
Gradle User Manual
Version 7.3.2

Version 7.3.2

Table of Contents
About Gradle . 4

What is Gradle? . 4

Getting Started. 9

Getting Started . 9

Installing Gradle. 12

Troubleshooting builds. 14

Compatibility Matrix . 21

Upgrading and Migrating . 23

Upgrading your build from Gradle 6.x to the latest. 23

Upgrading your build from Gradle 5.x to 6.0 . 42

Upgrading your build from Gradle 4.x to 5.0 . 61

Migrating Builds From Apache Maven . 87

Migrating Builds From Apache Ant . 107

Running Gradle Builds . 126

Build Environment . 126

The Gradle Daemon. 135

Initialization Scripts . 143

Executing Multi-Project Builds . 153

Build Cache . 158

Authoring Gradle Builds . 176

Build Script Basics . 176

Authoring Tasks . 194

Writing Build Scripts. 272

Working With Files . 287

Using Gradle Plugins . 351

Build Lifecycle . 373

Logging . 387

Structuring and Building a Software Component with Gradle. 395

Sharing Build Logic between Subprojects . 399

Fine Tuning the Project Layout . 400

Declaring Dependencies between Subprojects. 402

Configuration time and execution time . 412

Organizing Gradle Projects . 414

Best practices for authoring maintainable builds . 421

Lazy Configuration . 431

Testing Build Logic with TestKit . 459

Using Ant from Gradle . 473

Dependency Management . 492

Learning the Basics . 492

Declaring Versions. 601

Controlling Transitive Dependencies . 631

Producing and Consuming Variants of Libraries. 730

Working in a Multi-repo Environment. 801

Publishing Libraries . 809

Java & Other JVM Projects . 838

Building Java & JVM projects . 838

Testing in Java & JVM projects . 864

Managing Dependencies of JVM Projects. 902

C++ & Other Native Projects. 907

Building C++ projects . 907

Testing in C++ projects . 917

Building Swift projects . 918

Testing in Swift projects . 927

Native Projects using the Software Model . 936

Building native software . 936

Implementing model rules in a plugin . 975

Extending Gradle . 976

Developing Custom Gradle Task Types. 976

Developing Custom Gradle Plugins . 1007

Developing Custom Gradle Types . 1029

Gradle Plugin Development Plugin . 1039

Reference . 1042

A Groovy Build Script Primer . 1042

Gradle Kotlin DSL Primer . 1047

Gradle Plugin Reference . 1082

Command-Line Interface. 1085

Gradle & Third-party Tools . 1101

The Gradle Wrapper . 1105

The Directories and Files Gradle Uses . 1114

Plugins . 1117

The ANTLR Plugin . 1117

The Application Plugin . 1120

The Base Plugin . 1128

Build Init Plugin . 1131

The Checkstyle Plugin. 1138

The CodeNarc Plugin . 1141

The Distribution Plugin . 1143

The Ear Plugin . 1148

The Eclipse Plugins . 1154

The Groovy Plugin. 1162

The IDEA Plugin . 1173

Ivy Publish Plugin . 1180

The JaCoCo Plugin . 1195

The Java Plugin. 1206

The Java Library Plugin . 1225

The Java Library Distribution Plugin . 1240

The Java Platform Plugin . 1242

Maven Publish Plugin. 1249

The PMD Plugin . 1271

The Scala Plugin. 1273

The Signing Plugin. 1284

The War Plugin. 1294

License Information . 1300

License Information . 1301

Gradle Documentation . 1301

Gradle Build Scan Plugin . 1301

About Gradle

What is Gradle?

Overview

Gradle is an open-source build automation tool that is designed to be flexible enough to build
almost any type of software. The following is a high-level overview of some of its most important
features:

High performance

Gradle avoids unnecessary work by only running the tasks that need to run because their inputs
or outputs have changed. You can also use a build cache to enable the reuse of task outputs from
previous runs or even from a different machine (with a shared build cache).

There are many other optimizations that Gradle implements and the development team
continually work to improve Gradle’s performance.

JVM foundation

Gradle runs on the JVM and you must have a Java Development Kit (JDK) installed to use it. This
is a bonus for users familiar with the Java platform as you can use the standard Java APIs in
your build logic, such as custom task types and plugins. It also makes it easy to run Gradle on
different platforms.

Note that Gradle isn’t limited to building just JVM projects, and it even comes packaged with
support for building native projects.

Conventions

Gradle takes a leaf out of Maven’s book and makes common types of projects — such as Java
projects — easy to build by implementing conventions. Apply the appropriate plugins and you
can easily end up with slim build scripts for many projects. But these conventions don’t limit
you: Gradle allows you to override them, add your own tasks, and make many other
customizations to your convention-based builds.

Extensibility

You can readily extend Gradle to provide your own task types or even build model. See the
Android build support for an example of this: it adds many new build concepts such as flavors
and build types.

IDE support

Several major IDEs allow you to import Gradle builds and interact with them: Android Studio,
IntelliJ IDEA, Eclipse, and NetBeans. Gradle also has support for generating the solution files
required to load a project into Visual Studio.

Insight

Build scans provide extensive information about a build run that you can use to identify build
issues. They are particularly good at helping you to identify problems with a build’s

https://en.wikipedia.org/wiki/Build_automation
https://scans.gradle.com/

performance. You can also share build scans with others, which is particularly useful if you need
to ask for advice in fixing an issue with the build.

Five things you need to know about Gradle

Gradle is a flexible and powerful build tool that can easily feel intimidating when you first start.
However, understanding the following core principles will make Gradle much more approachable
and you will become adept with the tool before you know it.

1. Gradle is a general-purpose build tool

Gradle allows you to build any software, because it makes few assumptions about what you’re
trying to build or how it should be done. The most notable restriction is that dependency
management currently only supports Maven- and Ivy-compatible repositories and the filesystem.

This doesn’t mean you have to do a lot of work to create a build. Gradle makes it easy to build
common types of project — say Java libraries — by adding a layer of conventions and prebuilt
functionality through plugins. You can even create and publish custom plugins to encapsulate your
own conventions and build functionality.

2. The core model is based on tasks

Gradle models its builds as Directed Acyclic Graphs (DAGs) of tasks (units of work). What this
means is that a build essentially configures a set of tasks and wires them together — based on their
dependencies — to create that DAG. Once the task graph has been created, Gradle determines
which tasks need to be run in which order and then proceeds to execute them.

This diagram shows two example task graphs, one abstract and the other concrete, with the
dependencies between the tasks represented as arrows:

Figure 1. Two examples of Gradle task graphs

Almost any build process can be modeled as a graph of tasks in this way, which is one of the
reasons why Gradle is so flexible. And that task graph can be defined by both plugins and your own
build scripts, with tasks linked together via the task dependency mechanism.

Tasks themselves consist of:

• Actions — pieces of work that do something, like copy files or compile source

• Inputs — values, files and directories that the actions use or operate on

• Outputs — files and directories that the actions modify or generate

In fact, all of the above are optional depending on what the task needs to do. Some tasks — such as
the standard lifecycle tasks — don’t even have any actions. They simply aggregate multiple tasks
together as a convenience.

NOTE

You choose which task to run. Save time by specifying the task that does what you
need, but no more than that. If you just want to run the unit tests, choose the task
that does that — typically test. If you want to package an application, most builds
have an assemble task for that.

One last thing: Gradle’s incremental build support is robust and reliable, so keep your builds
running fast by avoiding the clean task unless you actually do want to perform a clean.

3. Gradle has several fixed build phases

It’s important to understand that Gradle evaluates and executes build scripts in three phases:

1. Initialization

Sets up the environment for the build and determine which projects will take part in it.

2. Configuration

Constructs and configures the task graph for the build and then determines which tasks need to
run and in which order, based on the task the user wants to run.

3. Execution

Runs the tasks selected at the end of the configuration phase.

These phases form Gradle’s Build Lifecycle.

NOTE

Comparison to Apache Maven terminology

Gradle’s build phases are not like Maven’s phases. Maven uses its phases to divide
the build execution into multiple stages. They serve a similar role to Gradle’s task
graph, although less flexibly.

Maven’s concept of a build lifecycle is loosely similar to Gradle’s lifecycle tasks.

Well-designed build scripts consist mostly of declarative configuration rather than imperative logic.

That configuration is understandably evaluated during the configuration phase. Even so, many
such builds also have task actions — for example via doLast {} and doFirst {} blocks — which are
evaluated during the execution phase. This is important because code evaluated during the
configuration phase won’t see changes that happen during the execution phase.

Another important aspect of the configuration phase is that everything involved in it is evaluated
every time the build runs. That is why it’s best practice to avoid expensive work during the
configuration phase. Build scans can help you identify such hotspots, among other things.

4. Gradle is extensible in more ways than one

It would be great if you could build your project using only the build logic bundled with Gradle, but
that’s rarely possible. Most builds have some special requirements that mean you need to add
custom build logic.

Gradle provides several mechanisms that allow you to extend it, such as:

• Custom task types.

When you want the build to do some work that an existing task can’t do, you can simply write
your own task type. It’s typically best to put the source file for a custom task type in the buildSrc
directory or in a packaged plugin. Then you can use the custom task type just like any of the
Gradle-provided ones.

• Custom task actions.

You can attach custom build logic that executes before or after a task via the Task.doFirst() and
Task.doLast() methods.

• Extra properties on projects and tasks.

These allows you to add your own properties to a project or task that you can then use from
your own custom actions or any other build logic. Extra properties can even be applied to tasks
that aren’t explicitly created by you, such as those created by Gradle’s core plugins.

• Custom conventions.

Conventions are a powerful way to simplify builds so that users can understand and use them
more easily. This can be seen with builds that use standard project structures and naming
conventions, such as Java builds. You can write your own plugins that provide conventions —
they just need to configure default values for the relevant aspects of a build.

• A custom model.

Gradle allows you to introduce new concepts into a build beyond tasks, files and dependency
configurations. You can see this with most language plugins, which add the concept of source
sets to a build. Appropriate modeling of a build process can greatly improve a build’s ease of use
and its efficiency.

https://scans.gradle.com/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
implementing_gradle_plugins.pdf#modeling_dsl_like_apis

5. Build scripts operate against an API

It’s easy to view Gradle’s build scripts as executable code, because that’s what they are. But that’s an
implementation detail: well-designed build scripts describe what steps are needed to build the
software, not how those steps should do the work. That’s a job for custom task types and plugins.

NOTE

There is a common misconception that Gradle’s power and flexibility come from the
fact that its build scripts are code. This couldn’t be further from the truth. It’s the
underlying model and API that provide the power. As we recommend in our best
practices, you should avoid putting much, if any, imperative logic in your build
scripts.

Yet there is one area in which it is useful to view a build script as executable code: in understanding
how the syntax of the build script maps to Gradle’s API. The API documentation — formed of the
Groovy DSL Reference and the Javadocs — lists methods and properties, and refers to closures and
actions. What do these mean within the context of a build script? Check out the Groovy Build Script
Primer to learn the answer to that question so that you can make effective use of the API
documentation.

NOTE
As Gradle runs on the JVM, build scripts can also use the standard Java API. Groovy
build scripts can additionally use the Groovy APIs, while Kotlin build scripts can use
the Kotlin ones.

https://docs.gradle.org/7.3.2/dsl/
https://docs.gradle.org/7.3.2/javadoc/
https://docs.oracle.com/javase/8/docs/api

Getting Started

Getting Started
Everyone has to start somewhere and if you’re new to Gradle, this is where to begin.

Before you start

In order to use Gradle effectively, you need to know what it is and understand some of its
fundamental concepts. So before you start using Gradle in earnest, we highly recommend you read
What is Gradle?.

Even if you’re experienced with using Gradle, we suggest you read the section 5 things you need to
know about Gradle as it clears up some common misconceptions.

Installation

If all you want to do is run an existing Gradle build, then you don’t need to install Gradle if the
build has a Gradle Wrapper, identifiable via the gradlew and/or gradlew.bat files in the root of the
build. You just need to make sure your system satisfies Gradle’s prerequisites.

Android Studio comes with a working installation of Gradle, so you don’t need to install Gradle
separately in that case.

In order to create a new build or add a Wrapper to an existing build, you will need to install Gradle
according to these instructions. Note that there may be other ways to install Gradle in addition to
those described on that page, since it’s nearly impossible to keep track of all the package managers
out there.

Try Gradle

Actively using Gradle is a great way to learn about it, so once you’ve installed Gradle, try one of the
introductory hands-on tutorials:

• Building Android apps

• Building Java applications

• Building Java libraries

• Building Groovy applications

• Building Groovy libraries

• Building Scala applications

• Building Scala libraries

• Building Kotlin JVM applications

• Building Kotlin JVM libraries

• Building C++ applications

../samples/sample_building_android_apps.html
../samples/sample_building_java_applications.html
../samples/sample_building_java_libraries.html
../samples/sample_building_groovy_applications.html
../samples/sample_building_groovy_libraries.html
../samples/sample_building_scala_applications.html
../samples/sample_building_scala_libraries.html
../samples/sample_building_kotlin_applications.html
../samples/sample_building_kotlin_libraries.html
../samples/sample_building_cpp_applications.html

• Building C++ libraries

• Building Swift applications

• Building Swift libraries

• Creating build scans

There are more samples available on the samples pages.

Command line vs IDEs

Some folks are hard-core command-line users, while others prefer to never leave the comfort of
their IDE. Many people happily use both and Gradle endeavors not to discriminate. Gradle is
supported by several major IDEs and everything that can be done from the command line is
available to IDEs via the Tooling API.

Android Studio and IntelliJ IDEA users should consider using Kotlin DSL build scripts for the
superior IDE support when editing them.

Executing Gradle builds

If you follow any of the tutorials linked above, you will execute a Gradle build. But what do you do
if you’re given a Gradle build without any instructions?

Here are some useful steps to follow:

1. Determine whether the project has a Gradle wrapper and use it if it’s there — the main IDEs
default to using the wrapper when it’s available.

2. Discover the project structure.

Either import the build with an IDE or run gradle projects from the command line. If only the
root project is listed, it’s a single-project build. Otherwise it’s a multi-project build.

3. Find out what tasks you can run.

If you have imported the build into an IDE, you should have access to a view that displays all the
available tasks. From the command line, run gradle tasks.

4. Learn more about the tasks via gradle help --task <taskname>.

The help task can display extra information about a task, including which projects contain that
task and what options the task supports.

5. Run the task that you are interested in.

Many convention-based builds integrate with Gradle’s lifecycle tasks, so use those when you
don’t have something more specific you want to do with the build. For example, most builds
have clean, check, assemble and build tasks.

From the command line, just run gradle <taskname> to execute a particular task. You can learn
more about command-line execution in the corresponding user manual chapter. If you’re using

../samples/sample_building_cpp_libraries.html
../samples/sample_building_swift_applications.html
../samples/sample_building_swift_libraries.html
https://scans.gradle.com/
../samples/index.html

an IDE, check its documentation to find out how to run a task.

Gradle builds often follow standard conventions on project structure and tasks, so if you’re familiar
with other builds of the same type — such as Java, Android or native builds — then the file and
directory structure of the build should be familiar, as well as many of the tasks and project
properties.

For more specialized builds or those with significant customizations, you should ideally have access
to documentation on how to run the build and what build properties you can configure.

Authoring Gradle builds

Learning to create and maintain Gradle builds is a process, and one that takes a little time. We
recommend that you start with the appropriate core plugins and their conventions for your project,
and then gradually incorporate customizations as you learn more about the tool.

Here are some useful first steps on your journey to mastering Gradle:

1. Try one or two basic tutorials to see what a Gradle build looks like, particularly the ones that
match the type of project you work with (Java, native, Android, etc.).

2. Make sure you’ve read 5 things you need to know about Gradle!

3. Learn about the fundamental elements of a Gradle build: projects, tasks, and the file API.

4. If you are building software for the JVM, be sure to read about the specifics of those types of
projects in Building Java & JVM projects and Testing in Java & JVM projects.

5. Familiarize yourself with the core plugins that come packaged with Gradle, as they provide a lot
of useful functionality out of the box.

6. Learn how to author maintainable build scripts and best organize your Gradle projects.

The user manual contains a lot of other useful information and you can find samples
demonstrating various Gradle features on the samples pages.

Integrating 3rd-party tools with Gradle

Gradle’s flexibility means that it readily works with other tools, such as those listed on our Gradle &
Third-party Tools page.

There are two main modes of integration:

• A tool drives Gradle — uses it to extract information about a build and run it — via the Tooling
API

• Gradle invokes or generates information for a tool via the 3rd-party tool’s APIs — this is usually
done via plugins and custom task types

Tools that have existing Java-based APIs are generally straightforward to integrate. You can find
many such integrations on Gradle’s plugin portal.

../samples/index.html
https://plugins.gradle.org/

Installing Gradle
You can install the Gradle build tool on Linux, macOS, or Windows. This document covers installing
using a package manager like SDKMAN! or Homebrew, as well as manual installation.

Use of the Gradle Wrapper is the recommended way to upgrade Gradle.

You can find all releases and their checksums on the releases page.

Prerequisites

Gradle runs on all major operating systems and requires only a Java Development Kit version 8 or
higher to run. To check, run java -version. You should see something like this:

❯ java -version
java version "1.8.0_151"
Java(TM) SE Runtime Environment (build 1.8.0_151-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.151-b12, mixed mode)

Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any
existing Groovy installation is ignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA_HOME
environment variable to point to the installation directory of the desired JDK.

See the full compatibility notes for Java, Groovy, Kotlin and Android.

Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on most
Unix-like systems (macOS, Linux, Cygwin, Solaris and FreeBSD). We deploy and maintain the
versions available from SDKMAN!.

❯ sdk install gradle

Homebrew is "the missing package manager for macOS".

❯ brew install gradle

Other package managers are available, but the version of Gradle distributed by them is not
controlled by Gradle, Inc. Linux package managers may distribute a modified version of Gradle that
is incompatible or incomplete when compared to the official version (available from SDKMAN! or
below).

↓ Proceed to next steps

https://gradle.org/releases
https://jdk.java.net/
http://sdkman.io
http://brew.sh

Installing manually

Step 1. Download the latest Gradle distribution

The distribution ZIP file comes in two flavors:

• Binary-only (bin)

• Complete (all) with docs and sources

Need to work with an older version? See the releases page.

Step 2. Unpack the distribution

Linux & MacOS users

Unzip the distribution zip file in the directory of your choosing, e.g.:

❯ mkdir /opt/gradle
❯ unzip -d /opt/gradle gradle-7.3.2-bin.zip
❯ ls /opt/gradle/gradle-7.3.2
LICENSE NOTICE bin README init.d lib media

Microsoft Windows users

Create a new directory C:\Gradle with File Explorer.

Open a second File Explorer window and go to the directory where the Gradle distribution was
downloaded. Double-click the ZIP archive to expose the content. Drag the content folder gradle-
7.3.2 to your newly created C:\Gradle folder.

Alternatively, you can unpack the Gradle distribution ZIP into C:\Gradle using an archiver tool of
your choice.

Step 3. Configure your system environment

To run Gradle, the path to the unpacked files from the Gradle website need to be on your terminal’s
path. The steps to do this are different for each operating system.

Linux & MacOS users

Configure your PATH environment variable to include the bin directory of the unzipped distribution,
e.g.:

❯ export PATH=$PATH:/opt/gradle/gradle-7.3.2/bin

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your PATH, you can add
$GRADLE_HOME/bin to your PATH. When upgrading to a different version of Gradle, just change the
GRADLE_HOME environment variable.

https://gradle.org/releases
https://gradle.org/releases

Microsoft Windows users

In File Explorer right-click on the This PC (or Computer) icon, then click Properties → Advanced
System Settings → Environmental Variables.

Under System Variables select Path, then click Edit. Add an entry for C:\Gradle\gradle-7.3.2\bin.
Click OK to save.

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your Path, you can add
%GRADLE_HOME%/bin to your Path. When upgrading to a different version of Gradle, just change the
GRADLE_HOME environment variable.

↓ Proceed to next steps

Verifying installation

Open a console (or a Windows command prompt) and run gradle -v to run gradle and display the
version, e.g.:

❯ gradle -v

--
Gradle 7.3.2
--

(environment specific information)

If you run into any trouble, see the section on troubleshooting installation.

You can verify the integrity of the Gradle distribution by downloading the SHA-256 file (available
from the releases page) and following these verification instructions.

Next steps

Now that you have Gradle installed, use these resources for getting started:

• Create your first Gradle project by following one of our step-by-step samples.

• Sign up for a live introductory Gradle training with a core engineer.

• Learn how to achieve common tasks through the command-line interface.

• Configure Gradle execution, such as use of an HTTP proxy for downloading dependencies.

• Subscribe to the Gradle Newsletter for monthly release and community updates.

Troubleshooting builds
The following is a collection of common issues and suggestions for addressing them. You can get
other tips and search the Gradle forums and StackOverflow #gradle answers, as well as Gradle

https://gradle.org/releases
../samples/index.html
https://gradle.org/training/intro-to-gradle/
https://newsletter.gradle.com/
https://discuss.gradle.org/c/help-discuss
https://stackoverflow.com/questions/tagged/gradle

documentation from help.gradle.org.

Troubleshooting Gradle installation

If you followed the installation instructions, and aren’t able to execute your Gradle build, here are
some tips that may help.

If you installed Gradle outside of just invoking the Gradle Wrapper, you can check your Gradle
installation by running gradle --version in a terminal.

You should see something like this:

❯ gradle --version

--
Gradle 6.5
--

Build time: 2020-06-02 20:46:21 UTC
Revision: a27f41e4ae5e8a41ab9b19f8dd6d86d7b384dad4

Kotlin: 1.3.72
Groovy: 2.5.11
Ant: Apache Ant(TM) version 1.10.7 compiled on September 1 2019
JVM: 14 (AdoptOpenJDK 14+36)
OS: Mac OS X 10.15.2 x86_64

If not, here are some things you might see instead.

Command not found: gradle

If you get "command not found: gradle", you need to ensure that Gradle is properly added to your
PATH.

JAVA_HOME is set to an invalid directory

If you get something like:

ERROR: JAVA_HOME is set to an invalid directory

Please set the JAVA_HOME variable in your environment to match the location of your
Java installation.

You’ll need to ensure that a Java Development Kit version 8 or higher is properly installed, the
JAVA_HOME environment variable is set, and Java is added to your PATH.

https://help.gradle.org/
https://jdk.java.net/
https://www.java.com/en/download/help/index_installing.xml
https://www.java.com/en/download/help/path.xml
https://www.java.com/en/download/help/path.xml

Permission denied

If you get "permission denied", that means that Gradle likely exists in the correct place, but it is not
executable. You can fix this using chmod +x path/to/executable on *nix-based systems.

Other installation failures

If gradle --version works, but all of your builds fail with the same error, it is possible there is a
problem with one of your Gradle build configuration scripts.

You can verify the problem is with Gradle scripts by running gradle help which executes
configuration scripts, but no Gradle tasks. If the error persists, build configuration is problematic. If
not, then the problem exists within the execution of one or more of the requested tasks (Gradle
executes configuration scripts first, and then executes build steps).

Debugging dependency resolution

Common dependency resolution issues such as resolving version conflicts are covered in
Troubleshooting Dependency Resolution.

You can see a dependency tree and see which resolved dependency versions differed from what
was requested by clicking the Dependencies view and using the search functionality, specifying the
resolution reason.

Figure 2. Debugging dependency conflicts with build scans

The actual build scan with filtering criteria is available for exploration.

Troubleshooting slow Gradle builds

For build performance issues (including “slow sync time”), see improving the Performance of
Gradle Builds.

https://scans.gradle.com/s/sample/troubleshooting-userguide/dependencies?expandAll&filters=WzFd&toggled=W1swXSxbMF0sWzAsMF0sWzAsMV1d
performance.pdf#performance_gradle
performance.pdf#performance_gradle

Android developers should watch a presentation by the Android SDK Tools team about Speeding Up
Your Android Gradle Builds. Many tips are also covered in the Android Studio user guide on
optimizing build speed.

