang.Unroll

class BuildlLogicFunctionalTest extends Specification {
File testProjectDir
File settingsFile
File buildFile

def setup() {
settingsFile = new File(testProjectDir, 'settings.gradle')
buildFile = new File(testProjectDir, 'build.gradle')

def "can execute hello world task with Gradle version #gradleVersion"() {
given:
buildFile << """
task helloWorld {
dolLast {
logger.quiet 'Hello world!"
}
}

nn

settingsFile <<

when:

def result = GradleRunner.create()
.withGradleVersion(gradleVersion)
.withProjectDir(testProjectDir)
.withArguments('helloWorld")
.build()

then:
result.output.contains('Hello world!")
result.task(":helloWorld").outcome == SUCCESS

where:
gradleVersion << ['5.0', '6.0.1"]

Feature support when testing with different Gradle versions

It is possible to use the GradleRunner to execute builds with Gradle 1.0 and later. However, some
runner features are not supported on earlier versions. In such cases, the runner will throw an

exception when attempting to use the feature.
The following table lists the features that are sensitive to the Gradle version being used.

Table 7. Gradle version compatibility

Feature Minimum Description
Version
Inspecting executed tasks 2.5 Inspecting the executed tasks, using

BuildResult.getTasks() and similar methods.

Plugin classpath injection 2.8 Injecting the code under test
viaGradleRunner.withPluginClasspath(java.lang.Iterab
le).

Inspecting build output in 2.9 Inspecting the build’s text output when run in debug

debug mode mode, using BuildResult.getOutput().

Automatic plugin classpath 2.13 Injecting the code under test automatically via

injection GradleRunner.withPluginClasspath() by applying the
Java Gradle Plugin Development plugin.

Setting environment variables 3.5 The Gradle Tooling API only supports setting

to be used by the build. environment variables in later versions.

Debugging build logic

The runner uses the Tooling API to execute builds. An implication of this is that the builds are
executed in a separate process (i.e. not the same process executing the tests). Therefore, executing
your tests in debug mode does not allow you to debug your build logic as you may expect. Any
breakpoints set in your IDE will be not be tripped by the code being exercised by the test build.

The TestKit provides two different ways to enable the debug mode:
» Setting “org.gradle.testkit.debug” system property to true for the JVM using the GradleRunner
(i.e. not the build being executed with the runner);
 Calling the GradleRunner.withDebug(boolean) method.
The system property approach can be used when it is desirable to enable debugging support

without making an adhoc change to the runner configuration. Most IDEs offer the capability to set
JVM system properties for test execution, and such a feature can be used to set this system property.

Testing with the Build Cache

To enable the Build Cache in your tests, you can pass the --build-cache argument to GradleRunner
or use one of the other methods described in Enable the build cache. You can then check for the
task outcome TaskOutcome.FROM_CACHE when your plugin’s custom task is cached. This outcome
is only valid for Gradle 3.5 and newer.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/BuildResult.html#getTasks--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withDebug-boolean-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/TaskOutcome.html#FROM_CACHE

Example: Testing cacheable tasks

BuildLogicFunctionalTest.groovy

def "cacheableTask is loaded from cache"() {
given:
buildFile << """
plugins {
id 'org.gradle.sample.helloworld’
}

when:

def result = runner()
.withArguments('--build-cache', 'cacheableTask')
.build()

then:
result.task(":cacheableTask").outcome == SUCCESS

when:

new File(testProjectDir, 'build').deleteDir()

result = runner()
.withArguments('--build-cache', 'cacheableTask')
.build()

then:
result.task(":cacheableTask").outcome == FROM_CACHE

Note that TestKit re-uses a Gradle user home between tests (see
GradleRunner.withTestKitDir(java.io.File)) which contains the default location for the local build
cache. For testing with the build cache, the build cache directory should be cleaned between tests.
The easiest way to accomplish this is to configure the local build cache to use a temporary directory.

Example: Clean build cache between tests

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withTestKitDir-java.io.File-

BuildLogicFunctionalTest.groovy

File testProjectDir
File buildFile
File localBuildCacheDirectory

def setup() {
localBuildCacheDirectory = new File(testProjectDir, 'local-cache')
buildFile = new File(testProjectDir, 'settings.gradle") << """
buildCache {
local {
directory '${localBuildCacheDirectory.toURI()}'
}
}

buildFile = new File(testProjectDir, 'build.gradle")

Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant
builds in your Gradle builds. In fact, you will find that it’s far easier and more powerful using Ant
tasks in a Gradle build script, than it is to use Ant’s XML format. You could even use Gradle simply
as a powerful Ant task scripting tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the
build.xml file, the handling of the targets, special constructs like macrodefs, and so on. In other
words, everything except the Ant tasks and types. Gradle understands this language, and allows you
to import your Ant build.xml directly into a Gradle project. You can then use the targets of your Ant
build as if they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like javac, copy or jar. For this layer
Gradle provides integration simply by relying on Groovy, and the fantastic AntBuilder.

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external
process. Your build script may contain statements like: "ant clean compile".execute().""

You can use Gradle’s Ant integration as a path for migrating your build from Ant to Gradle. For
example, you could start by importing your existing Ant build. Then you could move your
dependency declarations from the Ant script to your build file. Finally, you could move your tasks
across to your build file, or replace them with some of Gradle’s plugins. This process can be done in
parts over time, and you can have a working Gradle build during the entire process.

Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. This is a reference to an AntBuilder
instance. This AntBuilder is used to access Ant tasks, types and properties from your build script.
There is a very simple mapping from Ant’s build.xml format to Groovy, which is explained below.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html

You execute an Ant task by calling a method on the AntBuilder instance. You use the task name as
the method name. For example, you execute the Ant echo task by calling the ant.echo() method. The
attributes of the Ant task are passed as Map parameters to the method. Below is an example of the
echo task. Notice that we can also mix Groovy code and the Ant task markup. This can be extremely
powerful.

Example 215. Using an Ant task

build.gradle

tasks.register('hello') {
dolast {
String greeting = "hello from Ant'
ant.echo(message: greeting)

build.gradle.kts

tasks.register("hello") {
dolast {
val greeting = "hello from Ant"
ant.withGroovyBuilder {
"echo"("message" to greeting)

}

Output of gradle hello
> gradle hello

> Task :hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this
example, we pass the message for the echo task as nested text:

Example 216. Passing nested text to an Ant task

build.gradle

tasks.register('hello') {
dolast {
ant.echo('hello from Ant')
}

build.gradle.kts

tasks.register("hello") {
dolast {
ant.withGroovyBuilder {
"echo"("message" to "hello from Ant")

}

Output of gradle hello
> gradle hello

> Task :hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same
way as tasks, by calling a method with the same name as the element we want to define.

Example 217. Passing nested elements to an Ant task

build.gradle

tasks.register('zip') {
dolast {
ant.zip(destfile: 'archive.zip') {
fileset(dir: 'src') {
include(name: "**.xml")
exclude(name: '**.java')

build.gradle.kts

tasks.register("zip") {
dolast {
ant.withGroovyBuilder {
"zip"("destfile" to "archive.zip") {
"fileset"("dir" to "src") {
"include"("name" to "**.xml")
"exclude"("name" to "**.java")

You can access Ant types in the same way that you access tasks, using the name of the type as the
method name. The method call returns the Ant data type, which you can then use directly in your

build script. In the following example, we create an Ant path object, then iterate over the contents
of it.

Example 218. Using an Ant type

build.gradle

tasks.register('list") {
dolast {
def path = ant.path {
fileset(dir: 'libs', includes: '*.jar')

}
path.list().each {
println it
}
}
}
build.gradle.kts

import org.apache.tools.ant.types.Path

tasks.register("list") {

dolast {
val path = ant.withGroovyBuilder {
"path" {
"fileset"("dir" to "libs", "includes" to "*.jar")
}
} as Path
path.list().forEach {
println(it)
}
}

More information about AntBuilder can be found in 'Groovy in Action' 8.4 or at the Groovy Wiki.

Using custom Ant tasks in your build

To make custom tasks available in your build, you can use the taskdef (usually easier) or typedef
Ant task, just as you would in a build.xml file. You can then refer to the custom Ant task as you
would a built-in Ant task.

https://groovy-lang.org/scripting-ant.html

Example 219. Using a custom Ant task

build.gradle

tasks.register('check') {
dolast {

ant.taskdef(resource: 'checkstyletask.properties') {

classpath {
fileset(dir: 'libs', includes: '*.jar')

}

}

ant.checkstyle(config: 'checkstyle.xml") {
fileset(dir: 'src')

}

build.gradle.kts

tasks.register("check") {
dolast {
ant.withGroovyBuilder {
"taskdef"("resource" to "checkstyletask.properties") {
"classpath" {
"fileset"("dir" to "libs", "includes" to "*.jar")
}

+
"checkstyle"("config" to "checkstyle.xml") {

"fileset"("dir" to "src")

}

You can use Gradle’s dependency management to assemble the classpath to use for the custom
tasks. To do this, you need to define a custom configuration for the classpath, then add some
dependencies to the configuration. This is described in more detail in Declaring Dependencies.

declaring_dependencies.html

Example 220. Declaring the classpath for a custom Ant task

build.gradle
configurations {
pmd
}
dependencies {

pmd group: 'pmd', name: 'pmd', version: '4.2.5'

}

build.gradle.kts
val pmd = configurations.create("pmd")
dependencies {

pmd(group = "pmd", name = "pmd", version = "4.2.5")

}

To use the classpath configuration, use the asPath property of the custom configuration.

Example 221. Using a custom Ant task and dependency management together

build.gradle

tasks.register('check') {
dolast {
ant.taskdef(name: 'pmd',
classname: 'net.sourceforge.pmd.ant.PMDTask',
classpath: configurations.pmd.asPath)
ant.pmd(shortFilenames: 'true',
failonruleviolation: 'true',
rulesetfiles: file('pmd-rules.xml').toURI().toString()) {
formatter(type: 'text', toConsole: 'true')
fileset(dir: 'src')

build.gradle.kts

tasks.register("check") {
dolLast {
ant.withGroovyBuilder {
"taskdef"("name" to "pmd",
"classname" to "net.sourceforge.pmd.ant.PMDTask",
"classpath" to pmd.asPath)
“pmd" ("shortFilenames" to true,
"failonruleviolation" to true,
"rulesetfiles" to file("pmd-rules.xml").toURI().toString())

"formatter"("type" to "text", "toConsole" to "true")
"fileset"("dir" to "src")

Importing an Ant build

You can use the ant.importBuild() method to import an Ant build into your Gradle project. When
you import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate
and execute the Ant targets in exactly the same way as Gradle tasks.

Example 222. Importing an Ant build

build.gradle

ant.importBuild 'build.xml'

build.gradle.kts

ant.importBuild("build.xml")

build.xml

<project>
<target name="hello">
<echo>Hello, from Ant</echo>
</target>
</project>

Output of gradle hello
> gradle hello

> Task :hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

You can add a task which depends on an Ant target:

Example 223. Task that depends on Ant target

build.gradle
ant.importBuild 'build.xml'
tasks.register('intro') {
dependsOn("hello")

dolLast {
println 'Hello, from Gradle'

}

build.gradle.kts
ant.importBuild("build.xml")
tasks.register("intro") {
dependsOn("hello")
dolast {

println("Hello, from Gradle")
}

Output of gradle intro
> gradle intro

> Task :hello
[ant:echo] Hello, from Ant

> Task :intro
Hello, from Gradle

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

Or, you can add behaviour to an Ant target:

Example 224. Adding behaviour to an Ant target

build.gradle
ant.importBuild 'build.xml'
hello {

dolast {
println 'Hello, from Gradle'

}

build.gradle.kts
ant.importBuild("build.xml")
tasks.named("hello") {

dolast {
println("Hello, from Gradle")

}

Output of gradle hello
> gradle hello
> Task :hello
[ant:echo] Hello, from Ant
Hello, from Gradle

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

It is also possible for an Ant target to depend on a Gradle task:

Example 225. Ant target that depends on Gradle task

build.gradle
ant.importBuild 'build.xml'

tasks.register('intro') {
dolast {
println 'Hello, from Gradle'
}

build.gradle.kts
ant.importBuild("build.xml")

tasks.register("intro") {
dolast {
println("Hello, from Gradle")
}

build.xml

<project>
<target name="hello" depends="intro">
<echo>Hello, from Ant</echo>
</target>
</project>

Output of gradle hello
> gradle hello

> Task :intro
Hello, from Gradle

> Task :hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming
collision with existing Gradle tasks. To do this, use the AntBuilder.importBuild(java.lang.Object,
org.gradle.api.Transformer) method.

Example 226. Renaming imported Ant targets

build.gradle

ant.importBuild('build.xml") { antTargetName ->

a-' + antTargetName

}

build.gradle.kts

ant.importBuild("build.xml") { antTargetName ->

a-" + antTargetName

}

build.xml

<project>
<target name="hello">
<echo>Hello, from Ant</echo>
</target>
</project>

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object-org.gradle.api.Transformer-

Output of gradle a-hello
> gradle a-hello

> Task :a-hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Note that while the second argument to this method should be a Transformer, when programming
in Groovy we can simply use a closure instead of an anonymous inner class (or similar) due to
Groovy’s support for automatically coercing closures to single-abstract-method types.

Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. You
can set the property directly on the AntBuilder instance. The Ant properties are also available as a
Map which you can change. You can also use the Ant property task. Below are some examples of
how to do this.

Example 227. Setting an Ant property

build.gradle

ant.buildDir = buildDir

ant.properties.buildDir = buildDir
ant.properties['buildDir'] = buildDir
ant.property(name: 'buildDir', location: buildDir)

build.gradle.kts

ant.setProperty("buildDir", buildDir)
ant.properties.set("buildDir", buildDir)
ant.properties["buildDir"] = buildDir
ant.withGroovyBuilder {

"property"("name" to "buildDir", "location" to "buildDir")

}

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the AntBuilder instance. The Ant properties are
also available as a Map. Below are some examples.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

Example 228. Getting an Ant property

build.xml

<property name="antProp" value="a property defined in an Ant build"/>

build.gradle

println ant.antProp
println ant.properties.antProp
println ant.properties['antProp’]

build.gradle.kts

println(ant.getProperty("antProp"))
println(ant.properties.get("antProp"))
println(ant.properties["antProp"])

There are several ways to set an Ant reference:

Example 229. Setting an Ant reference

build.gradle

ant.path(id: 'classpath', location: 'libs')
ant.references.classpath = ant.path(location: 'libs")
ant.references['classpath'] = ant.path(location: 'libs')

build.gradle.kts

ant.withGroovyBuilder { "path"("id" to "classpath", "location" to "libs") }
ant.references.set("classpath", ant.withGroovyBuilder { "path"("location" to
"libs") })

ant.references["classpath"] = ant.withGroovyBuilder { "path"("location" to
"libs") }

build.xml

<path refid="classpath"/>

There are several ways to get an Ant reference:

Example 230. Getting an Ant reference

build.xml

<path id="antPath" location="1ibs"/>

build.gradle

println ant.references.antPath
println ant.references['antPath']

build.gradle.kts

println(ant.references.get("antPath"))
println(ant.references["antPath"])

Ant logging

Gradle maps Ant message priorities to Gradle log levels so that messages logged from Ant appear in
the Gradle output. By default, these are mapped as follows:

Table 8. Ant message priority mapping

Ant Message Priority Gradle Log Level
VERBOSE DEBUG
DEBUG DEBUG

INEO INFO

Ant Message Priority Gradle Log Level

WARN WARN
ERROR ERROR
Fine tuning Ant logging

The default mapping of Ant message priority to Gradle log level can sometimes be problematic. For
example, there is no message priority that maps directly to the LIFECYCLE log level, which is the
default for Gradle. Many Ant tasks log messages at the INFO priority, which means to expose those
messages from Gradle, a build would have to be run with the log level set to INFO, potentially
logging much more output than is desired.

Conversely, if an Ant task logs messages at too high of a level, to suppress those messages would
require the build to be run at a higher log level, such as QUIET. However, this could result in other,
desirable output being suppressed.

To help with this, Gradle allows the user to fine tune the Ant logging and control the mapping of
message priority to Gradle log level. This is done by setting the priority that should map to the
default Gradle LIFECYCLE log level using the AntBuilder.setLifecycleLogLevel(java.lang.String)
method. When this value is set, any Ant message logged at the configured priority or above will be
logged at least at LIFECYCLE. Any Ant message logged below this priority will be logged at most at
INFO.

For example, the following changes the mapping such that Ant INFO priority messages are exposed
at the LIFECYCLE log level.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html#setLifecycleLogLevel-java.lang.String-

Example 231. Fine tuning Ant logging

build.gradle
ant.lifecyclelLoglLevel = "INFO"

tasks.register('hello') {
dolast {

ant.echo(level: "info", message: "hello from info priority!")

}

build.gradle.kts

ant.lifecycleloglevel = AntBuilder.AntMessagePriority.INFO

tasks.register("hello") {
dolast {
ant.withGroovyBuilder {
"echo"("level" to "info", "message" to "hello from info
priority!")
}
}

Output of gradle hello
> gradle hello

> Task :hello
[ant:echo] hello from info priority!

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

On the other hand, if the lifecycleloglevel was set to ERROR, Ant messages logged at the WARN

priority would no longer be logged at the WARN log level. They would now be logged at the INFO level
and would be suppressed by default.

API

The Ant integration is provided by AntBuilder.

[1] There are command line switches to change this behavior. See Command-Line Interface

[2] There are command line switches to change this behavior. See Command-Line Interface

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html

[3] You might be wondering why there is neither an import for the StopExecutionException nor do we access it via its fully qualified
name. The reason is, that Gradle adds a set of default imports to your script (see Default imports).

[4] Any language element except for statement labels.

[5] Gradle supports partial multi-project builds (see Executing Multi-Project Builds).

[6] In Groovy you can execute Strings. To learn more about executing external processes with Groovy have a look in 'Groovy in
Action' 9.3.2 or at the Groovy wiki

Dependency Management

Learning the Basics

Dependency management in Gradle

What is dependency management?

Software projects rarely work in isolation. In most cases, a project relies on reusable functionality
in the form of libraries or is broken up into individual components to compose a modularized
system. Dependency management is a technique for declaring, resolving and using dependencies
required by the project in an automated fashion.

For a general overview on the terms used throughout the user guide, refer to

NOTE .
Dependency Management Terminology.

Dependency management in Gradle

Gradle has built-in support for dependency management and lives up to the task of fulfilling typical
scenarios encountered in modern software projects. We’ll explore the main concepts with the help
of an example project. The illustration below should give you an rough overview on all the moving
parts.

Local File
Repository

dCCesS

artifacts download Maven

artifacts / Repository

Gradle

. I
Build
\ lvy
store access Repository
artifacts artifacts

Gradle
Cache

Figure 12. Dependency management big picture

The example project builds Java source code. Some of the Java source files import classes from
Google Guava, a open-source library providing a wealth of utility functionality. In addition to
Guava, the project needs the JUnit libraries for compiling and executing test code.

Guava and JUnit represent the dependencies of this project. A build script developer can declare
dependencies for different scopes e.g. just for compilation of source code or for executing tests. In
Gradle, the scope of a dependency is called a configuration. For a full overview, see the reference
material on dependency types.

Often times dependencies come in the form of modules. You’ll need to tell Gradle where to find
those modules so they can be consumed by the build. The location for storing modules is called a
repository. By declaring repositories for a build, Gradle will know how to find and retrieve
modules. Repositories can come in different forms: as local directory or a remote repository. The
reference on repository types provides a broad coverage on this topic.

At runtime, Gradle will locate the declared dependencies if needed for operating a specific task. The
dependencies might need to be downloaded from a remote repository, retrieved from a local
directory or requires another project to be built in a multi-project setting. This process is called
dependency resolution. You can find a detailed discussion in How Gradle downloads dependencies.