Debugging build logic

Attaching a debugger to your build

You can set breakpoints and debug buildSrc and standalone plugins in your Gradle build itself by
setting the org.gradle.debug property to “true” and then attaching a remote debugger to port 5005.

❯ gradle help -Dorg.gradle.debug=true

In addition, if you’ve adopted the Kotlin DSL, you can also debug build scripts themselves.

The following video demonstrates how to debug an example build using IntelliJ IDEA.

[remote debug gradle] | remote-debug-gradle.gif

Figure 3. Interactive debugging of a build script

Adding and changing logging

In addition to controlling logging verbosity, you can also control display of task outcomes (e.g. “UP-
TO-DATE”) in lifecycle logging using the --console=verbose flag.

You can also replace much of Gradle’s logging with your own by registering various event listeners.
One example of a custom event logger is explained in the logging documentation. You can also
control logging from external tools, making them more verbose in order to debug their execution.

NOTE
Additional logs from the Gradle Daemon can be found under
GRADLE_USER_HOME/daemon/<gradle-version>/.

Task executed when it should have been UP-TO-DATE

--info logs explain why a task was executed, though build scans do this in a searchable, visual way
by going to the Timeline view and clicking on the task you want to inspect.

https://youtu.be/7ll-rkLCtyk
https://youtu.be/7ll-rkLCtyk
https://developer.android.com/studio/build/optimize-your-build.html
https://developer.android.com/studio/build/optimize-your-build.html

Figure 4. Debugging incremental build with a build scan

You can learn what the task outcomes mean from this listing.

Debugging IDE integration

Many infrequent errors within IDEs can be solved by "refreshing" Gradle. See also more
documentation on working with Gradle in IntelliJ IDEA and in Eclipse.

Refreshing IntelliJ IDEA

NOTE: This only works for Gradle projects linked to IntelliJ.

From the main menu, go to View > Tool Windows > Gradle. Then click on the Refresh icon.

https://www.jetbrains.com/help/idea/gradle.html
http://www.vogella.com/tutorials/EclipseGradle/article.html
https://www.jetbrains.com/help/idea/gradle.html#link_gradle_project

Figure 5. Refreshing a Gradle project in IntelliJ IDEA

Refreshing Eclipse (using Buildship)

If you’re using Buildship for the Eclipse IDE, you can re-synchronize your Gradle build by opening
the "Gradle Tasks" view and clicking the "Refresh" icon, or by executing the Gradle > Refresh Gradle
Project command from the context menu while editing a Gradle script.

Figure 6. Refreshing a Gradle project in Eclipse Buildship

Troubleshooting daemon connection issues

If your Gradle build fails before running any tasks, you may be encountering problems with your
network configuration. When Gradle is unable to communicate with the Gradle daemon process,
the build will immediately fail with a message similar to this:

https://projects.eclipse.org/projects/tools.buildship

$ gradle help

Starting a Gradle Daemon, 1 stopped Daemon could not be reused, use --status for
details

FAILURE: Build failed with an exception.

* What went wrong:
A new daemon was started but could not be connected to: pid=DaemonInfo{pid=55913,
address=[7fb34c82-1907-4c32-afda-888c9b6e2279 port:42751, addresses:[/127.0.0.1]],
state=Busy, ...

We have observed this can occur when network address translation (NAT) masquerade is used.
When NAT masquerade is enabled, connections that should be considered local to the machine are
masked to appear from external IP addresses. Gradle refuses to connect to any external IP address
as a security precaution.

The solution to this problem is to adjust your network configuration such that local connections are
not modified to appear as from external addresses.

You can monitor the detected network setup and the connection requests in the daemon log file
(<GRADLE_USER_HOME>/daemon/<Gradle version>/daemon-<PID>.out.log).

2021-08-12T12:01:50.755+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding IP addresses for
network interface enp0s3
2021-08-12T12:01:50.759+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Is this a loopback interface?
false
2021-08-12T12:01:50.769+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding remote address
/fe80:0:0:0:85ba:3f3e:1b88:c0e1%enp0s3
2021-08-12T12:01:50.770+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding remote address
/10.0.2.15
2021-08-12T12:01:50.770+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding IP addresses for
network interface lo
2021-08-12T12:01:50.771+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Is this a loopback interface?
true
2021-08-12T12:01:50.771+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding loopback address
/0:0:0:0:0:0:0:1%lo
2021-08-12T12:01:50.771+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding loopback address
/127.0.0.1
2021-08-12T12:01:50.775+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.TcpIncomingConnector] Listening on
[7fb34c82-1907-4c32-afda-888c9b6e2279 port:42751, addresses:[localhost/127.0.0.1]].
...
2021-08-12T12:01:50.797+0200 [INFO]
[org.gradle.launcher.daemon.server.DaemonRegistryUpdater] Advertising the daemon
address to the clients: [7fb34c82-1907-4c32-afda-888c9b6e2279 port:42751,
addresses:[localhost/127.0.0.1]]
...
2021-08-12T12:01:50.923+0200 [ERROR]
[org.gradle.internal.remote.internal.inet.TcpIncomingConnector] Cannot accept
connection from remote address /10.0.2.15.

Getting additional help

If you didn’t find a fix for your issue here, please reach out to the Gradle community on the help
forum or search relevant developer resources using help.gradle.org.

If you believe you’ve found a bug in Gradle, please file an issue on GitHub.

Compatibility Matrix
The sections below describe Gradle’s compatibility with several integrations. Other versions not
listed here may or may not work.

https://discuss.gradle.org/c/help-discuss
https://discuss.gradle.org/c/help-discuss
https://help.gradle.org/
https://github.com/gradle/gradle/issues

Java

A Java version between 8 and 17 is required to execute Gradle. Java 18 and later versions are not
yet supported.

Java 6 and 7 can still be used for compilation and forked test execution.

Any supported version of Java can be used for compile or test.

For older Gradle versions, please see the table below which Java version is supported by which
Gradle release.

Table 1. Java Compatibility

Java version First Gradle version to support it

8 2.0

9 4.3

10 4.7

11 5.0

12 5.4

13 6.0

14 6.3

15 6.7

16 7.0

17 7.3

Kotlin

Gradle is tested with Kotlin 1.3.72 through 1.5.31.

Gradle plugins written in Kotlin target Kotlin 1.4 for compatibility with Gradle and Kotlin DSL build
scripts, even though the embedded Kotlin runtime is Kotlin 1.5.

Groovy

Gradle is tested with Groovy 1.5.8 through 3.0.9.

Gradle plugins written in Groovy must use Groovy 3.x for compatibility with Gradle and Groovy
DSL build scripts.

Android

Gradle is tested with Android Gradle Plugin 4.1, 4.2, 7.0 and 7.1. Alpha and beta versions may or
may not work.

Upgrading and Migrating

Upgrading your build from Gradle 6.x to the latest
This chapter provides the information you need to migrate your Gradle 6.x builds to the latest
Gradle release. For migrating from Gradle 4.x or 5.x, see the older migration guide first.

We recommend the following steps for all users:

1. Try running gradle help --scan and view the deprecations view of the generated build scan.

This is so that you can see any deprecation warnings that apply to your build.

Alternatively, you could run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

2. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of
the API.

3. Run gradle wrapper --gradle-version 7.0 to update the project to 7.0.

4. Try to run the project and debug any errors using the Troubleshooting Guide.

Upgrading from 6.8

Changes in the IDE integration

https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

Changes in the IDEA model

The getGeneratedSourceDirectories() and getGeneratedTestDirectories() methods are removed
from the IdeaContentRoot interface. Clients should replace these invocations with
getSourceDirectories() and getTestDirectories() and use the isGenerated() method on the
returned instances.

Dependency locking now defaults to a single file per project

The format of the dependency lockfile has been changed and as a consequence there is only one file
per project instead of one file per configuration per project. This change only affects writing lock
files. Gradle remains capable of loading lock state saved in the older format.

Head over to the documentation to learn how to migrate to the new format. The migration can be
performed per configuration and does not have to be done in a single step. Gradle will
automatically clean up previous lock files when migrating them over to the new file format.

Gradle Module Metadata is now reproducible by default

The buildId field will not be populated by default to ensure that the produced metadata file
remains unchanged when no build inputs are changed. Users can still opt in to have this unique
identifier part of the produced metadata if they want to, see the documentation.

The jcenter() convenience method is now deprecated

JFrog announced the sunset of the JCenter repository in February 2021. Many Gradle builds rely on
JCenter for project dependencies.

No new packages or versions are published to JCenter, but JFrog says they will keep JCenter
running in a read-only state indefinitely. We recommend that you consider using mavenCentral(),
google() or a private maven repository instead.

Gradle emits a deprecation warning when jcenter() is used as a repository and this method is
scheduled to be removed in Gradle 8.0.

Potential breaking changes

Updates to bundled Gradle dependencies

• Kotlin has been updated to Kotlin 1.4.31.

• Groovy has been updated to Groovy 3.0.7.

Changes to Groovy and Groovy DSL

Due to the update to the next major version of Groovy, you may experience minor issues when
upgrading to Gradle 7.0.

The new version of Groovy has a stricter parser that fails to compile code that may have been
accepted in previous Groovy versions. If you encounter syntax errors, check the Groovy issue
tracker and Groovy 3 release highlights.

https://jfrog.com/blog/into-the-sunset-bintray-jcenter-gocenter-and-chartcenter
https://blog.gradle.org/jcenter-shutdown
https://kotlinlang.org/docs/reference/whatsnew1430.html
https://groovy-lang.org/releasenotes/groovy-3.0.html
https://groovy.apache.org/#reporting-issues
https://groovy.apache.org/#reporting-issues
https://blogs.apache.org/groovy/entry/groovy-3-highlights

Some very specific regressions have already been fixed in the next minor version of Groovy.

Groovy modularization

Gradle no longer embeds a copy of groovy-all that bundles all Groovy modules into a single jar—
only the most important modules are distributed in the Gradle distribution.

The localGroovy() dependency will include these Groovy modules:

• groovy

• groovy-ant

• groovy-astbuilder

• groovy-console

• groovy-datetime

• groovy-dateutil

• groovy-groovydoc

• groovy-json

• groovy-nio

• groovy-sql

• groovy-templates

• groovy-test

• groovy-xml

But the following Groovy modules are not included:

• groovy-cli-picocli

• groovy-docgenerator

• groovy-groovysh

• groovy-jmx

• groovy-jsr223

• groovy-macro

• groovy-servlet

• groovy-swing

• groovy-test-junit5

• groovy-testng

You can pull these dependencies into your build like any other external dependency.

Building Gradle plugins with Groovy 3

Plugins built with Gradle 7.0 will now have Groovy 3 on their classpath when using gradleApi() or
localGroovy().

https://issues.apache.org/jira/browse/GROOVY-9936

NOTE
If you use Spock to test your plugins, you will need to use Spock 2.x. There are no
compatible versions of Spock 1.x and Groovy 3.

dependencies {
 // Ensure you use the Groovy 3.x variant
 testImplementation('org.spockframework:spock-core:2.0-groovy-3.0') {
 exclude group: 'org.codehaus.groovy'
 }
}

// Spock 2 is based on JUnit Platform which needs to be enabled explicitly.
tasks.withType(Test).configureEach {
 useJUnitPlatform()
}

Performance

Depending on the number of subprojects and Groovy DSL build scripts, you may notice a
performance regression when compiling build scripts for the first time or when changes are made
to the build script’s classpath. This is due to the slower performance of the Groovy 3 parser, but the
Groovy team is aware of the issue and trying to mitigate the regression.

In general, we are also looking at how we can improve the performance of build script compilation
for both Groovy DSL and Kotlin DSL.

Encountering 'Could not find method X for arguments Y on DefaultDependencyHandler'

While the following error initially looks like a compile error, it is actually due to the fact that
specific `Configuration`s have been removed. Please refer to Removal of compile and runtime
configurations for more details.

Could not find method testCompile() for arguments
[DefaultExternalModuleDependency{group='org.junit', name='junit-bom', version='5.7.0',
configuration='default'}] on object of type
org.gradle.api.internal.artifacts.dsl.dependencies.DefaultDependencyHandler.

Updates to default tool integration versions

• PMD has been updated to PMD 6.31.0.

• Groovy and GroovyDoc have been updated to Groovy 3.0.7.

Removal of compile and runtime configurations

Since its inception, Gradle provided the compile and runtime configurations to declare
dependencies. These however did not support a fine grained scoping of dependencies. Hence, better
replacements were introduced in Gradle 3.4:

https://spockframework.org/
https://github.com/pmd/pmd/releases/tag/pmd_releases%2F6.31.0
https://groovy-lang.org/releasenotes/groovy-3.0.html

• The implementation configuration should be used to declare dependencies which are
implementation details of a library: they are not visible to consumers of the library during
compilation time.

• The api configuration, available only if you apply the java-library plugin, should be used to
declare dependencies which are part of the API of a library, that need to be exposed to
consumers at compilation time.

In Gradle 7, both the compile and runtime configurations are removed. Therefore, you have to
migrate to the implementation and api configurations above. If you are still using the java plugin for
a Java library, you will need to apply the java-library plugin instead.

Table 2. Common configuration upgrades

Removed Configuration New Configuration

compile api or implementation

runtime runtimeOnly

testRuntime testRuntimeOnly

testCompile testImplementation

<sourceSet>Runtime <sourceSet>RuntimeOnly

<sourceSet>Compile <sourceSet>Implementation

You can find more details about the benefits of the new configurations and which one to use in
place of compile and runtime by reading the Java Library plugin documentation.

WARNING

When using the Groovy DSL, you need to watch out for a particular upgrade
problem when dealing with the removed configurations.

If you were creating custom configurations that extend one of the removed
configurations, Gradle may silently create configurations that do not exist.

This looks something like:

configurations {
 // This silently creates a configuration called "runtime"
 myConf extendsFrom runtime
}

The result of dependency resolution for your custom configuration may not be
the same as Gradle 6.x or before. You may notice missing dependencies or
artifacts.

Location of temporary project files for ProjectBuilder

The ProjectBuilder API is used for inspecting Gradle builds in unit tests. This API used to create
temporary project files under the system temporary directory as defined by java.io.tmpdir.

The API now creates temporary project files under the Test task’s temporary directory. This path is

usually under the project build directory. This may cause test failures when the test expects
particular file paths.

If the test uses ProjectBuilder.withProjectDir(…), it is unaffected.

Location of temporary files for TestKit tests

Tests that use the TestKit API used to create temporary files under the system temporary directory
as defined by java.io.tmpdir. These files were used to store copies of Gradle distributions or
another test-only Gradle User Home.

TestKit tests will now create temporary files under the Test task’s temporary directory. This path is
usually under the project build directory. This may cause test failures when the test expects
particular file paths.

If the test uses GradleRunner.withTestKitDir(…), it is unaffected.

File system watching with TestKit on Windows

The file system watching implementation on Windows adds a lock to the root project directory in
order to watch for changes. This may cause errors when you try to delete the root project directory
after running a build with TestKit. For example, tests that use TestKit together with JUnit’s @TempDir
extension, or the TemporaryFolder rule can run into this problem. To avoid problems with these file
locks, TestKit disables file system watching for builds executed on Windows via GradleRunner. If
you’d like to override the default behavior, you can enable file system watching by passing --watch
-fs to GradleRunner.withArguments().

Removal of the legacy maven plugin

The maven plugin has been removed. You should use the maven-publish plugin instead.

Please refer to the documentation of the Maven Publish plugin for more details.

Removal of the uploadArchives task

The uploadArchives task was used in combination with the legacy Ivy or Maven publishing
mechanisms. It has been removed in Gradle 7. You should migrate to the maven-publish or ivy-
publish plugin instead.

Please refer to the documentation of the Maven Publish plugin for publishing on Maven
repositories. Please refer to the documentation of the Ivy Publish plugin for publishing on Ivy
repositories.

Changes in dependency version sorting

In the context of dependency version sorting, a -SNAPSHOT version is now considered to be right
before a final release but after any -RC version. More special version suffixes are also taken into
account. This brings the Gradle algorithm closer to the Maven one for well-known version suffixes.

Have a look at the documentation for all the rules Gradle applies.

Removal of Play Framework plugins

The deprecated Play plugins have been removed. An external replacement, the Play Framework
plugin, is available from the plugin portal.

Removal of deprecated JVM plugins

These unmaintained alternative JVM plugins have been removed: java-lang, scala-lang, junit-
test-suite, jvm-component, jvm-resources.

Please use the stable Java Library and Scala plugins instead.

Removal of experimental JavaScript plugins

The following plugins for experimental JavaScript integration are now removed from the
distribution: coffeescript-base, envjs, javascript-base, jshint, rhino.

If you used these plugins despite their experimental nature, you may find suitable replacements in
the Plugin Portal.

Configuring the layout of an Ivy repository

The layout method taking a configuration block has been removed and is replaced by
patternLayout.

Executing a Gradle build without a settings file is now an error

A Gradle build is defined by its settings.gradle(.kts) file found in the current or parent directory.
Without a settings file, a Gradle build is undefined and Gradle produces an error when attempting
to execute tasks.

To fix this error, create a settings.gradle(.kts) file for the build.

Exceptions to this are invoking Gradle with the init task or using diagnostic command line flags,
such as --version.

Calling Project.afterEvaluate() after project evaluation is now an error

Gradle 6.x warns users about the wrong behavior and ignores the target action in this scenario.
Starting from 7.0 the same case will produce an error. Plugins and build scripts should be adjusted
to call afterEvaluate only at configuration time. If you have such a build failure and the related
afterEvaluate statement is declared in your build sources then you can simply delete it. If
afterEvaluate is declared in a plugin then report the issue to the plugin maintainers.

Modifying file collections after values finalized is now an error

Calling any mutator methods (i.e. clear(), add(), remove(), etc.) on ConfigurableFileCollection after
the stored value calculated throws an exception. Users and plugin authors should adjust their code
such that all configuration on ConfigurableFileCollection happens during configuration time,
before the values are read.

https://gradle.github.io/playframework
https://gradle.github.io/playframework
https://plugins.gradle.org/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:patternLayout(org.gradle.api.Action)

Removal of ProjectLayout#configurableFiles

Please use ObjectFactory#fileCollection() instead.

Removal of BasePluginConvention.libsDir and BasePluginConvention.distsDir

Please use the the libsDirectory and distsDirectory properties instead.

Removal of UnableToDeleteFileException

Existing usages should be replaced with RuntimeException.

Properties removed in Checkstyle and PMD plugins

• The configDir getters and setters have been removed from the Checkstle task and extension. Use
the configDirectory property instead.

• The rulePriority getter and setter have been removed from the Pmd task and extension. Use the
rulesMinimumPriority property instead.

Removal of baseName property in distribution plugin

The getBaseName() and setBaseName() methods were removed from the Distribution class. Clients
should replace the usages with the distributionBaseName property.

Using AbstractTask

Registering a task with the AbstractTask type or with a type extending AbstractTask was deprecated
in Gradle 6.5 and is now an error in Gradle 7.0. You can use DefaultTask instead.

Removal of BuildListener.buildStarted(Gradle)

BuildListener.buildStarted(Gradle) was deprecated in Gradle 6.0 and is now removed in Gradle
7.0. Please use BuildListener.beforeSettings(Settings) instead.

Removal of unused StartParameter APIs

The following APIs, which were not usable via command line options anymore since Gradle 5.0, are
now removed: StartParameter.useEmptySettings(), StartParameter.isUseEmptySettings(),
StartParameter.setSearchUpwards(boolean) and StartParameter.isSearchUpwards().

Removal of searching for settings files in 'master' directories

Gradle no longer supports discovering the settings file in a directory named master in a sibling
directory. If your build still uses this deprecated feature, consider refactoring the build to have the
root directory match the physical root of the project hierarchy. You can find more information
about how to structure a Gradle build or a composition of builds in the user manual. Alternatively,
you can still run tasks in builds like this by invoking the build from the master directory only using
a fully qualified path to the task.

modularity.inferModulePath defaults to 'true'

Compiling, testing and executing now works automatically for any source set that defines a module

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/DefaultTask.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/BuildListener.html#beforeSettings-org.gradle.api.initialization.Settings-
structuring_software_products.pdf#structure_large_projects

by containing a module-info.java file. Usually, this is the behavior you need. If this is causing issues
in cases you manually configure the module path, or use a 3rd party plugin for it, you can still opt
out of this by setting modularity.inferModulePath to false on the java extension or individual tasks.

Removal of ValidateTaskProperties

The ValidateTaskProperties task has been removed and replaced by the ValidatePlugins task.

Removal of ImmutableFileCollection

The ImmutableFileCollection type has been removed. Use the factory method instead. A handle to
the project layout can be obtained via Project.layout.

Removal of ComponentSelectionReason.getDescription

The method ComponentSelectionReason.getDescription has been removed. It is replaced by
ComponentSelectionReason.getDescriptions which returns a list of ComponentSelectionDescriptor,
each having a getDescription.

Removal of domain object collection constructors

The following deprecated constructors were removed:

• DefaultNamedDomainObjectList(Class, Instantiator, Namer)

• DefaultNamedDomainObjectSet(Class, Instantiator)

• DefaultPolymorphicDomainObjectContainer(Class, Instantiator)

• FactoryNamedDomainObjectContainer(Class, Instantiator, NamedDomainObjectFactory)

Removal of arbitrary local cache configuration

The local build cache configuration now needs to be done via BuildCacheConfiguration.local().

Removal of DefaultVersionSelectorScheme constructor

This internal API was used in plugins, amongst other the Nebula plugins, and was deprecated in the
Gradle 5.x timeline and is now removed. Latest plugins version should no longer reference it.

Setting the config_loc config property on the checkstyle plugin is now an error

The checkstyle plugin now fails for the following configuration

checkstyle {
 configProperties['config_loc'] = file("path/to/checkstyle-config-dir")
}

Builds should declare the checkstyle configuration with the checkstyle block:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object…​-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Project.html#getLayout--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#local-org.gradle.api.Action-
https://github.com/nebula-plugins

checkstyle {
 configDirectory = file("path/to/checkstyle-config-dir")
}

Querying the mapped value of a provider before the producer has completed is now an error

Gradle 6.x warns users about the wrong behavior and then returns a possibly incorrect provider
value. Starting with 7.0 the same case will produce an error. Plugins and build scripts should be
adjusted to query the mapped value of a provider, for example a task output property, after the task
has completed.

Task validation problems are now errors

Gradle 6.0 started warning about problems with task definitions (such as incorrectly defined inputs
or outputs). For Gradle 7.0, those warnings are now errors and will fail the build.

Change in behavior when there’s a strict version conflict with a local project

Previous Gradle releases had an inconsistent behavior in regard to conflict resolution in a
particular configuration: - your project declares a strict dependency on a published module (for
example, com.mycompany:some-module:1.2!!, where 1.2!! is the short hand notation for a strict
dependency on 1.2) - your build actually provides com.mycompany:some-module in a higher version

Previous Gradle releases would succeed, selecting the project dependency despite the strict
constraint. Starting from Gradle 7, this will trigger a dependency resolution failure.

See this issue for more context.

Deprecations

Missing dependencies between tasks

Having a task which produces an output in a location and another task consuming that location by
referring to it as an input without the consumer task depending on the producer task has been
deprecated. A fix for this problem is to add a dependency from the consumer to the producer.

Duplicates strategy

Gradle 7 now fails when a copy operation (or any operation which uses a
org.gradle.api.file.CopySpec) encounters a duplicate entry, and that the duplicates strategy isn’t
set. Please look at the CopySpec docs for details.

Upgrading from 6.7

Potential breaking changes

Toolchain API is now marked as @NonNull

The API supporting the Java Toolchain feature in org.gradle.jvm.toolchain is now marked as
@NonNull.

https://github.com/gradle/gradle/issues/16706
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#setDuplicatesStrategy-org.gradle.api.file.DuplicatesStrategy-

This may impact Kotlin consumers where the return types of APIs are no longer nullable.

Updates to default tool integration versions

• JaCoCo has been updated to 0.8.6.

• Checkstyle has been updated to Checkstyle 8.37.

• CodeNarc has been updated to CodeNarc 2.0.0.

Updates to bundled Gradle dependencies

• Kotlin has been updated to Kotlin 1.4.20. Note that Gradle scripts are still using the Kotlin 1.3
language.

• Apache Ant has been updated to 1.10.9 to fix CVE-2020-11979

Projects imported into Eclipse now include custom source set classpaths

Previously, projects imported by Eclipse only included dependencies for the main and test source
sets. The compile and runtime classpaths of custom source sets were ignored.

Since Gradle 6.8, projects imported into Eclipse include the compile and runtime classpath for
every source set defined by the build.

SourceTask is no longer sensitive to empty directories

Previously, empty directories would be taken into account during up-to-date checks and build cache
key calculations for the sources declared in SourceTask. This meant that a source tree that contained
an empty directory and an otherwise identical source tree that did not contain the empty directory
would be considered different sources, even if the task would produce the same outputs. In Gradle
6.8, SourceTask now ignores empty directories during doing up-to-date checks and build cache key
calculations. In the vast majority of cases, this is the desired behavior, but it is possible that a task
may extend SourceTask but also produce different outputs when empty directories are present in
the sources. For tasks where this is a concern, you can expose a separate property without the
@IgnoreEmptyDirectories annotation in order to capture those changes:

@InputFiles
@SkipWhenEmpty
@PathSensitive(PathSensitivity.ABSOLUTE)
public FileTree getSourcesWithEmptyDirectories() {
 return super.getSource()
}

Changes to publications

Publishing a component which has a dependency on an enforced platform now triggers a
validation error, preventing accidental publishing of bad metadata: enforced platforms use cases
should be limited to applications, not things which can be consumed from another library or an
application.

If, for some reason, you still want to publish components with dependencies on enforced platforms,

http://www.jacoco.org/jacoco/trunk/doc/changes.html
https://checkstyle.sourceforge.io/releasenotes.html#Release_8.37
https://github.com/CodeNarc/CodeNarc/blob/v2.0.0/CHANGELOG.md
https://blog.jetbrains.com/kotlin/2020/08/kotlin-1-4-released-with-a-focus-on-quality-and-performance/
https://github.com/gradle/gradle/security/advisories/GHSA-j45w-qrgf-25vm

you can disable the validation following the documentation.

Changing default excludes during the execution phase

Gradle’s file trees apply some default exclude patterns for convenience — the same defaults as Ant
in fact. See the user manual for more information. Sometimes, Ant’s default excludes prove
problematic, for example when you want to include the .gitignore in an archive file.

Changing Gradle’s default excludes during the execution phase can lead to correctness problems
with up-to-date checks. As a consequence, you are only allowed to change Gradle’s default excludes
in the settings script, see the user manual for an example.

Deprecations

Referencing tasks from included builds

Direct references to tasks from included builds in mustRunAfter, shouldRunAfter and finalizedBy task
methods have been deprecated. Task ordering using mustRunAfter and shouldRunAfter as well as
finalizers specified by finalizedBy should be used for task ordering within a build. If you happen to
have cross-build task ordering defined using above mentioned methods, consider restructuring
such builds and decoupling them from one another.

Searching for settings files in 'master' directories

Gradle will emit a deprecation warning when your build relies on finding the settings file in a
directory named master in a sibling directory.

If your build uses this feature, consider refactoring the build to have the root directory match the
physical root of the project hierarchy.

Alternatively, you can still run tasks in builds like this by invoking the build from the master
directory only using a fully qualified path to the task.

Using method NamedDomainObjectContainer<T>.invoke(kotlin.Function1)

Gradle Kotlin DSL extensions have been changed to favor Gradle’s Action<T> type over Kotlin
function types.

While the change should be transparent to Kotlin clients, Java clients calling Kotlin DSL extensions
need to be updated to use the Action<T> APIs.

Upgrading from 6.6

Potential breaking changes

buildSrc can now see included builds from the root

Previously, buildSrc was built in such a way that included builds were ignored from the root build.

Since Gradle 6.7, buildSrc can see any included build from the root build. This may cause
dependencies to be substituted from an included build in buildSrc. This may also change the order

in which some builds are executed if an included build is needed by buildSrc.

Updates to default tool integration versions

• PMD has been updated to PMD 6.26.0.

• Checkstyle has been updated to Checkstyle 8.35.

• CodeNarc has been updated to CodeNarc 1.6.1.

Deprecations

Changing default excludes during the execution phase

Gradle’s file trees apply some default exclude patterns for convenience — the same defaults as Ant
in fact. See the user manual for more information. Sometimes, Ant’s default excludes prove
problematic, for example when you want to include the .gitignore in an archive file.

Changing Gradle’s default excludes during the execution phase can lead to correctness problems
with up-to-date checks, and is deprecated. You are only allowed to change Gradle’s default excludes
in the settings script, see the user manual for an example.

Using a Configuration directly as a dependency

Gradle allowed instances of Configuration to be used directly as dependencies:

dependencies {
 implementation(configurations.myConfiguration)
}

This behavior is now deprecated as it is confusing: one could expect the "dependent configuration"
to be resolved first and add the result of resolution as dependencies to the including configuration,
which is not the case. The deprecated version can be replaced with the actual behavior, which is
configuration inheritance:

configurations.implementation.extendsFrom(configurations.myConfiguration)

Upgrading from 6.5

Potential breaking changes

Updates to bundled Gradle dependencies

• Ant has been updated to 1.10.8.

• Groovy has been updated to Groovy 2.5.12.

Dependency substitutions and variant aware dependency resolution

While adding support for expressing variant support in dependency substitutions, a bug fix

https://github.com/pmd/pmd/releases/tag/pmd_releases%2F6.26.0
https://checkstyle.sourceforge.io/releasenotes.html#Release_8.35
https://github.com/CodeNarc/CodeNarc/blob/v1.6.1/CHANGELOG.md
https://downloads.apache.org/ant/RELEASE-NOTES-1.10.8.html
https://groovy-lang.org/changelogs/changelog-2.5.12.html

introduced a behaviour change that some builds may rely upon. Previously a substituted
dependency would still use the attributes of the original selector instead of the ones from the
replacement selector.

With that change, existing substitutions around dependencies with richer selectors, such as for
platform dependencies, will no longer work as they did. It becomes mandatory to define the variant
aware part in the target selector.

You can be affected by this change if you:

• have dependencies on platforms, like implementation platform("org:platform:1.0")

• or if you specify attributes on dependencies,

• and you use resolution rules on these dependencies.

See the documentation for resolving issues if you are impacted.

Deprecations

No deprecations were made in Gradle 6.6.

Upgrading from 6.4

Potential breaking changes

Updates to bundled Gradle dependencies

• Kotlin has been updated to Kotlin 1.3.72.

• Groovy has been updated to Groovy 2.5.11.

Updates to default tool integration versions

• PMD has been updated to PMD 6.23.0.

Deprecations

Internal class AbstractTask is deprecated

AbstractTask is an internal class which is visible on the public API, as a superclass of public type
DefaultTask. AbstractTask will be removed in Gradle 7.0, and the following are deprecated in Gradle
6.5:

• Registering a task whose type is AbstractTask or TaskInternal. You can remove the task type
from the task registration and Gradle will use DefaultTask instead.

• Registering a task whose type is a subclass of AbstractTask but not a subclass of DefaultTask. You
can change the task type to extend DefaultTask instead.

• Using the class AbstractTask from plugin code or build scripts. You can change the code to use
DefaultTask instead.

https://github.com/JetBrains/kotlin/releases/tag/v1.3.72
https://groovy-lang.org/changelogs/changelog-2.5.11.html
https://github.com/pmd/pmd/releases/tag/pmd_releases%2F6.23.0

Upgrading from 6.3

Potential breaking changes

PMD plugin expects PMD 6.0.0 or higher by default

Gradle 6.4 enabled incremental analysis by default. Incremental analysis is only available in PMD
6.0.0 or higher. If you want to use an older PMD version, you need to disable incremental analysis:

pmd {
 incrementalAnalysis = false
}

Changes in dependency locking

With Gradle 6.4, the incubating API for dependency locking LockMode has changed. The value is now
set via a Property<LockMode> instead of a direct setter. This means that the notation to set the value
has to be updated for the Kotlin DSL:

dependencyLocking {
 lockMode.set(LockMode.STRICT)
}

Users of the Groovy DSL should not be impacted as the notation lockMode = LockMode.STRICT
remains valid.

Java versions in published metadata

If a Java library is published with Gradle Module Metadata, the information which Java version it
supports is encoded in the org.gradle.jvm.version attribute. By default, this attribute was set to
what you configured in java.targetCompatibility. If that was not configured, it was set to the
current Java version running Gradle. Changing the version of a particular compile task, e.g.
javaCompile.targetCompatibility had no effect on that attribute, leading to wrong information if the
attribute was not adjusted manually. This is now fixed and the attribute defaults to the setting of
the compile task that is associated with the sources from which the published jar is built.

Ivy repositories with custom layouts

Gradle versions from 6.0 to 6.3.x included could generate bad Gradle Module Metadata when
publishing on an Ivy repository which had a custom repository layout. Starting from 6.4, Gradle will
no longer publish Gradle Module Metadata if it detects that you are using a custom repository
layout.

New properties may shadow variables in build scripts

This release introduces some new properties — mainClass, mainModule, modularity — in different
places. Since these are very generic names, there is a chance that you use one of them in your build
scripts as variable name. A new property might then shadow one of your variables in an undesired

way, leading to a build failure where the property is accessed instead of the local variable with the
same name. You can fix it by renaming the corresponding variable in the build script.

Affected is configuration code inside the application {} and java {} configuration blocks, inside a
java execution setup with project.javaexec {}, and inside various task configurations (JavaExec,
CreateStartScripts, JavaCompile, Test, Javadoc).

Updates to bundled Gradle dependencies

• Kotlin has been updated to Kotlin 1.3.71.

Deprecations

There were no deprecations between Gradle 6.3 and 6.4.

Upgrading from 6.2

Potential breaking changes

Fewer dependencies available in IDEA

Gradle no longer includes the annotation processor classpath as provided dependencies in IDEA.
The dependencies IDEA sees at compile time are the same as what Gradle sees after resolving the
compile classpath (configuration named compileClasspath). This prevents the leakage of annotation
processor dependencies into the project’s code.

Before Gradle introduced incremental annotation processing support, IDEA required all annotation
processors to be on the compilation classpath to be able to run annotation processing when
compiling in IDEA. This is no longer necessary because Gradle has a separate annotation processor
classpath. The dependencies for annotation processors are not added to an IDEA module’s classpath
when a Gradle project with annotation processors is imported.

Updates to bundled Gradle dependencies

• Kotlin has been updated to Kotlin 1.3.70.

• Groovy has been updated to Groovy 2.5.10.

Updates to default tool integration versions

• PMD has been updated to PMD 6.21.0.

• CodeNarc has been updated to CodeNarc 1.5.

Rich console support removed for some 32-bit operating systems

Gradle 6.3 does not support the rich console for 32-bit Unix systems and for old FreeBSD versions
(older than FreeBSD 10). Microsoft Windows 32-bit is unaffected.

Gradle will continue building projects on 32-bit systems but will no longer show the rich console.

https://github.com/JetBrains/kotlin/releases/tag/v1.3.71
https://blog.jetbrains.com/kotlin/2020/03/kotlin-1-3-70-released/
http://groovy-lang.org/changelogs/changelog-2.5.10.html
https://pmd.github.io/pmd-6.21.0/pmd_release_notes.html#24-january-2020---6210
https://github.com/CodeNarc/CodeNarc/blob/v1.5/CHANGELOG.md#version-15----nov-2019

Deprecations

Using default and archives configurations

Almost every Gradle project has the default and archives configurations which are added by the
base plugin. These configurations are no longer used in modern Gradle builds that use variant
aware dependency management and the new publishing plugins.

While the configurations will stay in Gradle for backwards compatibility for now, using them to
declare dependencies or to resolve dependencies is now deprecated.

Resolving these configurations was never an intended use case and only possible because in earlier
Gradle versions every configuration was resolvable. For declaring dependencies, please use the
configurations provided by the plugins you use, for example by the Java Library plugin.

Upgrading from 6.1

Potential breaking changes

Compile and runtime classpath now request library variants by default

A classpath in a JVM project now explicitly requests the org.gradle.category=library attribute. This
leads to clearer error messages if a certain library cannot be used. For example, when the library
does not support the required Java version. The practical effect is that now all platform
dependencies have to be declared as such. Before, platform dependencies also worked, accidentally,
when the platform() keyword was omitted for local platforms or platforms published with Gradle
Module Metadata.

Properties from project root gradle.properties leaking into buildSrc and included builds

There was a regression in Gradle 6.2 and Gradle 6.2.1 that caused Gradle properties set in the
project root gradle.properties file to leak into the buildSrc build and any builds included by the
root.

This could cause your build to start failing if the buildSrc build or an included build suddenly found
an unexpected or incompatible value for a property coming from the project root gradle.properties
file.

The regression has been fixed in Gradle 6.2.2.

Deprecations

There were no deprecations between Gradle 6.1 and 6.2.

Upgrading from 6.0 and earlier

Deprecations

Querying a mapped output property of a task before the task has completed

Querying the value of a mapped output property before the task has completed can cause strange

build failures because it indicates stale or non-existent outputs may be used by mistake. This
behavior is deprecated and will emit a deprecation warning. This will become an error in Gradle
7.0.

The following example demonstrates this problem where the Producer’s output file is parsed
before the Producer executes:

class Consumer extends DefaultTask {
 @Input
 final Property<Integer> threadPoolSize = ...
}

class Producer extends DefaultTask {
 @OutputFile
 final RegularFileProperty outputFile = ...
}

// threadPoolSize is read from the producer's outputFile
consumer.threadPoolSize = producer.outputFile.map { it.text.toInteger() }

// Emits deprecation warning
println("thread pool size = " + consumer.threadPoolSize.get())

Querying the value of consumer.threadPoolSize will produce a deprecation warning if done prior to
producer completing, as the output file has not yet been generated.

Discontinued methods

The following methods have been discontinued and should no longer be used. They will be
removed in Gradle 7.0.

• BasePluginConvention.setProject(ProjectInternal)

• BasePluginConvention.getProject()

• StartParameter.useEmptySettings()

• StartParameter.isUseEmptySettings()

Alternative JVM plugins (a.k.a "Software Model")

A set of alternative plugins for Java and Scala development were introduced in Gradle 2.x as an
experiment based on the "software model". These plugins are now deprecated and will eventually
be removed. If you are still using one of these old plugins (java-lang, scala-lang, jvm-component, jvm-
resources, junit-test-suite) please consult the documentation on Building Java & JVM projects to
determine which of the stable JVM plugins are appropriate for your project.

Potential breaking changes

ProjectLayout is no longer available to worker actions as a service

In Gradle 6.0, the ProjectLayout service was made available to worker actions via service injection.
This service allowed for mutable state to leak into a worker action and introduced a way for
dependencies to go undeclared in the worker action.

ProjectLayout has been removed from the available services. Worker actions that were using
ProjectLayout should switch to injecting the projectDirectory or buildDirectory as a parameter
instead.

Updates to bundled Gradle dependencies

• Kotlin has been updated to Kotlin 1.3.61.

Updates to default tool integration versions

• Checkstyle has been updated to Checkstyle 8.27.

• PMD has been updated to PMD 6.20.0.

Publishing Spring Boot applications

Starting from Gradle 6.2, Gradle performs a sanity check before uploading, to make sure you don’t
upload stale files (files produced by another build). This introduces a problem with Spring Boot
applications which are uploaded using the components.java component:

Artifact my-application-0.0.1-SNAPSHOT.jar wasn't produced by this build.

This is caused by the fact that the main jar task is disabled by the Spring Boot application, and the
component expects it to be present. Because the bootJar task uses the same file as the main jar task
by default, previous releases of Gradle would either:

• publish a stale bootJar artifact

• or fail if the bootJar task hasn’t been called previously

A workaround is to tell Gradle what to upload. If you want to upload the bootJar, then you need to
configure the outgoing configurations to do this:

configurations {
 [apiElements, runtimeElements].each {
 it.outgoing.artifacts.removeIf {
it.buildDependencies.getDependencies(null).contains(jar) }
 it.outgoing.artifact(bootJar)
 }
}

Alternatively, you might want to re-enable the jar task, and add the bootJar with a different
classifier.

https://blog.jetbrains.com/kotlin/2019/11/kotlin-1-3-60-released/
https://checkstyle.org/releasenotes.html#Release_8.27
https://pmd.github.io/pmd-6.20.0/pmd_release_notes.html#29-november-2019---6200

jar {
 enabled = true
}

bootJar {
 classifier = 'application'
}

Upgrading your build from Gradle 5.x to 6.0
This chapter provides the information you need to migrate your Gradle 5.x builds to Gradle 6.0. For
migrating from Gradle 4.x, complete the 4.x to 5.0 guide first.

We recommend the following steps for all users:

1. Try running gradle help --scan and view the deprecations view of the generated build scan.

This is so that you can see any deprecation warnings that apply to your build.

Alternatively, you could run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

2. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of
the API.

3. Run gradle wrapper --gradle-version 6.0 to update the project to 6.0.

4. Try to run the project and debug any errors using the Troubleshooting Guide.

https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

Upgrading from 5.6 and earlier

Deprecations

Dependencies should no longer be declared using the compile and runtime configurations

The usage of the compile and runtime configurations in the Java ecosystem plugins has been
discouraged since Gradle 3.4.

These configurations are used for compiling and running code from the main source set. Other
sources sets create similar configurations (e.g. testCompile and testRuntime for the test source set),
should not be used either. The implementation, api, compileOnly and runtimeOnly configurations
should be used to declare dependencies and the compileClasspath and runtimeClasspath
configurations to resolve dependencies. See the relationship of these configurations.

Legacy publication system is deprecated and replaced with the *-publish plugins

The uploadArchives task and the maven plugin are deprecated.

Users should migrate to the publishing system of Gradle by using either the maven-publish or ivy-
publish plugins. These plugins have been stable since Gradle 4.8.

The publishing system is also the only way to ensure the publication of Gradle Module Metadata.

Problems with tasks emit deprecation warnings

When Gradle detects problems with task definitions (such as incorrectly defined inputs or outputs)
it will show the following message on the console:

Deprecated Gradle features were used in this build, making it incompatible with Gradle
7.0.
Use '--warning-mode all' to show the individual deprecation warnings.
See
https://docs.gradle.org/6.0/userguide/command_line_interface.html#sec:command_line_war
nings

The deprecation warnings show up in build scans for every build, regardless of the command-line
switches used.

When the build is executed with --warning-mode all, the individual warnings will be shown:

> Task :myTask
Property 'inputDirectory' is declared without normalization specified. Properties of
cacheable work must declare their normalization via @PathSensitive, @Classpath or
@CompileClasspath. Defaulting to PathSensitivity.ABSOLUTE. This behaviour has been
deprecated and is scheduled to be removed in Gradle 7.0.
Property 'outputFile' is not annotated with an input or output annotation. This
behaviour has been deprecated and is scheduled to be removed in Gradle 7.0.

https://docs.gradle.org/3.4/release-notes.html#the-java-library-plugin
https://scans.gradle.com/s/txrptciitl2ha/deprecations

If you own the code of the tasks in question, you can fix them by following the suggestions. You can
also use --stacktrace to see where in the code each warning originates from.

Otherwise, you’ll need to report the problems to the maintainer of the relevant task or plugin.

Old API for incremental tasks, IncrementalTaskInputs, has been deprecated

In Gradle 5.4 we introduced a new API for implementing incremental tasks: InputChanges. The old
API based on IncrementalTaskInputs has been deprecated.

Forced dependencies

Forcing dependency versions using force = true on a first-level dependency has been deprecated.

Force has both a semantic and ordering issue which can be avoided by using a strict version
constraint.

Search upwards related APIs in StartParameter have been deprecated

In Gradle 5.0, we removed the --no-search-upward CLI parameter.

The related APIs in StartParameter (like isSearchUpwards()) are now deprecated.

APIs BuildListener.buildStarted and Gradle.buildStarted have been deprecated

These methods currently do not work as expected since the callbacks will never be called after the
build has started.

The methods are being deprecated to avoid confusion.

Implicit duplicate strategy for Copy or archive tasks has been deprecated

Archive tasks Tar and Zip by default allow multiple entries for the same path to exist in the created
archive. This can cause "grossly invalid zip files" that can trigger zip bomb detection.

To prevent this from happening accidentally, encountering duplicates while creating an archive
now produces a deprecation message and will fail the build starting with Gradle 7.0.

Copy tasks also happily copy multiple sources with the same relative path to the destination
directory. This behavior has also been deprecated.

If you want to allow duplicates, you can specify that explicitly:

task archive(type: Zip) {
 duplicatesStrategy = DuplicatesStrategy.INCLUDE // allow duplicates
 ...
}

Executing Gradle without a settings file has been deprecated

A Gradle build is defined by a settings.gradle[.kts] file in the current or parent directory. Without

https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html
https://github.com/gradle/gradle/issues/9990

a settings file, a Gradle build is undefined and will emit a deprecation warning.

In Gradle 7.0, Gradle will only allow you to invoke the init task or diagnostic command line flags,
such as --version, with undefined builds.

Calling Project.afterEvaluate on an evaluated project has been deprecated

Once a project is evaluated, Gradle ignores all configuration passed to Project#afterEvaluate and
emits a deprecation warning. This scenario will become an error in Gradle 7.0.

Deprecated plugins

The following bundled plugins were never announced and will be removed in the next major
release of Gradle:

• org.gradle.coffeescript-base

• org.gradle.envjs

• org.gradle.javascript-base

• org.gradle.jshint

• org.gradle.rhino

Some of these plugins may have replacements on the Plugin Portal.

Potential breaking changes

Android Gradle Plugin 3.3 and earlier is no longer supported

Gradle 6.0 supports Android Gradle Plugin versions 3.4 and later.

Build scan plugin 2.x is no longer supported

For Gradle 6, usage of the build scan plugin must be replaced with the Gradle Enterprise plugin.
This also requires changing how the plugin is applied. Please see https://gradle.com/help/gradle-6-
build-scan-plugin for more information.

Updates to bundled Gradle dependencies

• Groovy has been updated to Groovy 2.5.8.

• Kotlin has been updated to Kotlin 1.3.50.

• Ant has been updated to Ant 1.10.7.

Updates to default integration versions

• Checkstyle has been updated to Checkstyle 8.24.

• CodeNarc has been updated to CodeNarc 1.4.

• PMD has been updated to PMD 6.17.0.

• JaCoCo has been updated to 0.8.5. Contributed by Evgeny Mandrikov

https://plugins.gradle.org/
https://gradle.com/help/gradle-6-build-scan-plugin
https://gradle.com/help/gradle-6-build-scan-plugin
http://groovy-lang.org/changelogs/changelog-2.5.8.html
https://blog.jetbrains.com/kotlin/2019/08/kotlin-1-3-50-released/
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.10.7.html
https://checkstyle.org/releasenotes.html#Release_8.24
https://github.com/CodeNarc/CodeNarc/blob/master/CHANGELOG.md#version-14---may-2019
https://pmd.github.io/latest/pmd_release_notes.html#28-july-2019---6170
http://www.jacoco.org/jacoco/trunk/doc/changes.html
https://github.com/Godin

Changes to build and task names in composite builds

Previously, Gradle used the name of the root project as the build name for an included build. Now,
the name of the build’s root directory is used and the root project name is not considered if
different. A different name for the build can be specified if the build is being included via a settings
file.

includeBuild("some-other-build") {
 name = "another-name"
}

The previous behavior was problematic as it caused different names to be used at different times
during the build.

buildSrc is now reserved as a project and subproject build name

Previously, Gradle did not prevent using the name “buildSrc” for a subproject of a multi-project
build or as the name of an included build. Now, this is not allowed. The name “buildSrc” is now
reserved for the conventional buildSrc project that builds extra build logic.