Once resolved, the resolution mechanism stores the underlying files of a dependency in a local

https://github.com/google/guava
http://junit.org/junit5/

cache, also referred to as the dependency cache. Future builds reuse the files stored in the cache to
avoid unnecessary network calls.

Modules can provide additional metadata. Metadata is the data that describes the module in more
detail e.g. the coordinates for finding it in a repository, information about the project, or its authors.
As part of the metadata, a module can define that other modules are needed for it to work properly.
For example, the JUnit 5 platform module also requires the platform commons module. Gradle
automatically resolves those additional modules, so called transitive dependencies. If needed, you
can customize the behavior the handling of transitive dependencies to your project’s requirements.

Projects with tens or hundreds of declared dependencies can easily suffer from dependency hell.
Gradle provides sufficient tooling to visualize, navigate and analyze the dependency graph of a
project either with the help of a build scan or built-in tasks. Learn more in Viewing and debugging
dependencies.

e0e® < il & scans.gradle.com)
” Build Scan e‘. v gradle :core:test Sep 27, 2017 2:00:13 PM MST

Summary

214 dependencies resolved in 70 projects across 156 configurations
[*-] Console log

Timeline g

W Performance :announce

II 1 antle »

g :baseServices -
é} Projects compileClasspath ~ W2
= com.google.code findbugs:jsr305:1.3.9

g.g Dependencies e com.google guava:guava-jdk5:17.0

[Plugins commans-io:commons-io:2,2

o= Custom values cun'lfrr.uur.-s.-lang:coml'lnuns-Iang:ﬂ.{:
net.jcip:;jcip-annotations: 1.0

& Switches org.slf4j:sIf4j-api:1.7.10

&) Infrastructure runtimeClasspath »

testFixturesCompileClasspath »

hateServicscGrmme

Figure 13. Build scan dependencies report

Declaring repositories

Gradle can resolve dependencies from one or many repositories based on Maven, Ivy or flat
directory formats. Check out the full reference on all types of repositories for more information.

Declaring a publicly-available repository

Organizations building software may want to leverage public binary repositories to download and
consume open source dependencies. Popular public repositories include Maven Central and the
Google Android repository. Gradle provides built-in shorthand notations for these widely-used
repositories.

https://scans.gradle.com/get-started

mavenCentral () Maven
Central

Gradle
Build

Google
google () Android

Figure 14. Declaring a repository with the help of shorthand notations

Under the covers Gradle resolves dependencies from the respective URL of the public repository
defined by the shorthand notation. All shorthand notations are available via the RepositoryHandler
API. Alternatively, you can spell out the URL of the repository for more fine-grained control.

Maven Central repository

Maven Central is a popular repository hosting open source libraries for consumption by Java
projects.

To declare the Maven Central repository for your build add this to your script:

Example 232. Adding central Maven repository

build.gradle

repositories {
mavenCentral()

}

build.gradle.kts

repositories {
mavenCentral()

}

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
https://repo.maven.apache.org/maven2/

Google Maven repository

The Google repository hosts Android-specific artifacts including the Android SDK. For usage
examples, see the relevant Android documentation.

To declare the Google Maven repository add this to your build script:

Example 233. Adding Google Maven repository

build.gradle

repositories {
google()
}

build.gradle.kts

repositories {
google()
}

Declaring a custom repository by URL

Most enterprise projects set up a binary repository available only within an intranet. In-house
repositories enable teams to publish internal binaries, setup user management and security
measure and ensure uptime and availability. Specifying a custom URL is also helpful if you want to
declare a less popular, but publicly-available repository.

Repositories with custom URLs can be specified as Maven or Ivy repositories by calling the
corresponding methods available on the RepositoryHandler API. Gradle supports other protocols
than http or https as part of the custom URL e.g. file, sftp or s3. For a full coverage see the section
on supported repository types.

You can also define your own repository layout by using ivy { } repositories as they are very
flexible in terms of how modules are organised in a repository.

Declaring multiple repositories

You can define more than one repository for resolving dependencies. Declaring multiple
repositories is helpful if some dependencies are only available in one repository but not the other.
You can mix any type of repository described in the reference section.

This example demonstrates how to declare various named and custom URL repositories for a
project:

https://developer.android.com/studio/build/dependencies.html#google-maven
https://maven.google.com/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Example 234. Declaring multiple repositories

build.gradle

repositories {

mavenCentral()
maven {
url "https://repo.spring.io/release”
}
maven {
url "https://repository.jboss.org/maven2"
}
¥
build.gradle.kts

repositories {

mavenCentral()
maven {
url = uri("https://repo.spring.io/release")
}
maven {
url = uri("https://repository.jboss.org/maven2")
}
}
The order of declaration determines how Gradle will check for dependencies at
NOTE runtime. If Gradle finds a module descriptor in a particular repository, it will

attempt to download all of the artifacts for that module from the same repository.
You can learn more about the inner workings of dependency downloads.
Strict limitation to declared repositories

Maven POM metadata can reference additional repositories. These will be ignored by Gradle, which
will only use the repositories declared in the build itself.

This is a reproducibility safe-guard but also a security protection. Without it, an
NOTE updated version of a dependency could pull artifacts from anywhere into your
build.

Supported repository types

Gradle supports a wide range of sources for dependencies, both in terms of format and in terms of
connectivity. You may resolve dependencies from:

* Different formats
o a Maven compatible artifact repository (e.g: Maven Central)
o an Ivy compatible artifact repository (including custom layouts)
o local (flat) directories
» with different connectivity
o authenticated repositories

> a wide variety of remote protocols such as HTTPS, SFTP, AWS S3 and Google Cloud Storage

Flat directory repository

Some projects might prefer to store dependencies on a shared drive or as part of the project source
code instead of a binary repository product. If you want to use a (flat) filesystem directory as a
repository, simply type:

Example 235. Flat repository resolver

build.gradle

repositories {

flatDir {
dirs 'lib’
}
flatDir {
dirs '1ib1', '1ib2'
}
}
build.gradle.kts

repositories {
flatDir {
dirs("1ib")
}
flatDir {
dirs("1ib1", "1ib2")

This adds repositories which look into one or more directories for finding dependencies.

This type of repository does not support any meta-data formats like Ivy XML or Maven POM files.
Instead, Gradle will dynamically generate a module descriptor (without any dependency
information) based on the presence of artifacts.

As Gradle prefers to use modules whose descriptor has been created from real
meta-data rather than being generated, flat directory repositories cannot be used to
override artifacts with real meta-data from other repositories declared in the build.

For example, if Gradle finds only jmxri-1.2.17.jar in a flat directory repository, but
jmxri-1.2.7.pom in another repository that supports meta-data, it will use the second
repository to provide the module.

NOTE

For the use case of overriding remote artifacts with local ones consider using an Ivy
or Maven repository instead whose URL points to a local directory.

If you only work with flat directory repositories you don’t need to set all attributes of a dependency.

Local repositories

The following sections describe repositories format, Maven or Ivy. These can be declared as local
repositories, using a local filesystem path to access them.

The difference with the flat directory repository is that they do respect a format and contain
metadata.

When such a repository is configured, Gradle totally bypasses its dependency cache for it as there
can be no guarantee that content may not change between executions. Because of that limitation,
they can have a performance impact.

They also make build reproducibility much harder to achieve and their use should be limited to
tinkering or prototyping.

Maven repositories

Many organizations host dependencies in an in-house Maven repository only accessible within the
company’s network. Gradle can declare Maven repositories by URL.

For adding a custom Maven repository you can do:

Example 236. Adding custom Maven repository

build.gradle

repositories {
maven {
url "http://repo.mycompany.com/maven2"

build.gradle.kts

repositories {
maven {
url = uri("http://repo.mycompany.com/maven2")

Setting up composite Maven repositories

Sometimes a repository will have the POMs published to one location, and the JARs and other
artifacts published at another location. To define such a repository, you can do:

Example 237. Adding additional Maven repositories for JAR files

build.gradle

repositories {
maven {
// Look for POMs and artifacts, such as JARs, here
url "http://repo2.mycompany.com/maven2"
// Look for artifacts here if not found at the above location
artifactUrls "http://repo.mycompany.com/jars"
artifactUrls "http://repo.mycompany.com/jars2"

build.gradle.kts

repositories {
maven {
// Look for POMs and artifacts, such as JARs, here
url = uri("http://repo2.mycompany.com/maven2")
// Look for artifacts here if not found at the above location
artifactUrls("http://repo.mycompany.com/jars")
artifactUrls("http://repo.mycompany.com/jars2")

Gradle will look at the base url location for the POM and the JAR. If the JAR can’t be found there, the
extra artifactUrls are used to look for JARs.

Accessing authenticated Maven repositories

You can specify credentials for Maven repositories secured by different type of authentication.

See Supported repository transport protocols for authentication options.

Local Maven repository

Gradle can consume dependencies available in the local Maven repository. Declaring this
repository is beneficial for teams that publish to the local Maven repository with one project and
consume the artifacts by Gradle in another project.

Gradle stores resolved dependencies in its own cache. A build does not need to
NOTE declare the local Maven repository even if you resolve dependencies from a Maven-
based, remote repository:.

https://maven.apache.org/guides/introduction/introduction-to-repositories.html

Before adding Maven local as a repository, you should make sure this is really

WARNING .
required.

To declare the local Maven cache as a repository add this to your build script:

Example 238. Adding the local Maven cache as a repository

build.gradle

repositories {
mavenLocal()

}

build.gradle.kts

repositories {
mavenLocal()

}

Gradle uses the same logic as Maven to identify the location of your local Maven cache. If a local
repository location is defined in a settings.xml, this location will be used. The settings.xml in
USER_HOME/.m2 takes precedence over the settings.xml in M2 _HOME/conf. If no settings.xml is
available, Gradle uses the default location USER_HOME/.m2/repository.

The case for mavenLocal()

As a general advice, you should avoid adding mavenlLocal() as a repository. There are different
issues with using mavenLocal() that you should be aware of:
* Maven uses it as a cache, not a repository, meaning it can contain partial modules.

o For example, if Maven never downloaded the source or javadoc files for a given module,
Gradle will not find them either since it searches for files in a single repository once a
module has been found.

* As alocal repository, Gradle does not trust its content, because:
o Origin of artifacts cannot be tracked, which is a correctness and security problem

o Artifacts can be easily overwritten, which is a security, correctness and reproducibility
problem

» To mitigate the fact that metadata and/or artifacts can be changed, Gradle does not perform any
caching for local repositories

> As a consequence, your builds are slower

o Given that order of repositories is important, adding mavenLocal() first means that all your

builds are going to be slower
There are a few cases where you might have to use mavenlLocal():

* For interoperability with Maven

o For example, project A is built with Maven, project B is built with Gradle, and you need to
share the artifacts during development

o It is always preferable to use an internal full featured repository instead
o In case this is not possible, you should limit this to local builds only
* For interoperability with Gradle itself
o In a multi-repository world, you want to check that changes to project A work with project B
o It is preferable to use composite builds for this use case
o If for some reason neither composite builds nor full featured repository are possible, then

mavenLocal() is a last resort option

After all these warnings, if you end up using mavenlLocal(), consider combining it with a repository
filter. This will make sure it only provides what is expected and nothing else.

Ivy repositories

Organizations might decide to host dependencies in an in-house Ivy repository. Gradle can declare
Ivy repositories by URL.

Defining an Ivy repository with a standard layout

To declare an Ivy repository using the standard layout no additional customization is needed. You
just declare the URL.

Example 239. Ivy repository

build.gradle

repositories {
ivy {
url "http://repo.mycompany.com/repo"
}

build.gradle.kts

repositories {
ivy {
url = uri("http://repo.mycompany.com/repo")
}

Defining a named layout for an Ivy repository

You can specify that your repository conforms to the Ivy or Maven default layout by using a named
layout.

Example 240. Ivy repository with named layout

build.gradle

repositories {
ivy {
url "http://repo.mycompany.com/repo"
layout "maven"

build.gradle.kts

repositories {
ivy {
url = uri("http://repo.mycompany.com/repo")
layout("maven")

Valid named layout values are ‘'gradle’ (the default), ‘'maven’ and ‘'ivy'. See
IvyArtifactRepositorylayout(java.lang.String) in the API documentation for details of these named
layouts.

Defining custom pattern layout for an Ivy repository

To define an Ivy repository with a non-standard layout, you can define a pattern layout for the
repository:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String)

Example 241. Ivy repository with pattern layout

build.gradle

repositories {
ivy {
url "http://repo.mycompany.com/repo"
patternLayout {
artifact "[module]/[revision]/[type]/[artifact].[ext]"
}

build.gradle.kts

repositories {
ivy {
url = uri("http://repo.mycompany.com/repo")
patternLayout {
artifact("[module]/[revision]/[type]/[artifact].[ext]")
}

To define an Ivy repository which fetches Ivy files and artifacts from different locations, you can
define separate patterns to use to locate the Ivy files and artifacts:

Each artifact or ivy specified for a repository adds an additional pattern to use. The patterns are
used in the order that they are defined

Example 242. vy repository with multiple custom patterns

build.gradle

repositories {
ivy {
url "http://repo.mycompany.com/repo"
patternLayout {
artifact "3rd-party-
artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
artifact "company-
artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
ivy "ivy-files/[organisation]/[module]/[revision]/ivy.xml"

}

build.gradle.kts

repositories {
ivy {
url = uri("http://repo.mycompany.com/repo")
patternLayout {
artifact("3rd-party-
artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]")
artifact("company-
artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]")
ivy("ivy-files/[organisation]/[module]/[revision]/ivy.xml")

}

Optionally, a repository with pattern layout can have its 'organisation’ part laid out in Maven style,
with forward slashes replacing dots as separators. For example, the organisation my.company would
then be represented as my/company.

Example 243. Ivy repository with Maven compatible layout

build.gradle

repositories {
ivy {
url "http://repo.mycompany.com/repo"
patternLayout {
artifact "[organisation]/[module]/[revision]/[artifact]-
[revision].[ext]"
m2compatible = true

}

build.gradle.kts

repositories {
ivy {
url = uri("http://repo.mycompany.com/repo")
patternLayout {
artifact("[organisation]/[module]/[revision]/[artifact]-
[revision].[ext]")
setM2compatible(true)
}

Accessing authenticated Ivy repositories

You can specify credentials for Ivy repositories secured by basic authentication.

Example 244. Ivy repository with authentication

build.gradle

repositories {
ivy {
url "http://repo.mycompany.com”
credentials {
username "user"
password "password"

build.gradle.kts

repositories {
ivy {
url = uri("http://repo.mycompany.com")
credentials {
username = "user"
password = "password"

See Supported repository transport protocols for authentication options.

Repository content filtering

Gradle exposes an API to declare what a repository may or may not contain. There are different use
cases for it:

» performance, when you know a dependency will never be found in a specific repository
* security, by avoiding leaking what dependencies are used in a private project

* reliability, when some repositories contain corrupted metadata or artifacts

It’s even more important when considering that the declared order of repositories matter.

Declaring a repository filter

Example 245. Declaring repository contents

build.gradle

repositories {

maven {
url "https://repo.mycompany.com/maven2"
content {
// this repository *only* contains artifacts with group
"my.company"
includeGroup "my.company"
}
}
mavenCentral {
content {

// this repository contains everything BUT artifacts with group
starting with "my.company"
excludeGroupByRegex "my\\.company.*"
}

build.gradle.kts

repositories {

maven {
url = uri("https://repo.mycompany.com/maven2")
content {
// this repository *only* contains artifacts with group
"my.company"
includeGroup("my.company")
}
}
mavenCentral {
content {

// this repository contains everything BUT artifacts with group
starting with "my.company"
excludeGroupByRegex("my\\.company.*")
}

By default, repositories include everything and exclude nothing:

 If you declare an include, then it excludes everything but what is included.

» If you declare an exclude, then it includes everything but what is excluded.

* If you declare both includes and excludes, then it includes only what is explicitly included and
not excluded.

It is possible to filter either by explicit group, module or version, either strictly or using regular
expressions. When using a strict version, it is possible to use a version range, using the format
supported by Gradle. In addition, there are filtering options by resolution context: configuration
name or even configuration attributes. See RepositoryContentDescriptor for details.

Declaring content exclusively found in one repository

Filters declared using the repository-level content filter are not exclusive. This means that declaring
that a repository includes an artifact doesn’t mean that the other repositories can’t have it either:
you must declare what every repository contains in extension.

Alternatively, Gradle provides an API which lets you declare that a repository exclusively includes
an artifact. If you do so:
* an artifact declared in a repository can’t be found in any other

* exclusive repository content must be declared in extension (just like for repository-level
content)

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/repositories/RepositoryContentDescriptor.html

Example 246. Declaring exclusive repository contents

build.gradle

repositories {

// This repository will _not_ be searched for artifacts in my.company
// despite being declared first
mavenCentral()
exclusiveContent {

forRepository {

maven {
url "https://repo.mycompany.com/maven2"

}
}
filter {
// this repository *only* contains artifacts with group
"my.company"
includeGroup "my.company"
}
}
}
build.gradle.kts

repositories {
// This repository will _not_ be searched for artifacts in my.company
// despite being declared first
mavenCentral()
exclusiveContent {
forRepository {
maven {
url = uri("https://repo.mycompany.com/maven2")
}
}
filter {
// this repository *only* contains artifacts with group
“my.company"
includeGroup("my.company")

}

It is possible to filter either by explicit group, module or version, either strictly or using regular
expressions. See InclusiveRepositoryContentDescriptor for details.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/repositories/InclusiveRepositoryContentDescriptor.html

If you leverage exclusive content filtering in the pluginManagement section of the
settings.gradle(.kts), it becomes illegal to add more repositories through the

NOTE project buildscript.repositories. In that case, the build configuration will fail.

Your options are either to declare all repositories in settings or to use non-exclusive
content filtering.

Maven repository filtering

For Maven repositories, it’s often the case that a repository would either contain releases or
snapshots. Gradle lets you declare what kind of artifacts are found in a repository using this DSL:

Example 247. Splitting snapshots and releases

build.gradle

repositories {
maven {
url "https://repo.mycompany.com/releases"
mavenContent {

releasesOnly()
}
}
maven {
url "https://repo.mycompany.com/snapshots”
mavenContent {
snapshotsOnly()
}
}
}
build.gradle.kts

repositories {
maven {
url = uri("https://repo.mycompany.com/releases")
mavenContent {

releasesOnly()
}
}
maven {
url = uri("https://repo.mycompany.com/snapshots")
mavenContent {
snapshotsOnly()
}
}

Supported metadata sources

When searching for a module in a repository, Gradle, by default, checks for supported metadata file
formats in that repository. In a Maven repository, Gradle looks for a .pom file, in an ivy repository it
looks for an ivy.xml file and in a flat directory repository it looks directly for .jar files as it does not
expect any metadata. Starting with 5.0, Gradle also looks for .module (Gradle module metadata) files.

However, if you define a customized repository you might want to configure this behavior. For
example, you can define a Maven repository without .pom files but only jars. To do so, you can

configure metadata sources for any repository.

Example 248. Maven repository that supports artifacts without metadata

build.gradle

repositories {
maven {
url "http://repo.mycompany.com/repo"
metadataSources {
mavenPom()
artifact()

build.gradle.kts

repositories {
maven {
url = uri("http://repo.mycompany.com/repo")
metadataSources {
mavenPom()
artifact()

You can specify multiple sources to tell Gradle to keep looking if a file was not found. In that case,
the order of checking for sources is predefined.

The following metadata sources are supported:

Table 9. Supported metadata sources

Metadata Description Orde Mave Ivy/flat
source r n dir

gradleMetadata() Look for Gradle .module files 1st yes yes
mavenPom() Look for Maven .pomfiles 2nd yes yes
ivyDescriptor() Look for ivy.xml files 2nd no yes

artifact() Look directly for artifact 3rd yes yes

The defaults for Ivy and Maven repositories change with Gradle 6.0. Before 6.0,
artifact() was included in the defaults. Leading to some inefficiency when modules
are missing completely. To restore this behavior, for example, for Maven central
you can use mavenCentral { metadataSources { mavenPom(); artifact() } }. In a

similar way, you can opt into the new behavior in older Gradle versions using
mavenCentral { metadataSources { mavenPom() } }

NOTE

Since Gradle 5.3, when parsing a metadata file, be it Ivy or Maven, Gradle will look for a marker
indicating that a matching Gradle Module Metadata files exists. If it is found, it will be used instead
of the Ivy or Maven file.

Starting with Gradle 5.6, you can disable this behavior by adding ignoreGradleMetadataRedirection()
to the metadataSources declaration.

Example 249. Maven repository that does not use gradle metadata redirection

build.gradle

repositories {
maven {
url "http://repo.mycompany.com/repo"
metadataSources {

mavenPom()
artifact()
ignoreGradleMetadataRedirection()
}
}
}
build.gradle.kts

repositories {
maven {
url = uri("http://repo.mycompany.com/repo")
metadataSources {
mavenPom()
artifact()
ignoreGradleMetadataRedirection()

Plugin repositories vs. build repositories

Gradle will use repositories at two different phases during your build.

The first phase is when configuring your build and loading the plugins it applied. To do that Gradle
will use a special set of repositories.

The second phase is during dependency resolution. At this point Gradle will use the repositories
declared in your project, as shown in the previous sections.

Plugin repositories

By default Gradle will use the Gradle plugin portal to look for plugins.

However, for different reasons, there are plugins available in other, public or not, repositories.
When a build requires one of these plugins, additional repositories need to be specified so that
Gradle knows where to search.

As the way to declare the repositories and what they are expected to contain depends on the way
the plugin is applied, it is best to refer to Custom Plugin Repositories.

Centralizing repositories declaration

Instead of declaring repositories in every subproject of your build or via an allprojects block,
Gradle offers a way to declare them in a central place for all project.

NOTE Central declaration of repositories is an incubating feature

Repositories used by convention by every subproject can be declared in the settings.gradle(.kts)
file:

Example 250. Declaring a Maven repository in settings

settings.gradle

dependencyResolutionManagement {
repositories {
mavenCentral()

}

settings.gradle.kts

dependencyResolutionManagement {
repositories {
mavenCentral()

}

http://plugins.gradle.org

The dependencyResolutionManagement repositories block accepts the same notations as in a project,
which includes Maven or Ivy repositories, with or without credentials, etc.

By default, repositories declared by a project will override whatever is declared in settings. You
can change this behavior to make sure that you always use the settings repositories:

Example 251. Preferring settings repositories

settings.gradle

dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.PREFER_SETTINGS)

}

settings.gradle.kts

dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.PREFER_SETTINGS)

}

If, for some reason, a project or a plugin declares a repository in a project, Gradle would warn you.
You can however make it fail the build if you want to enforce that only settings repositories are
used:

Example 252. Enforcing settings repositories

settings.gradle

dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)

}

settings.gradle.kts

dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)

}

Eventually, the default is equivalent to setting PREFER_PROJECT:

Example 253. Preferring project repositories

settings.gradle

dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.PREFER_PROJECT)
}

settings.gradle.kts

dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.PREFER_PROJECT)
+

Supported repository transport protocols

Maven and Ivy repositories support the use of various transport protocols. At the moment the
following protocols are supported:

Table 10. Repository transport protocols

Typ Credential types Link
e
file none
http username/password Documentati
on
http username/password Documentati
s on
sftp username/password Documentati
on
s3 access key/secret key/session token or Environment variables Documentati
on
9¢s default application credentials sourced from well known files, Environment Documentati
variables etc. on
Username and password should never be checked in plain text into version control
NOTE as part of your build file. You can store the credentials in a local gradle.properties

file and use one of the open source Gradle plugins for encrypting and consuming

credentials e.g. the credentials plugin.

The transport protocol is part of the URL definition for a repository. The following build script
demonstrates how to create HTTP-based Maven and Ivy repositories:

https://developers.google.com/identity/protocols/application-default-credentials
https://plugins.gradle.org/plugin/nu.studer.credentials

Example 254. Declaring a Maven and Ivy repository

build.gradle

repositories {
maven {
url "http://repo.mycompany.com/maven2"

}
ivy {
url "http://repo.mycompany.com/repo"
}
¥
build.gradle.kts

repositories {
maven {
url = uri("http://repo.mycompany.com/maven2")

}
ivy {

url = uri("http://repo.mycompany.com/repo")
}

The following example shows how to declare SFTP repositories:

Example 255. Using the SFTP protocol for a repository

build.gradle

repositories {
maven {
url "sftp://repo.mycompany.com:22/maven2"
credentials {
username "user"
password "password"

}
}
ivy {
url "sftp://repo.mycompany.com:22/repo"
credentials {
username "user"
password "password"
}
}
}
build.gradle.kts

repositories {
maven {
url = uri("sftp://repo.mycompany.com:22/maven2")
credentials {
username = "user"
password = "password"

}
}
ivy {
url = uri("sftp://repo.mycompany.com:22/repo")
credentials {
username = "user"
password = "password"
}
}

For details on HTTP related authentication, see the section HTTP(S) authentication schemes
configuration.

When using an AWS S3 backed repository you need to authenticate using AwsCredentials,

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.credentials.AwsCredentials.html

providing access-key and a private-key. The following example shows how to declare a S3 backed
repository and providing AWS credentials:

Example 256. Declaring an S3 backed Maven and Ivy repository

build.gradle

repositories {
maven {

url "s3://myCompanyBucket/maven2"

credentials(AwsCredentials) {
accessKey "someKey"
secretKey "someSecret"
// optional
sessionToken "someSTSToken"

}
}
ivy {
url "s3://myCompanyBucket/ivyrepo"
credentials(AwsCredentials) {
accessKey "someKey"
secretKey "someSecret"
// optional
sessionToken "someSTSToken"
}
}

build.gradle.kts

repositories {
maven {

url = uri("s3://myCompanyBucket/maven2")

credentials(AwsCredentials::class) {
accessKey = "someKey"
secretkKey = "someSecret"
// optional
sessionToken = "someSTSToken"

}
}
ivy {
url = uri("s3://myCompanyBucket/ivyrepo")
credentials(AwsCredentials::class) {
accessKey = "someKey"
secretKey = "someSecret"
// optional
sessionToken = "someSTSToken"
}
}

You can also delegate all credentials to the AWS sdk by using the AwsImAuthentication. The
following example shows how:

Example 257. Declaring an S3 backed Maven and Ivy repository using IAM

build.gradle

repositories {
maven {
url "s3://myCompanyBucket/maven2"
authentication {
awsIm(AwsImAuthentication) // load from EC2 role or env var

}

}

ivy {
url "s3://myCompanyBucket/ivyrepo"
authentication {

awsIm(AwsImAuthentication)

}

}

}
build.gradle.kts

repositories {
maven {
url = uri("s3://myCompanyBucket/maven2")
authentication {
create<AwsImAuthentication>("awsIm") // load from EC2 role or env

var
}
}
ivy {
url = uri("s3://myCompanyBucket/ivyrepo")
authentication {
create<AwsImAuthentication>("awsIm")
}
}
}

For details on AWS S3 related authentication, see the section AWS S3 repositories configuration.

When using a Google Cloud Storage backed repository default application credentials will be used
with no further configuration required:

Example 258. Declaring a Google Cloud Storage backed Maven and Ivy repository using default application
credentials

build.gradle

repositories {
maven {
url "gcs://myCompanyBucket/maven2"

}
ivy {
url "gcs://myCompanyBucket/ivyrepo"
}
}
build.gradle.kts

repositories {
maven {
url = uri("gcs://myCompanyBucket/maven2")

}
ivy {

url = uri("qgcs://myCompanyBucket/ivyrepo")
}

For details on Google GCS related authentication, see the section Google Cloud Storage repositories
configuration.

HTTP(S) authentication schemes configuration

When configuring a repository using HTTP or HTTPS transport protocols, multiple authentication
schemes are available. By default, Gradle will attempt to use all schemes that are supported by the
Apache HttpClient library, documented here. In some cases, it may be preferable to explicitly
specify which authentication schemes should be used when exchanging credentials with a remote
server. When explicitly declared, only those schemes are used when authenticating to a remote
repository.

You can specify credentials for Maven repositories secured by basic authentication using
PasswordCredentials.

http://hc.apache.org/httpcomponents-client-ga/tutorial/html/authentication.html#d5e625
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/credentials/PasswordCredentials.html

Example 259. Accessing password-protected Maven repository

build.gradle

repositories {
maven {
url "http://repo.mycompany.com/maven2"
credentials {
username "user"
password "password"

build.gradle.kts

repositories {
maven {
url = uri("http://repo.mycompany.com/maven2")
credentials {
username = "user"
password = "password"

The following example show how to configure a repository to use only DigestAuthentication:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/authentication/http/DigestAuthentication.html

Example 260. Configure repository to use only digest authentication

build.gradle

repositories {
maven {

url "https://repo.mycompany.com/maven?’

credentials {
username "user"
password "password"

}

authentication {
digest(DigestAuthentication)

build.gradle.kts

repositories {
maven {
url = uri("https://repo.mycompany.com/maven2")
credentials {
username = "user"
password = "password"

}
authentication {
create<DigestAuthentication>("digest")

Currently supported authentication schemes are:

BasicAuthentication

Basic access authentication over HTTP. When using this scheme, credentials are sent
preemptively.

DigestAuthentication

Digest access authentication over HTTP.

HttpHeaderAuthentication

Authentication based on any custom HTTP header, e.g. private tokens, OAuth tokens, etc.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/authentication/http/BasicAuthentication.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/authentication/http/DigestAuthentication.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/authentication/http/HttpHeaderAuthentication.html

Using preemptive authentication

Gradle’s default behavior is to only submit credentials when a server responds with an
authentication challenge in the form of an HTTP 401 response. In some cases, the server will
respond with a different code (ex. for repositories hosted on GitHub a 404 is returned) causing
dependency resolution to fail. To get around this behavior, credentials may be sent to the server
preemptively. To enable preemptive authentication simply configure your repository to explicitly
use the BasicAuthentication scheme:

Example 261. Configure repository to use preemptive authentication

build.gradle

repositories {
maven {

url "https://repo.mycompany.com/maven2’

credentials {
username "user"
password "password"

}

authentication {
basic(BasicAuthentication)

build.gradle.kts

repositories {
maven {

url = uri("https://repo.mycompany.com/maven2")

credentials {
username = "user"
password = "password"

}

authentication {
create<BasicAuthentication>("basic")

Using HTTP header authentication

You can specify any HTTP header for secured Maven repositories requiring token, OAuth2 or other
HTTP header based authentication using HttpHeaderCredentials with HttpHeaderAuthentication.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/authentication/http/BasicAuthentication.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/credentials/HttpHeaderCredentials.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/authentication/http/HttpHeaderAuthentication.html

Example 262. Accessing header-protected Maven repository

build.gradle

repositories {
maven {
url "http://repo.mycompany.com/maven2"
credentials(HttpHeaderCredentials) {
name = "Private-Token"
value = "TOKEN"
}

authentication {
header (HttpHeaderAuthentication)

build.gradle.kts

repositories {
maven {
url = uri("http://repo.mycompany.com/maven2")
credentials(HttpHeaderCredentials::class) {
name = "Private-Token"
value = "TOKEN"
}

authentication {
create<HttpHeaderAuthentication>("header")

AWS S3 repositories configuration

S3 configuration properties
The following system properties can be used to configure the interactions with s3 repositories:

org.gradle.s3.endpoint

Used to override the AWS S3 endpoint when using a non AWS, S3 API compatible, storage
service.

org.gradle.s3.maxErrorRetry

Specifies the maximum number of times to retry a request in the event that the S3 server
responds with a HTTP 5xx status code. When not specified a default value of 3 is used.

S3 URL formats

S3 URL’s are 'virtual-hosted-style' and must be in the following format

s3://<bucketName>[.<regionSpecificEndpoint>]/<s3Key>

e.g. s3://myBucket.s3.eu-central-1.amazonaws.com/maven/release

* myBucket is the AWS S3 bucket name.
* s3.eu-central-1.amazonaws.com is the optional region specific endpoint.

» /maven/release is the AWS S3 key (unique identifier for an object within a bucket)

S3 proxy settings
A proxy for S3 can be configured using the following system properties:

* https.proxyHost

* https.proxyPort

* https.proxyUser

* https.proxyPassword

* http.nonProxyHosts
If the org.gradle.s3.endpoint property has been specified with a HTTP (not HTTPS) URI the
following system proxy settings can be used:

* http.proxyHost

* http.proxyPort

http.proxyUser
* http.proxyPassword

* http.nonProxyHosts

AWS S3 V4 Signatures (AWS4-HMAC-SHA256)

Some of the AWS S3 regions (eu-central-1 - Frankfurt) require that all HTTP requests are signed in
accordance with AWS’s signature version 4. It is recommended to specify S3 URL’s containing the
region specific endpoint when using buckets that require V4 signatures. e.g.

s3://somebucket.s3.eu-central-1.amazonaws.com/maven/release

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

When a region-specific endpoint is not specified for buckets requiring V4
Signatures, Gradle will use the default AWS region (us-east-1) and the following
warning will appear on the console:

Attempting to re-send the request to ... with AWS V4

authentication. To avoid this warning in the future, use region-

specific endpoint to access buckets located in regions that
NOTE require V4 signing.

Failing to specify the region-specific endpoint for buckets requiring V4 signatures
means:

* 3 round-trips to AWS, as opposed to one, for every file upload and download.

* Depending on location - increased network latencies and slower builds.

e Increased likelihood of transmission failures.

AWS S3 Cross Account Access

Some organizations may have multiple AWS accounts, e.g. one for each team. The AWS account of
the bucket owner is often different from the artifact publisher and consumers. The bucket owner
needs to be able to grant the consumers access otherwise the artifacts will only be usable by the
publisher’s account. This is done by adding the bucket-owner-full-control Canned ACL to the
uploaded objects. Gradle will do this in every upload. Make sure the publisher has the required IAM
permission, PutObjectAcl (and PutObjectVersionAcl if bucket versioning is enabled), either directly
or via an assumed IAM Role (depending on your case). You can read more at AWS S3 Access
Permissions.

Google Cloud Storage repositories configuration

GCS configuration properties

The following system properties can be used to configure the interactions with Google Cloud
Storage repositories:

org.gradle.gcs.endpoint

Used to override the Google Cloud Storage endpoint when using a non-Google Cloud Platform,
Google Cloud Storage API compatible, storage service.

org.gradle.gcs.servicePath

Used to override the Google Cloud Storage root service path which the Google Cloud Storage
client builds requests from, defaults to /.

GCS URL formats

Google Cloud Storage URL's are 'virtual-hosted-style’ and must be in the following format
gcs://<bucketName>/<objectKey>

e.g. gcs://myBucket/maven/release

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://cloud.google.com/storage/
https://cloud.google.com/storage/

* myBucket is the Google Cloud Storage bucket name.

» /maven/release is the Google Cloud Storage key (unique identifier for an object within a bucket)

Handling credentials

Repository credentials should never be part of your build script but rather be kept external. Gradle
provides an API in artifact repositories that allows you to declare only the type of required
credentials. Credential values are looked up from the Gradle Properties during the build that
requires them.

For example, given repository configuration:

Example 263. Externalized repository credentials

build.gradle

repositories {
maven {
name = 'mySecureRepository'
credentials(PasswordCredentials)
// url = uri(<<some repository url>>)

build.gradle.kts

repositories {
maven {
name = "mySecureRepository"
credentials(PasswordCredentials::class)
// url = uri(<<some repository url>>)

The wusername and password will be looked up from mySecureRepositoryUsername and
mySecureRepositoryPassword properties.

Note that the configuration property prefix - the identity - is determined from the repository name.
Credentials can then be provided in any of supported ways for Gradle Properties -
gradle.properties file, command line arguments, environment variables or a combination of those
options.

Also, note that credentials will only be required if the invoked build requires them. If for example a
project is configured to publish artifacts to a secured repository, but the build does not invoke
publishing task, Gradle will not require publishing credentials to be present. On the other hand, if

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/repositories/AuthenticationSupported.html#credentials-java.lang.Class-

the build needs to execute a task that requires credentials at some point, Gradle will check for
credential presence first thing and will not start running any of the tasks if it knows that the build
will fail at a later point because of missing credentials.

Here is a downloadable sample that demonstrates the concept in more detail.
Lookup is only supported for credentials listed in the Table 11.

Table 11. Credentials that support value lookup and their corresponding

properties
Type Argument Base property Required
name ?

PasswordCredentials username Username required
password Password required

AwsCredentials accessKey AccessKey required
secretKey SecretKey required
sessionToken SessionToken optional

HttpHeaderCredentials name AuthHeaderName required
value AuthHeaderValue required

Declaring dependencies

Before looking at dependency declarations themselves, the concept of dependency configuration
needs to be defined.

What are dependency configurations

Every dependency declared for a Gradle project applies to a specific scope. For example some
dependencies should be used for compiling source code whereas others only need to be available at
runtime. Gradle represents the scope of a dependency with the help of a Configuration. Every
configuration can be identified by a unique name.

Many Gradle plugins add pre-defined configurations to your project. The Java plugin, for example,
adds configurations to represent the various classpaths it needs for source code compilation,
executing tests and the like. See the Java plugin chapter for an example.

../samples/sample_publishing_credentials.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/credentials/PasswordCredentials.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/credentials/AwsCredentials.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/credentials/HttpHeaderCredentials.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.Configuration.html

compile Gradle Build

source file

resolve
: : dependencies
|| I | |implementation| | P

configuration \
> Binary
/ Repository
|| | < testRuntime _

configuration resolve
dependencies

execute
tests

Figure 15. Configurations use declared dependencies for specific purposes

For more examples on the usage of configurations to navigate, inspect and post-process metadata
and artifacts of assigned dependencies, have a look at the resolution result APIs.

Configuration inheritance and composition

A configuration can extend other configurations to form an inheritance hierarchy. Child
configurations inherit the whole set of dependencies declared for any of its superconfigurations.

Configuration inheritance is heavily used by Gradle core plugins like the Java plugin. For example
the testImplementation configuration extends the implementation configuration. The configuration
hierarchy has a practical purpose: compiling tests requires the dependencies of the source code
under test on top of the dependencies needed write the test class. A Java project that uses JUnit to
write and execute test code also needs Guava if its classes are imported in the production source
code.

implementation

. . com.google.guava:guava:23.0
configuration 9009 J °

extends

testImplementation

. . junit:junit:4.12
configuration JHREEs JERE

Figure 16. Configuration inheritance provided by the Java plugin

Under the covers the testImplementation and implementation configurations form an inheritance

hierarchy by calling the method
Configuration.extendsFrom(org.gradle.api.artifacts.Configuration[]). A configuration can extend
any other configuration irrespective of its definition in the build script or a plugin.

Let’s say you wanted to write a suite of smoke tests. Each smoke test makes a HTTP call to verify a
web service endpoint. As the underlying test framework the project already uses JUnit. You can
define a new configuration named smokeTest that extends from the testImplementation
configuration to reuse the existing test framework dependency.