Typical use of buildSrc is unaffected by this change. You will only be affected if your settings file
specifies include("buildSrc") or includeBuild("buildSrc").

Scala Zinc compiler

The Zinc compiler has been upgraded to version 1.3.0. Gradle no longer supports building for Scala
2.9.

The minimum Zinc compiler supported by Gradle is 1.2.0 and the maximum tested version is 1.3.0.

To make it easier to select the version of the Zinc compiler, you can now configure a zincVersion
property:

scala {
 zincVersion = "1.2.1"
}

Please remove any explicit dependencies you’ve added to the zinc configuration and use this
property instead. If you try to use the com.typesafe.zinc:zinc dependency, Gradle will switch to the
new Zinc implementation.

Changes to Build Cache

Local build cache is always a directory cache

In the past, it was possible to use any build cache implementation as the local cache. This is no
longer allowed as the local cache must always be a DirectoryBuildCache.

Calls to BuildCacheConfiguration.local(Class) with anything other than DirectoryBuildCache as the

type will fail the build. Calling these methods with the DirectoryBuildCache type will produce a
deprecation warning.

Use getLocal() and local(Action) instead.

Failing to pack or unpack cached results will now fail the build

In the past, when Gradle encountered a problem while packing the results of a cached task, Gradle
would ignore the problem and continue running the build.

When encountering a corrupt cached artifact, Gradle would remove whatever was already
unpacked and re-execute the task to make sure the build had a chance to succeed.

While this behavior was intended to make a build successful, this had the adverse effect of hiding
problems and led to reduced cache performance.

In Gradle 6.0, both pack and unpack errors will cause the build to fail, so that these problems will
be surfaced more easily.

buildSrc projects automatically use build cache configuration

Previously, in order to to use the build cache for the buildSrc build you needed to duplicate your
build cache config in the buildSrc build. Now, it automatically uses the build cache configuration
defined by the top level settings script.

Changes to Dependency Management

Gradle Module Metadata is always published

Officially introduced in Gradle 5.3, Gradle Module Metadata was created to solve many of the
problems that have plagued dependency management for years, in particular, but not exclusively,
in the Java ecosystem.

With Gradle 6.0, Gradle Module Metadata is enabled by default.

This means, if you are publishing libraries with Gradle and using the maven-publish or ivy-publish
plugin, the Gradle Module Metadata file is always published in addition to traditional metadata.

The traditional metadata file will contain a marker so that Gradle knows that there is additional
metadata to consume.

Gradle Module Metadata has stricter validation

The following rules are verified when publishing Gradle Module Metadata:

• Variant names must be unique,

• Each variant must have at least one attribute,

• Two variants cannot have the exact same attributes and capabilities,

• If there are dependencies, at least one, across all variants, must carry version information.

These are documented in the specification as well.

https://blog.gradle.org/gradle-metadata-1.0
https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md

Maven or Ivy repositories are no longer queried for artifacts without metadata by default

If Gradle fails to locate the metadata file (.pom or ivy.xml) of a module in a repository defined in the
repositories { } section, it now assumes that the module does not exist in that repository.

For dynamic versions, the maven-metadata.xml for the corresponding module needs to be present in
a Maven repository.

Previously, Gradle would also look for a default artifact (.jar). This behavior often caused a large
number of unnecessary requests when using multiple repositories that slowed builds down.

You can opt into the old behavior for selected repositories by adding the artifact() metadata
source.

Changing the pom packaging property no longer changes the artifact extension

Previously, if the pom packaging was not jar, ejb, bundle or maven-plugin, the extension of the main
artifact published to a Maven repository was changed during publishing to match the pom
packaging.

This behavior led to broken Gradle Module Metadata and was difficult to understand due to
handling of different packaging types.

Build authors can change the artifact name when the artifact is created to obtain the same result as
before — e.g. by setting jar.archiveExtension.set(pomPackaging) explicitly.

An ivy.xml published for Java libraries contains more information

A number of fixes were made to produce more correct ivy.xml metadata in the ivy-publish plugin.

As a consequence, the internal structure of the ivy.xml file has changed. The runtime configuration
now contains more information, which corresponds to the runtimeElements variant of a Java
library. The default configuration should yield the same result as before.

In general, users are advised to migrate from ivy.xml to the new Gradle Module Metadata format.

Changes to Plugins and Build scripts

Classes from buildSrc are no longer visible to settings scripts

Previously, the buildSrc project was built before applying the project’s settings script and its classes
were visible within the script. Now, buildSrc is built after the settings script and its classes are not
visible to it. The buildSrc classes remain visible to project build scripts and script plugins.

Custom logic can be used from a settings script by declaring external dependencies.

The pluginManagement block in settings scripts is now isolated

Previously, any pluginManagement {} blocks inside a settings script were executed during the normal
execution of the script.

Now, they are executed earlier in a similar manner to buildscript {} or plugins {}. This means that

code inside such a block cannot reference anything declared elsewhere in the script.

This change has been made so that pluginManagement configuration can also be applied when
resolving plugins for the settings script itself.

Plugins and classes loaded in settings scripts are visible to project scripts and buildSrc

Previously, any classes added to the a settings script by using buildscript {} were not visible
outside of the script. Now, they they are visible to all of the project build scripts.

They are also visible to the buildSrc build script and its settings script.

This change has been made so that plugins applied to the settings script can contribute logic to the
entire build.

Plugin validation changes

• The validateTaskProperties task is now deprecated, use validatePlugins instead. The new name
better reflects the fact that it also validates artifact transform parameters and other non-
property definitions.

• The ValidateTaskProperties type is replaced by ValidatePlugins.

• The setClasses() method is now removed. Use getClasses().setFrom() instead.

• The setClasspath() method is also removed. use getClasspath().setFrom() instead.

• The failOnWarning option is now enabled by default.

• The following task validation errors now fail the build at runtime and are promoted to errors
for ValidatePlugins:

◦ A task property is annotated with a property annotation not allowed for tasks, like
@InputArtifact.

Changes to Kotlin DSL

Using the embedded-kotlin plugin now requires a repository

Just like when using the kotlin-dsl plugin, it is now required to declare a repository where Kotlin
dependencies can be found if you apply the embedded-kotlin plugin.

plugins {
 `embedded-kotlin`
}

repositories {
 mavenCentral()
}

Kotlin DSL IDE support now requires Kotlin IntelliJ Plugin >= 1.3.50

With Kotlin IntelliJ plugin versions prior to 1.3.50, Kotlin DSL scripts will be wrongly highlighted

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html#getFailOnWarning--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html

when the Gradle JVM is set to a version different from the one in Project SDK. Simply upgrade your
IDE plugin to a version >= 1.3.50 to restore the correct Kotlin DSL script highlighting behavior.

Kotlin DSL script base types no longer extend Project, Settings or Gradle

In previous versions, Kotlin DSL scripts were compiled to classes that implemented one of the three
core Gradle configuration interfaces in order to implicitly expose their APIs to scripts.
org.gradle.api.Project for project scripts, org.gradle.api.initialization.Settings for settings
scripts and org.gradle.api.invocation.Gradle for init scripts.

Having the script instance implement the core Gradle interface of the model object it was supposed
to configure was convenient because it made the model object API immediately available to the
body of the script but it was also a lie that could cause all sorts of trouble whenever the script itself
was used in place of the model object, a project script was not a proper Project instance just
because it implemented the core Project interface and the same was true for settings and init
scripts.

In 6.0 all Kotlin DSL scripts are compiled to classes that implement the newly introduced
org.gradle.kotlin.dsl.KotlinScript interface and the corresponding model objects are now
available as implicit receivers in the body of the scripts. In other words, a project script behaves as if
the body of the script is enclosed within a with(project) { … } block, a settings script as if the
body of the script is enclosed within a with(settings) { … } block and an init script as if the body
of the script is enclosed within a with(gradle) { … } block. This implies the corresponding model
object is also available as a property in the body of the script, the project property for project
scripts, the settings property for settings scripts and the gradle property for init scripts.

As part of the change, the SettingsScriptApi interface is no longer implemented by settings scripts
and the InitScriptApi interface is no longer implemented by init scripts. They should be replaced
with the corresponding model object interfaces, Settings and Gradle.

Miscellaneous

Javadoc and Groovydoc don’t include timestamps by default

Timestamps in the generated documentation have very limited practical use, however they make it
impossible to have repeatable documentation builds. Therefore, the Javadoc and Groovydoc tasks are
now configured to not include timestamps by default any more.

User provided 'config_loc' properties are ignored by Checkstyle

Gradle always uses configDirectory as the value for 'config_loc' when running Checkstyle.

New Tooling API progress event

In Gradle 6.0, we introduced a new progress event (org.gradle.tooling.events.test.TestOutputEvent)
to expose the output of test execution. This new event breaks the convention of having a StartEvent-
FinisEvent pair to express progress. TaskOutputEvent is a simple ProgressEvent.

Changes to the task container behavior

The following deprecated methods on the task container now result in errors:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/tooling/events/test/TestOutputEvent.html

• TaskContainer.add()

• TaskContainer.addAll()

• TaskContainer.remove()

• TaskContainer.removeAll()

• TaskContainer.retainAll()

• TaskContainer.clear()

• TaskContainer.iterator().remove()

Additionally, the following deprecated functionality now results in an error:

• Replacing a task that has already been realized.

• Replacing a registered (unrealized) task with an incompatible type. A compatible type is the
same type or a sub-type of the registered type.

• Replacing a task that has never been registered.

Replaced and Removed APIs

Methods on DefaultTask and ProjectLayout replaced with ObjectFactory

Use ObjectFactory.fileProperty() instead of the following methods that are now removed:

• DefaultTask.newInputFile()

• DefaultTask.newOutputFile()

• ProjectLayout.fileProperty()

Use ObjectFactory.directoryProperty() instead of the following methods that are now removed:

• DefaultTask.newInputDirectory()

• DefaultTask.newOutputDirectory()

• ProjectLayout.directoryProperty()

Annotation @Nullable has been removed

The org.gradle.api.Nullable annotation type has been removed. Use javax.annotation.Nullable
from JSR-305 instead.

The FindBugs plugin has been removed

The deprecated FindBugs plugin has been removed. As an alternative, you can use the SpotBugs
plugin from the Gradle Plugin Portal.

The JDepend plugin has been removed

The deprecated JDepend plugin has been removed. There are a number of community-provided
plugins for code and architecture analysis available on the Gradle Plugin Portal.

https://plugins.gradle.org/plugin/com.github.spotbugs
https://plugins.gradle.org/plugin/com.github.spotbugs
https://plugins.gradle.org/search?term=spotbugs
https://plugins.gradle.org

The OSGI plugin has been removed

The deprecated OSGI plugin has been removed. There are a number of community-provided OSGI
plugins available on the Gradle Plugin Portal.

The announce and build-announcements plugins have been removed

The deprecated announce and build-announcements plugins have been removed. There are a
number of community-provided plugins for sending out notifications available on the Gradle
Plugin Portal.

The Compare Gradle Builds plugin has been removed

The deprecated Compare Gradle Builds plugin has been removed. Please use build scans for build
analysis and comparison.

The Play plugins have been removed

The deprecated Play plugin has been removed. An external replacement, the Play Framework
plugin, is available from the plugin portal.

Method AbstractCompile.compile() method has been removed

The abstract method compile() is no longer declared by AbstractCompile.

Tasks extending AbstractCompile can implement their own @TaskAction method with the name of
their choosing.

They are also free to add a method annotated with @TaskAction using an InputChanges parameter
without having to implement a parameter-less one as well.

Other Deprecated Behaviors and APIs

• The org.gradle.util.internal.GUtil.savePropertiesNoDateComment has been removed. There is
no public replacement for this internal method.

• The deprecated class org.gradle.api.tasks.compile.CompilerArgumentProvider has been
removed. Use org.gradle.process.CommandLineArgumentProvider instead.

• The deprecated class org.gradle.api.ConventionProperty has been removed. Use Providers
instead of convention properties.

• The deprecated class org.gradle.reporting.DurationFormatter has been removed.

• The bridge method org.gradle.api.tasks.TaskInputs.property(String name, @Nullable Object
value) returning TaskInputs has been removed. A plugin using the method must be compiled
with Gradle 4.3 to work on Gradle 6.0.

• The following setters have been removed from JacocoReportBase:

◦ executionData - use getExecutionData().setFrom() instead.

◦ sourceDirectories - use getSourceDirectories().setFrom() instead.

◦ classDirectories - use getClassDirectories().setFrom() instead.

◦ additionalClassDirs - use getAdditionalClassDirs().setFrom() instead.

https://plugins.gradle.org/search?term=osgi
https://plugins.gradle.org
https://plugins.gradle.org
https://scans.gradle.com/
https://gradle.github.io/playframework
https://gradle.github.io/playframework
https://docs.gradle.org/7.3.2/javadoc/org/gradle/process/CommandLineArgumentProvider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:executionData
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:sourceDirectories
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:classDirectories
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:additionalClassDirs

◦ additionalSourceDirs - use getAdditionalSourceDirs().setFrom() instead.

• The append property on JacocoTaskExtension has been removed. append is now always configured
to be true for the Jacoco agent.

• The configureDefaultOutputPathForJacocoMerge method on JacocoPlugin has been removed. The
method was never meant to be public.

• File paths in deployment descriptor file name for the ear plugin are not allowed any more. Use a
simple name, like application.xml, instead.

• The org.gradle.testfixtures.ProjectBuilder constructor has been removed. Please use
ProjectBuilder.builder() instead.

• When incremental Groovy compilation is enabled, a wrong configuration of the source roots or
enabling Java annotation for Groovy now fails the build. Disable incremental Groovy
compilation when you want to compile in those cases.

• ComponentSelectionRule no longer can inject the metadata or ivy descriptor. Use the methods on
the ComponentSelection parameter instead.

• Declaring an incremental task without declaring outputs is now an error. Declare file outputs or
use TaskOutputs.upToDateWhen() instead.

• The getEffectiveAnnotationProcessorPath() method is removed from the JavaCompile and
ScalaCompile tasks.

• Changing the value of a task property with type Property<T> after the task has started execution
now results in an error.

• The isLegacyLayout() method is removed from SourceSetOutput.

• The map returned by TaskInputs.getProperties() is now unmodifiable. Trying to modify it will
result in an UnsupportedOperationException being thrown.

• There are slight changes in the incubating capabilities resolution API, which has been
introduced in 5.6, to also allow variant selection based on variant name

Upgrading from 5.5 and earlier

Deprecations

Changing the contents of ConfigurableFileCollection task properties after task starts execution

When a task property has type ConfigurableFileCollection, then the file collection referenced by
the property will ignore changes made to the contents of the collection once the task starts
execution. This has two benefits. Firstly, this prevents accidental changes to the property value
during task execution which can cause Gradle up-to-date checks and build cache lookup using
different values to those used by the task action. Secondly, this improves performance as Gradle can
calculate the value once and cache the result.

This will become an error in Gradle 6.0.

Creating SignOperation instances

Creating SignOperation instances directly is now deprecated. Instead, the methods of

https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:additionalSourceDirs
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ear/descriptor/DeploymentDescriptor.html#getFileName--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-

SigningExtension should be used to create these instances.

This will become an error in Gradle 6.0.

Declaring an incremental task without outputs

Declaring an incremental task without declaring outputs is now deprecated. Declare file outputs or
use TaskOutputs.upToDateWhen() instead.

This will become an error in Gradle 6.0.

Method WorkerExecutor.submit() is deprecated

The WorkerExecutor.submit() method is now deprecated. The new noIsolation(),
classLoaderIsolation() and processIsolation() methods should now be used to submit work. See
the section on the Worker API for more information on using these methods.

WorkerExecutor.submit() will be removed in Gradle 8.0.

Potential breaking changes

Task dependencies are honored for task @Input properties whose value is a Property

Previously, task dependencies would be ignored for task @Input properties of type Property<T>.
These are now honored, so that it is possible to attach a task output property to a task @Input
property.

This may introduce unexpected cycles in the task dependency graph, where the value of an output
property is mapped to produce a value for an input property.

Declaring task dependencies using a file Provider that does not represent a task output

Previously, it was possible to pass Task.dependsOn() a Provider<File>, Provider<RegularFile> or
Provider<Directory> instance that did not represent a task output. These providers would be silently
ignored.

This is now an error because Gradle does not know how to build files that are not task outputs.

Note that it is still possible to to pass Task.dependsOn() a Provider that returns a file and that
represents a task output, for example myTask.dependsOn(jar.archiveFile) or
myTask.dependsOn(taskProvider.flatMap { it.outputDirectory }), when the Provider is an annotated
@OutputFile or @OutputDirectory property of a task.

Setting Property value to null uses the property convention

Previously, calling Property.set(null) would always reset the value of the property to 'not defined'.
Now, the convention that is associated with the property using the convention() method will be
used to determine the value of the property.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-
worker_api.pdf#tasks_parallel_worker

Enhanced validation of names for publishing.publications and publishing.repositories

The repository and publication names are used to construct task names for publishing. It was
possible to supply a name that would result in an invalid task name. Names for publications and
repositories are now restricted to [A-Za-z0-9_\\-.]+.

Restricted Worker API classloader and process classpath

Gradle now prevents internal dependencies (like Guava) from leaking into the classpath used by
Worker API actions. This fixes an issue where a worker needs to use a dependency that is also used
by Gradle internally.

In previous releases, it was possible to rely on these leaked classes. Plugins relying on this behavior
will now fail. To fix the plugin, the worker should explicitly include all required dependencies in its
classpath.

Default PMD version upgraded to 6.15.0

The PMD plugin has been upgraded to use PMD version 6.15.0 instead of 6.8.0 by default.

Contributed by wreulicke

Configuration copies have unique names

Previously, all copies of a configuration always had the name <OriginConfigurationName>Copy. Now
when creating multiple copies, each will have a unique name by adding an index starting from the
second copy. (e.g. CompileOnlyCopy2)

Changed classpath filtering for Eclipse

Gradle 5.6 no longer supplies custom classpath attributes in the Eclipse model. Instead, it provides
the attributes for Eclipse test sources. This change requires Buildship version 3.1.1 or later.

Embedded Kotlin upgraded to 1.3.41

Gradle Kotlin DSL scripts and Gradle Plugins authored using the kotlin-dsl plugin are now
compiled using Kotlin 1.3.41.

Please see the Kotlin blog post and changelog for more information about the included changes.

The minimum supported Kotlin Gradle Plugin version is now 1.2.31. Previously it was 1.2.21.

Automatic capability conflict resolution

Previous versions of Gradle would automatically select, in case of capability conflicts, the module
which has the highest capability version. Starting from 5.6, this is an opt-in behavior that can be
activated using:

configurations.all {
 resolutionStrategy.capabilitiesResolution.all { selectHighestVersion() }
}

https://github.com/gradle/gradle/issues/3698
https://pmd.github.io/pmd-6.15.0/pmd_release_notes.html
https://github.com/wreulicke
https://www.eclipse.org/eclipse/news/4.8/jdt.php#jdt-test-sources
https://blog.jetbrains.com/kotlin/2019/06/kotlin-1-3-40-released/
https://github.com/JetBrains/kotlin/blob/1.3.40/ChangeLog.md

See the capabilities section of the documentation for more options.

File removal operations don’t follow symlinked directories

When Gradle has to remove the output files of a task for various reasons, it will not follow
symlinked directories. The symlink itself will be deleted, but the contents of the linked directory
will stay intact.

Disabled debug argument parsing in JavaExec

Gradle 5.6 introduced a new DSL element (
JavaForkOptions.debugOptions(Action<JavaDebugOptions>)) to configure debug properties for forked
Java processes. Due to this change, Gradle no longer parses debug-related JVM arguments.
Consequently, JavaForkOptions.getDebu() no longer returns true if the
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005 or the
-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005 argument is specified to the
process.

Scala 2.9 and Zinc compiler

Gradle no longer supports building applications using Scala 2.9.

Upgrading from 5.4 and earlier

Deprecations

Play

The built-in Play plugin has been deprecated and will be replaced by a new Play Framework plugin
available from the plugin portal.

Build Comparison

The build comparison plugin has been deprecated and will be removed in the next major version of
Gradle.

Build scans show much deeper insights into your build and you can use Gradle Enterprise to
directly compare two build’s build-scans.

Potential breaking changes

User supplied Eclipse project names may be ignored on conflict

Project names configured via EclipseProject.setName(…) were honored by Gradle and Buildship in
all cases, even when the names caused conflicts and import/synchronization errors.

Gradle can now deduplicate these names if they conflict with other project names in an Eclipse
workspace. This may lead to different Eclipse project names for projects with user-specified names.

The upcoming 3.1.1 version of Buildship is required to take advantage of this behavior.

play_plugin.pdf#play_plugin
https://gradle.github.io/playframework
https://gradle.com/build-scans
https://gradle.com/
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/eclipse/model/EclipseProject.html

Contributed by Christian Fränkel

Default JaCoCo version upgraded to 0.8.4

The JaCoCo plugin has been upgraded to use JaCoCo version 0.8.4 instead of 0.8.3 by default.

Contributed by Evgeny Mandrikov

Embedded Ant version upgraded to 1.9.14

The version of Ant distributed with Gradle has been upgraded to 1.9.14 from 1.9.13.

Type DependencyHandler now statically exposes ExtensionAware

This affects Kotlin DSL build scripts that make use of ExtensionAware extension members such as the
extra properties accessor inside the dependencies {} block. The receiver for those members will no
longer be the enclosing Project instance but the dependencies object itself, the innermost
ExtensionAware conforming receiver. In order to address Project extra properties inside
dependencies {} the receiver must be explicitly qualified i.e. project.extra instead of just extra.
Affected extensions also include the<T>() and configure<T>(T.() → Unit).

Improved processing of dependency excludes

Previous versions of Gradle could, in some complex dependency graphs, have a wrong result or a
randomized dependency order when lots of excludes were present. To mitigate this, the algorithm
that computes exclusions has been rewritten. In some rare cases this may cause some differences in
resolution, due to the correctness changes.

Improved classpath separation for worker processes

The system classpath for worker daemons started by the Worker API when using PROCESS isolation
has been reduced to a minimum set of Gradle infrastructure. User code is still segregated into a
separate classloader to isolate it from the Gradle runtime. This should be a transparent change for
tasks using the worker API, but previous versions of Gradle mixed user code and Gradle internals
in the worker process. Worker actions that rely on things like the java.class.path system property
may be affected, since java.class.path now represents only the classpath of the Gradle internals.

Upgrading from 5.3 and earlier

Deprecations

Using custom local build cache implementations

Using a custom build cache implementation for the local build cache is now deprecated. The only
allowed type will be DirectoryBuildCache going forward. There is no change in the support for using
custom build cache implementations as the remote build cache.

Potential breaking changes

https://github.com/fraenkelc
http://www.jacoco.org/jacoco/trunk/doc/changes.html
https://github.com/Godin
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.9.14.html

Use HTTPS when configuring Google Hosted Libraries via googleApis()

The Google Hosted Libraries URL accessible via
JavaScriptRepositoriesExtension#GOOGLE_APIS_REPO_URL was changed to use the HTTPS protocol. The
change also affect the Ivy repository configured via googleApis().

Upgrading from 5.2 and earlier

Potential breaking changes

Bug fixes in platform resolution

There was a bug from Gradle 5.0 to 5.2.1 (included) where enforced platforms would potentially
include dependencies instead of constraints. This would happen whenever a POM file defined both
dependencies and "constraints" (via <dependencyManagement>) and that you used enforcedPlatform.
Gradle 5.3 fixes this bug, meaning that you might have differences in the resolution result if you
relied on this broken behavior. Similarly, Gradle 5.3 will no longer try to download jars for platform
and enforcedPlatform dependencies (as they should only bring in constraints).