Example 264. Extending a configuration from another configuration

build.gradle

configurations {
smokeTest.extendsFrom testImplementation

}

dependencies {
testImplementation 'junit:junit:4.13"
smokeTest 'org.apache.httpcomponents:httpclient:4.5.5'

build.gradle.kts

val smokeTest by configurations.creating {
extendsFrom(configurations.testImplementation.get())

}

dependencies {
testImplementation("junit:junit:4.13")
smokeTest("org.apache.httpcomponents:httpclient:4.5.5")

Resolvable and consumable configurations

Configurations are a fundamental part of dependency resolution in Gradle. In the context of
dependency resolution, it is useful to distinguish between a consumer and a producer. Along these
lines, configurations have at least 3 different roles:

1. to declare dependencies

2. as a consumer, to resolve a set of dependencies to files

3. as a producer, to expose artifacts and their dependencies for consumption by other projects
(such consumable configurations usually represent the variants the producer offers to its
consumers)

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:extendsFrom(org.gradle.api.artifacts.Configuration[])

For example, to express that an application app depends on library 1ib, at least one configuration is
required:

Example 265. Configurations are used to declare dependencies

build.gradle

configurations {

// declare a "configuration" named "someConfiguration"
someConfiquration

}

dependencies {

// add a project dependency to the "someConfiguration" configuration
someConfiguration project(":1ib")

build.gradle.kts

// declare a "configuration" named "someConfiguration"
val someConfiguration by configurations.creating

dependencies {

// add a project dependency to the "someConfiguration" configuration
someConfiguration(project(":1ib"))

Configurations can inherit dependencies from other configurations by extending from them. Now,
notice that the code above doesn’t tell us anything about the intended consumer of this
configuration. In particular, it doesn’t tell us how the configuration is meant to be used. Let’s say
that 1ib is a Java library: it might expose different things, such as its API, implementation, or test
fixtures. It might be necessary to change how we resolve the dependencies of app depending upon
the task we’re performing (compiling against the API of 1ib, executing the application, compiling
tests, etc.). To address this problem, youw’ll often find companion configurations, which are meant to
unambiguously declare the usage:

Example 266. Configurations representing concrete dependency graphs

build.gradle

configurations {

// declare a configuration that is going to resolve the compile classpath
of the application

compileClasspath.extendsFrom(someConfiguration)

// declare a confiquration that is going to resolve the runtime classpath
of the application
runtimeClasspath.extendsFrom(someConfiguration)

}

build.gradle.kts

configurations {

// declare a confiquration that is going to resolve the compile classpath
of the application

compileClasspath.extendsFrom(someConfiguration)

// declare a configuration that is going to resolve the runtime classpath
of the application
runtimeClasspath.extendsFrom(someConfiguration)

}

At this point, we have 3 different configurations with different roles:

» someConfiguration declares the dependencies of my application. It’s just a bucket that can hold a
list of dependencies.

» compileClasspath and runtimeClasspath are configurations meant to be resolved: when resolved
they should contain the compile classpath, and the runtime classpath of the application
respectively.

This distinction is represented by the canBeResolved flag in the Configuration type. A configuration
that can be resolved is a configuration for which we can compute a dependency graph, because it
contains all the necessary information for resolution to happen. That is to say we’re going to
compute a dependency graph, resolve the components in the graph, and eventually get artifacts. A
configuration which has canBeResolved set to false is not meant to be resolved. Such a configuration
is there only to declare dependencies. The reason is that depending on the usage (compile classpath,
runtime classpath), it can resolve to different graphs. It is an error to try to resolve a configuration
which has canBeResolved set to false. To some extent, this is similar to an abstract class
(canBeResolved=false) which is not supposed to be instantiated, and a concrete class extending the
abstract class (canBeResolved=true). A resolvable configuration will extend at least one non-

resolvable configuration (and may extend more than one).

On the other end, at the library project side (the producer), we also use configurations to represent
what can be consumed. For example, the library may expose an API or a runtime, and we would
attach artifacts to either one, the other, or both. Typically, to compile against 1ib, we need the API of
1ib, but we don’t need its runtime dependencies. So the 1ib project will expose an apiElements
configuration, which is aimed at consumers looking for its API. Such a configuration is consumable,
but is not meant to be resolved. This is expressed via the canBeConsumed flag of a Configuration:

Example 267. Setting up configurations

build.gradle

configurations {
// A configuration meant for consumers that need the API of this
component
exposedApi {
// This configuration is an "outgoing" configuration, it's not meant
to be resolved
canBeResolved = false
// As an outgoing configuration, explain that consumers may want to
consume it
canBeConsumed = true
}
// A confiqguration meant for consumers that need the implementation of
this component
exposedRuntime {

canBeResolved = false
canBeConsumed = true
}
}
build.gradle.kts

configurations {
// A configuration meant for consumers that need the API of this
component
create("exposedApi") {
// This configuration is an "outgoing" configuration, it's not meant
to be resolved
isCanBeResolved = false
// As an outgoing configuration, explain that consumers may want to
consume it
isCanBeConsumed = true
}
// A configuration meant for consumers that need the implementation of
this component
create("exposedRuntime") {
isCanBeResolved = false
isCanBeConsumed = true

In short, a configuration’s role is determined by the canBeResolved and canBeConsumed flag

combinations:

Table 12. Configuration roles

Configuration role can be resolved can be consumed
Bucket of dependencies false false
Resolve for certain usage true false
Exposed to consumers false true
Legacy, don’t use true true

For backwards compatibility, both flags have a default value of true, but as a plugin author, you
should always determine the right values for those flags, or you might accidentally introduce
resolution errors.

Choosing the right configuration for dependencies

The choice of the configuration where you declare a dependency is important. However there is no
fixed rule into which configuration a dependency must go. It mostly depends on the way the
configurations are organised, which is most often a property of the applied plugin(s).

For example, in the java plugin, the created configuration are documented and should serve as the
basis for determining where to declare a dependency, based on its role for your code.

As a recommendation, plugins should clearly document the way their configurations are linked
together and should strive as much as possible to isolate their roles.

Defining custom configurations

You can define configurations yourself, so-called custom configurations. A custom configuration is
useful for separating the scope of dependencies needed for a dedicated purpose.

Let’s say you wanted to declare a dependency on the Jasper Ant task for the purpose of pre-
compiling JSP files that should not end up in the classpath for compiling your source code. It’s fairly
simple to achieve that goal by introducing a custom configuration and using it in a task.

https://tomcat.apache.org/tomcat-9.0-doc/jasper-howto.html

Example 268. Declaring and using a custom configuration

build.gradle

configurations {
jasper

}

repositories {
mavenCentral()

}

dependencies {
jasper 'org.apache.tomcat.embed:tomcat-embed-jasper:9.0.2'

}

tasks.register('preCompilelsps') {
dolast {

ant.taskdef(classname: 'org.apache.jasper.JspC',
name: 'jasper',
classpath: configurations.jasper.asPath)

ant.jasper(validateXml: false,
uriroot: file('src/main/webapp'),
outputDir: file("$buildDir/compiled-jsps"))

build.gradle.kts
val jasper by configurations.creating

repositories {
mavenCentral()

}

dependencies {
jasper("org.apache.tomcat.embed:tomcat-embed-jasper:9.0.2")

}

tasks.register("preCompilelsps") {
dolast {
ant.withGroovyBuilder {

"taskdef"("classname" to "org.apache.jasper.JspC",
"name" to "jasper",
"classpath" to jasper.asPath)

"jasper"("validateXml" to false,
"uriroot" to file("src/main/webapp"),
"outputDir" to file("$buildDir/compiled-jsps"))

A project’s configurations are managed by a configurations object. Configurations have a name and
can extend each other. To learn more about this API have a look at ConfigurationContainer.

Different kinds of dependencies

Module dependencies

Module dependencies are the most common dependencies. They refer to a module in a repository.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

Example 269. Module dependencies

build.gradle

dependencies {
runtimeOnly group: 'org.springframework', name: 'spring-core', version:
2.5
runtimeOnly 'org.springframework:spring-core:2.5",
'org.springframework:spring-aop:2.5'
runtimeOnly(
[group: 'org.springframework', name: 'spring-core', version: '2.5'],
[group: 'org.springframework', name: 'spring-aop', version: '2.5']
)
runtimeOnly('org.hibernate:hibernate:3.0.5") {
transitive = true
}
runtimeOnly group: 'org.hibernate', name: "hibernate', version: '3.0.5',
transitive: true
runtimeOnly(group: 'org.hibernate', name: "hibernate', version: '3.0.5")

{
transitive = true
}
}
build.gradle.kts

dependencies {
runtimeOnly(group = "org.springframework"”, name = "spring-core", version
— |I2.5II)
runtimeOnly("org.springframework:spring-aop:2.5")
runtimeOnly("org.hibernate:hibernate:3.0.5") {
isTransitive = true

}
runtimeOnly(group = "org.hibernate", name = "hibernate", version =
"3.0.5") {
isTransitive = true
}

See the DependencyHandler class in the API documentation for more examples and a complete
reference.

Gradle provides different notations for module dependencies. There is a string notation and a map
notation. A module dependency has an API which allows further configuration. Have a look at
ExternalModuleDependency to learn all about the API. This API provides properties and

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html

configuration methods. Via the string notation you can define a subset of the properties. With the
map notation you can define all properties. To have access to the complete API, either with the map
or with the string notation, you can assign a single dependency to a configuration together with a
closure.

If you declare a module dependency, Gradle looks for a module metadata file
(.module, .pom or ivy.xml) in the repositories. If such a module metadata file exists, it
is parsed and the artifacts of this module (e.g. hibernate-3.0.5.jar) as well as its

NOTE
dependencies (e.g. cglib) are downloaded. If no such module metadata file exists, as
of Gradle 6.0, you need to configure metadata sources definitions to look for an
artifact file called hibernate-3.0.5.jar directly.
In Maven, a module can have one and only one artifact.

NOTE

In Gradle and Ivy, a module can have multiple artifacts. Each artifact can have a
different set of dependencies.

File dependencies

Projects sometimes do not rely on a binary repository product e.g. JFrog Artifactory or Sonatype
Nexus for hosting and resolving external dependencies. It’s common practice to host those
dependencies on a shared drive or check them into version control alongside the project source
code. Those dependencies are referred to as file dependencies, the reason being that they represent
a file without any metadata (like information about transitive dependencies, the origin or its
author) attached to them.

Local File

System
access
artifacts access
artifacts
Gra_dle >
Build l
store access
artifacts artifacts
Gradle
Cache

Figure 17. Resolving file dependencies from the local file system and a shared drive

Shared
Drive

The following example resolves file dependencies from the directories ant, 1ibs and tools.

Example 270. Declaring multiple file dependencies

build.gradle

configurations {
antContrib
externallibs
deploymentTools
}

dependencies {
antContrib files('ant/antcontrib.jar")
externallibs files('libs/commons-lang.jar', 'libs/log4j.jar')
deploymentTools(fileTree('tools') { include '*.exe' })

build.gradle.kts

configurations {
create("antContrib")
create("externallibs")
create("deploymentTools")

}

dependencies {
"antContrib"(files("ant/antcontrib.jar"))
"externallibs"(files("libs/commons-lang.jar", "libs/log4j.jar"))
"deploymentTools"(fileTree("tools") { include("*.exe") })

As you can see in the code example, every dependency has to define its exact location in the file
system. The most prominent methods for creating a file reference are
Project.files(java.lang.Object...), ProjectLayout.files(java.lang.Object...) and
Project.fileTree(java.lang.Object) Alternatively, you can also define the source directory of one or
many file dependencies in the form of a flat directory repository.

The order of the files in a FileTree is not stable, even on a single computer. It means
that dependency configuration seeded with such a construct may produce a

NOTE resolution result which has a different ordering, possibly impacting the cacheability
of tasks using the result as an input. Using the simpler files instead is
recommended where possible.

File dependencies allow you to directly add a set of files to a configuration, without first adding
them to a repository. This can be useful if you cannot, or do not want to, place certain files in a
repository. Or if you do not want to use any repositories at all for storing your dependencies.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

To add some files as a dependency for a configuration, you simply pass a file collection as a
dependency:

Example 271. File dependencies

build.gradle

dependencies {
runtimeOnly files('libs/a.jar', 'libs/b.jar")
runtimeOnly fileTree('libs') { include '*.jar' }

build.gradle.kts

dependencies {
runtimeOnly(files("libs/a.jar", "libs/b.jar"))
runtimeOnly(fileTree("1ibs") { include("*.jar") })

File dependencies are not included in the published dependency descriptor for your project.
However, file dependencies are included in transitive project dependencies within the same build.
This means they cannot be used outside the current build, but they can be used within the same
build.

The order of the files in a FileTree is not stable, even on a single computer. It means
that dependency configuration seeded with such a construct may produce a

NOTE resolution result which has a different ordering, possibly impacting the cacheability
of tasks using the result as an input. Using the simpler files instead is
recommended where possible.

You can declare which tasks produce the files for a file dependency. You might do this when, for
example, the files are generated by the build.

Example 272. Generated file dependencies

build.gradle

dependencies {
implementation files(layout.buildDirectory.dir('classes')) {
builtBy 'compile’
}
}

tasks.register('compile') {
dolLast {
println 'compiling classes'
}
}

tasks.register('list") {
dependsOn configurations.compileClasspath
dolLast {
println "classpath = ${configurations.compileClasspath.collect { File
file -> file.name }}"
}
}

build.gradle.kts

dependencies {
implementation(files(layout.buildDirectory.dir("classes")) {
builtBy("compile")
b
}

tasks.register("compile") {
dolLast {
println("compiling classes")
}
}

tasks.register("list") {
dependsOn(configurations["compileClasspath"])
dolLast {
println("classpath = ${configurations["compileClasspath"].map { file:
File -> file.name }}")
}
}

$ gradle -q list
compiling classes
classpath = [classes]

Versioning of file dependencies

It is recommended to clearly express the intention and a concrete version for file dependencies.
File dependencies are not considered by Gradle’s version conflict resolution. Therefore, it is
extremely important to assign a version to the file name to indicate the distinct set of changes
shipped with it. For example commons-beanutils-1.3.jar lets you track the changes of the library by
the release notes.

As a result, the dependencies of the project are easier to maintain and organize. It is much easier to
uncover potential API incompatibilities by the assigned version.

Project dependencies

Software projects often break up software components into modules to improve maintainability
and prevent strong coupling. Modules can define dependencies between each other to reuse code
within the same project.

Gradle Multi-Project Build

depends

Project A LY Project B

depends depends
on on

Project C

Figure 18. Dependencies between projects

Gradle can model dependencies between modules. Those dependencies are called project
dependencies because each module is represented by a Gradle project.

Example 273. Project dependencies

build.gradle

dependencies {
implementation project(':shared")

}

build.gradle.kts

dependencies {
implementation(project(":shared"))

}

At runtime, the build automatically ensures that project dependencies are built in the correct order
and added to the classpath for compilation. The chapter Authoring Multi-Project Builds discusses
how to set up and configure multi-project builds in more detail.

For more information see the API documentation for ProjectDependency.

The following example declares the dependencies on the utils and api project from the web-service
project. The method Project.project(java.lang.String) creates a reference to a specific subproject by
path.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ProjectDependency.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:project(java.lang.String)

Example 274. Declaring project dependencies

web-service/build.gradle

dependencies {
implementation project(':utils")
implementation project(':api')

web-service/build.gradle.kts

dependencies {
implementation(project(":utils"))
implementation(project(":api"))

Type-safe project dependencies

Type-safe dependency accessors are an incubating feature which must be
enabled explicitly. Implementation may change at any time. To add support for

type-safe project accessors, add this to your settings.gradle(.kts) file:
WARNING yp proj y gs.g ()

enableFeaturePreview("TYPESAFE_PROJECT _ACCESSORS")

One issue with the project(":some:path") notation is that you have to remember the path to every
project you want to depend on. In addition, changing a project path requires you to change all
places where the project dependency is used, but it is easy to miss one or more occurrences
(because you have to rely on search and replace).

Since Gradle 7, Gradle offers an experimental type-safe API for project dependencies. The same
example as above can now be rewritten as:

Example 275. Declaring project dependencies using the type-safe API

web-service/build.gradle

dependencies {
implementation projects.utils
implementation projects.api

web-service/build.gradle.kts

dependencies {
implementation(projects.utils)
implementation(projects.api)

The type-safe API has the advantage of providing IDE completion so you don’t need to figure out the
actual names of the projects.

If you add or remove a project and that you use the Kotlin DSL, build script compilation would fail
in case you forget to update a dependency.

The project accessors are mapped from the project path. For example, if a project path is
:commons:utils:some:1ib then the project accessor will be projects.commons.utils.some.lib (which is
the short-hand notation for projects.getCommons().getUtils().qgetSome().getLib()).

A project name with kebab case (some-1ib) or snake case (some_11ib) will be converted to camel case
in accessors: projects.someLib.

Local forks of module dependencies

A module dependency can be substituted by a dependency to a local fork of the sources of that
module, if the module itself is built with Gradle. This can be done by utilising composite builds. This
allows you, for example, to fix an issue in a library you use in an application by using, and building,
a locally patched version instead of the published binary version. The details of this are described
in the section on composite builds.

Gradle distribution-specific dependencies

Gradle API dependency

You can declare a dependency on the API of the current version of Gradle by using the
DependencyHandler.gradleApi() method. This is useful when you are developing custom Gradle
tasks or plugins.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()

Example 276. Gradle API dependencies

build.gradle

dependencies {
implementation gradleApi()

}

build.gradle.kts

dependencies {
implementation(gradleApi())

}

Gradle TestKit dependency

You can declare a dependency on the TestKit API of the current version of Gradle by using the
DependencyHandler.gradleTestKit() method. This is useful for writing and executing functional
tests for Gradle plugins and build scripts.

Example 277. Gradle TestKit dependencies

build.gradle

dependencies {
testImplementation gradleTestKit()

}

build.gradle.kts

dependencies {
testImplementation(gradleTestKit())

}

The TestKit chapter explains the use of TestKit by example.

Local Groovy dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the
DependencyHandler.localGroovy() method. This is useful when you are developing custom Gradle

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleTestKit()
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()

tasks or plugins in Groovy.

Example 278. Gradle’s Groovy dependencies

build.gradle

dependencies {
implementation localGroovy()

}

build.gradle.kts

dependencies {
implementation(localGroovy())

}

Documenting dependencies

When you declare a dependency or a dependency constraint, you can provide a custom reason for
the declaration. This makes the dependency declarations in your build script and the dependency
insight report easier to interpret.

Example 279. Giving a reason for choosing a certain module version in a dependency declaration

build.gradle

plugins {
id 'java-library'

}

repositories {
mavenCentral()

}

dependencies {
implementation('org.ow2.asm:asm:7.1") {
because 'we require a JDK 9 compatible bytecode generator'

}

build.gradle.kts

plugins {
‘java-library®

}

repositories {
mavenCentral()

}

dependencies {
implementation("org.ow2.asm:asm:7.1") {
because("we require a JDK 9 compatible bytecode generator")

}

Example: Using the dependency insight report with custom reasons

Output of gradle -q dependencyInsight --dependency asm

> gradle -q dependencyInsight --dependency asm
org.ow2.asm:asm:7.1
variant "compile" [
org.gradle.status

release (not requested)

org.gradle.usage = java-api
org.gradle.libraryelements = jar (compatible with: classes)
org.gradle.category = library

Requested attributes not found in the selected variant:
org.gradle.dependency.bundling = external
org.gradle.jvm.environment standard-jvm
org.gradle.jvm.version = 11

]

Selection reasons:
- Was requested : we require a JDK 9 compatible bytecode generator

org.ow2.asm:asm:7.1
\--- compileClasspath

A web-based, searchable dependency report is available by adding the --scan option.

Resolving specific artifacts from a module dependency

Whenever Gradle tries to resolve a module from a Maven or Ivy repository, it looks for a metadata
file and the default artifact file, a JAR. The build fails if none of these artifact files can be resolved.
Under certain conditions, you might want to tweak the way Gradle resolves artifacts for a
dependency.

* The dependency only provides a non-standard artifact without any metadata e.g. a ZIP file.

* The module metadata declares more than one artifact e.g. as part of an Ivy dependency
descriptor.

* You only want to download a specific artifact without any of the transitive dependencies
declared in the metadata.

Gradle is a polyglot build tool and not limited to just resolving Java libraries. Let’s assume you
wanted to build a web application using JavaScript as the client technology. Most projects check in
external JavaScript libraries into version control. An external JavaScript library is no different than
a reusable Java library so why not download it from a repository instead?

Google Hosted Libraries is a distribution platform for popular, open-source JavaScript libraries.
With the help of the artifact-only notation you can download a JavaScript library file e.g. JQuery.
The @ character separates the dependency’s coordinates from the artifact’s file extension.

https://developers.google.com/speed/libraries/

Example 280. Resolving a JavaScript artifact for a declared dependency

build.gradle

repositories {
ivy {
url 'https://ajax.googleapis.com/ajax/libs’
patternLayout {
artifact '[organization]/[revision]/[module].[ext]’

}

metadataSources {
artifact()

}

}

configurations {
js
}

dependencies {
js 'jquery:jquery:3.2.1@js'
}

build.gradle.kts

repositories {
ivy {
url = uri("https://ajax.googleapis.com/ajax/1libs")
patternlLayout {
artifact("[organization]/[revision]/[module].[ext]")

}

metadataSources {
artifact()

}

}

configurations {
create("js")

}

dependencies {
"js"("jquery:jquery:3.2.1@js")
}

Some modules ship different "flavors" of the same artifact or they publish multiple artifacts that
belong to a specific module version but have a different purpose. It’s common for a Java library to
publish the artifact with the compiled class files, another one with just the source code in it and a
third one containing the Javadocs.

In JavaScript, a library may exist as uncompressed or minified artifact. In Gradle, a specific artifact
identifier is called classifier, a term generally used in Maven and Ivy dependency management.

Let’s say we wanted to download the minified artifact of the JQuery library instead of the
uncompressed file. You can provide the classifier min as part of the dependency declaration.

Example 281. Resolving a JavaScript artifact with classifier for a declared dependency

build.gradle

repositories {
ivy {
url 'https://ajax.googleapis.com/ajax/libs’
patternLayout {
artifact '
[organization]/[revision]/[module](.[classifier]).[ext]"
}
metadataSources {
artifact()

}
}

configurations {
js
}

dependencies {
js 'jquery:jquery:3.2.1:min@js’
¥

build.gradle.kts

repositories {
ivy {
url = uri("https://ajax.googleapis.com/ajax/1ibs")
patternLayout {

artifact("[organization]/[revision]/[module](.[classifier]).[ext]")

}

metadataSources {
artifact()

}

}

configurations {
create("js")

}

dependencies {
"js"("jquery:jquery:3.2.1:min@js")
}

Supported Metadata formats

External module dependencies require module metadata (so that, typically, Gradle can figure out
the transitive dependencies of a module). To do so, Gradle supports different metadata formats.

You can also tweak which format will be looked up in the repository definition.

Gradle Module Metadata files

Gradle Module Metadata has been specifically designed to support all features of Gradle’s
dependency management model and is hence the preferred format. You can find its specification
here.

POM files

Gradle natively supports Maven POM files. It’s worth noting that by default Gradle will first look for
a POM file, but if this file contains a special marker, Gradle will use Gradle Module Metadata
instead.

Ivy files

Similarly, Gradle supports Apache Ivy metadata files. Again, Gradle will first look for an ivy.xml file,
but if this file contains a special marker, Gradle will use Gradle Module Metadata instead.

https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md
https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md
https://maven.apache.org/pom.html
http://ant.apache.org/ivy/

Understanding the difference between libraries and applications

Producers vs consumers

A key concept in dependency management with Gradle is the difference between consumers and
producers.

When you build a library, you are effectively on the producer side: you are producing artifacts
which are going to be consumed by someone else, the consumer.

A lot of problems with traditional build systems is that they don’t make the difference between a
producer and a consumer.

A consumer needs to be understood in the large sense:

* a project that depends on another project is a consumer

* a task that depends on an artifact is a finer grained consumer

In dependency management, a lot of the decisions we make depend on the type of project we are
building, that is to say, what kind of consumer we are.

Producer variants

A producer may want to generate different artifacts for different kinds of consumers: for the same
source code, different binaries are produced. Or, a project may produce artifacts which are for
consumption by other projects (same repository) but not for external use.

A typical example in the Java world is the Guava library which is published in different versions:
one for Java projects, and one for Android projects.

However, it’s the consumer responsibility to tell what version to use, and it’s the dependency
management engine responsibility to ensure consistency of the graph (for example making sure that
you don’t end up with both Java and Android versions of Guava on your classpath). This is where
the variant model of Gradle comes into play.

In Gradle, producer variants are exposed via consumable configurations.

Strong encapsulation

In order for a producer to compile a library, it needs all its implementation dependencies on the
compile classpath. There are dependencies which are only required as an implementation detail of
the library and there are libraries which are effectively part of the APIL

However, a library depending on this produced library only needs to "see" the public API of your
library and therefore the dependencies of this APIL It’s a subset of the compile classpath of the
producer: this is strong encapsulation of dependencies.

The consequence is that a dependency which is assigned to the implementation configuration of a
library does not end up on the compile classpath of the consumer. On the other hand, a dependency
which is assigned to the api configuration of a library would end up on the compile classpath of the
consumer. At runtime, however, all dependencies are required. Gradle makes the difference

between different kinds of consumer even within a single project: the Java compile task, for
example, is a different consumer than the Java exec task.

More details on the segregation of API and runtime dependencies in the Java world can be found
here.

Being respectful of consumers

Whenever, as a developer, you decide to include a dependency, you must understand that there are
consequences for your consumers. For example, if you add a dependency to your project, it becomes
a transitive dependency of your consumers, and therefore may participate in conflict resolution if
the consumer needs a different version.

A lot of the problems Gradle handles are about fixing the mismatch between the expectations of a
consumer and a producer.

However, some projects are easier than others:

* if you are at the end of the consumption chain, that is to say you build an application, then there
are effectively no consumer of your project (apart from final customers): adding exclusions will
have no other consequence than fixing your problem.

* however if you are a library, adding exclusions may prevent consumers from working properly,
because they would exercise a path of the code that you don’t

Always keep in mind that the solution you choose to fix a problem can "leak" to your consumers.
This documentation aims at guiding you to find the right solution to the right problem, and more
importantly, make decisions which help the resolution engine to take the right decisions in case of
conflicts.

Viewing and debugging dependencies

Gradle provides sufficient tooling to navigate large dependency graphs and mitigate situations that
can lead to dependency hell. Users can choose to render the full graph of dependencies as well as
identify the selection reason and origin for a dependency. The origin of a dependency can be a
declared dependency in the build script or a transitive dependency in graph plus their
corresponding configuration. Gradle offers both capabilities through visual representation via
build scans and as command line tooling.

Build scans

NOTE If you do not know what build scans are, be sure to check them out!

A build scan can visualize dependencies as a navigable, searchable tree. Additional context
information can be rendered by clicking on a specific dependency in the graph.

https://en.wikipedia.org/wiki/Dependency_hell
https://scans.gradle.com/

8 dependencies resolved in 1 project across 1 configuration

scm v - 0.008s
org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r ~
com.googlecode.javaewah:JavaEWAH:1.1.6
com.jcraft:jsch:0.1.54
org.apache.httpcomponents:httpclient:4.3.6 ~
commons-codec:commons-codec:1.6
commons-logging:commons-logging:1.1.3
org.apache.httpcomponents:httpcore:4.3.3
org.slf4j:slf4j-api:1.7.2

Figure 19. Dependency tree in a build scan

Listing dependencies in a project
Gradle can visualize the whole dependency tree for every configuration available in the project.

Rendering the dependency tree is particularly useful if you’d like to identify which dependencies
have been resolved at runtime. It also provides you with information about any dependency
conflict resolution that occurred in the process and clearly indicates the selected version. The
dependency report always contains declared and transitive dependencies.

The dependencies task selector will only execute the dependencies task on a single
project. If you run the task on the root project, it will show dependencies of the root
project and not of any subproject. Be sure to always target the right project when
running dependencies.

NOTE

Let’s say you’d want to create tasks for your project that use the JGit library to execute SCM
operations e.g. to model a release process. You can declare dependencies for any external tooling
with the help of a custom configuration so that it doesn’t pollute other contexts like the compilation
classpath for your production source code.

Every Gradle project provides the task dependencies to render the so-called dependency report from
the command line. By default the dependency report renders dependencies for all configurations.
To focus on the information about one configuration, provide the optional parameter
--configuration.

For example, to show dependencies that would be on the test runtime classpath in a Java project,
run:

https://www.eclipse.org/jgit/

gradle -q dependencies --configuration testRuntimeClasspath

Just like with project and task names, you can use abbreviated names to select a
TIP configuration. For example, you can specify tRC instead of testRuntime(Classpath if the
pattern matches to a single configuration.

TIP To see a list of all the pre-defined configurations added by the java plugin, see the
documentation for the Java Plugin.

Example 282. Declaring the JGit dependency with a custom configuration

build.gradle

repositories {
mavenCentral()

}

configurations {
sem

}

dependencies {
scm 'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r"
}

build.gradle.kts

repositories {
mavenCentral()

}

configurations {
create("scem")

}

dependencies {
"scm"("org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r")
}

Example: Rendering the dependency report for a custom configuration

Output of gradle -q dependencies --configuration scm

> gradle -q dependencies --configuration scm

scm
\--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
+--- com.jcraft:jsch:0.1.54
+--- com.googlecode.javaewah:JavaEWAH:1.1.6
+--- org.apache.httpcomponents:httpclient:4.3.6
| +--- org.apache.httpcomponents:httpcore:4.3.3
| +--- commons-logging:commons-logging:1.1.3
| \--- commons-codec:commons-codec:1.6
\--- org.s1f4j:slf4j-api:1.7.2

A web-based, searchable dependency report is available by adding the --scan option.

The dependencies report provides detailed information about the dependencies available in the
graph. Any dependency that could not be resolved is marked with FAILED in red color. Dependencies
with the same coordinates that can occur multiple times in the graph are omitted and indicated by
an asterisk. Dependencies that had to undergo conflict resolution render the requested and selected
version separated by a right arrow character.

Identifying which dependency version was selected and why

Large software projects inevitably deal with an increased number of dependencies either through
direct or transitive dependencies. The dependencies report provides you with the raw list of
dependencies but does not explain why they have been selected or which dependency is responsible
for pulling them into the graph.

Let’s have a look at a concrete example. A project may request two different versions of the same
dependency either as direct or transitive dependency. Gradle applies version conflict resolution to
ensure that only one version of the dependency exists in the dependency graph. In this example the
conflicting dependency is represented by commons-codec:commons-codec.

Example 283. Declaring the JGit dependency and a conflicting dependency

build.gradle

repositories {
mavenCentral()

}

configurations {
scm

}

dependencies {
scm 'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r"
scm 'commons-codec:commons-codec:1.7'

build.gradle.kts

repositories {
mavenCentral()

}

configurations {
create("sem")

}

dependencies {
"scm"("org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r")
"scm" ("commons-codec:commons-codec:1.7")

The dependency tree in a build scan renders the selection reason (conflict resolution) as well as the
origin of a dependency if you click on a dependency and select the "Required By" tab.

https://scans.gradle.com/

8 dependencies resolved in 1 project across 1 configuration

commons-codec:commons-codec:1.7
org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
com.googlecode.javaewah:JavaEWAH:1.1.6
com.jcraft:jsch:0.1.54
org.apache.httpcomponents:httpclient:4.3.6
commons-codec:commons-codec:1.6 — 1.7 conflict resolution

commons-logging:commons-logging:1.1.3 Dependencies Required By

org.apache.httpcomponents:httpcore:4.3.3
org.slf4j:slf4j-api:1.7.2 commons-codec:commons-codec:1.6 — 1.7 conflict resolution
org.apache.httpcomponents:httpclient:4.3.6 ~
org.eclipse jgit:org.eclipse.jgit:4.9.2.201712150930-r ~
:scm

Figure 20. Dependency insight capabilities in a build scan

Every Gradle project provides the task dependencyInsight to render the so-called dependency insight
report from the command line. Given a dependency in the dependency graph you can identify the
selection reason and track down the origin of the dependency selection. You can think of the
dependency insight report as the inverse representation of the dependency report for a given
dependency.

The task takes the following parameters:

--dependency <dependency> (mandatory)

Indicates which dependency to focus on. It can be a complete group:name, or part of it. If multiple
dependencies match, they are all printed in the report.

--configuration <name> (mandatory)

Indicates which configuration to resolve for showing the dependency information (camelCase
also supported like in dependencies task). Note that the Java plugin wires a convention with the
value compileClasspath, making the parameter optional.

--singlepath (optional)

Indicates to render only a single path to the dependency. This might be useful to trim down the
output in large graphs.

The dependencyInsight task selector will only execute the dependencyInsight task on
a single project. If you run the task on the root project, it will show the dependency
information of the root project and not of any subproject. Be sure to always target
the right project when running dependencyInsight.

NOTE

Example: Using the dependency insight report for a given dependency

Output of gradle -q dependencyInsight --dependency commons-codec --configuration scm

> gradle -q dependencyInsight --dependency commons-codec --configuration scm
commons-codec:commons-codec:1.7
variant "default" [
org.gradle.status = release (not requested)

]
Selection reasons:
- By conflict resolution : between versions 1.7 and 1.6

commons-codec:commons-codec:1.7
\--- scm

commons-codec:commons-codec:1.6 -> 1.7
\--- org.apache.httpcomponents:httpclient:4.3.6
\--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
\--- scm

A web-based, searchable dependency report is available by adding the --scan option.

As indicated above, omitting the --configuration parameter in a project that is not a Java project
will lead to an error:

> Dependency insight report cannot be generated because the input configuration was
not specified.

It can be specified from the command line, e.g: ':dependencyInsight --confiquration
someConf --dependency someDep'

For more information about configurations, see the documentation on declaring dependencies,
which describes what dependency configurations are.

Understanding selection reasons

The "Selection reasons" part of the dependency insight report will list the different reasons as to
why a dependency was selected. Have a look at the table below to understand the meaning of the
different terms used:

Table 13. Selections reasons terminology

Reason Meaning

(Absent) This means that no other reason than having a reference,
direct or transitive, was present

Was requested : <text> The dependency appears in the graph, and the inclusion came
with a because text.

Was requested : didn’t match The dependency appears in the graph, with a dynamic version,
versions <versions> which did not include the listed versions. This can also be
followed by a because text.

Reason Meaning

Was requested : reject version The dependency appears in the graph, with a rich version
<versions> containing one or more reject. This can also be followed by a
because text.

By conflict resolution : between The dependency appeared multiple times in the graph, with
versions <version> different version requests. This resulted in conflict resolution
to select the most appropriate version.

By constraint A dependency constraint participated in the version selection.
This can also be followed by a because text.

By ancestor There is a rich version with a strictly in the graph which
enforces the version of this dependency.

Selected by rule A dependency resolution rule overruled the default selection
process. This can also be followed by a because text.

Rejection : <version> by rule A ComponentSelection.reject rejected the given version of the
because <text> dependency

Rejection: version <version>: The dependency has a dynamic version, and some versions did
<attributes information> not match the requested attributes.

Forced The build enforces the version of the dependency.

Note that if multiple selection reasons exist in the graph, they will all be listed.

Resolving version conflicts

If the selected version does not match your expectation, Gradle offers a series of tools to help you
control transitive dependencies.

Resolving variant selection errors

Sometimes a selection error will happen at the variant selection level. Have a look at the dedicated
section to understand these errors and how to resolve them.

Resolving unsafe configuration resolution errors

Resolving a configuration can have side effects on Gradle’s project model, so Gradle needs manage
access to each project’s configurations. There are a number of ways a configuration might be
resolved unsafely. Gradle will produce a deprecation warning for each unsafe access. Each of these
are bad practices and can cause strange and indeterminate errors.

If your build has an unsafe access deprecation warning, it needs to be fixed.
For example:

* A task from one project directly resolves a configuration in another project in the task’s action.
* A task specifies a configuration from another project as an input file collection.

» A build script for one project resolves a configuration in another project during evaluation.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

* Project configurations are resolved in the settings file.

In most cases, this issue can be resolved by creating a cross-project dependency on the other
project. See the documentation for sharing outputs between projects for more information.

If you find a use case that can’t be resolved using these techniques, please let us know by filing a
GitHub Issue adhering to our issue guidelines.

Understanding dependency resolution

This chapter covers the way dependency resolution works inside Gradle. After covering how you
can declare repositories and dependencies, it makes sense to explain how these declarations come
together during dependency resolution.

Dependency resolution is a process that consists of two phases, which are repeated until the
dependency graph is complete:

* When a new dependency is added to the graph, perform conflict resolution to determine which
version should be added to the graph.

* When a specific dependency, that is a module with a version, is identified as part of the graph,
retrieve its metadata so that its dependencies can be added in turn.

The following section will describe what Gradle identifies as conflicts and how it can resolve them
automatically. After that, the retrieval of metadata will be covered, explaining how Gradle can
follow dependency links.

How Gradle handles conflicts?

When doing dependency resolution, Gradle handles two types of conflicts:

Version conflicts

That is when two or more dependencies require a given dependency but with different versions.

Implementation conflicts

That is when the dependency graph contains multiple modules that provide the same
implementation, or capability in Gradle terminology.

The following sections will explain in detail how Gradle attempts to resolve these conflicts.

The dependency resolution process is highly customizable to meet enterprise requirements. For
more information, see the chapter on Controlling transitive dependencies.

Version conflict resolution
A version conflict occurs when two components:
* Depend on the same module, let’s say com.google.quava:guava

* But on different versions, let’s say 20.0 and 25.7-android

o Our project itself depends on com.google.guava:quava:20.0

https://github.com/gradle/gradle/issues

o Our project also depends on com.google.inject:quice:4.2.2 which itself depends on
com.google.quava:guava:25.1-android

Resolution strategy

Given the conflict above, there exist multiple ways to handle it, either by selecting a version or
failing the resolution. Different tools that handle dependency management have different ways of
handling these type of conflicts.

Apache Maven uses a nearest first strategy.

Maven will take the shortest path to a dependency and use that version. In case
there are multiple paths of the same length, the first one wins.

This means that in the example above, the version of gquava will be 20.0 because the

NOTE direct dependency is closer than the guice dependency.

The main drawback of this method is that it is ordering dependent. Keeping order
in a very large graph can be a challenge. For example, what if the new version of a
dependency ends up having its own dependency declarations in a different order
than the previous version?

With Maven, this could have unwanted impact on resolved versions.

Apache Ivy is a very flexible dependency management tool. It offers the possibility
NOTE to customize dependency resolution, including conflict resolution.

This flexibility comes with the price of making it hard to reason about.

Gradle will consider all requested versions, wherever they appear in the dependency graph. Out of
these versions, it will select the highest one.

As you have seen, Gradle supports a concept of rich version declaration, so what is the highest
version depends on the way versions were declared:
» If no ranges are involved, then the highest version that is not rejected will be selected.
o If a version declared as strictly is lower than that version, selection will fail.
* If ranges are involved:

o If there is a non range version that falls within the specified ranges or is higher than their
upper bound, it will be selected.

o If there are only ranges, the highest existing version of the range with the highest upper
bound will be selected.

o If a version declared as strictly is lower than that version, selection will fail.
Note that in the case where ranges come into play, Gradle requires metadata to determine which

versions do exist for the considered range. This causes an intermediate lookup for metadata, as
described in How Gradle retrieves dependency metadata?.

https://maven.apache.org/
https://ant.apache.org/ivy/

Implementation conflict resolution

Gradle uses variants and capabilities to identify what a module provides.
This is a unique feature that deserves its own chapter to understand what it means and enables.
A conflict occurs the moment two modules either:

» Attempt to select incompatible variants,

* Declare the same capability

Learn more about handling these type of conflicts in Selecting between candidates.

How Gradle retrieves dependency metadata?