Automatic target JVM version

If you apply any of the Java plugins, Gradle will now do its best to select dependencies which match
the target compatibility of the module being compiled. What it means, in practice, is that if you
have module A built for Java 8, and module B built for Java 8, then there’s no change. However if B
is built for Java 9+, then it’s not binary compatible anymore, and Gradle would complain with an
error message like the following:

Unable to find a matching variant of project :producer:
 - Variant 'apiElements' capability test:producer:unspecified:
 - Provides org.gradle.dependency.bundling 'external'
 - Required org.gradle.jvm.version '8' and found incompatible value '9'.
 - Required org.gradle.usage 'java-api' and found value 'java-api-jars'.
 - Variant 'runtimeElements' capability test:producer:unspecified:
 - Provides org.gradle.dependency.bundling 'external'
 - Required org.gradle.jvm.version '8' and found incompatible value '9'.
 - Required org.gradle.usage 'java-api' and found value 'java-runtime-jars'.

In general, this is a sign that your project is misconfigured and that your dependencies are not
compatible. However, there are cases where you still may want to do this, for example when only a
subset of classes of your module actually need the Java 9 dependencies, and are not intended to be
used on earlier releases. Java in general doesn’t encourage you to do this (you should split your
module instead), but if you face this problem, you can workaround by disabling this new behavior
on the consumer side:

java {
 disableAutoTargetJvm()
}

Bug fix in Maven / Ivy interoperability with dependency substitution

If you have a Maven dependency pointing to an Ivy dependency where the default configuration
dependencies do not match the compile + runtime + master ones and that Ivy dependency was
substituted (using a resolutionStrategy.force, resolutionStrategy.eachDependency or
resolutionStrategy.dependencySubstitution) then this fix will impact you. The legacy behaviour of
Gradle, prior to 5.0, was still in place instead of being replaced by the changes introduced by
improved pom support.

Delete operations correctly handle symbolic links on Windows

Gradle no longer ignores the followSymlink option on Windows for the clean task, all Delete tasks,
and project.delete {} operations in the presence of junction points and symbolic links.

Fix in publication of additional artifacts

In previous Gradle versions, additional artifacts registered at the project level were not published
by maven-publish or ivy-publish unless they were also added as artifacts in the publication
configuration.

With Gradle 5.3, these artifacts are now properly accounted for and published.

This means that artifacts that are registered both on the project and the publication, Ivy or Maven,
will cause publication to fail since it will create duplicate entries. The fix is to remove these artifacts
from the publication configuration.

Upgrading from 5.1 and earlier

Potential breaking changes

none

Upgrading from 5.0 and earlier

Deprecations

Follow the API links to learn how to deal with these deprecations (if no extra information is
provided here):

• Setters for classes and classpath on ValidateTaskProperties

• There should not be setters for lazy properties like ConfigurableFileCollection. Use setFrom
instead. For example,

 validateTaskProperties.getClasses().setFrom(fileCollection)
 validateTaskProperties.getClasspath().setFrom(fileCollection)

Potential breaking changes

The following changes were not previously deprecated:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/ValidateTaskProperties.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileCollection.html

Signing API changes

Input and output files of Sign tasks are now tracked via Signature.getToSign() and
Signature.getFile(), respectively.

Collection properties default to empty collection

In Gradle 5.0, the collection property instances created using ObjectFactory would have no value
defined, requiring plugin authors to explicitly set an initial value. This proved to be awkward and
error prone so ObjectFactory now returns instances with an empty collection as their initial value.

Worker API: working directory of a worker can no longer be set

Since JDK 11 no longer supports changing the working directory of a running process, setting the
working directory of a worker via its fork options is now prohibited. All workers now use the same
working directory to enable reuse. Please pass files and directories as arguments instead. See
examples in the Worker API documentation.

Changes to native linking tasks

To expand our idiomatic Provider API practices, the install name property from
org.gradle.nativeplatform.tasks.LinkSharedLibrary is affected by this change.

• getInstallName() was changed to return a Property.

• setInstallName(String) was removed. Use Property.set() instead.

Passing arguments to Windows Resource Compiler

To expand our idiomatic Provider API practices, the WindowsResourceCompile task has been
converted to use the Provider API.

Passing additional compiler arguments now follow the same pattern as the CppCompile and other
tasks.

Copied configuration no longer shares a list of beforeResolve actions with original

The list of beforeResolve actions are no longer shared between a copied configuration and the
original. Instead, a copied configuration receives a copy of the beforeResolve actions at the time the
copy is made. Any beforeResolve actions added after copying (to either configuration) will not be
shared between the original and the copy. This may break plugins that relied on the previous
behaviour.

Changes to incubating POM customization types

• The type of MavenPomDeveloper.properties has changed from Property<Map<String, String>> to
MapProperty<String, String>.

• The type of MavenPomContributor.properties has changed from Property<Map<String, String>> to
MapProperty<String, String>.

Changes to specifying operating system for native projects

The incubating operatingSystems property on native components has been replaced with the
targetMachines property.

Changes for archive tasks (Zip, Jar, War, Ear, Tar)

Change in behavior for tasks extending AbstractArchiveTask

The AbstractArchiveTask has several new properties using the Provider API. Plugins that extend
these types and override methods from the base class may no longer behave the same way.
Internally, AbstractArchiveTask prefers the new properties and methods like getArchiveName() are
façades over the new properties.

If your plugin/build only uses these types (and does not extend them), nothing has changed.

Upgrading your build from Gradle 4.x to 5.0
This chapter provides the information you need to migrate your older Gradle 4.x builds to Gradle
5.0. In most cases, you will need to apply the changes from all versions that come after the one
you’re upgrading from. For example, if you’re upgrading from Gradle 4.3 to 5.0, you will also need
to apply the changes since 4.4, 4.5, etc up to 5.0.

TIP
If you are using Gradle for Android, you need to move to version 3.3 or higher of both
the Android Gradle Plugin and Android Studio.

For all users

1. If you are not already on the latest 4.10.x release, read the sections below for help upgrading
your project to the latest 4.10.x release. We recommend upgrading to the latest 4.10.x release to
get the most useful warnings and deprecations information before moving to 5.0. Avoid
upgrading Gradle and migrating to Kotlin DSL at the same time in order to ease troubleshooting
in case of potential issues.

2. Try running gradle help --scan and view the deprecations view of the generated build scan. If
there are no warnings, the Deprecations tab will not appear.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/cpp/CppComponent.html#getTargetMachines()
https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

This is so that you can see any deprecation warnings that apply to your build. Gradle 5.x will
generate (potentially less obvious) errors if you try to upgrade directly to it.

Alternatively, you could run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

3. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of
the API.

In particular, you will need to use at least a 2.x version of the Shadow Plugin.

4. Run gradle wrapper --gradle-version 5.0 to update the project to 5.0

5. Move to Java 8 or higher if you haven’t already. Whereas Gradle 4.x requires Java 7, Gradle 5
requires Java 8 to run.

6. Read the Upgrading from 4.10 section and make any necessary changes.

7. Try to run the project and debug any errors using the Troubleshooting Guide.

In addition, Gradle has added several significant new and improved features that you should
consider using in your builds:

• Maven Publish and Ivy Publish Plugins that now support digital signatures with the Signing
Plugin.

• Use native BOM import in your builds.

• The Worker API for enabling units of work to run in parallel.

• A new API for creating and configuring tasks lazily that can significantly improve your build’s
configuration time.

https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow

Other notable changes to be aware of that may break your build include:

• Separation of compile and runtime dependencies when consuming POMs

• A change that means you should configure existing wrapper and init tasks rather than defining
your own.

• The honoring of implicit wildcards in Maven POM exclusions, which may result in
dependencies being excluded that weren’t before.

• A change to the way you add Java annotation processors to a project.

• The default memory settings for the command-line client, the Gradle daemon, and all workers
including compilers and test executors, have been greatly reduced.

• The default versions of several code quality plugins have been updated.

• Several library versions used by Gradle have been upgraded.

Upgrading from 4.10 and earlier

If you are not already on version 4.10, skip down to the section that applies to your current Gradle
version and work your way up until you reach here. Then, apply these changes when moving from
Gradle 4.10 to 5.0.

Other changes

• The enableFeaturePreview('IMPROVED_POM_SUPPORT') and
enableFeaturePreview('STABLE_PUBLISHING') flags are no longer necessary. These features are
now enabled by default.

• Gradle now bundles JAXB for Java 9 and above. You can remove the --add-modules
java.xml.bind option from org.gradle.jvmargs, if set.

Potential breaking changes

The changes in this section have the potential to break your build, but the vast majority have been
deprecated for quite some time and few builds will be affected by a large number of them. We
strongly recommend upgrading to Gradle 4.10 first to get a report on what deprecations affect your
build.

The following breaking changes are not from deprecations, but the result of changes in behavior:

• Separation of compile and runtime dependencies when consuming POMs

• The evaluation of the publishing {} block is no longer deferred until needed but behaves like
any other block. Please use afterEvaluate {} if you need to defer evaluation.

• The Javadoc and Groovydoc tasks now delete the destination dir for the documentation before
executing. This has been added to remove stale output files from the last task execution.

• The Java Library Distribution Plugin is now based on the Java Library Plugin instead of the Java
Plugin.

While it applies the Java Plugin, it behaves slightly different (e.g. it adds the api configuration).
Thus, make sure to check whether your build behaves as expected after upgrading.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

• The html property on CheckstyleReport and FindBugsReport now returns a
CustomizableHtmlReport instance that is easier to configure from statically typed languages like
Java and Kotlin.

• The Configuration Avoidance API has been updated to prevent the creation and configuration of
tasks that are never used.

• The default memory settings for the command-line client, the Gradle daemon, and all workers
including compilers and test executors, have been greatly reduced.

• The default versions of several code quality plugins have been updated.

• Several library versions used by Gradle have been upgraded.

The following breaking changes will appear as deprecation warnings with Gradle 4.10:

General

• << for task definitions no longer works. In other words, you can not use the syntax task
myTask << { … }.

Use the Task.doLast() method instead, like this:

task myTask {
 doLast {
 ...
 }
}

• You can no longer use any of the following characters in domain object names, such as
project and task names: <space> / \ : < > " ? * | . You should also not use . as a leading or
trailing character.

Running Gradle & build environment

• As mentioned before, Gradle can no longer be run on Java 7. However, you can still use
forked compilation and testing to build and test software for Java 6 and above.

• The -Dtest.single command-line option has been removed — use test filtering instead.

• The -Dtest.debug command-line option has been removed — use the --debug-jvm option
instead.

• The -u/--no-search-upward command-line option has been removed — make sure all your
builds have a settings.gradle file.

• The --recompile-scripts command-line option has been removed.

• You can no longer have a Gradle build nested in a subdirectory of another Gradle build
unless the nested build has a settings.gradle file.

• The DirectoryBuildCache.setTargetSizeInMB(long) method has been removed — use
DirectoryBuildCache.removeUnusedEntriesAfterDays instead.

• The org.gradle.readLoggingConfigFile system property no longer does anything — update
affected tests to work with your java.util.logging settings.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.reporting.CustomizableHtmlReport.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.local.DirectoryBuildCache.html#org.gradle.caching.local.DirectoryBuildCache:removeUnusedEntriesAfterDays

Working with files

• You can no longer cast FileCollection objects to other types using the as keyword or the
asType() method.

• You can no longer pass null as the configuration action of CopySpec.from(Object, Action).

• For better compatibility with the Kotlin DSL, CopySpec.duplicatesStrategy is no longer
nullable. The property setter no longer accepts null as a way to reset the property back to its
default value. Use DuplicatesStrategy.INHERIT instead.

• The FileCollection.stopExecutionIfEmpty() method has been removed — use the
@SkipWhenEmpty annotation on FileCollection task properties instead.

• The FileCollection.add() method has been removed — use Project.files() and
Project.fileTree() to create configurable file collections/file trees and add to them via
ConfigurableFileCollection.from().

• SimpleFileCollection has been removed — use Project.files(Object…) instead.

• Don’t have your own classes extend AbstractFileCollection — use the Project.files() method
instead. This problem may exhibit as a missing getBuildDependencies() method.

Java builds

• The CompileOptions.bootClasspath property has been removed — use
CompileOptions.bootstrapClasspath instead.

• You can no longer use -source-path as a generic compiler argument — use
CompileOptions.sourcepath instead.

• You can no longer use -processorpath as a generic compiler argument — use
CompileOptions.annotationProcessorPath instead.

• Gradle will no longer automatically apply annotation processors that are on the compile
classpath — use CompileOptions.annotationProcessorPath instead.

• The testClassesDir property has been removed from the Test task — use testClassesDirs
instead.

• The classesDir property has been removed from both the JDepend task and SourceSetOutput.
Use the JDepend.classesDirs and SourceSetOutput.classesDirs properties instead.

• The JavaLibrary(PublishArtifact, DependencySet) constructor has been removed — this was
used by the Shadow Plugin, so make sure you upgrade to at least version 2.x of that plugin.

• The JavaBasePlugin.configureForSourceSet() method has been removed.

• You can no longer create your own instances of JavaPluginConvention,
ApplicationPluginConvention, WarPluginConvention, EarPluginConvention,
BasePluginConvention, and ProjectReportsPluginConvention.

• The Maven Plugin used to publish the highly outdated Maven 2 metadata format. This has
been changed and it will now publish Maven 3 metadata, just like the Maven Publish Plugin.

With the removal of Maven 2 support, the methods that configure unique snapshot behavior
have also been removed. Maven 3 only supports unique snapshots, so we decided to remove
them.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object-org.gradle.api.Action-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DuplicatesStrategy.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileCollection.html#from-java.lang.Object...-
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:bootstrapClasspath
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:sourcepath
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:annotationProcessorPath
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:annotationProcessorPath
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:testClassesDirs
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.SourceSetOutput.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.SourceSetOutput.html#org.gradle.api.tasks.SourceSetOutput:classesDirs
https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/JavaPluginConvention.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/ApplicationPluginConvention.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/WarPluginConvention.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ear/EarPluginConvention.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/BasePluginConvention.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/ProjectReportsPluginConvention.html

Tasks & properties

• The following legacy classes and methods related to lazy properties have been removed
— use ObjectFactory.property() to create Property instances:

◦ PropertyState

◦ DirectoryVar

◦ RegularFileVar

◦ ProjectLayout.newDirectoryVar()

◦ ProjectLayout.newFileVar()

◦ Project.property(Class)

◦ Script.property(Class)

◦ ProviderFactory.property(Class)

• Tasks configured and registered with the task configuration avoidance APIs have more
restrictions on the other methods that can be called from a configuration action.

• The internal @Option and @OptionValues annotations — package
org.gradle.api.internal.tasks.options — have been removed. Use the public @Option and
@OptionValues annotations instead.

• The Task.deleteAllActions() method has been removed with no replacement.

• The Task.dependsOnTaskDidWork() method has been removed — use declared inputs and
outputs instead.

• The following properties and methods of TaskInternal have been removed — use task
dependencies, task rules, reusable utility methods, or the Worker API in place of executing a
task directly.

◦ execute()

◦ executer

◦ getValidators()

◦ addValidator()

• The TaskInputs.file(Object) method can no longer be called with an argument that resolves to
anything other than a single regular file.

• The TaskInputs.dir(Object) method can no longer be called with an argument that resolves to
anything other than a single directory.

• You can no longer register invalid inputs and outputs via TaskInputs and TaskOutputs.

• The TaskDestroyables.file() and TaskDestroyables.files() methods have been removed
— use TaskDestroyables.register() instead.

• SimpleWorkResult has been removed — use WorkResult.didWork.

• Overriding built-in tasks deprecated in 4.8 now produces an error.

Attempting to replace a built-in task will produce an error similar to the following:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-
task_configuration_avoidance.pdf#sec:task_configuration_avoidance_migration_guidelines
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/options/Option.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/options/OptionValues.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html#file-java.lang.Object-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html#dir-java.lang.Object-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputs.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskDestroyables.html#register-java.lang.Object...-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/WorkResult.html#getDidWork--

> Cannot add task 'wrapper' as a task with that name already exists.

Scala & Play

• Play 2.2 is no longer supported — please upgrade the version of Play you are using.

• The ScalaDocOptions.styleSheet property has been removed — the Scaladoc Ant task in Scala
2.11.8 and later no longer supports this property.

Kotlin DSL

• Artifact configuration accessors now have the type
NamedDomainObjectProvider<Configuration> instead of Configuration

• PluginAware.apply<T>(to) was renamed PluginAware.applyTo<T>(target).

Both changes could cause script compilation errors. See the Gradle Kotlin DSL release notes for
more information and how to fix builds broken by the changes described above.

Miscellaneous

• The ConfigurableReport.setDestination(Object) method has been removed — use
ConfigurableReport.setDestination(File) instead.

• The Signature.setFile(File) method has been removed — Gradle does not support changing
the output file for the generated signature.

• The read-only Signature.toSignArtifact property has been removed — it should never have
been part of the public API.

• The @DeferredConfigurable annotation has been removed.

• The method isDeferredConfigurable() was removed from ExtensionSchema.

• IdeaPlugin.performPostEvaluationActions() and
EclipsePlugin.performPostEvaluationActions() have been removed.

• The `BroadcastingCollectionEventRegister.getAddAction() method has been removed with no
replacement.

• The internal org.gradle.util package is no longer imported by default.

Ideally you shouldn’t use classes from this package, but, as a quick fix, you can add explicit
imports to your build scripts for those classes.

• The gradlePluginPortal() repository no longer looks for JARs without a POM by default.

• The Tooling API can no longer connect to builds using a Gradle version below Gradle 2.6. The
same applies to builds run through TestKit.

• Gradle 5.0 requires a minimum Tooling API client version of 3.0. Older client libraries can no
longer run builds with Gradle 5.0.

• The IdeaModule Tooling API model element contains methods to retrieve resources and test
resources so those elements were removed from the result of IdeaModule.getSourceDirs()
and IdeaModule.getTestSourceDirs().

• In previous Gradle versions, the source field in SourceTask was accessible from subclasses.

https://github.com/gradle/kotlin-dsl-samples/releases/tag/v1.0.2#breaking-changes
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/reporting/ConfigurableReport.html#setDestination-java.io.File-

This is not the case anymore as the source field is now declared as private.

• In the Worker API, the working directory of a worker can no longer be set.

• A change in behavior related to dependency and version constraints may impact a small
number of users.

• There have been several changes to property factory methods on DefaultTask that may
impact the creation of custom tasks.

Upgrading from 4.9 and earlier

If you are not already on version 4.9, skip down to the section that applies to your current Gradle
version and work your way up until you reach here. Then, apply these changes when upgrading to
Gradle 4.10.

Deprecated classes, methods and properties

Follow the API links to learn how to deal with these deprecations (if no extra information is
provided here):

• TaskContainer.add() and TaskContainer.addAll() — use TaskContainer.create() or
TaskContainer.register() instead

Potential breaking changes

• There have been several potentially breaking changes in Kotlin DSL — see the Breaking changes
section of that project’s release notes.

• You can no longer use any of the Project.beforeEvaluate() or Project.afterEvaluate() methods
with lazy task configuration, for example inside a TaskContainer.register() block.

• Publishing to AWS S3 requires new permissions.

• Both PluginUnderTestMetadata and GeneratePluginDescriptors — classes used by the Java
Gradle Plugin Development Plugin — have been updated to use the Provider API.

Use the Property.set() method to modify their values rather than using standard property
assignment syntax, unless you are doing so in a Groovy build script. Standard property
assignment still works in that one case.

Upgrading from 4.8 and earlier

• Consider trying the lazy API for task creation and configuration

Potential breaking changes

• You can no longer use GPath syntax with tasks.withType().

Use Groovy’s spread operator instead. For example, you would replace
tasks.withType(JavaCompile).name with tasks.withType(JavaCompile)*.name.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html#create-java.lang.String-java.lang.Class-org.gradle.api.Action-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html#register-java.lang.String-java.lang.Class-org.gradle.api.Action-
https://github.com/gradle/kotlin-dsl/releases/tag/v1.0-RC3
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:beforeEvaluate(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:afterEvaluate(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html#register-java.lang.String-java.lang.Class-org.gradle.api.Action-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/PluginUnderTestMetadata.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/GeneratePluginDescriptors.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html#set-T-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskCollection.html#withType-java.lang.Class-
https://docs.groovy-lang.org/latest/html/documentation/#_spread_operator

Upgrading from 4.7 and earlier

• Switch to the Maven Publish and Ivy Publish plugins

• Use deferred configuration with the publishing plugins

• Configure existing wrapper and init tasks rather than defining your own

• Consider migrating to the built-in dependency locking mechanism if you are currently using a
plugin or custom solution for this

Potential breaking changes

• Build will now fail if a specified init script is not found.

• TaskContainer.remove() now actually removes the given task — some plugins may have
accidentally relied on the old behavior.

• Gradle now honors implicit wildcards in Maven POM exclusions.

• The Kotlin DSL now respects JSR-305 package annotations.

This will lead to some types annotated according to JSR-305 being treated as nullable where
they were treated as non-nullable before. This may lead to compilation errors in the build
script. See the relevant Kotlin DSL release notes for details.

• Error messages will be directed to standard error rather than standard output now, unless a
console is attached to both standard output and standard error. This may affect tools that scrape
a build’s plain console output. Ignore this change if you’re upgrading from an earlier version of
Gradle.

Deprecations

Prior to this release, builds were allowed to replace built-in tasks. This feature has been deprecated.

The full list of built-in tasks that should not be replaced is: wrapper, init, help, tasks, projects,
buildEnvironment, components, dependencies, dependencyInsight, dependentComponents, model,
properties.

Upgrading from 4.6 and earlier

Potential breaking changes

• Gradle will now, by convention, look for Checkstyle configuration files in the root project’s
config/checkstyle directory.

Checkstyle configuration files in subprojects — the old by-convention location — will be ignored
unless you explicitly configure their path via checkstyle.configDir or checkstyle.config.

• The structure of Gradle’s plain console output has changed, which may break tools that scrape
that output.

• The APIs of many native tasks related to compilation, linking and installation have changed in
breaking ways.

https://github.com/gradle/kotlin-dsl/releases/tag/v0.17.4
https://docs.gradle.org/4.8/release-notes.html#overwriting-gradle's-built-in-tasks
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html#org.gradle.api.plugins.quality.CheckstyleExtension:configDir
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html#org.gradle.api.plugins.quality.CheckstyleExtension:config

• [Kotlin DSL] Delegated properties used to access Gradle’s build properties — defined in
gradle.properties for example — must now be explicitly typed.

• [Kotlin DSL] Declaring a plugins {} block inside a nested scope now throws an exception.

• [Kotlin DSL] Only one pluginManagement {} block is allowed now.

• The cache control DSL provided by the org.gradle.api.artifacts.cache.* interfaces are no
longer available.

• getEnabledDirectoryReportDestinations(), getEnabledFileReportDestinations() and
getEnabledReportNames() have all been removed from org.gradle.api.reporting.ReportContainer.

• StartParameter.projectProperties and StartParameter.systemPropertiesArgs now return
immutable maps.

Upgrading from 4.5 and earlier

Deprecations

• You should not put annotation processors on the compile classpath or declare them with the
-processorpath compiler argument.

They should be added to the annotationProcessor configuration instead. If you don’t want any
processing, but your compile classpath contains a processor unintentionally (e.g. as part of a
library you depend on), use the -proc:none compiler argument to ignore it.

• Use CommandLineArgumentProvider in place of CompilerArgumentProvider.

Potential breaking changes

• The Java plugins now add a sourceSetAnnotationProcessor configuration for each source set,
which might break if any of them match existing configurations you have. We recommend you
remove your conflicting configuration declarations.

• The StartParameter.taskOutputCacheEnabled property has been replaced by
StartParameter.setBuildCacheEnabled(boolean).