Gradle requires metadata about the modules included in your dependency graph. That information
is required for two main points:
* Determine the existing versions of a module when the declared version is dynamic.

* Determine the dependencies of the module for a given version.

Discovering versions

Faced with a dynamic version, Gradle needs to identify the concrete matching versions:
» Each repository is inspected, Gradle does not stop on the first one returning some metadata.
When multiple are defined, they are inspected in the order they were added.

* For Maven repositories, Gradle will use the maven-metadata.xml which provides information
about the available versions.

* For Ivy repositories, Gradle will resort to directory listing.

This process results in a list of candidate versions that are then matched to the dynamic version
expressed. At this point, version conflict resolution is resumed.

Note that Gradle caches the version information, more information can be found in the section
Controlling dynamic version caching.

Obtaining module metadata

Given a required dependency, with a version, Gradle attempts to resolve the dependency by
searching for the module the dependency points at.
* Each repository is inspected in order.

- Depending on the type of repository, Gradle looks for metadata files describing the module
(.module, .pom or ivy.xml file) or directly for artifact files.

o Modules that have a module metadata file (.module, .pom or ivy.xml file) are preferred over
modules that have an artifact file only.

- Once a repository returns a metadata result, following repositories are ignored.

» Metadata for the dependency is retrieved and parsed, if found

o If the module metadata is a POM file that has a parent POM declared, Gradle will recursively
attempt to resolve each of the parent modules for the POM.

 All of the artifacts for the module are then requested from the same repository that was chosen
in the process above.

» All of that data, including the repository source and potential misses are then stored in the The
Dependency Cache.

The penultimate point above is what can make the integration with Maven Local
problematic. As it is a cache for Maven, it will sometimes miss some artifacts of a

NOTE . . . L
given module. If Gradle is sourcing such a module from Maven Local, it will
consider the missing artifacts to be missing altogether.

Repository disabling

When Gradle fails to retrieve information from a repository, it will disable it for the duration of the
build and fail all dependency resolution.

That last point is important for reproducibility. If the build was allowed to continue, ignoring the
faulty repository, subsequent builds could have a different result once the repository is back online.

HTTP Retries

Gradle will make several attempts to connect to a given repository before disabling it. If connection
fails, Gradle will retry on certain errors which have a chance of being transient, increasing the
amount of time waiting between each retry.

Blacklisting happens when the repository cannot be contacted, either because of a permanent error
or because the maximum retries was reached.

The Dependency Cache

Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise
the number of remote requests made in dependency resolution, while striving to guarantee that the
results of dependency resolution are correct and reproducible.

The Gradle dependency cache consists of two storage types located under GRADLE_USER_HOME/caches:

* A file-based store of downloaded artifacts, including binaries like jars as well as raw
downloaded meta-data like POM files and Ivy files. The storage path for a downloaded artifact
includes the SHA1 checksum, meaning that 2 artifacts with the same name but different content
can easily be cached.

* A binary store of resolved module metadata, including the results of resolving dynamic
versions, module descriptors, and artifacts.

The Gradle cache does not allow the local cache to hide problems and create other mysterious and
difficult to debug behavior. Gradle enables reliable and reproducible enterprise builds with a focus
on bandwidth and storage efficiency.

Separate metadata cache

Gradle keeps a record of various aspects of dependency resolution in binary format in the metadata
cache. The information stored in the metadata cache includes:

* The result of resolving a dynamic version (e.g. 1.+) to a concrete version (e.g. 1.2).

* The resolved module metadata for a particular module, including module artifacts and module
dependencies.

* The resolved artifact metadata for a particular artifact, including a pointer to the downloaded
artifact file.

» The absence of a particular module or artifact in a particular repository, eliminating repeated
attempts to access a resource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the
information as well as a timestamp that can be used for cache expiry.

Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is
identified by its URL, type and layout. If a module or artifact has not been previously resolved from
this repository, Gradle will attempt to resolve the module against the repository. This will always
involve a remote lookup on the repository, however in many cases no download will be required.

Dependency resolution will fail if the required artifacts are not available in any repository specified
by the build, even if the local cache has a copy of this artifact which was retrieved from a different
repository. Repository independence allows builds to be isolated from each other in an advanced
way that no build tool has done before. This is a key feature to create builds that are reliable and
reproducible in any environment.

Artifact reuse

Before downloading an artifact, Gradle tries to determine the checksum of the required artifact by
downloading the sha file associated with that artifact. If the checksum can be retrieved, an artifact
is not downloaded if an artifact already exists with the same id and checksum. If the checksum
cannot be retrieved from the remote server, the artifact will be downloaded (and ignored if it
matches an existing artifact).

As well as considering artifacts downloaded from a different repository, Gradle will also attempt to
reuse artifacts found in the local Maven Repository. If a candidate artifact has been downloaded by
Maven, Gradle will use this artifact if it can be verified to match the checksum declared by the
remote server.

Checksum bhased storage

It is possible for different repositories to provide a different binary artifact in response to the same
artifact identifier. This is often the case with Maven SNAPSHOT artifacts, but can also be true for
any artifact which is republished without changing its identifier. By caching artifacts based on their
SHA1 checksum, Gradle is able to maintain multiple versions of the same artifact. This means that
when resolving against one repository Gradle will never overwrite the cached artifact file from a

different repository. This is done without requiring a separate artifact file store per repository.

Cache Locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by
multiple Gradle processes concurrently. The lock is held whenever the binary metadata store is
being read or written, but is released for slow operations such as downloading remote artifacts.

This concurrent access is only supported if the different Gradle processes can communicate
together. This is usually not the case for containerized builds.

Cache Cleanup

Gradle keeps track of which artifacts in the dependency cache are accessed. Using this information,
the cache is periodically (at most every 24 hours) scanned for artifacts that have not been used for
more than 30 days. Obsolete artifacts are then deleted to ensure the cache does not grow
indefinitely.

Dealing with ephemeral builds

It’s a common practice to run builds in ephemeral containers. A container is typically spawned to
only execute a single build before it is destroyed. This can become a practical problem when a build
depends on a lot of dependencies which each container has to re-download. To help with this
scenario, Gradle provides a couple of options:

* copying the dependency cache into each container

* sharing a read-only dependency cache between multiple containers

Copying and reusing the cache

The dependency cache, both the file and metadata parts, are fully encoded using relative paths.
This means that it is perfectly possible to copy a cache around and see Gradle benefit from it.

The path that can be copied is $6RADLE_HOME/caches/modules-<version>. The only constraint is placing
it using the same structure at the destination, where the value of GRADLE_HOME can be different.

Do not copy the *.1lock or gc.properties files if they exist.

Note that creating the cache and consuming it should be done using compatible Gradle version, as
shown in the table below. Otherwise, the build might still require some interactions with remote
repositories to complete missing information, which might be available in a different version. If
multiple incompatible Gradle versions are in play, all should be used when seeding the cache.

Table 14. Dependency cache compatibility

Module cache File cache Metadata cache Gradle version(s)
version version version

modules-2 files-2.1 metadata-2.95 Gradle 6.1 to Gradle 6.3
modules-2 files-2.1 metadata-2.96 Gradle 6.4 to Gradle 6.7

modules-2 files-2.1 metadata-2.97 Gradle 6.8 and above

Sharing the dependency cache with other Gradle instances

Instead of copying the dependency cache into each container, it’s possible to mount a shared, read-
only directory that will act as a dependency cache for all containers. This cache, unlike the classical
dependency cache, is accessed without locking, making it possible for multiple builds to read from
the cache concurrently. It’s important that the read-only cache is not written to when other builds
may be reading from it.

When using the shared read-only cache, Gradle looks for dependencies (artifacts or metadata) in
both the writable cache in the local Gradle user home directory and the shared read-only cache. If a
dependency is present in the read-only cache, it will not be downloaded. If a dependency is missing
from the read-only cache, it will be downloaded and added to the writable cache. In practice, this
means that the writable cache will only contain dependencies that are unavailable in the read-only
cache.

The read-only cache should be sourced from a Gradle dependency cache that already contains
some of the required dependencies. The cache can be incomplete; however, an empty shared cache
will only add overhead.

NOTE The shared read-only dependency cache is an incubating feature.

The first step in using a shared dependency cache is to create one by copying of an existing local
cache. For this you need to follow the instructions above.

Then set the GRADLE_RO_DEP_CACHE environment variable to point to the directory containing the
cache:

$GRADLE_RO_DEP_CACHE
|-- modules-2 : the read-only dependency cache, should be mounted with read-only
privileges

$GRADLE _HOME
|-- caches
|-- modules-2 : the container specific dependency cache, should be writable

In a CI environment, it’s a good idea to have one build which "seeds" a Gradle dependency cache,
which is then copied to a different directory. This directory can then be used as the read-only cache
for other builds. You shouldn’t use an existing Gradle installation cache as the read-only cache,
because this directory may contain locks and may be modified by the seeding build.

Accessing the resolution result programmatically

While most users only need access to a "flat list" of files, there are cases where it can be interesting
to reason on a graph and get more information about the resolution result:

« for tooling integration, where a model of the dependency graph is required

« for tasks generating a visual representation (image, .dot file, ...) of a dependency graph

» for tasks providing diagnostics (similar to the dependencyInsight task)

» for tasks which need to perform dependency resolution at execution time (e.g, download files

on demand)

For those wuse cases, Gradle provides lazy, thread-safe APIs, accessible by calling the

Configuration.getincoming() method:

* the ResolutionResult API gives access to a resolved dependency graph, whether the resolution

was successful or not.

» the artifacts API provides a simple access to the resolved artifacts, untransformed, but with lazy

download of artifacts (they would only be downloaded on demand).

* the artifact view API provides an advanced, filtered view of artifacts, possibly transformed.

Verifying dependencies

Working with external dependencies and plugins published on third-party repositories puts your
build at risk. In particular, you need to be aware of what binaries are brought in transitively and if
they are legit. To mitigate the security risks and avoid integrating compromised dependencies in

your project, Gradle supports dependency verification.

Dependency verification is, by nature, an inconvenient feature to use. It
means that whenever you’re going to update a dependency, builds are likely
to fail. It means that merging branches are going to be harder because each
branch can have different dependencies. It means that you will be tempted

to switch it off.

So why should you bother?

Dependency verification is about trust in what you get and what you ship.

IMPORTANT

Without dependency verification it’s easy for an attacker to compromise
your supply chain. There are many real world examples of tools
compromised by adding a malicious dependency. Dependency verification is
meant to protect yourself from those attacks, by forcing you to ensure that
the artifacts you include in your build are the ones that you expect. It is not
meant, however, to prevent you from including vulnerable dependencies.

Finding the right balance between security and convenience is hard but

Gradle will try to let you choose the "right level" for you.

Dependency verification consists of two different and complementary operations:

* checksum verification, which allows asserting the integrity of a dependency

* signature verification, which allows asserting the provenance of a dependency

Gradle supports both checksum and signature verification out of the box but performs no
dependency verification by default. This section will guide you into configuring dependency

verification properly for your needs.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/Configuration.html#getIncoming--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#getResolutionResult--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#getArtifacts--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#artifactView-org.gradle.api.Action-

This feature can be used for:

* detecting compromised dependencies
* detecting compromised plugins

* detecting tampered dependencies in the local dependency caches

Enabling dependency verification
The verification metadata file

Currently the only source of dependency verification metadata is this XML
NOTE configuration file. Future versions of Gradle may include other sources (for
example via external services).

Dependency verification is automatically enabled once the configuration file for dependency
verification is discovered. This configuration file is located at $PROJECT_RO0T/gradle/verification-
metadata.xml. This file minimally consists of the following:

<?xml version="1.0" encoding="UTF-8"7>
<verification-metadata>
<confiquration>
<verify-metadata>true</verify-metadata>
<verify-signatures>false</verify-signatures>
</configuration>
</verification-metadata>

Doing so, Gradle will verify all artifacts using checksums, but will not verify signatures. Gradle will
verify any artifact downloaded using its dependency management engine, which includes, but is
not limited to:

« artifact files (e.g jar files, zips, ...) used during a build

* metadata artifacts (POM files, Ivy descriptors, Gradle Module Metadata)

* plugins (both project and settings plugins)

« artifacts resolved using the advanced dependency resolution APIs
Gradle will not verify changing dependencies (in particular SNAPSHOT dependencies) nor locally

produced artifacts (typically jars produced during the build itself) as by nature their checksums
and signatures would always change.

With such a minimal configuration file, a project using any external dependency or plugin would
immediately start failing because it doesn’t contain any checksum to verify.

A dependency verification configuration is global: a single file is used to configure verification of
the whole build. In particular, the same file is used for both the (sub)projects and buildSrc.

An easy way to get started is therefore to generate the minimal configuration for an existing build.

Configuring the console output

By default, if dependency verification fails, Gradle will generate a small summary about the
verification failure as well as an HTML report containing the full information about the failures. If
your environment prevents you from reading this HTML report file (for example if you run a build
on CI and that it’s not easy to fetch the remote artifacts), Gradle provides a way to opt-in a verbose
console report. For this, you need to add this Gradle property to your gradle.properties file:

org.gradle.dependency.verification.console=verbose

Bootstrapping dependency verification

It’s worth mentioning that while Gradle can generate a dependency verification file for you, you
should always check whatever Gradle generated for you because your build may already contain
compromised dependencies without you knowing about it. Please refer to the appropriate
checksum verification or signature verification section for more information.

If you plan on using signature verification, please also read the corresponding section of the docs.

Bootstrapping can either be used to create a file from the beginning, or also to update an existing
file with new information. Therefore, it’s recommended to always use the same parameters once
you started bootstrapping.

The dependency verification file can be generated with the following CLI instructions:

gradle --write-verification-metadata sha256 help

The write-verification-metadata flag requires the list of checksums that you want to generate or
pgp for signatures.

Executing this command line will cause Gradle to:

* resolve all resolvable configurations, which includes:
o configurations from the root project

o configurations from all subprojects

o

configurations from buildSrc
o included builds configurations
o configurations used by plugins
* download all artifacts discovered during resolution
» compute the requested checksums and possibly verify signatures depending on what you asked
* At the end of the build, generate the configuration file which will contain the inferred

verification metadata

As a consequence, the verification-metadata.xml file will be used in subsequent builds to verify
dependencies.

WARNING

There are dependencies that Gradle cannot discover this way. In particular,
you will notice that the CLI above uses the help task. If you don’t specify any
task, Gradle will automatically run the default task and generate a
configuration file at the end of the build too.

The difference is that Gradle may discover more dependencies and artifacts
depending on the tasks you execute. As a matter of fact, Gradle cannot
automatically discover detached configurations, which are basically
dependency graphs resolved as an internal implementation detail of the
execution of a task: they are not, in particular, declared as an input of the task
because they effectively depend on the configuration of the task at execution
time.

A good way to start is just to use the simplest task, help, which will discover as
much as possible, and if subsequent builds fail with a verification error, you
can re-execute generation with the appropriate tasks to "discover" more
dependencies.

Gradle won’t verify either checksums or signatures of plugins which use their
own HTTP clients. Only plugins which use the infrastructure provided by
Gradle for performing requests will see their requests verified.

If an included build is used:

* the configuration file of the current build is used for verification

* so if the included build itself uses verification, its configuration is ignored in favor of the
current one

* which means that including a build works similarly to upgrading a dependency: it may require

you to update your current verification metadata

Using dry mode

By default, bootstrapping is incremental, which means that if you run it multiple times, information
is added to the file and in particular you can rely on your VCS to check the diffs. There are
situations where you would just want to see what the generated verification metadata file would

look like without actually changing the existing one or overwriting it.

For this purpose, you can just add --dry-run:

gradle --write-verification-metadata sha256 help --dry-run

Then instead of generating the verification-metadata.xml file, a new file will be generated, called

verification-metadata.dryrun.xml.

NOTE

Because --dry-run doesn’t execute tasks, this would be much faster, but it will miss

any resolution happening at task execution time.

Disabling metadata verification

By default, Gradle will not only verify artifacts (jars, ...) but also the metadata associated with those
artifacts (typically POM files). Verifying this ensures the maximum level of security: metadata files
typically tell what transitive dependencies will be included, so a compromised metadata file may
cause the introduction of undesired dependencies in the graph. However, because all artifacts are
verified, such artifacts would in general easily be discovered by you, because they would cause a
checksum verification failure (checksums would be missing from verification metadata). Because
metadata verification can significantly increase the size of your configuration file, you may
therefore want to disable verification of metadata. If you understand the risks of doing so, set the
<verify-metadata> flag to false in the configuration file:

<?xml version="1.0" encoding="UTF-8"7>
<verification-metadata>
<configuration>
<verify-metadata>false</verify-metadata>
<verify-signatures>false</verify-signatures>
</confiquration>
<!-- the rest of this file doesn't need to declare anything about metadata files
-->
</verification-metadata>

Verifying dependency checksums

Checksum verification allows you to ensure the integrity of an artifact. This is the simplest thing
that Gradle can do for you to make sure that the artifacts you use are un-tampered.

Gradle supports MD5, SHA1, SHA-256 and SHA-512 checksums. However, only SHA-256 and SHA-
512 checksums are considered secure nowadays.

Adding the checksum for an artifact

External components are identified by GAV coordinates, then each of the artifacts by their file
names. To declare the checksums of an artifact, you need to add the corresponding section in the
verification metadata file. For example, to declare the checksum for Apache PDFBox. The GAV
coordinates are:

e group org.apache.pdfbox

* name pdfbox

* version 2.0.17
Using this dependency will trigger the download of 2 different files:

* pdfbox-2.0.17.jar which is the main artifact

* pdfbox-2.0.17.pom which is the metadata file associated with this artifact

As as consequence, you need to declare the checksums for both of them (unless you disabled
metadata verification):

https://pdfbox.apache.org

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>
<configuration>
<verify-metadata>true</verify-metadata>
<verify-signatures>false</verify-signatures>
</configuration>
<components>
<component group="org.apache.pdfbox" name="pdfbox" version="2.0.17">
<artifact name="pdfbox-2.0.17.jar">
<sha512 value=
"7e11e54321¢395d461e59552e88b0@dedebaf1bf9d9bcacadf17b240d9bbc29bfbbeb8e36896c186fe405d
28715d517b02c893813a0fcc5e0aab814e44f0ab331" origin="PDFBox Official site
(https://pdfbox.apache.org/download.cgi)"/>
</artifact>
<artifact name="pdfbox-2.0.17.pom">
<sha512 value=
"82de436b38faf6121d8d2e71ddab6e79296fc0f7bc7abab766728c8d306fd1b0684b5379c18808ca724bf
91707277eba81eb4fe19518e99e812a56459b79742f" origin="Generated by Gradle"/>
</artifact>
</component>
</components>
</verification-metadata>

Where to get checksums from?

In general, checksums are published alongside artifacts on public repositories. However, if a
dependency is compromised in a repository, it’s likely its checksum will be too, so it’s a good
practice to get the checksum from a different place, usually the website of the library itself.

In fact, it’s a good security practice to publish the checksums of artifacts on a different server than
the server where the artifacts themselves are hosted: it’s harder to compromise a library both on
the repository and the official website.

In the example above, the checksum was published on the website for the JAR, but not the POM file.
This is why it’s usually easier to let Gradle generate the checksums and verify by reviewing the
generated file carefully.

In this example, not only could we check that the checksum was correct, but we could also find it
on the official website, which is why we changed the value of the of origin attribute on the sha512
element from Generated by Gradle to PDFBox Official site. Changing the origin gives users a sense
of how trustworthy your build it.

Interestingly, using pdfbox will require much more than those 2 artifacts, because it will also bring
in transitive dependencies. If the dependency verification file only included the checksums for the
main artifacts you used, the build would fail with an error like this one:

Execution failed for task ':compilelava'.
> Dependency verification failed for configuration ':compileClasspath':

- On artifact commons-logging-1.2.jar (commons-logging:commons-logging:1.2) in
repository 'MavenRepo': checksum is missing from verification metadata.