• The Visual Studio integration now only configures a single solution for all components in a
build.

• Gradle has replaced HttpClient 4.4.1 with version 4.5.5.

• Gradle now bundles the kotlin-stdlib-jdk8 artifact instead of kotlin-stdlib-jre8. This may
affect your build. Please see the Kotlin documentation for more details.

Upgrading from 4.4 and earlier

• Make sure you have a settings.gradle file: it avoids a performance penalty and allows you to set
the root project’s name.

• Gradle now ignores the build cache configuration of included builds (composite builds) and
instead uses the root build’s configuration for all the builds.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/StartParameter.html#getProjectProperties--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/StartParameter.html#getSystemPropertiesArgs--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/process/CommandLineArgumentProvider.html
https://docs.gradle.org/4.10.3/javadoc/org/gradle/api/tasks/compile/CompilerArgumentProvider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/StartParameter.html#setBuildCacheEnabled-boolean-
http://kotlinlang.org/docs/reference/whatsnew12.html#kotlin-standard-library-artifacts-and-split-packages

Potential breaking changes

• Two overloaded ValidateTaskProperties.setOutputFile() methods were removed. They are
replaced with auto-generated setters when the task is accessed from a build script, but that
won’t be the case from plugins and other code outside of the build script.

• The Maven Publish Plugin now produces more complete maven-metadata.xml files, including
maintaining a list of <snapshotVersion> elements. Some older versions of Maven may not be able
to consume this metadata.

• HttpBuildCache no longer follows redirects.

• The Depend task type has been removed.

• Project.file(Object) no longer normalizes case for file paths on case-insensitive file systems. It
now ignores case in such circumstances and does not touch the file system.

• ListProperty no longer extends Property.

Upgrading from 4.3 and earlier

Potential breaking changes

• AbstractTestTask is now extended by non-JVM test tasks as well as Test. Plugins should beware
configuring all tasks of type AbstractTestTask because of this.

• The default output location for EclipseClasspath.defaultOutputDir has changed from
$projectDir/bin to $projectDir/bin/default.

• The deprecated InstallExecutable.setDestinationDir(Provider) was removed — use
InstallExecutable.installDirectory instead.

• The deprecated InstallExecutable.setExecutable(Provider) was removed — use
InstallExecutable.executableFile instead.

• Gradle will no longer prefer a version of Visual Studio found on the path over other locations. It
is now a last resort.

You can bypass the toolchain discovery by specifying the installation directory of the version of
Visual Studio you want via VisualCpp.setInstallDir(Object).

• pluginManagement.repositories is now of type RepositoryHandler rather than
PluginRepositoriesSpec, which has been removed.

• 5xx HTTP errors during dependency resolution will now trigger exceptions in the build.

• The embedded Apache Ant has been upgraded from 1.9.6 to 1.9.9.

• Several third-party libraries used by Gradle have been upgraded to fix security issues.

Upgrading from 4.2 and earlier

• The plugins {} block can now be used in subprojects and for plugins in the buildSrc directory.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ListProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.AbstractTestTask.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html#org.gradle.plugins.ide.eclipse.model.EclipseClasspath:defaultOutputDir
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.InstallExecutable.html#org.gradle.nativeplatform.tasks.InstallExecutable:installDirectory
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.InstallExecutable.html#org.gradle.nativeplatform.tasks.InstallExecutable:executableFile
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html#org.gradle.nativeplatform.toolchain.VisualCpp:installDir
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Other deprecations

• You should no longer run Gradle versions older than 2.6 via the Tooling API.

• You should no longer run any version of Gradle via an older version of the Tooling API than 3.0.

• You should no longer chain TaskInputs.property(String,Object) and TaskInputs.properties(Map)
methods.

Potential breaking changes

• DefaultTask.newOutputDirectory() now returns a DirectoryProperty instead of a DirectoryVar.

• DefaultTask.newOutputFile() now returns a RegularFileProperty instead of a RegularFileVar.

• DefaultTask.newInputFile() now returns a RegularFileProperty instead of a RegularFileVar.

• ProjectLayout.buildDirectory now returns a DirectoryProperty instead of a DirectoryVar.

• AbstractNativeCompileTask.compilerArgs is now of type ListProperty<String> instead of
List<String>.

• AbstractNativeCompileTask.objectFileDir is now of type DirectoryProperty instead of File.

• AbstractLinkTask.linkerArgs is now of type ListProperty<String> instead of List<String>.

• TaskDestroyables.getFiles() is no longer part of the public API.

• Overlapping version ranges for a dependency now result in Gradle picking a version that
satisfies all declared ranges.

For example, if a dependency on some-module is found with a version range of [3,6] and also
transitively with a range of [4,8], Gradle now selects version 6 instead of 8. The prior behavior
was to select 8.

• The order of elements in Iterable properties marked with either @OutputFiles or
@OutputDirectories now matters. If the order changes, the property is no longer considered up
to date.

Prefer using separate properties with @OutputFile/@OutputDirectory annotations or use Map
properties with @OutputFiles/@OutputDirectories instead.

• Gradle will no longer ignore dependency resolution errors from a repository when there is
another repository it can check. Dependency resolution will fail instead. This results in more
deterministic behavior with respect to resolution results.

Upgrading from 4.1 and earlier

Potential breaking changes

• The withPathSensitivity() methods on TaskFilePropertyBuilder and
TaskOutputFilePropertyBuilder have been removed.

• The bundled bndlib has been upgraded from 3.2.0 to 3.4.0.

• The FindBugs Plugin no longer renders progress information from its analysis. If you rely on
that output in any way, you can enable it with FindBugs.showProgress.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html#property-java.lang.String-java.lang.Object-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html#properties-java.util.Map-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/DefaultTask.html#newOutputDirectory--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/DefaultTask.html#newOutputFile--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/DefaultTask.html#newInputFile--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#getBuildDirectory--
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask.html#org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask:compilerArgs
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask.html#org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask:objectFileDir
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.AbstractLinkTask.html#org.gradle.nativeplatform.tasks.AbstractLinkTask:linkerArgs
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskFilePropertyBuilder.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputFilePropertyBuilder.html

Upgrading from 4.0

• Consider using the new Worker API to enable units of work within your build to run in parallel.

Deprecated classes, methods and properties

Follow the API links to learn how to deal with these deprecations (if no extra information is
provided here):

• Nullable

Potential breaking changes

• Non-Java projects that have a project dependency on a Java project now consume the
runtimeElements configuration by default instead of the default configuration.

To override this behavior, you can explicitly declare the configuration to use in the project
dependency. For example: project(path: ':myJavaProject', configuration: 'default').

• Default Zinc compiler upgraded from 0.3.13 to 0.3.15.

• [Kotlin DSL] Base package renamed from org.gradle.script.lang.kotlin to
org.gradle.kotlin.dsl.

Changes in detail

[5.0] Default memory settings changed

The command line client now starts with 64MB of heap instead of 1GB. This may affect builds
running directly inside the client VM using --no-daemon mode. We discourage the use of --no-daemon,
but if you must use it, you can increase the available memory using the GRADLE_OPTS environment
variable.

The Gradle daemon now starts with 512MB of heap instead of 1GB. Large projects may have to
increase this setting using the org.gradle.jvmargs property.

All workers, including compilers and test executors, now start with 512MB of heap. The previous
default was 1/4th of physical memory. Large projects may have to increase this setting on the
relevant tasks, e.g. JavaCompile or Test.

[5.0] New default versions for code quality plugins

The default tool versions of the following code quality plugins have been updated:

• The Checkstyle Plugin now uses 8.12 instead of 6.19 by default.

• The CodeNarc Plugin now uses 1.2.1 instead of 1.1 by default.

• The JaCoCo Plugin now uses 0.8.2 instead of 0.8.1 by default.

• The PMD Plugin now uses 6.8.0 instead of 5.6.1 by default.

In addition, the default ruleset was changed from the now deprecated java-basic to

https://docs.gradle.org/4.10.3/javadoc/org/gradle/api/Nullable.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
http://checkstyle.sourceforge.net
http://checkstyle.sourceforge.net/releasenotes.html#Release_8.12
http://codenarc.sourceforge.net
https://github.com/CodeNarc/CodeNarc/blob/master/CHANGELOG.md#version-121-aug-2018
https://www.jacoco.org/jacoco/
https://www.jacoco.org/jacoco/trunk/doc/changes.html
https://pmd.github.io/
https://pmd.github.io/pmd-6.8.0/pmd_release_notes.html#30-september-2018---680

category/java/errorprone.xml.

We recommend configuring a ruleset explicitly, though.

[5.0] Library upgrades

Several libraries that are used by Gradle have been upgraded:

• Groovy was upgraded from 2.4.15 to 2.5.4.

• Ant has been upgraded from 1.9.11 to 1.9.13.

• The AWS SDK used to access S3-backed Maven/Ivy repositories has been upgraded from 1.11.267
to 1.11.407.

• The BND library used by the OSGi Plugin has been upgraded from 3.4.0 to 4.0.0.

• The Google Cloud Storage JSON API Client Library used to access Google Cloud Storage backed
Maven/Ivy repositories has been upgraded from v1-rev116-1.23.0 to v1-rev136-1.25.0.

• Ivy has been upgraded from 2.2.0 to 2.3.0.

• The JUnit Platform libraries used by the Test task have been upgraded from 1.0.3 to 1.3.1.

• The Maven Wagon libraries used to access Maven repositories have been upgraded from 2.4 to
3.0.0.

• SLF4J has been upgraded from 1.7.16 to 1.7.25.

[5.0] Improved support for dependency and version constraints

Through the Gradle 4.x release stream, new @Incubating features were added to the dependency
resolution engine. These include sophisticated version constraints (prefer, strictly, reject),
dependency constraints, and platform dependencies.

If you have been using the IMPROVED_POM_SUPPORT feature preview, playing with constraints or prefer,
reject and other specific version indications, then make sure to take a good look at your
dependency resolution results.

[5.0] BOM import

Gradle now provides support for importing bill of materials (BOM) files, which are effectively POM
files that use <dependencyManagement> sections to control the versions of direct and transitive
dependencies. All you need to do is declare the POM as a platform dependency.

The following example picks the versions of the gson and dom4j dependencies from the declared
Spring Boot BOM:

https://groovy-lang.org/releasenotes/groovy-2.5.html
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.9.13.html
https://github.com/aws/aws-sdk-java/blob/master/CHANGELOG.md#111407-2018-09-11
https://github.com/bndtools/bnd/wiki/Changes-in-4.0.0
http://ant.apache.org/ivy/history/2.3.0/release-notes.html
https://www.slf4j.org/news.html

dependencies {
 // import a BOM
 implementation platform('org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE')

 // define dependencies without versions
 implementation 'com.google.code.gson:gson'
 implementation 'dom4j:dom4j'
}

[5.0] Separation of compile and runtime dependencies when consuming POMs

Since Gradle 1.0, runtime-scoped dependencies have been included in the Java compilation
classpath, which has some drawbacks:

• The compilation classpath is much larger than it needs to be, slowing down compilation.

• The compilation classpath includes runtime-scoped files that do not impact compilation,
resulting in unnecessary re-compilation when those files change.

With this new behavior, the Java and Java Library plugins both honor the separation of compile
and runtime scopes. This means that the compilation classpath only includes compile-scoped
dependencies, while the runtime classpath adds the runtime-scoped dependencies as well. This is
particularly useful if you develop and publish Java libraries with Gradle where the separation
between api and implementation dependencies is reflected in the published scopes.

[5.0] Changes to property factory methods on DefaultTask

Property factory methods on DefaultTask are now final

The property factory methods such as newInputFile() are intended to be called from the constructor
of a type that extends DefaultTask. These methods are now final to avoid subclasses overriding
these methods and using state that is not initialized.

Inputs and outputs are not automatically registered

The Property instances that are returned by these methods are no longer automatically registered
as inputs or outputs of the task. The Property instances need to be declared as inputs or outputs in
the usual ways, such as attaching annotations such as @OutputFile or using the runtime API to
register the property.

For example, you could previously use the following syntax and have both outputFile instances
registered as declared outputs:

build.gradle

class MyTask extends DefaultTask {
 // note: no annotation here
 final RegularFileProperty outputFile = newOutputFile()
}

task myOtherTask {
 def outputFile = newOutputFile()
 doLast { ... }
}

build.gradle.kts

open class MyTask : DefaultTask() {
 // note: no annotation here
 val outputFile: RegularFileProperty = newOutputFile()
}

task("myOtherTask") {
 val outputFile = newOutputFile()
 doLast { ... }
}

Now you have to explicitly register outputFile, like this:

build.gradle

class MyTask extends DefaultTask {
 @OutputFile // property needs an annotation
 final RegularFileProperty outputFile = project.objects.fileProperty()
}

task myOtherTask {
 def outputFile = project.objects.fileProperty()
 outputs.file(outputFile) // or to be registered using the runtime API
 doLast { ... }
}

build.gradle.kts

open class MyTask : DefaultTask() {
 @OutputFile // property needs an annotation
 val outputFile: RegularFileProperty = project.objects.fileProperty()
}

task("myOtherTask") {
 val outputFile = project.objects.fileProperty()
 outputs.file(outputFile) // or to be registered using the runtime API
 doLast { ... }
}

[5.0] Gradle now bundles JAXB for Java 9 and above

In order to use S3 backed artifact repositories, you previously had to add --add-modules
java.xml.bind to org.gradle.jvmargs when running on Java 9 and above.

Since Java 11 no longer contains the java.xml.bind module, Gradle now bundles JAXB 2.3.1
(com.sun.xml.bind:jaxb-impl) and uses it on Java 9 and above.

Please remove the --add-modules java.xml.bind option from org.gradle.jvmargs, if set.

[5.0] The gradlePluginPortal() repository no longer looks for JARs without a POM by default

With this new behavior, if a plugin or a transitive dependency of a plugin found in the
gradlePluginPortal() repository has no Maven POM it will fail to resolve.

Artifacts published to a Maven repository without a POM should be fixed. If you encounter such
artifacts, please ask the plugin or library author to publish a new version with proper metadata.

If you are stuck with a bad plugin, you can work around by re-enabling JARs as metadata source for

the gradlePluginPortal() repository:

settings.gradle

pluginManagement {
 repositories {
 gradlePluginPortal().tap {
 metadataSources {
 mavenPom()
 artifact()
 }
 }
 }
}

settings.gradle.kts

pluginManagement {
 repositories {
 gradlePluginPortal().apply {
 (this as MavenArtifactRepository).metadataSources {
 mavenPom()
 artifact()
 }
 }
 }
}

Java Library Distribution Plugin utilizes Java Library Plugin

The Java Library Distribution Plugin is now based on the Java Library Plugin instead of the Java
Plugin.

Additionally, the default distribution created by the plugin will contain all artifacts of the
runtimeClasspath configuration instead of the deprecated runtime configuration.

Configuration Avoidance API disallows common configuration errors

The configuration avoidance API introduced in Gradle 4.9 allows you to avoid creating and
configuring tasks that are never used.

With the existing API, this example adds two tasks (foo and bar):

task_configuration_avoidance.pdf#task_configuration_avoidance

build.gradle

tasks.create("foo") {
 tasks.create("bar")
}

build.gradle.kts

tasks.create("foo") {
 tasks.create("bar")
}

When converting this to use the new API, something surprising happens: bar doesn’t exist. The new
API only executes configuration actions when necessary, so the register() for task bar only
executes when foo is configured.

build.gradle

tasks.register("foo") {
 tasks.register("bar") // WRONG
}

build.gradle.kts

tasks.register("foo") {
 tasks.register("bar") // WRONG
}

To avoid this, Gradle now detects this and prevents modification to the underlying container
(through create() or register()) when using the new API.

[5.0] Worker API: working directory of a worker can no longer be set

Since JDK 11 no longer supports changing the working directory of a running process, setting the
working directory of a worker via its fork options is now prohibited.

All workers now use the same working directory to enable reuse.

Please pass files and directories as arguments instead.

[4.10] Publishing to AWS S3 requires new permissions

The S3 repository transport protocol allows Gradle to publish artifacts to AWS S3 buckets. Starting
with this release, every artifact uploaded to an S3 bucket will be equipped with the bucket-owner-
full-control canned ACL. Make sure that the AWS account used to publish artifacts has the
s3:PutObjectAcl and s3:PutObjectVersionAcl permissions, otherwise the upload will fail.

{
 "Version":"2012-10-17",
 "Statement":[
 // ...
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject", // necessary for uploading objects
 "s3:PutObjectAcl", // required starting with this release
 "s3:PutObjectVersionAcl" // if S3 bucket versioning is enabled
],
 "Resource":"arn:aws:s3:::myCompanyBucket/*"
 }
]
}

See AWS S3 Cross Account Access for more information.

[4.9] Consider trying the lazy API for task creation and configuration

Gradle 4.9 introduced a new way to create and configure tasks that works lazily. When you use this
approach for tasks that are expensive to configure, or when you have many, many tasks, your build
configuration time can drop significantly when those tasks don’t run.

You can learn more about lazily creating tasks in the Task Configuration Avoidance chapter. You
can also read about the background to this new feature in this blog post.

[4.8] Switch to the Maven Publish and Ivy Publish Plugins

Now that the publishing plugins are stable, we recommend that you migrate from the legacy
publishing mechanism for standard Java projects, i.e. those based on the Java Plugin. That includes
projects that use any one of: Java Library Plugin, Application Plugin or War Plugin.

To use the new approach, simply replace any upload<Conf> configuration with a publishing {} block.
See the publishing overview chapter for more information.

[4.8] Use deferred configuration for publishing plugins

Prior to Gradle 4.8, the publishing {} block was implicitly treated as if all the logic inside it was
executed after the project was evaluated. This was confusing, because it was the only block that
behaved that way. As part of the stabilization effort in Gradle 4.8, we are deprecating this behavior
and asking all users to migrate their build.

task_configuration_avoidance.pdf#task_configuration_avoidance
https://blog.gradle.org/preview-avoiding-task-configuration-time

The new, stable behavior can be switched on by adding the following to your settings file:

settings.gradle

enableFeaturePreview('STABLE_PUBLISHING')

settings.gradle.kts

enableFeaturePreview("STABLE_PUBLISHING")

We recommend doing a test run with a local repository to see whether all artifacts still have the
expected coordinates. In most cases everything should work as before and you are done. However,
your publishing block may rely on the implicit deferred configuration, particularly if it relies on
values that may change during the configuration phase of the build.

For example, under the new behavior, the following logic assumes that jar.archiveBaseName doesn’t
change after artifactId is set:

build.gradle

subprojects {
 publishing {
 publications {
 mavenJava {
 from components.java
 artifactId = jar.archiveBaseName
 }
 }
 }
}

build.gradle.kts

subprojects {
 publishing {
 publications {
 named<MavenPublication>("mavenJava") {
 from(components["java"])
 artifactId = tasks.jar.get().archiveBaseName.get()
 }
 }
 }
}

If that assumption is incorrect or might possibly be incorrect in the future, the artifactId must be
set within an afterEvaluate {} block, like so:

build.gradle

subprojects {
 publishing {
 publications {
 mavenJava {
 from components.java
 afterEvaluate {
 artifactId = jar.archiveBaseName
 }
 }
 }
 }
}

build.gradle.kts

subprojects {
 publishing {
 publications {
 named<MavenPublication>("mavenJava") {
 from(components["java"])
 afterEvaluate {
 artifactId = tasks.jar.get().archiveBbaseName.get()
 }
 }
 }
 }
}

[4.8] Configure existing wrapper and init tasks

You should no longer define your own wrapper and init tasks. Configure the existing tasks instead,
for example by converting this:

build.gradle

task wrapper(type: Wrapper) {
 ...
}

build.gradle.kts

task<Wrapper>("wrapper") {
 ...
}

to this:

build.gradle

wrapper {
 ...
}

build.gradle.kts

tasks.wrapper {
 ...
}

[4.8] Gradle now honors implicit wildcards in Maven POM exclusions

If an exclusion in a Maven POM was missing either a groupId or artifactId, Gradle used to ignore
the exclusion. Now the missing elements are treated as implicit wildcards — e.g.
<groupId>*</groupId> — which means that some of your dependencies may now be excluded where
they weren’t before.

You will need to explicitly declare any missing dependencies that you need.

[4.7] Changes to the structure of Gradle’s plain console output

The plain console mode now formats output consistently with the rich console, which means that
the output format has changed. For example:

• The output produced by a given task is now grouped together, even when other tasks execute in
parallel with it.

• Task execution headers are printed with a "> Task" prefix.

• All output produced during build execution is written to the standard output file handle. This
includes messages written to System.err unless you are redirecting standard error to a file or
any other non-console destination.

This may break tools that scrape details from the plain console output.

[4.6] Changes to the APIs of native tasks related to compilation, linking and installation

Many tasks related to compiling, linking and installing native libraries and applications have been
converted to the Provider API so that they support lazy configuration. This conversion has
introduced some breaking changes to the APIs of the tasks so that they match the conventions of
the Provider API.

The following tasks have been changed:

AbstractLinkTask and its subclasses

• getDestinationDir() was replaced by getDestinationDirectory().

• getBinaryFile(), getOutputFile() was replaced by getLinkedFile().

• setOutputFile(File) was removed. Use Property.set() instead.

• setOutputFile(Provider) was removed. Use Property.set() instead.

• getTargetPlatform() was changed to return a Property.

• setTargetPlatform(NativePlatform) was removed. Use Property.set() instead.

• getToolChain() was changed to return a Property.

• setToolChain(NativeToolChain) was removed. Use Property.set() instead.

CreateStaticLibrary

• getOutputFile() was changed to return a Property.

• setOutputFile(File) was removed. Use Property.set() instead.

• setOutputFile(Provider) was removed. Use Property.set() instead.

• getTargetPlatform() was changed to return a Property.

• setTargetPlatform(NativePlatform) was removed. Use Property.set() instead.

• getToolChain() was changed to return a Property.

• setToolChain(NativeToolChain) was removed. Use Property.set() instead.

• getStaticLibArgs() was changed to return a ListProperty.

• setStaticLibArgs(List) was removed. Use ListProperty.set() instead.

InstallExecutable

• getSourceFile() was replaced by getExecutableFile().

• getPlatform() was replaced by getTargetPlatform().

https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.AbstractLinkTask.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.CreateStaticLibrary.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.InstallExecutable.html

• setTargetPlatform(NativePlatform) was removed. Use Property.set() instead.

• getToolChain() was changed to return a Property.

• setToolChain(NativeToolChain) was removed. Use Property.set() instead.

The following have also seen similar changes:

• Assemble

• WindowsResourceCompile

• StripSymbols

• ExtractSymbols

• SwiftCompile

• LinkMachOBundle

[4.6] Visual Studio integration only supports a single solution file for all components of a
build

VisualStudioExtension no longer has a solutions property. Instead, you configure a single solution
via VisualStudioRootExtension in the root project, like so:

build.gradle

model {
 visualStudio {
 solution {
 solutionFile.location = "vs/${name}.sln"
 }
 }
}

In addition, there are no longer individual tasks to generate the solution files for each component,
but rather a single visualStudio task that generates a solution file that encompasses all components
in the build.

[4.5] HttpBuildCache no longer follows redirects

When connecting to an HTTP build cache backend via HttpBuildCache, Gradle does not follow
redirects any more, treating them as errors instead. Getting a redirect from the build cache
backend is mostly a configuration error — using an "http" URL instead of "https" for example — and
has negative effects on performance.