- On artifact commons-logging-1.2.pom (commons-logging:commons-logging:1.2) in
repository 'MavenRepo': checksum is missing from verification metadata.

What this indicates is that your build requires commons-logging when executing compileJava,
however the verification file doesn’t contain enough information for Gradle to verify the integrity
of the dependencies, meaning you need to add the required information to the verification
metadata file.

See troubleshooting dependency verification for more insights on what to do in this situation.

What checksums are verified?

If a dependency verification metadata file declares more than one checksum for a dependency,
Gradle will verify all of them and fail if any of them fails. For example, the following configuration
would check both the md5 and shal checksums:

<component group="org.apache.pdfbox" name="pdfbox" version="2.0.17">
<artifact name="pdfbox-2.0.17.jar">
<md5 value="c713a8e252d0add65e9282b151adfbb4" origin="official site"/>
<shal value="b5c8dff799bd967c70ccae75e69723273e640d35" origin="official site"/>
</artifact>
</component>

There are multiple reasons why you’d like to do so:

1. an official site doesn’t publish secure checksums (SHA-256, SHA-512) but publishes multiple
insecure ones (MD5, SHA1). While it’s easy to fake a MD5 checksum and hard but possible to
fake a SHA1 checksum, it’s harder to fake both of them for the same artifact.

2. you might want to add generated checksums to the list above

3. when updating dependency verification file with more secure checksums, you don’t want to
accidentally erase checksums

Verifying dependency signatures

In addition to checksums, Gradle supports verification of signatures. Signatures are used to assess
the provenance of a dependency (it tells who signed the artifacts, which usually corresponds to who
produced it).

As enabling signature verification usually means a higher level of security, you might want to
replace checksum verification with signature verification.

Signatures can also be used to assess the integrity of a dependency similarly to
checksums. Signatures are signatures of the hash of artifacts, not artifacts
themselves. This means that if the signature is done on an unsafe hash (even

WARNING
SHA1), then you’re not correctly assessing the integrity of a file. For this reason,
if you care about both, you need to add both signatures and checksums to your
verification metadata.
However:

* Gradle only supports verification of signatures published on remote repositories as ASCII-
armored PGP files

* Not all artifacts are published with signatures

* A good signature doesn’t mean that the signatory was legit

As a consequence, signature verification will often be used alongside checksum verification.

About expired keys

NOTE It’s very common to find artifacts which are signed with an expired key. This is not
a problem for verification: key expiry is mostly used to avoid signing with a stolen
key. If an artifact was signed before expiry, it’s still valid.

Enabling signature verification

Because verifying signatures is more expensive (both I/O and CPU wise) and harder to check
manually, it’s not enabled by default.

Enabling it requires you to change the configuration option in the verification-metadata.xml file:

<?xml version="1.0" encoding="UTF-8"7>
<verification-metadata>
<confiquration>
<verify-signatures>true</verify-signatures>
</configuration>
</verification-metadata>

Understanding signature verification
Once signature verification is enabled, for each artifact, Gradle will:

* try to download the corresponding .asc file
« if it’s present
- automatically download the keys required to perform verification of the signature
o verify the artifact using the downloaded public keys
o if signature verification passes, perform additional requested checksum verification

« if it’s absent, fallback to checksum verification

That is to say that Gradle’s verification mechanism is much stronger if signature verification is
enabled than just with checksum verification. In particular:

« if an artifact is signed with multiple keys, all of them must pass validation or the build will fail

« if an artifact passes verification, any additional checksum configured for the artifact will also be
checked

However, it’s not because an artifact passes signature verification that you can trust it: you need to
trust the keys.

In practice, it means you need to list the keys that you trust for each artifact, which is done by
adding a pgp entry instead of a shal for example:

<component group="com.github.javaparser" name="javaparser-core" version="3.6.11">
<artifact name="javaparser-core-3.6.11.jar">
<pgp value="8756c4f765c9ac3cb6b85d62379ce192d401ab61" />
</artifact>
</component>

Gradle supports both full fingerprint ids or long (64-bit) key ids in pgp, trusted-key and
TIP ignore-key elements. For maximum security, you should use full fingerprints as it’s
possible to have collisions for long key ids.

This effectively means that you trust com.github.javaparser:javaparser-core:3.6.11 if it’s signed
with the key 8756c4f765c9ac3cb6b85d62379ce192d401abb1.

Without this, the build would fail with this error:

> Dependency verification failed for configuration ':compileClasspath':

- On artifact javaparser-core-3.6.11.jar (com.github.javaparser:javaparser-
core:3.6.11) in repository 'MavenRepo': Artifact was signed with key
'8756c4f765c9ac3cb6b85d62379¢ce192d401ab61" (Bintray (by JFrog) <****>) and passed
verification but the key isn't in your trusted keys list.

The key IDs that Gradle shows in error messages are the key IDs found in the
signature file it tries to verify. It doesn’t mean that it’s necessarily the keys that you

NOTE
should trust. In particular, if the signature is correct but done by a malicious entity,
Gradle wouldn’t tell you.
Trusting keys globally

Signature verification has the advantage that it can make the configuration of dependency
verification easier by not having to explicitly list all artifacts like for checksum verification only. In
fact, it’'s common that the same key can be used to sign several artifacts. If this is the case, you can
move the trusted key from the artifact level to the global configuration block:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>

<configuration>
<verify-metadata>true</verify-metadata>
<verify-signatures>true</verify-signatures>
<trusted-keys>
<trusted-key 1d="379ce192d401ab61" group="com.github.javaparser"/>
</trusted-keys>
</configuration>
<components/>

</verification-metadata>

The configuration above means that for any artifact belonging to the group com.github.javaparser,
we trust it if it’s signed with the 379ce192d401ab61.

The trusted-key element works similarly to the trusted-artifact element:

group, the group of the artifact to trust
name, the name of the artifact to trust
version, the version of the artifact to trust
file, the name of the artifact file to trust

regex, a boolean saying if the group, name, version and file attributes need to be interpreted as
regular expressions (defaults to false)

You should be careful when trusting a key globally: try to limit it to the
appropriate groups or artifacts:

 avalid key may have been used to sign artifact A which you trust

* later on, the key is stolen and used to sign artifact B

WARNING It means you can trust the key A for the first artifact, probably only up to the

released version before the key was stolen, but not for B.

Remember that anybody can put an arbitrary name when generating a PGP
key, so never trust the key solely based on the key name. Verify if the key is
listed at the official site. For example, Apache projects typically provide a
KEYS.txt file that you can trust.

Specifying key servers and ignoring keys

Gradle will automatically download the public keys required to verify a signature. For this it uses a
list of well known and trusted key servers (the list may change between Gradle versions, please
refer to the implementation to figure out what servers are used by default).

You can explicitly set the list of key servers that you want to use by adding them to the
configuration:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>
<configuration>
<verify-metadata>true</verify-metadata>
<verify-signatures>true</verify-signatures>
<key-servers>
<key-server uri="hkp://my-key-server.org"/>
<key-server uri="https://my-other-key-server.org"/>
</key-servers>
</confiquration>
</verification-metadata>

Despite this, it’s possible that a key is not available:

* because it wasn’t published to a public key server

e because it was lost

In this case, you can ignore a key in the configuration block:

<?xml version="1.0" encoding="UTF-8"7>
<verification-metadata>
<configuration>
<verify-metadata>true</verify-metadata>
<verify-signatures>true</verify-signatures>
<ignored-keys>
<ignored-key id="abcdef1234567890" reason="Key is not available in any key
server"/>
</ignored-keys>
</configuration>
</verification-metadata>

As soon as a key is ignored, it will not be used for verification, even if the signature file mentions it.
However, if the signature cannot be verified with at least one other key, Gradle will mandate that
you provide a checksum.

Exporting keys for faster verification

Gradle automatically downloads the required keys but this operation can be quite slow and
requires everyone to download the keys. To avoid this, Gradle offers the ability to use a local
keyring file containing the required public keys.

Gradle supports 2 different file formats for keyrings: a binary format (.gpg file) and a plain text
format (. keys).

There are pros and cons for each of the formats: the binary format is more compact and can be
updated directly via GPG commands, but is completely opaque (binary). On the opposite, the plain
text format is human readable, can be easily updated by hand and makes it easier to do code
reviews thanks to readable diffs.

If the gradle/verification-keyring.gpg or gradle/verification-keyring.keys file is present, Gradle
will search for keys there in priority.

Note that the plain text file will be ignored if there’s already a .gpg file (the binary version takes
precedence).

You can generate the binary version using GPG, for example issuing the following commands
(syntax may depend on the tool you use):

$ gpg --no-default-keyring --keyring gradle/verification-keyring.gpg --recv-keys
379ce192d401ab61

gpg: keybox 'gradle/verification-keyring.gpg' created

gpg: key 379CE192D401AB61: public key "Bintray (by JFrog) <****>" imported
gpg: Total number processed: 1

gpg: imported: 1

$ gpg --no-default-keyring --keyring gradle/verification-keyring.gpg --recv-keys
6a0975f8b1127b83

gpg: key 0729AQAFF8999A87: public key "Kotlin Release <****>" imported
gpg: Total number processed: 1
9pg: imported: 1

The plain text version, on the other hand, can be updated manually. The file must be formatted
with the US-ASCII encoding and consists of a list of keys in ASCII armored format.

In the example above, you could amend an existing KEYS file by issuing the following commands:

$ gpg --no-default-keyring --keyring /tmp/keyring.gpg --recv-keys 379ce192d401ab61

gpg: keybox '/tmp/keyring.gpg' created

gpg: key 379CE192D401AB61: public key "Bintray (by JFrog) <****>" imported
gpg: Total number processed: 1

gpg: imported: 1

First let's add a header so that we can recognize the added key
$ gpg --keyring /tmp/keyring.gpg --list-sigs 379CE192D401AB61 > gradle/verification-
keyring.keys

Then write its ASCII armored version
$ gpg --keyring /tmp/keyring.gpg --export --armor 379CE192D401AB61 >
gradle/verification-keyring.keys

Or, alternatively, you can ask Gradle to export all keys it used for verification of this build to the
keyring during bootstrapping:

./gradlew --write-verification-metadata pgp,sha256 --export-keys

This command will generate both the binary version and the ASCII armored file.
You should only pick one for your project.

It’s a good idea to commit this file to VCS (as long as you trust your VCS). If you use
NOTE git and use the binary version, make sure to make it treat this file as binary, by
adding this to your .gitattributes file:

*.gpg binary

Bootstrapping and signature verification

Signature verification bootstrapping takes an optimistic point of view that
signature verification is enough. Therefore, if you also care about integrity, you
must first bootstrap using checksum verification, then with signature
verification.

WARNING

Similarly to bootstrapping for checksums, Gradle provides a convenience for bootstrapping a
configuration file with signature verification enabled. For this, just add the pgp option to the list of
verifications to generate. However, because there might be verification failures, missing keys or
missing signature files, you must provide a fallback checksum verification algorithm:

./gradlew --write-verification-metadata pgp,sha256

this means that Gradle will verify the signatures and fallback to SHA-256 checksums when there’s a
problem.

When bootstrapping, Gradle performs optimistic verification and therefore assumes a sane build
environment. It will therefore:
» automatically add the trusted keys as soon as verification passes
* automatically add ignored keys for keys which couldn’t be downloaded from public key servers
* automatically generate checksums for artifacts without signatures or ignored keys

If, for some reason, verification fails during the generation, Gradle will automatically generate an
ignored key entry but warn you that you must absolutely check what happens.

This situation is common as explained for this section: a typical case is when the POM file for a
dependency differs from one repository to the other (often in a non-meaningful way).

In addition, Gradle will try to group keys automatically and generate the trusted-keys block which
reduced the configuration file size as much as possible.

Forcing use of local keyrings only

The local keyring files (.gpg or .keys) can be used to avoid reaching out to key servers whenever a
key is required to verify an artifact. However, it may be that the local keyring doesn’t contain a key,
in which case Gradle would use the key servers to fetch the missing key. If the local keyring file isn’t
regularly updated, using key export, then it may be that your CI builds, for example, would reach
out to key servers too often (especially if you use disposable containers for builds).

To avoid this, Gradle offers the ability to disallow use of key servers altogether: only the local
keyring file would be used, and if a key is missing from this file, the build will fail.

To enable this mode, you need to disable key servers in the configuration file:

<?xml version="1.0" encoding="UTF-8"7>
<verification-metadata>
<configuration>
<key-servers enabled="false"/>

</confiquration>

</verification-metadata>

If you are asking Gradle to generate a verification metadata file and that an existing
NOTE verification metadata file sets enabled to false, then this flag will be ignored, so that
potentially missing keys are downloaded.

Troubleshooting dependency verification

Dealing with a verification failure

Dependency verification can fail in different ways, this section explains how you should deal with
the various cases.

Missing verification metadata

The simplest failure you can have is when verification metadata is missing from the dependency
verification file. This is the case for example if you use checksum verification, then you update a
dependency and new versions of the dependency (and potentially its transitive dependencies) are
brought in.

Gradle will tell you what metadata is missing:

Execution failed for task ':compileJava'.
> Dependency verification failed for configuration ':compileClasspath':

- On artifact commons-logging-1.2.jar (commons-logging:commons-logging:1.2) in
repository 'MavenRepo': checksum is missing from verification metadata.

* the missing module group is commons-logging, it’s artifact name is commons-logging and its

version is 1.2. The corresponding artifact is commons-logging-1.2.jar so you need to add the
following entry to the verification file:

<component group="commons-logging" name="commons-logging" version="1.2">
<artifact name="commons-logging-1.2.jar">
<sha256 value="daddealea@bedf56978ab3006b8ac92834afeefbd9ib7ed4eb6316fcab7df@fab36"
origin="official distribution"/>
</artifact>
</component>

Alternatively, you can ask Gradle to generate the missing information by using the bootstrapping
mechanism: existing information in the metadata file will be preserved, Gradle will only add the
missing verification metadata.

Incorrect checksums

A more problematic issue is when the actual checksum verification fails:

Execution failed for task ':compilelava'.
> Dependency verification failed for configuration ':compileClasspath':

- On artifact commons-logging-1.2.jar (commons-logging:commons-logging:1.2) in
repository 'MavenRepo': expected a 'sha256' checksum of
'91f7333096ea69bac2cbafbdd1feb934cac002c48d8c8cfaldc240bdbflec21df' but was
"daddealealbedf56978ab3006b8ac92834afeefbdib7ede6316fcab7df0fab36’

This time, Gradle tells you what dependency is at fault, what was the expected checksum (the one
you declared in the verification metadata file) and the one which was actually computed during
verification.

Such a failure indicates that a dependency may have been compromised. At this stage, you must
perform manual verification and check what happens. Several things can happen:

* a dependency was tampered in the local dependency cache of Gradle. This is usually harmless:
erase the file from the cache and Gradle would redownload the dependency.

* a dependency is available in multiple sources with slightly different binaries (additional
whitespace, ...)

o please inform the maintainers of the library that they have such an issue
> you can use also-trust to accept the additional checksums
* the dependency was compromised
- immediately inform the maintainers of the library
o notify the repository maintainers of the compromised library
Note that a variation of a compromised library is often name squatting, when a hacker would use

GAV coordinates which look legit but are actually different by one character, or repository
shadowing, when a dependency with the official GAV coordinates is published in a malicious

repository which comes first in your build.

Untrusted signatures

If you have signature verification enabled, Gradle will perform verification of the signatures but
will not trust them automatically:

1

> Dependency verification failed for configuration ':compileClasspath':

- On artifact javaparser-core-3.6.11.jar (com.github.javaparser:javaparser-
core:3.6.11) in repository 'MavenRepo': Artifact was signed with key
'379ce192d401ab61" (Bintray (by JFrog) <****>) and passed verification but the key
isn't in your trusted keys list.

In this case it means you need to check yourself if the key that was used for verification (and
therefore the signature) can be trusted, in which case refer to this section of the documentation to
figure out how to declare trusted keys.

Failed signature verification

If Gradle fails to verify a signature, you will need to take action and verify artifacts manually
because this may indicate a compromised dependency.

If such a thing happens, Gradle will fail with:

> Dependency verification failed for configuration ':compileClasspath':

- On artifact javaparser-core-3.6.11.jar (com.github.javaparser:javaparser-
core:3.6.11) in repository 'MavenRepo': Artifact was signed with key
'379ce192d401ab61" (Bintray (by JFrog) <****>) but signature didn't match

There are several options:

1. signature was wrong in the first place, which happens frequently with dependencies published
on different repositories.

2. the signature is correct but the artifact has been compromised (either in the local dependency
cache or remotely)

The right approach here is to go to the official site of the dependency and see if they publish
signatures for their artifacts. If they do, verify that the signature that Gradle downloaded matches
the one published.

If you have checked that the dependency is not compromised and that it’s "only" the signature
which is wrong, you should declare an artifact level key exclusion:

<components>
<component group="com.github.javaparser" name="javaparser-core" version="
3.6.11">
<artifact name="javaparser-core-3.6.11.pom">
<ignored-keys>
<ignored-key 1d="379ce192d401ab61" reason="internal repo has corrupted
pom" />
</ignored-keys>
</artifact>
</component>
</components>

However, if you only do so, Gradle will still fail because all keys for this artifact will be ignored and
you didn’t provide a checksum:

<components>
<component group="com.github.javaparser" name="javaparser-core" version="
3.6.11">
<artifact name="javaparser-core-3.6.11.pom">
<ignored-keys>
<ignored-key 1d="379ce192d401ab61" reason="internal repo has corrupted
pom" />
</ignored-keys>
<sha256 value=
"a2023504cfd611332177196358b6f6db26e43d96e8ef4cff59b0f5a2bee3c1el"/>
</artifact>
</component>
</components>

Manual verification of a dependency

You will likely face a dependency verification failure (either checksum verification or signature
verification) and will need to figure out if the dependency has been compromised or not.

In this section we give an example how you can manually check if a dependency was compromised.

For this we will take this example failure:

> Dependency verification failed for configuration ':compileClasspath':

- On artifact j2objc-annotations-1.1.jar (com.google.j2objc:j2objc-annotations:1.1) in
repository 'MyCompany Mirror': Artifact was signed with key '29579f18fa8fd93b" but
signature didn't match

This error message gives us the GAV coordinates of the problematic dependency, as well as an
indication of where the dependency was fetched from. Here, the dependency comes from MyCompany
Mirror, which is a repository declared in our build.

The first thing to do is therefore to download the artifact and its signature manually from the
mirror:

$ curl https://my-company-mirror.com/repo/com/google/j2objc/j2objc-
annotations/1.1/j2objc-annotations-1.1.jar --output j2objc-annotations-1.1.jar

$ curl https://my-company-mirror.com/repo/com/google/j2objc/j2objc-
annotations/1.1/j2objc-annotations-1.1.jar.asc --output j2objc-annotations-1.1.jar.asc

Then we can use the key information provided in the error message to import the key locally:

$ gpg --recv-keys 29579f18fa8fd93b

And perform verification:

$ gpg --verify j2objc-annotations-1.1.jar.asc

gpg: assuming signed data in 'j2objc-annotations-1.1.jar'
gpg: Signature made Thu 19 Jan 2017 12:06:51 AM CET

gpg: using RSA key 29579F18FA8FD93B

gpg: BAD signature from "Tom Ball <****>" [unknown]

What this tells us is that the problem is not on the local machine: the repository already contains a
bad signature.