[4.4] Third-party dependency upgrades

This version includes several upgrades of third-party dependencies:

https://docs.gradle.org/7.3.2/dsl/org.gradle.language.assembler.tasks.Assemble.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.rc.tasks.WindowsResourceCompile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/tasks/StripSymbols.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/tasks/ExtractSymbols.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/swift/tasks/SwiftCompile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/tasks/LinkMachOBundle.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.ide.visualstudio.VisualStudioRootExtension.html

• jackson: 2.6.6 → 2.8.9

• plexus-utils: 2.0.6 → 2.1

• xercesImpl: 2.9.1 → 2.11.0

• bsh: 2.0b4 → 2.0b6

• bouncycastle: 1.57 → 1.58

This fix the following security issues:

• CVE-2017-7525 (critical)

• SONATYPE-2017-0359 (critical)

• SONATYPE-2017-0355 (critical)

• SONATYPE-2017-0398 (critical)

• CVE-2013-4002 (critical)

• CVE-2016-2510 (severe)

• SONATYPE-2016-0397 (severe)

• CVE-2009-2625 (severe)

• SONATYPE-2017-0348 (severe)

Gradle does not expose public APIs for these 3rd-party dependencies, but those who customize
Gradle will want to be aware.

Migrating Builds From Apache Maven

TIP
Suffering from slow Maven builds? Register here for our Build Cache training session
to learn how Gradle Enterprise can speed up Maven builds by up to 90%.

Apache Maven is a build tool for Java and other JVM-based projects that’s in widespread use, and so
people that want to use Gradle often have to migrate an existing Maven build. This guide will help
with such a migration by explaining the differences and similarities between the two tools' models
and providing steps that you can follow to ease the process.

Converting a build can be scary, but you don’t have to do it alone. You can search docs, forums, and
StackOverflow from help.gradle.org or reach out to the Gradle community on the forums if you get
stuck.

Making a case for migration

The primary differences between Gradle and Maven are flexibility, performance, user experience,
and dependency management. A visual overview of these aspects is available in the Maven vs
Gradle feature comparison.

Since Gradle 3.0, Gradle has invested heavily in making Gradle builds much faster, with features
such as build caching, compile avoidance, and an improved incremental Java compiler. Gradle is
now 2-10x faster than Maven for the vast majority of projects, even without using a build cache. In-

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7525
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4002
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2510
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2625
https://gradle.com/training/build-cache-deep-dive/?bid=docs-migrating-maven
https://maven.apache.org
https://gradle.org/help
https://discuss.gradle.org/c/help-discuss
https://gradle.org/maven-vs-gradle
https://gradle.org/maven-vs-gradle
https://blog.gradle.org/introducing-gradle-build-cache
https://blog.gradle.org/incremental-compiler-avoidance

depth performance comparison and business cases for switching from Maven to Gradle can be
found here.

General guidelines

Gradle and Maven have fundamentally different views on how to build a project. Gradle provides a
flexible and extensible build model that delegates the actual work to a graph of task dependencies.
Maven uses a model of fixed, linear phases to which you can attach goals (the things that do the
work). This may make migrating between the two seem intimidating, but migrations can be
surprisingly easy because Gradle follows many of the same conventions as Maven — such as the
standard project structure — and its dependency management works in a similar way.

Here we lay out a series of steps for you to follow that will help facilitate the migration of any
Maven build to Gradle:

TIP

Keep the old Maven build and new Gradle build side by side. You know the Maven
build works, so you should keep it until you are confident that the Gradle build
produces all the same artifacts and otherwise does what you need. This also means
that users can try the Gradle build without getting a new copy of the source tree.

1. Create a build scan for the Maven build.

A build scan will make it easier to visualize what’s happening in your existing Maven build. For
Maven builds, you’ll be able to see the project structure, what plugins are being used, a timeline
of the build steps, and more. Keep this handy so you can compare it to the Gradle build scans
you get while converting the project.

2. Develop a mechanism to verify that the two builds produce the same artifacts

This is a vitally important step to ensure that your deployments and tests don’t break. Even
small changes, such as the contents of a manifest file in a JAR, can cause problems. If your
Gradle build produces the same output as the Maven build, this will give you and others
confidence in switching over and make it easier to implement the big changes that will provide
the greatest benefits.

This doesn’t mean that you need to verify every artifact at every stage, although doing so can
help you quickly identify the source of a problem. You can just focus on the critical output such
as final reports and the artifacts that are published or deployed.

You will need to factor in some inherent differences in the build output that Gradle produces
compared to Maven. Generated POMs will contain only the information needed for
consumption and they will use <compile> and <runtime> scopes correctly for that scenario. You
might also see differences in the order of files in archives and of files on classpaths. Most
differences will be benign, but it’s worth identifying them and verifying that they are OK.

3. Run an automatic conversion

This will create all the Gradle build files you need, even for multi-module builds. For simpler
Maven projects, the Gradle build will be ready to run!

https://gradle.org/gradle-vs-maven-performance/
https://scans.gradle.com#maven

4. Create a build scan for the Gradle build.

A build scan will make it easier to visualize what’s happening in the build. For Gradle builds,
you’ll be able to see the project structure, the dependencies (regular and inter-project ones),
what plugins are being used and the console output of the build.

Your build may fail at this point, but that’s ok; the scan will still run. Compare the build scan for
the Gradle build to the one for the Maven build and continue down this list to troubleshoot the
failures.

We recommend that you regularly generate build scans during the migration to help you
identify and troubleshoot problems. If you want, you can also use a Gradle build scan to identify
opportunities to improve the performance of the build, after all performance is a big reason for
switching to Gradle in the first place.

5. Verify your dependencies and fix any problems

6. Configure integration and functional tests

Many tests can simply be migrated by configuring an extra source set. If you are using a third-
party library, such as FitNesse, look to see whether there is a suitable community plugin
available on the Gradle Plugin Portal.

7. Replace Maven plugins with Gradle equivalents

In the case of popular plugins, Gradle often has an equivalent plugin that you can use. You
might also find that you can replace a plugin with built-in Gradle functionality. As a last resort,
you may need to reimplement a Maven plugin via your own custom plugins and task types.

The rest of this chapter looks in more detail at specific aspects of migrating a build from Maven to
Gradle.

Understanding the build lifecycle

Maven builds are based around the concept of build lifecycles that consist of a set of fixed phases.
This can prove an impediment for users migrating to Gradle because its build lifecycle is something
different, although it’s important to understand how Gradle builds fit into the structure of
initialization, configuration, and execution phases. Fortunately, Gradle has a feature that can mimic
Maven’s phases: lifecycle tasks.

These allow you to define your own "lifecycles" by creating no-action tasks that simply depend on
the tasks you’re interested in. And to make the transition to Gradle easier for Maven users, the Base
Plugin — applied by all the JVM language plugins like the Java Library Plugin — provides a set of
lifecycle tasks that correspond to the main Maven phases.

Here is a list of some of the main Maven phases and the Gradle tasks that they map to:

clean

Use the clean task provided by the Base Plugin.

https://scans.gradle.com
performance.pdf#performance_gradle
http://docs.fitnesse.org/FrontPage
https://plugins.gradle.org/
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

compile

Use the classes task provided by the Java Plugin and other JVM language plugins. This compiles
all classes for all source files of all languages and also performs resource filtering via the
processResources task.

test

Use the test task provided by the Java Plugin. It runs just the unit tests, or more specifically, the
tests that make up the test source set.

package

Use the assemble task provided by the Base Plugin. This builds whatever is the appropriate
package for the project, for example a JAR for Java libraries or a WAR for traditional Java
webapps.

verify

Use the check task provided by the Base Plugin. This runs all verification tasks that are attached
to it, which typically includes the unit tests, any static analysis tasks — such as Checkstyle — and
others. If you want to include integration tests, you will have to configure these manually, which
is a simple process.

install

Use the publishToMavenLocal task provided by the Maven Publish Plugin.

Note that Gradle builds don’t require you to "install" artifacts as you have access to more
appropriate features like inter-project dependencies and composite builds. You should only use
publishToMavenLocal for interoperating with Maven builds.

Gradle also allows you to resolve dependencies against the local Maven cache, as described in
the Declaring repositories section.

deploy

Use the publish task provided by the Maven Publish Plugin — making sure you switch from the
older Maven Plugin (ID: maven) if your build is using that one. This will publish your package to
all configured publication repositories. There are also other tasks that allow you to publish to a
single repository even when multiple ones are defined.

Note that the Maven Publish Plugin does not publish source and Javadoc JARs by default, but
this can easily be activated as explained in the guide for building java projects.

Performing an automatic conversion

Gradle’s init task is typically used to create a new skeleton project, but you can also use it to
convert an existing Maven build to Gradle automatically. Once Gradle is installed on your system,
all you have to do is run the command

> gradle init

from the root project directory and let Gradle do its thing. That basically consists of parsing the

existing POMs and generating the corresponding Gradle build scripts. Gradle will also create a
settings script if you’re migrating a multi-project build.

You’ll find that the new Gradle build includes the following:

• All the custom repositories that are specified in the POM

• Your external and inter-project dependencies

• The appropriate plugins to build the project (limited to one or more of the Maven Publish, Java
and War Plugins)

See the Build Init Plugin chapter for a complete list of the automatic conversion features.

One thing to bear in mind is that assemblies are not automatically converted. They aren’t
necessarily problematic to convert, but you will need to do some manual work. Options include:

• Using the Distribution Plugin

• Using the Java Library Distribution Plugin

• Using the Application Plugin

• Creating custom archive tasks

• Using a suitable community plugin from the Gradle Plugin Portal

If your Maven build does not have many plugins or much in the way of customisation, you can
simply run

> gradle build

once the migration has completed. This will run the tests and produce the required artifacts
without any extra intervention on your part.

Migrating dependencies

Gradle’s dependency management system is more flexible than Maven’s, but it still supports the
same concepts of repositories, declared dependencies, scopes (dependency configurations in
Gradle), and transitive dependencies. In fact, Gradle works perfectly with Maven-compatible
repositories, which makes it easy to migrate your dependencies.

NOTE

One notable difference between the two tools is in how they manage version
conflicts. Maven uses a "closest" match algorithm, whereas Gradle picks the newest.
Don’t worry though, you have a lot of control over which versions are selected, as
documented in Managing Transitive Dependencies.

Over the following sections, we will show you how to migrate the most common elements of a
Maven build’s dependency management information.

https://plugins.gradle.org/

Declaring dependencies

Gradle uses the same dependency identifier components as Maven: group ID, artifact ID and
version. It also supports classifiers. So all you need to do is substitute the identifier information for
a dependency into Gradle’s syntax, which is described in the Declaring Dependencies chapter.

For example, consider this Maven-style dependency on Log4J:

<dependencies>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.12</version>
 </dependency>
</dependencies>

This dependency would look like the following in a Gradle build script:

Example 1. Declaring a simple compile-time dependency

build.gradle

dependencies {
 implementation 'log4j:log4j:1.2.12' ①
}

build.gradle.kts

dependencies {
 implementation("log4j:log4j:1.2.12") ①
}

① Attaches version 1.2.12 of Log4J to the implementation configuration (scope)

The string identifier takes the Maven values of groupId, artifactId and version, although Gradle
refers to them as group, module and version.

The above example raises an obvious question: what is that implementation configuration? It’s one
of the standard dependency configurations provided by the Java Plugin and is often used as a
substitute for Maven’s default compile scope.

Several of the differences between Maven’s scopes and Gradle’s standard configurations come
down to Gradle distinguishing between the dependencies required to build a module and the
dependencies required to build a module that depends on it. Maven makes no such distinction, so
published POMs typically include dependencies that consumers of a library don’t actually need.

Here are the main Maven dependency scopes and how you should deal with their migration:

compile

Gradle has two configurations that can be used in place of the compile scope: implementation and
api. The former is available to any project that applies the Java Plugin, while api is only available
to projects that specifically apply the Java Library Plugin.

In most cases you should simply use the implementation configuration, particularly if you’re
building an application or webapp. But if you’re building a library, you can learn about which
dependencies should be declared using api in the section on Building Java libraries. Even more
information on the differences between api and implementation is provided in the Java Library
Plugin chapter linked above.

runtime

Use the runtimeOnly configuration.

test

Gradle distinguishes between those dependencies that are required to compile a project’s tests
and those that are only needed to run them.

Dependencies required for test compilation should be declared against the testImplementation
configuration. Those that are only required for running the tests should use testRuntimeOnly.

provided

Use the compileOnly configuration.

Note that the War Plugin adds providedCompile and providedRuntime dependency configurations.
These behave slightly differently from compileOnly and simply ensure that those dependencies
aren’t packaged in the WAR file. However, the dependencies are included on runtime and test
runtime classpaths, so use these configurations if that’s the behavior you need.

import

The import scope is mostly used within <dependencyManagement> blocks and applies solely to POM-
only publications. Read the section on Using bills of materials to learn more about how to
replicate this behavior.

You can also specify a regular dependency on a POM-only publication. In this case, the
dependencies declared in that POM are treated as normal transitive dependencies of the build.

For example, imagine you want to use the groovy-all POM for your tests. It’s a POM-only
publication that has its own dependencies listed inside a <dependencies> block. The appropriate
configuration in the Gradle build looks like this:

Example 2. Consuming a POM-only dependency

build.gradle

dependencies {
 testImplementation 'org.codehaus.groovy:groovy-all:2.5.4'
}

build.gradle.kts

dependencies {
 testImplementation("org.codehaus.groovy:groovy-all:2.5.4")
}

The result of this will be that all compile and runtime scope dependencies in the groovy-all POM
get added to the test runtime classpath, while only the compile scope dependencies get added to
the test compilation classpath. Dependencies with other scopes will be ignored.

Declaring repositories

Gradle allows you to retrieve declared dependencies from any Maven-compatible or Ivy-compatible
repository. Unlike Maven, it has no default repository and so you have to declare at least one. In
order to have the same behavior as your Maven build, just configure Maven Central in your Gradle
build, like this:

Example 3. Configuring the build to use Maven Central

build.gradle

repositories {
 mavenCentral()
}

build.gradle.kts

repositories {
 mavenCentral()
}

You can also use the repositories {} block to configure custom repositories, as described in the

Repository Types chapter.

Lastly, Gradle allows you to resolve dependencies against the local Maven cache/repository. This
helps Gradle builds interoperate with Maven builds, but it shouldn’t be a technique that you use if
you don’t need that interoperability. If you want to share published artifacts via the filesystem,
consider configuring a custom Maven repository with a file:// URL.

You might also be interested in learning about Gradle’s own dependency cache, which behaves
more reliably than Maven’s and can be used safely by multiple concurrent Gradle processes.

Controlling dependency versions

The existence of transitive dependencies means that you can very easily end up with multiple
versions of the same dependency in your dependency graph. By default, Gradle will pick the newest
version of a dependency in the graph, but that’s not always the right solution. That’s why it
provides several mechanisms for controlling which version of a given dependency is resolved.

On a per-project basis, you can use:

• Dependency constraints

• Bills of materials (Maven BOMs)

• Overriding transitive versions

There are even more, specialized options listed in the controlling transitive dependencies chapter.

If you want to ensure consistency of versions across all projects in a multi-project build, similar to
how the <dependencyManagement> block in Maven works, you can use the Java Platform Plugin. This
allows you declare a set of dependency constraints that can be applied to multiple projects. You can
even publish the platform as a Maven BOM or using Gradle’s metadata format. See the plugin page
for more information on how to do that, and in particular the section on Consuming platforms to
see how you can apply a platform to other projects in the same build.

Excluding transitive dependencies

Maven builds use exclusions to keep unwanted dependencies — or unwanted versions of
dependencies — out of the dependency graph. You can do the same thing with Gradle, but that’s not
necessarily the right thing to do. Gradle provides other options that may be more appropriate for a
given situation, so you really need to understand why an exclusion is in place to migrate it properly.

If you want to exclude a dependency for reasons unrelated to versions, then check out the section
on Excluding transitive dependencies. It shows you how to attach an exclusion either to an entire
configuration (often the most appropriate solution) or to a dependency. You can even easily apply
an exclusion to all configurations.

If you’re more interested in controlling which version of a dependency is actually resolved, see the
previous section.

Handling optional dependencies

You are likely to encounter two situations regarding optional dependencies:

• Some of your transitive dependencies are declared as optional

• You want to declare some of your direct dependencies as optional in your project’s published
POM

For the first scenario, Gradle behaves the same way as Maven and simply ignores any transitive
dependencies that are declared as optional. They are not resolved and have no impact on the
versions selected if the same dependencies appear elsewhere in the dependency graph as non-
optional.

As for publishing dependencies as optional, Gradle provides a richer model called feature variants,
which will let you declare the "optional features" your library provides.

Using bills of materials (BOMs)

Maven allows you to share dependency constraints by defining dependencies inside a
<dependencyManagement> section of a POM file that has a packaging type of pom. This special type of
POM (a BOM) can then be imported into other POMs so that you have consistent library versions
across your projects.

Gradle can use such BOMs for the same purpose, using a special dependency syntax based on
platform() and enforcedPlatform() methods. You simply declare the dependency in the normal way,
but wrap the dependency identifier in the appropriate method, as shown in this example that
"imports" the Spring Boot Dependencies BOM:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:platform(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:enforcedPlatform(java.lang.Object)

Example 4. Importing a BOM in a Gradle build

build.gradle

dependencies {
 implementation platform('org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE') ①

 implementation 'com.google.code.gson:gson' ②
 implementation 'dom4j:dom4j'
}

build.gradle.kts

dependencies {
 implementation(platform("org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE")) ①

 implementation("com.google.code.gson:gson") ②
 implementation("dom4j:dom4j")
}

① Applies the Spring Boot Dependencies BOM

② Adds a dependency whose version is defined by that BOM

You can learn more about this feature and the difference between platform() and
enforcedPlatform() in the section on importing version recommendations from a Maven BOM.

NOTE

You can use this feature to apply the <dependencyManagement> information from any
dependency’s POM to the Gradle build, even those that don’t have a packaging type
of pom. Both platform() and enforcedPlatform() will ignore any dependencies
declared in the <dependencies> block.

Migrating multi-module builds (project aggregation)

Maven’s multi-module builds map nicely to Gradle’s multi-project builds. Try the corresponding
sample to see how a basic multi-project Gradle build is set up.

To migrate a multi-module Maven build, simply follow these steps:

1. Create a settings script that matches the <modules> block of the root POM.

For example, this <modules> block:

../samples/sample_structuring_software_projects.html

<modules>
 <module>simple-weather</module>
 <module>simple-webapp</module>
</modules>

can be migrated by adding the following line to the settings script:

Example 5. Declaring which projects are part of the build

settings.gradle

rootProject.name = 'simple-multi-module' ①

include 'simple-weather', 'simple-webapp' ②

settings.gradle.kts

rootProject.name = "simple-multi-module" ①

include("simple-weather", "simple-webapp") ②

① Sets the name of the overall project

② Configures two subprojects as part of this build

Output of gradle projects

> gradle projects

--
Root project 'simple-multi-module'
--

Root project 'simple-multi-module'
+--- Project ':simple-weather'
\--- Project ':simple-webapp'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :simple-weather:tasks

2. Replace cross-module dependencies with project dependencies.

3. Replicate project inheritance with convention plugins.

This basically involves creating a root project build script that injects shared configuration into

the appropriate subprojects.

Sharing versions across projects

If you want to replicate the Maven pattern of having dependency versions declared in the
dependencyManagement section of the root POM file, the best approach is to leverage the java-platform
plugin. You will need to add a dedicated project for this and consume it in the regular projects of
your build. See the documentation for more details on this pattern.

Migrating Maven profiles and properties

Maven allows you parameterize builds using properties of various sorts. Some are read-only
properties of the project model, others are user-defined in the POM. It even allows you to treat
system properties as project properties.

Gradle has a similar system of project properties, although it differentiates between those and
system properties. You can, for example, define properties in:

• the build script

• a gradle.properties file in the root project directory

• a gradle.properties file in the $HOME/.gradle directory

Those aren’t the only options, so if you are interested in finding out more about how and where you
can define properties, check out the Build Environment chapter.

One important piece of behavior you need to be aware of is what happens when the same property
is defined in both the build script and one of the external properties files: the build script value
takes precedence. Always. Fortunately, you can mimic the concept of profiles to provide overridable
default values.

Which brings us on to Maven profiles. These are a way to enable and disable different
configurations based on environment, target platform, or any other similar factor. Logically, they
are nothing more than limited ‘if' statements. And since Gradle has much more powerful ways to
declare conditions, it does not need to have formal support for profiles (except in the POMs of
dependencies). You can easily get the same behavior by combining conditions with secondary build
scripts, as you’ll see.

Let’s say you have different deployment settings depending on the environment: local development
(the default), a test environment, and production. To add profile-like behavior, you first create build
scripts for each environment in the project root: profile-default.gradle, profile-test.gradle, and
profile-prod.gradle. You can then conditionally apply one of those profile scripts based on a project
property of your own choice.

The following example demonstrates the basic technique using a project property called
buildProfile and profile scripts that simply initialize an extra project property called message:

Example 6. Mimicking the behavior of Maven profiles in Gradle

build.gradle

if (!hasProperty('buildProfile')) ext.buildProfile = 'default' ①

apply from: "profile-${buildProfile}.gradle" ②

tasks.register('greeting') {
 doLast {
 println message ③
 }
}

profile-default.gradle

ext.message = 'foobar' ④

profile-test.gradle

ext.message = 'testing 1 2 3' ④

profile-prod.gradle

ext.message = 'Hello, world!' ④

build.gradle.kts

val buildProfile: String? by project ①

apply(from = "profile-${buildProfile ?: "default"}.gradle.kts") ②

tasks.register("greeting") {
 val message: String by project.extra
 doLast {
 println(message) ③
 }
}

profile-default.gradle.kts

val message by extra("foobar") ④

profile-test.gradle.kts

val message by extra("testing 1 2 3") ④

profile-prod.gradle.kts

val message by extra("Hello, world!") ④

① Checks for the existence of (Groovy) or binds (Kotlin) the buildProfile project property

② Applies the appropriate profile script, using the value of buildProfile in the script filename

③ Prints out the value of the message extra project property

④ Initializes the message extra project property, whose value can then be used in the main build
script

With this setup in place, you can activate one of the profiles by passing a value for the project
property you’re using — buildProfile in this case:

Output of gradle greeting

> gradle greeting
foobar

Output of gradle -PbuildProfile=test greeting

> gradle -PbuildProfile=test greeting
testing 1 2 3

You’re not limited to checking project properties. You could also check environment variables, the
JDK version, the OS the build is running on, or anything else you can imagine.

One thing to bear in mind is that high level condition statements make builds harder to understand
and maintain, similar to the way they complicate object-oriented code. The same applies to profiles.
Gradle offers you many better ways to avoid the extensive use of profiles that Maven often
requires, for example by configuring multiple tasks that are variants of one another. See the
publishPubNamePublicationToRepoNameRepository tasks created by the Maven Publish Plugin.

For a lengthier discussion on working with Maven profiles in Gradle, look no further than this blog
post.

Filtering resources

Maven has a phase called process-resources that has the goal resources:resources bound to it by
default. This gives the build author an opportunity to perform variable substitution on various files,
such as web resources, packaged properties files, etc.

The Java plugin for Gradle provides a processResources task to do the same thing. This is a Copy task
that copies files from the configured resources directory — src/main/resources by default — to an
output directory. And as with any Copy task, you can configure it to perform file filtering, renaming,
and content filtering.

As an example, here’s a configuration that treats the source files as Groovy SimpleTemplateEngine
templates, providing version and buildNumber properties to those templates:

Example 7. Filtering the content of resources via the processResources task

build.gradle

processResources {
 expand(version: version, buildNumber: currentBuildNumber)
}

build.gradle.kts

tasks {
 processResources {
 expand("version" to version, "buildNumber" to currentBuildNumber)
 }
}

See the API docs for CopySpec to see all the options available to you.

https://blog.gradle.org/maven-pom-profiles
https://blog.gradle.org/maven-pom-profiles
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html
https://docs.groovy-lang.org/docs/next/html/documentation/template-engines.html#_simpletemplateengine
https://docs.groovy-lang.org/docs/next/html/documentation/template-engines.html#_simpletemplateengine
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html

Configuring integration tests

Many Maven builds incorporate integration tests of some sort, which Maven supports through an
extra set of phases: pre-integration-test, integration-test, post-integration-test, and verify. It
also uses the Failsafe plugin in place of Surefire so that failed integration tests don’t automatically
fail the build (because you may need to clean up resources, such as a running application server).