The next step is to do the same by downloading what is actually on Maven Central:

$ curl https://my-company-mirror.com/repo/com/google/j2objc/j2objc-
annotations/1.1/j2objc-annotations-1.1.jar --output central-j2objc-annotations-
1.1.jar

$ curl https://my-company-mirror.com/repo/com/google/j2objc/j2objc-
annotations/1/1/j2objc-annotations-1.1.jar.asc --output central-j2objc-annotations-
1.1.jar.asc

And we can now check the signature again:

$ gpg --verify central-j2objc-annotations-1.1.jar.asc

gpg: assuming signed data in 'central-j2objc-annotations-1.1.jar’

gpg: Signature made Thu 19 Jan 2017 12:06:51 AM CET

gpg: using RSA key 29579F18FA8FD93B

gpg: Good signature from "Tom Ball <****>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: B801 E2F8 EF@3 5068 EC11 39CC 2957 9F18 FASF D93B

This indicates that the dependency is valid on Maven Central. At this stage, we already know that

the problem lives in the mirror, it may have been compromised, but we need to verify.
A good idea is to compare the 2 artifacts, which you can do with a tool like diffoscope.

We then figure out that the intent wasn’t malicious but that somehow a build has been overwritten
with a newer version (the version in Central is newer than the one in our repository).

In this case, you can decide to:

* ignore the signature for this artifact and trust the different possible checksums (both for the old
artifact and the new version)

* or cleanup your mirror so that it contains the same version as in Maven Central

It’s worth noting that if you choose to delete the version from your repository, you will also need to
remove it from the local Gradle cache.

This is facilitated by the fact the error message tells you were the file is located:
> Dependency verification failed for configuration ':compileClasspath’:
- On artifact j2objc-annotations-1.1.jar (com.google.j20bjc:j2objc-

annotations:1.1) in repository 'MyCompany Mirror': Artifact was signed with key
'29579f18fa8fd93b"' but signature didn't match

This can indicate that a dependency has been compromised. Please carefully verify
the signatures and checksums.

For your information here are the path to the files which failed verification:

- GRADLE_USER_HOME/caches/modules-2/files-2.1/com.google.j20bjc/j2o0bjc-
annotations/1.1/976d8d30bebc251db406f2bdb3eb01962b5685b3/j20bjc-annotations-1.1.jar
(signature: GRADLE_USER_HOME/caches/modules-2/files-2.1/com.google.j20bjc/j2objc-
annotations/1.1/82e922e14f57d522de465fd144ec26eb7dad4501/j20bjc-annotations-
1.1.jar.asc)

GRADLE_USER_HOME = /home/jiraya/.gradle

You can safely delete the artifact file as Gradle would automatically re-download it:

rm -rf ~/.gradle/caches/modules-2/files-2.1/com.google.j20bjc/j2objc-annotations/1.1

Disabling verification or making it lenient

Dependency verification can be expensive, or sometimes verification could get in the way of day to
day development (because of frequent dependency upgrades, for example).

Alternatively, you might want to enable verification on CI servers but not on local machines.
Gradle actually provides 3 different verification modes:

 strict, which is the default. Verification fails as early as possible, in order to avoid the use of

https://try.diffoscope.org/

compromised dependencies during the build.

* lenient, which will run the build even if there are verification failures. The verification errors
will be displayed during the build without causing a build failure.

» of f when verification is totally ignored.

All those modes can be activated on the CLI using the --dependency-verification flag, for example:

./gradlew --dependency-verification lenient build

Alternatively, you can set the org.gradle.dependency.verification system property, either on the
CLL:

./gradlew -Dorg.gradle.dependency.verification=1lenient build

orin agradle.properties file:

org.gradle.dependency.verification=1enient

Trusting some particular artifacts

You might want to trust some artifacts more than others. For example, it’s legitimate to think that
artifacts produced in your company and found in your internal repository only are safe, but you
want to check every external component.

This is a typical company policy. In practice, nothing prevents your internal
NOTE repository from being compromised, so it’'s a good idea to check your internal
artifacts too!

For this purpose, Gradle offers a way to automatically trust some artifacts. You can trust all artifacts
in a group by adding this to your configuration:

<?xml version="1.0" encoding="UTF-8"7>
<verification-metadata>
<configuration>
<trusted-artifacts>
<trust group="com.mycompany"/>
</trusted-artifacts>
</configuration>
</verification-metadata>

This means that all components which group is com.mycompany will automatically be trusted. Trusted
means that Gradle will not perform any verification whatsoever.

The trust element accepts those attributes:

* group, the group of the artifact to trust

* name, the name of the artifact to trust

e version, the version of the artifact to trust
» file, the name of the artifact file to trust

* regex, a boolean saying if the group, name, version and file attributes need to be interpreted as
regular expressions (defaults to false)

In the example above it means that the trusted artifacts would be artifacts in com.mycompany but not
com.mycompany.other. To trust all artifacts in com.mycompany and all subgroups, you can use:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>
<configuration>
<trusted-artifacts>
<trust group="Acom[.]mycompany($|([.].*))" regex="true"/>
</trusted-artifacts>
</confiquration>
</verification-metadata>

Trusting multiple checksums for an artifact

It’s quite common to have different checksums for the same artifact in the wild. How is that
possible? Despite progress, it’s often the case that developers publish, for example, to Maven
Central and another repository separately, using different builds. In general, this is not a problem
but sometimes it means that the metadata files would be different (different timestamps, additional
whitespaces, ...). Add to this that your build may use several repositories or repository mirrors and
it makes it quite likely that a single build can "see" different metadata files for the same component!
In general, it’s not malicious (but you must verify that the artifact is actually correct), so Gradle lets
you declare the additional artifact checksums. For example:

<component group="org.apache" name="apache" version="13">
<artifact name="apache-13.pom">
<sha256 value=
"2fafa38abefe1b40283016f506ba%e844bfcf18713497284264166a5dbf4b95e">
<also-trust value=
"f£513db0361fd41237bef4784968bc153ae478d4ec0a%496f811072ccaf3841d"/>
</sha256>
</artifact>
</component>

You can have as many also-trust entries as needed, but in general you shouldn’t have more than 2.

Skipping Javadocs and sources

By default Gradle will verify all downloaded artifacts, which includes Javadocs and sources. In
general this is not a problem but you might face an issue with IDEs which automatically try to

download them during import: if you didn’t set the checksums for those too, importing would fail.

To avoid this, you can configure Gradle to trust automatically all javadocs/sources:

<trusted-artifacts>
<trust file=".*-javadoc[.]jar" regex="true"/>
<trust file=".*-sources[.]jar" regex="true"/>
</trusted-artifacts>

Cleaning up the verification file

If you do nothing, the dependency verification metadata will grow over time as you add new
dependencies or change versions: Gradle will not automatically remove unused entries from this
file. The reason is that there’s no way for Gradle to know upfront if a dependency will effectively be
used during the build or not.

As a consequence, adding dependencies or changing dependency version can easily lead to more
entries in the file, while leaving unnecessary entries out there.

One option to cleanup the file is to move the existing verification-metadata.xml file to a different
location and call Gradle with the --dry-run mode: while not perfect (it will not notice dependencies
only resolved at configuration time), it generates a new file that you can compare with the existing
one.

We need to move the existing file because both the bootstrapping mode and the dry-run mode are
incremental: they copy information from the existing metadata verification file (in particular,
trusted keys).

Refreshing missing keys

Gradle caches missing keys for 24 hours, meaning it will not attempt to re-download the missing
keys for 24 hours after failing.

If you want to retry immediately, you can run with the --refresh-keys CLI flag:

./gradlew build --refresh-keys

Disabling dependency verification for some configurations only

In order to provide the strongest security level possible, dependency verification is enabled
globally. This will ensure, for example, that you trust all the plugins you use. However, the plugins
themselves may need to resolve additional dependencies that it doesn’t make sense to ask the user
to accept. For this purpose, Gradle provides an API which allows disabling dependency verification
on some specific configurations.

Disabling dependency verification, if you care about security, is not a good
idea. This API mostly exist for cases where it doesn’t make sense to check

WARNING dependencies. However, in order to be on the safe side, Gradle will
systematically print a warning whenever verification has been disabled for a
specific configuration.

As an example, a plugin may want to check if there are newer versions of a library available and list
those versions. It doesn’t make sense, in this context, to ask the user to put the checksums of the
POM files of the newer releases because by definition, they don’t know about them. So the plugin
might need to run its code independently of the dependency verification configuration.

To do this, you need to call the ResolutionStrategy#disableDependencyVerification method:

Example 284. Disabling dependency verification

build.gradle

configurations {
myPluginClasspath {
resolutionStrategy {
disableDependencyVerification()

}

build.gradle.kts

configurations {
"myPluginClasspath" {
resolutionStrategy {
disableDependencyVerification()

}

It’s also possible to disable verification on detached configurations like in the following example:

Example 285. Disabling dependency verification

build.gradle

tasks.register("checkDetachedDependencies") {
dolast {
def detachedConf = configurations.detachedConfiguration(dependencies
.create("org.apache.commons:commons-1ang3:3.3.1"))
detachedConf.resolutionStrategy.disableDependencyVerification()
println(detachedConf.files)

build.gradle.kts

tasks.register("checkDetachedDependencies") {
dolLast {
val detachedConf =
configurations.detachedConfiguration(dependencies.create("org.apache.commons:
commons-1ang3:3.3.1"))
detachedConf.resolutionStrateqy.disableDependencyVerification()
println(detachedConf.files)

Declaring Versions

Declaring Versions and Ranges

The simplest version declaration is a simple string representing the version to use. Gradle supports

different ways of declaring a version string:

* An exact version: e.g. 1.3, 1.3.0-beta3, 1.0-20150201.131010-1
* A Maven-style version range: e.g. [1.0,), [1.1, 2.0), (1.2, 1.5]
o The [and] symbols indicate an inclusive bound; (and) indicate an exclusive bound.

o When the upper or lower bound is missing, the range has no upper or lower bound.

o The symbol] can be used instead of (for an exclusive lower bound, and [instead of) for

exclusive upper bound. e.g]11.0, 2.0[

o An upper bound exclude acts as a prefix exclude. This means that [1.0, 2.0[will also
exclude all versions starting with 2.0 that are smaller than 2.0. For example versions like

2.0-dev1 or 2.0-SNAPSHOT are no longer included in the range.

* A prefix version range: e.g. 1.+, 1.3.+

> Only versions exactly matching the portion before the + are included.

o The range + on it’s own will include any version.

* A latest-status version: e.g. latest.integration, latest.release

o Will match the highest versioned module with the specified status. See

ComponentMetadata.getStatus().

* A Maven SNAPSHOT version identifier: e.g. 1.0-SNAPSHOT, 1.4.9-beta1-SNAPSHOT

Version ordering

Versions have an implicit ordering. Version ordering is used to:

* Determine if a particular version is included in a range.

* Determine which version is 'newest' when performing conflict resolution.

Versions are ordered based on the following rules:

* Each version is split into it’s constituent "parts":

[

o

o

The characters [. - _ +] are used to separate the different "parts" of a version.

Any part that contains both digits and letters is split into separate parts for each: 1a1 ==
1.3.1

Only the parts of a version are compared. The actual separator characters are not
significant: 1.3.1 == 1-a+1 == 1.a-1 == 13l

» The equivalent parts of 2 versions are compared using the following rules:

o

o

o

If both parts are numeric, the highest numeric value is higher: 1.1<1.2
If one part is numeric, it is considered higher than the non-numeric part: 1.a < 1.1

If both are not numeric, the parts are compared alphabetically, case-sensitive: 1.A < 1.B <
1.a<1.b

A version with an extra numeric part is considered higher than a version without: 1.1 <
1.1.0

A version with an extra non-numeric part is considered lower than a version without: 1.17.3
<1.1

* Certain string values have special meaning for the purposes of ordering:

o

o

The string dev is consider lower than any other string part: 1.0-dev <1.0-alpha < 1.0-rc.

The strings rc, final, ga and release are considered higher than any other string part (sorted
in that order): 1.0-zeta < 1.0-RC < 1.0-FINAL <1.0-GA <1.0-RELEASE < 1.0.

The string SP will be ordered higher than release, it remains however lower than an
unqualified version, limiting its use to versioning schemes using either FINAL, GA or RELEASE:
1.0-RELEASE <1.0-SP1<1.0

The string snapshot will be ordered higher than rc: 1.0-RC < 1.0-SNAPSHOT < 1.0.

Numeric snapshot versions have no special meaning, and are sorted like any other
numeric part: 1.0 <1.0-20150201.121010-123 < 1.1.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ComponentMetadata.html#getStatus--

Simple version declaration semantics

When you declare a version using the short-hand notation, for example:

Example 286. A simple declaration

build.gradle

dependencies {
implementation('org.s1f4j:s1f4j-api:1.7.15")
}

build.gradle.kts

dependencies {
implementation("org.s1f4j:s1f4j-api:1.7.15")
}

Then the version is considered a required version which means that it should minimally be 1.7.15
but can be upgraded by the engine (optimistic upgrade).

There is, however, a shorthand notation for strict versions, using the !! notation:

Example 287. Shorthand notation for strict dependencies

build.gradle

dependencies {

// short-hand notation with !!
implementation('org.s1f4j:s1f4j-api:1.7.15!1")
// is equivalent to
implementation("org.s1f4j:s1f4j-api") {

version {

strictly '1.7.15'

}

}

// or...
implementation('org.s1f4j:s1f4j-api:[1.7, 1.8[!!1.7.25")
// 1is equivalent to
implementation('org.s1f4j:s1f4j-api') {
version {
strictly "[1.7, 1.8["'
prefer '1.7.25'
}

build.gradle.kts

dependencies {
// short-hand notation with !!
implementation("org.s1f4j:s1f4j-api:1.7.15!1")
// 1s equivalent to
implementation("org.s1f4j:s1f4j-api") {
version {
strictly("1.7.15")

}
}

// or...
implementation("org.s1f4j:s1f4j-api:[1.7, 1.8[!!11.7.25")
// is equivalent to
implementation("org.s1f4j:s1f4j-api") {
version {
strictly("[1.7, 1.8[")
prefer("1.7.25")
}

A strict version cannot be upgraded and overrides whatever transitive dependencies originating
from this dependency provide. It is recommended to use ranges for strict versions.

The notation [1.7, 1.8[!!1.7.25 above is equivalent to:

e strictly [1.7, 1.8
» prefer 1.7.25

which means that the engine must select a version between 1.7 (included) and 1.8 (excluded), and
that if no other component in the graph needs a different version, it should prefer 1.7.25.

Declaring a dependency without version

A recommended practice for larger projects is to declare dependencies without versions and use
dependency constraints for version declaration. The advantage is that dependency constraints
allow you to manage versions of all dependencies, including transitive ones, in one place.

Example 288. Declaring a dependency without version

build.gradle

dependencies {
implementation 'org.springframework:spring-web'

}

dependencies {
constraints {
implementation 'org.springframework:spring-web:5.0.2.RELEASE'

build.gradle.kts

dependencies {
implementation("org.springframework:spring-web")

}

dependencies {
constraints {
implementation("org.springframework:spring-web:5.0.2.RELEASE")

Declaring Rich Versions

Gradle supports a rich model for declaring versions, which allows to combine different level of
version information. The terms and their meaning are explained below, from the strongest to the
weakest:

strictly

Any version not matched by this version notation will be excluded. This is the strongest version
declaration. On a declared dependency, a strictly can downgrade a version. When on a
transitive dependency, it will cause dependency resolution to fail if no version acceptable by this
clause can be selected. See overriding dependency version for details. This term supports
dynamic versions.

When defined, this overrides any previous require declaration and clears previous reject.

require

Implies that the selected version cannot be lower than what require accepts but could be higher
through conflict resolution, even if higher has an exclusive higher bound. This is what a direct

dependency translates to. This term supports dynamic versions.
When defined, this overrides any previous strictly declaration and clears previous reject.

prefer

This is a very soft version declaration. It applies only if there is no stronger non dynamic opinion
on a version for the module. This term does not support dynamic versions.

Definition can complement strictly or require.
When defined, this overrides any previous prefer declaration and clears previous reject.
There is also an additional term outside of the level hierarchy:

reject

Declares that specific version(s) are not accepted for the module. This will cause dependency
resolution to fail if the only versions selectable are also rejected. This term supports dynamic
versions.

The following table illustrates a number of use cases and how to combine the different terms for
rich version declaration:

Table 15. Rich version use cases

Which version(s) of this stri requir prefer reje Selection result
dependency are acceptable? ctly e cts
Tested with version 1.5, 1.5 Any version starting from 1.5,
believe all future versions equivalent of org:foo:1.5. An upgrade
should work. to 2.4 is accepted.
Tested with 1.5, soft [1.0, 1.5 Any version between 1.0 and 2.0, 1.5 if
constraint upgrades according 2.0[nobody else cares. An upgrade to 2.4 is
to semantic versioning. accepted.
[l
Tested with 1.5, but follows [1.0, 1.5 Any version between 1.0 and 2.0
semantic versioning. 2.0[(exclusive), 1.5 if nobody else cares.
Overwrites versions from transitive
dependencies.
0
Same as above, with 1.4 [1.0, 1.5 1.4 Any version between 1.0 and 2.0
known broken. 2.0[(exclusive) except for 1.4, 1.5 if nobody
else cares.
Overwrites versions from transitive
dependencies.
0
No opinion, works with 1.5. 1.5 1.5 if no other opinion, any otherwise.
No opinion, prefer latest latest The latest release at build time.
release. .relea i

se

Which version(s) of this stri requir prefer reje Selection result

dependency are acceptable? flY © cts

On the edge, latest release, no latest The latest release at build time.

downgrade. .relea 0

se

No other version than 1.5. 1.5 1.5, or failure if another strict or
higher require constraint disagrees.
Overwrites versions from transitive
dependencies.

1.5 or a patch version of it [1.5, Latest 1.5.x patch release, or failure if

exclusively. 1.6[another strict or higher require

constraint disagrees.

Overwrites versions from transitive
dependencies.

0

Lines annotated with a lock (0) indicate that leveraging dependency locking makes sense in this
context. Another concept that relates with rich version declaration is the ability to publish resolved
versions instead of declared ones.

Using strictly, especially for a library, must be a well thought process as it has an impact on
downstream consumers. At the same time, used correctly, it will help consumers understand what
combination of libraries do not work together in their context. See overriding dependency version
for more information.

Rich version information will be preserved in the Gradle Module Metadata format.
However conversion to Ivy or Maven metadata formats will be lossy. The highest
level will be published, that is strictly or require over prefer. In addition, any
reject will be ignored.

NOTE

Rich version declaration is accessed through the version DSL method on a dependency or constraint
declaration which gives access to MutableVersionConstraint.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/MutableVersionConstraint.html

Example 289. Rich version declaration

build.gradle

dependencies {
implementation('org.s1f4j:s1f4j-api') {
version {
strictly '[1.7, 1.8["'
prefer '1.7.25'

}

constraints {
implementation('org.springframework:spring-core') {
version {
require '4.2.9.RELEASE'
reject '4.3.16.RELEASE'

build.gradle.kts

dependencies {
implementation("org.s1f4j:s1f4j-api") {
version {
strictly("[1.7, 1.8[")
prefer("1.7.25")

}

constraints {
add("implementation", "org.springframework:spring-core") {
version {
require("4.2.9.RELEASE")
reject("4.3.16.RELEASE")

Handling versions which change over time

There are many situations when you want to use the latest version of a particular module

dependency, or the latest in a range of versions. This can be a requirement during development, or
you may be developing a library that is designed to work with a range of dependency versions. You
can easily depend on these constantly changing dependencies by using a dynamic version. A
dynamic version can be either a version range (e.g. 2.+) or it can be a placeholder for the latest
version available e.g. 1atest.integration.

Alternatively, the module you request can change over time even for the same version, a so-called
changing version. An example of this type of changing module is a Maven SNAPSHOT module, which
always points at the latest artifact published. In other words, a standard Maven snapshot is a
module that is continually evolving, it is a "changing module".

Using dynamic versions and changing modules can lead to unreproducible builds.
NOTE As new versions of a particular module are published, its API may become
incompatible with your source code. Use this feature with caution!

Declaring a dynamic version

Projects might adopt a more aggressive approach for consuming dependencies to modules. For
example you might want to alway