This behavior is easy to replicate in Gradle with source sets, as explained in our chapter on Testing
in Java & JVM projects. You can then configure a clean-up task, such as one that shuts down a test
server for example, to always run after the integration tests regardless of whether they succeed or
fail using Task.finalizedBy().

If you really don’t want your integration tests to fail the build, then you can use the
Test.ignoreFailures setting described in the Test execution section of the Java testing chapter.

Source sets also give you a lot of flexibility on where you place the source files for your integration
tests. You can easily keep them in the same directory as the unit tests or, more preferably, in a
separate source directory like src/integTest/java. To support other types of tests, you just add more
source sets and Test tasks!

Migrating common plugins

Maven and Gradle share a common approach of extending the build through plugins. Although the
plugin systems are very different beneath the surface, they share many feature-based plugins, such
as:

• Shade/Shadow

• Jetty

• Checkstyle

• JaCoCo

• AntRun (see further down)

Why does this matter? Because many plugins rely on standard Java conventions, so migration is
just a matter of replicating the configuration of the Maven plugin in Gradle. As an example, here’s a
simple Maven Checkstyle plugin configuration:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:ignoreFailures
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html

...
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <version>2.17</version>
 <executions>
 <execution>
 <id>validate</id>
 <phase>validate</phase>
 <configuration>
 <configLocation>checkstyle.xml</configLocation>
 <encoding>UTF-8</encoding>
 <consoleOutput>true</consoleOutput>
 <failsOnError>true</failsOnError>
 <linkXRef>false</linkXRef>
 </configuration>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
</plugin>
...

Everything outside of the configuration block can safely be ignored when migrating to Gradle. In
this case, the corresponding Gradle configuration looks like the following:

Example 8. Configuring the Gradle Checkstyle Plugin

build.gradle

checkstyle {
 config = resources.text.fromFile('checkstyle.xml', 'UTF-8')
 showViolations = true
 ignoreFailures = false
}

build.gradle.kts

checkstyle {
 config = resources.text.fromFile("checkstyle.xml", "UTF-8")
 isShowViolations = true
 isIgnoreFailures = false
}

The Checkstyle tasks are automatically added as dependencies of the check task, which also includes
test. If you want to ensure that Checkstyle runs before the tests, then just specify an ordering with
the mustRunAfter() method:

Example 9. Controlling when the checkstyle task runs

build.gradle

test.mustRunAfter checkstyleMain, checkstyleTest

build.gradle.kts

tasks {
 test {
 mustRunAfter(checkstyleMain, checkstyleTest)
 }
}

As you can see, the Gradle configuration is often much shorter than the Maven equivalent. You also
have a much more flexible execution model since you are no longer constrained by Maven’s fixed
phases.

While migrating a project from Maven, don’t forget about source sets. These often provide a more
elegant solution for handling integration tests or generated sources than Maven can provide, so you
should factor them into your migration plans.

Ant goals

Many Maven builds rely on the AntRun plugin to customize the build without the overhead of
implementing a custom Maven plugin. Gradle has no equivalent plugin because Ant is a first-class
citizen in Gradle builds, via the ant object. For example, you can use Ant’s Echo task like this:

Example 10. Invoking Ant tasks

build.gradle

tasks.register('sayHello') {
 doLast {
 ant.echo message: 'Hello!'
 }
}

build.gradle.kts

tasks.register("sayHello") {
 doLast {
 ant.withGroovyBuilder {
 "echo"("message" to "Hello!")
 }
 }
}

Even Ant properties and filesets are supported natively. To learn more, see Using Ant from Gradle.

TIP
It may be simpler and cleaner to just create custom task types to replace the work that
Ant is doing for you. You can then more readily benefit from incremental build and
other useful Gradle features.

Understanding which plugins you don’t need

It’s worth remembering that Gradle builds are typically easier to extend and customize than Maven
ones. In this context, that means you may not need a Gradle plugin to replace a Maven one. For
example, the Maven Enforcer plugin allows you to control dependency versions and environmental
factors, but these things can easily be configured in a normal Gradle build script.

Dealing with uncommon and custom plugins

You may come across Maven plugins that have no counterpart in Gradle, particularly if you or
someone in your organisation has written a custom plugin. Such cases rely on you understanding
how Gradle (and potentially Maven) works, because you will usually have to write your own
plugin.

For the purposes of migration, there are two key types of Maven plugins:

• Those that use the Maven project object.

• Those that don’t.

Why is this important? Because if you use one of the latter, you can trivially reimplement it as a
custom Gradle task type. Simply define task inputs and outputs that correspond to the mojo
parameters and convert the execution logic into a task action.

If a plugin depends on the Maven project, then you will have to rewrite it. Don’t start by
considering how the Maven plugin works, but look at what problem it is trying to solve. Then try to
work out how to solve that problem in Gradle. You’ll probably find that the two build models are
different enough that "transcribing" Maven plugin code into a Gradle plugin just won’t be effective.
On the plus side, the plugin is likely to be much easier to write than the original Maven one because
Gradle has a much richer build model and API.

If you do need to implement custom logic, either via build scripts or plugins, check out the Guides
related to plugin development. Also be sure to familiarize yourself with Gradle’s Groovy DSL
Reference, which provides comprehensive documentation on the API that you’ll be working with. It
details the standard configuration blocks (and the objects that back them), the core types in the
system (Project, Task, etc.), and the standard set of task types. The main entry point is the Project
interface as that’s the top-level object that backs the build scripts.

Further reading

This chapter has covered the major topics that are specific to migrating Maven builds to Gradle. All
that remain are a few other areas that may be useful during or after a migration:

• Learn how to configure Gradle’s build environment, including the JVM settings used to run it

• Learn how to structure your builds effectively

• Configure Gradle’s logging and use it from your builds

As a final note, this guide has only touched on a few of Gradle’s features and we encourage you to
learn about the rest from the other chapters of the user manual and from our step-by-step samples.

Migrating Builds From Apache Ant
Apache Ant is a build tool with a long history in the Java world that is still widely used, albeit by a
decreasing number of teams. While flexible, it lacks conventions and many of the powerful features
that Gradle can provide. Migrating to Gradle is worthwhile so that your builds can become slimmer,
simpler and faster, while still retaining the flexibility you enjoy with Ant. You’ll also benefit from
robust support for multi-project builds and easy-to-use, flexible dependency management.

The biggest challenge in migrating from Ant to Gradle is that there is no such thing as a standard
Ant build. That makes it difficult to provide specific instructions. Fortunately, Gradle has some great
integration features with Ant that can make the process relatively smooth. And even migrating
from Ivy-based dependency management isn’t particularly hard because Gradle has a similar
model based on dependency configurations that works with Ivy-compatible repositories.

We will start by outlining the things you should consider at the outset of migrating a build from Ant
to Gradle and offer some general guidelines on how to proceed.

https://gradle.org/guides/?q=Plugin%20Development
https://gradle.org/guides/?q=Plugin%20Development
https://docs.gradle.org/7.3.2/dsl/
https://docs.gradle.org/7.3.2/dsl/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
../samples/index.html
https://ant.apache.org/
https://ant.apache.org/ivy/

General guidelines

When you undertake to migrate a build from Ant to Gradle, you should keep in mind the nature of
both what you already have and where you would like to end up. Do you want a Gradle build that
mirrors the structure of the existing Ant build? Or do you want to move to something that is more
idiomatic to Gradle? What are the main benefits you are looking for?

To understand the implications, consider the two extreme endpoints that you could aim for:

• An imported build via ant.importBuild()

This approach is quick, simple and works for many Ant-based builds. You end up with a build
that’s effectively identical to the original Ant build, except your Ant targets become Gradle
tasks. Even the dependencies between targets are retained.

The downside is that you’re still using the Ant build, which you must continue to maintain. You
also lose the advantages of Gradle’s conventions, many of its plugins, its dependency
management, and so on. You can still enhance the build with incremental build information,
but it’s more effort than would be the case for a normal Gradle build.

• An idiomatic Gradle build

If you want to future proof your build, this is where you want to end up. Making use of Gradle’s
conventions and plugins will result in a smaller, easier-to-maintain build, with a structure that
is familiar to many Java developers. You will also find it easier to take advantage of Gradle’s
power features to improve build performance.

The main downside is the extra work required to perform the migration, particularly if the
existing build is complex and has many inter-project dependencies. But such builds often
benefit the most from a switch to idomatic Gradle. In addition, Gradle provides many features
that can ease the migration, such as the ability to use core and custom Ant tasks directly from a
Gradle build.

You ideally want to end up somewhere close to the second option in the long term, but you don’t
have to get there in one fell swoop.

What follows is a series of steps to help you decide the approach you want to take and how to go
about it:

1. Keep the old Ant build and new Gradle build side by side

You know the Ant build works, so you should keep it until you are confident that the Gradle
build produces all the same artifacts and otherwise does what you need. This also means that
users can try the Gradle build without getting a new copy of the source tree.

Don’t try to change the directory and file structure of the build until after you’re ready to make
the switch.

2. Develop a mechanism to verify that the two builds produce the same artifacts

This is a vitally important step to ensure that your deployments and tests don’t break. Even

small changes, such as the contents of a manifest file in a JAR, can cause problems. If your
Gradle build produces the same output as the Ant build, this will give you and others confidence
in switching over and make it easier to implement the big changes that will provide the greatest
benefits.

3. Decide whether you have a multi-project build or not

Multi-project builds are generally harder to migrate and require more work than single-project
ones. We have provided some dedicated advice to help with the process in the Migrating multi-
project builds section.

4. Work out what plugins to use for each project

We expect that the vast majority of Ant builds are for JVM-based projects, for which there are a
wealth of plugins that provide a lot of the functionality you need. Not only are there the core
plugins that come packaged with Gradle, but you can also find many useful plugins on the
Plugin Portal.

Even if the Java Plugin or one of its derivatives (such as the Java Library Plugin) aren’t a good
match for your build, you should at least consider the Base Plugin for its lifecycle tasks.

5. Import the Ant build or create a Gradle build from scratch

This step very much depends on the requirements of your build. If a selection of Gradle plugins
can do the vast majority of the work your Ant build does, then it probably makes sense to create
a fresh Gradle build script that doesn’t depend on the Ant build and either implements the
missing pieces itself or utilizes existing Ant tasks.

The alternative approach is to import the Ant build into the Gradle build script and gradually
replace the Ant build functionality. This allows you to have a working Gradle build at each
stage, but it requires a bit of work to get the Gradle tasks working properly with the Ant ones.
You can learn more about this approach in Working with an imported build.

6. Configure your build for the existing directory and file structure

Gradle makes use of conventions to eliminate much of the boilerplate associated with older
builds and to make it easier for users to work with new builds once they are familiar with those
conventions. But that doesn’t mean you have to follow them.

Gradle provides many configuration options that allow for a good degree of customization.
Those options are typically made available through the plugins that provide the conventions.
For example, the standard source directory structure for production Java code — src/main/java
— is provided by the Java Plugin, which allows you to configure a different source path. Many
paths can be modified via properties on the Project object.

7. Migrate to standard Gradle conventions if you wish

Once you’re confident that the Gradle build is producing the same artifacts and other resources
as the Ant build, you can consider migrating to the standard conventions, such as for source
directory paths. Doing so will allow you to remove the extra configuration that was required to
override those conventions. New team members will also find it easier to work with the build

https://plugins.gradle.org/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html

after the change.

It’s up to you to decide whether this step is worth the time, energy and potential disruption that
it might incur, which in turn depends on your specific build and team.

The rest of the chapter covers some common scenarios you will likely deal with during the
migration, such as dependency management and working with Ant tasks.

Working with an imported build

The first step of many migrations will involve importing an Ant build using ant.importBuild(). If
you do that, how do you then move towards a standard Gradle build without replacing everything
at once?

The important thing to remember is that the Ant targets become real Gradle tasks, meaning you can
do things like modify their task dependencies, attach extra task actions, and so on. This allows you
to substitute native Gradle tasks for the equivalent Ant ones, maintaining any links to other existing
tasks.

As an example, imagine that you have a Java library project that you want to migrate from Ant to
Gradle. The Gradle build script has the line that imports the Ant build and now want to use the
standard Gradle mechanism for compiling the Java source files. However, you want to keep using
the existing package task that creates the library’s JAR file.

In diagrammatic form, the scenario looks like the following, where each box represents a
target/task:

The idea is to substitute the standard Gradle compileJava task for the Ant build task. There are
several steps involved in this substitution:

1. Applying the Java Library Plugin

This provides the compileJava task shown in the diagram.

2. Renaming the old build task

The name build conflicts with the standard build task provided by the Base Plugin (via the Java
Library Plugin).

3. Configuring the compilation to use the existing directory structure

There’s a good chance the Ant build does not conform to the standard Gradle directory
structure, so you need to tell Gradle where to find the source files and where to place the
compiled classes so package can find them.

4. Updating task dependencies

compileJava must depend on prepare, package must depend on compileJava rather than ant_build,
and assemble must depend on package rather than the standard Gradle jar task.

Applying the plugin is as simple as inserting a plugins {} block at the beginning of the Gradle build
script, i.e. before ant.importBuild(). Here’s how to apply the Java Library Plugin:

Example 11. Applying the Java Library Plugin

build.gradle

plugins {
 id 'java-library'
}

build.gradle.kts

plugins {
 `java-library`
}

To rename the build task, use the variant of AntBuilder.importBuild() that accepts a transformer,
like this:

Example 12. Renaming targets on import

build.gradle

ant.importBuild('build.xml') { String oldTargetName ->
 return oldTargetName == 'build' ? 'ant_build' : oldTargetName ①
}

build.gradle.kts

ant.importBuild("build.xml") { oldTargetName ->
 if (oldTargetName == "build") "ant_build" else oldTargetName ①
}

① Renames the build target to ant_build and leaves all other targets unchanged

Configuring a different path for the sources is described in the Building Java & JVM projects
chapter, while you can change the output directory for the compiled classes in a similar way.

Let’s say the original Ant build stores these paths in Ant properties, src.dir for the Java source files
and classes.dir for the output. Here’s how you would configure Gradle to use those paths:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object-org.gradle.api.Transformer-

Example 13. Configuring the source sets

build.gradle

sourceSets {
 main {
 java {
 srcDirs = [ant.properties['src.dir']]
 destinationDirectory.set(file(ant.properties['classes.dir']))
 }
 }
}

build.gradle.kts

sourceSets {
 main {
 java.setSrcDirs(listOf(ant.properties["src.dir"]))
 java.destinationDirectory.set(file(ant.properties["classes.dir"] ?:
"$buildDir/classes"))
 }
}

You should eventually aim to switch the standard directory structure for your type of project if
possible and then you’ll be able to remove this customization.

The last step is also straightforward and involves using the Task.dependsOn property and
Task.dependsOn() method to detach and link tasks. The property is appropriate for replacing
dependencies, while the method is the preferred way to add to the existing dependencies.

Here is the required task dependency configuration required by the example scenario, which
should come after the Ant build import:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 14. Configuring the task dependencies

build.gradle

compileJava.dependsOn 'prepare' ①
tasks.named('package') { dependsOn = ['compileJava'] } ②
assemble.dependsOn = ['package'] ③

build.gradle.kts

tasks {
 compileJava {
 dependsOn("prepare") ①
 }
 named("package") {
 setDependsOn(listOf(compileJava)) ②
 }
 assemble {
 setDependsOn(listOf("package")) ③
 }
}

① Makes compilation depend on the prepare task

② Detaches package from the ant_build task and makes it depend on compileJava

③ Detaches assemble from the standard Gradle jar task and makes it depend on package instead

That’s it! These four steps will successfully replace the old Ant compilation with the Gradle
implementation. Even this small migration will be a big help because you’ll be able to take
advantage of Gradle’s incremental Java compilation for faster builds.

TIP

This is just a demonstration of how to go about performing a migration in stages. It
may make more sense to include resource processing — like with properties files
— and packaging with the compilation in this stage, since all three aspects are well
integrated in Gradle.

One important question you will have to ask yourself is how many tasks to migrate in each stage.
The larger the chunks you can migrate in one go the better, but this must be offset against how
many custom steps within the Ant build will be affected by the changes.

For example, if the Ant build follows a fairly standard approach for compilation, static resources,
packaging and unit tests, then it is probably worth migrating all those together. But if the build
performs some extra processing on the compiled classes, or does something unique when
processing the static resources, it is probably worth splitting those tasks into separate stages.

Managing dependencies

Ant builds typically take one of two approaches to dealing with binary dependencies (such as
libraries):

• Storing them with the project in a local "lib" directory

• Using Apache Ivy to manage them

They each require a different technique for the migration to Gradle, but you will find the process
straightforward in either case. We look at the details of each scenario in the following sections.

Serving dependencies from a directory

When you are attempting to migrate a build that stores its dependencies on the filesystem, either
locally or on the network, you should consider whether you want to eventually move to managed
dependencies using remote repositories. That’s because you can incorporate filesystem
dependencies into a Gradle build in one of two ways:

• Define a flat-directory repository and use standard dependency declarations

• Attach the files directly to the appropriate dependency configurations (file dependencies)

It’s easier to migrate to managed dependencies served from Maven- or Ivy-compatible repositories
if you take the first approach, but doing so requires all your files to conform to the naming
convention "<moduleName>-<version>.<extension>".

NOTE
If you store your dependencies in the standard Maven repository layout
— <repoDir>/<group>/<module>/<version> — then you can define a custom Maven
repository with a "file://" URL.

To demonstrate the two techniques, consider a project that has the following library JARs in its libs
directory:

libs
├── our-custom.jar
├── log4j-1.2.8.jar
└── commons-io-2.1.jar

The file our-custom.jar lacks a version number, so it has to be added as a file dependency. But the
other two JARs match the required naming convention and so can be declared as normal module
dependencies that are retrieved from a flat-directory repository.

The following sample build script demonstrates how you can incorporate all of these libraries into a
build:

https://ant.apache.org/ivy/

Example 15. Declaring dependencies served from the filesystem

build.gradle

repositories {
 flatDir {
 name = 'libs dir'
 dir file('libs') ①
 }
}

dependencies {
 implementation files('libs/our-custom.jar') ②
 implementation ':log4j:1.2.8', ':commons-io:2.1' ③
}

build.gradle.kts

repositories {
 flatDir {
 name = "libs dir"
 dir(file("libs")) ①
 }
}

dependencies {
 implementation(files("libs/our-custom.jar")) ②
 implementation(":log4j:1.2.8") ③
 implementation(":commons-io:2.1") ③
}

① Specifies the path to the directory containing the JAR files

② Declares a file dependency for the unversioned JAR

③ Declares dependencies using standard dependency coordinates — note that no group is
specified, but each identifier has a leading :, implying an empty group

The above sample will add our-custom.jar, log4j-1.2.8.jar and commons-io-2.1.jar to the
implementation configuration, which is used to compile the project’s code.

NOTE

You can also specify a group in these module dependencies, even though they don’t
actually have a group. That’s because the flat-directory repository simply ignores
the information.

If you then add a normal Maven- or Ivy-compatible repository at a later date, Gradle
will preferentially download the module dependencies that are declared with a
group from that repository rather than the flat-directory one.

Migrating Ivy dependencies

Apache Ivy is a standalone dependency management tool that is widely used with Ant. It works in a
similar fashion to Gradle. In fact, they both allow you to

• Define your own configurations

• Extend configurations from one another

• Attach dependencies to configurations

• Resolve dependencies from Ivy-compatible repositories

• Publish artifacts to Ivy-compatible repositories

The most notable difference is that Gradle has standard configurations for specific types of projects.
For example, the Java Plugin defines configurations like implementation, testImplementation and
runtimeOnly. You can still define your own dependency configurations, though.

This similarity means that it’s usually quite straightforward to migrate from Ivy to Gradle:

• Transcribe the dependency declarations from your module descriptors into the dependencies {}
block of your Gradle build script, ideally using the standard configurations provided by any
plugins you apply.

• Transcribe any configuration declarations from your module descriptors into the configurations
{} block of the build script for any custom configurations that can’t be replaced by Gradle’s
standard ones.

• Transcribe the resolvers from your Ivy settings file into the repositories {} block of the build
script.

See the chapters on Managing Dependency Configurations, Declaring Dependencies and Declaring
Repositories for more information.

Ivy provides several Ant tasks that handle Ivy’s process for fetching dependencies. The basic steps
of that process consist of:

1. Configure — applies the configuration defined in the Ivy settings file

2. Resolve — locates the declared dependencies and downloads them to the cache if necessary

3. Retrieve — copies the cached dependencies to another directory

Gradle’s process is similar, but you don’t have to explicitly invoke the first two steps as it performs
them automatically. The third step doesn’t happen at all — unless you create a task to do it —
because Gradle typically uses the files in the dependency cache directly in classpaths and as the

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)

source for assembling application packages.

Let’s look in more detail at how Ivy’s steps map to Gradle:

Configuration

Most of Gradle’s dependency-related configuration is baked into the build script, as you’ve seen
with elements like the dependencies {} block. Another particularly important configuration
element is resolutionStrategy, which can be accessed from dependency configurations. This
provides many of the features you might get from Ivy’s conflict managers and is a powerful way
to control transitive dependencies and caching.

Some Ivy configuration options have no equivalent in Gradle. For example, there are no lock
strategies because Gradle ensures that its dependency cache is concurrency safe, period. Nor are
there "latest strategies" because it’s simpler to have a reliable, single strategy for conflict
resolution. If the "wrong" version is picked, you can easily override it using forced versions or
other resolution strategy options.

See the chapter on controlling transitive dependencies for more information on this aspect of
Gradle.

Resolution

At the beginning of the build, Gradle will automatically resolve any dependencies that you have
declared and download them to its cache. It searches the repositories for those dependencies,
with the search order defined by the order in which the repositories are declared.

It’s worth noting that Gradle supports the same dynamic version syntax as Ivy, so you can still
use versions like 1.0.+. You can also use the special latest.integration and latest.release labels
if you wish. If you decide to use such dynamic and changing dependencies, you can configure
the caching behavior for them via resolutionStrategy.

You might also want to consider dependency locking if you’re using dynamic and/or changing
dependencies. It’s a way to make the build more reliable and allows for reproducible builds.

Retrieval

As mentioned, Gradle does not automatically copy files from the dependency cache. Its standard
tasks typically use the files directly. If you want to copy the dependencies to a local directory, you
can use a Copy task like this in your build script:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://reproducible-builds.org/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html

Example 16. Copying dependencies to a local directory

build.gradle

tasks.register('retrieveRuntimeDependencies', Copy) {
 into layout.buildDirectory.dir('libs')
 from configurations.runtimeClasspath
}

build.gradle.kts

tasks.register<Copy>("retrieveRuntimeDependencies") {
 into(layout.buildDirectory.dir("libs"))
 from(configurations.runtimeClasspath)
}

A configuration is also a file collection, hence why it can be used in the from() configuration. You
can use a similar technique to attach a configuration to a compilation task or one that produces
documentation. See the chapter on Working with Files for more examples and information on
Gradle’s file API.

Publishing artifacts

Projects that use Ivy to manage dependencies often also use it for publishing JARs and other
artifacts to repositories. If you’re migrating such a build, then you’ll be glad to know that Gradle has
built-in support for publishing artifacts to Ivy-compatible repositories.

Before you attempt to migrate this particular aspect of your build, read the Publishing chapter to
learn about Gradle’s publishing model. That chapter’s examples are based on Maven repositories,
but the same model is used for Ivy repositories as well.

The basic migration process looks like this:

• Apply the Ivy Publish Plugin to your build

• Configure at least one publication, representing what will be published (including additional
artifacts if desired)

• Configure one or more repositories to publish artifacts to

Once that’s all done, you’ll be able to generate an Ivy module descriptor for each publication and
publish them to one or more repositories.

Let’s say you have defined a publication named "myLibrary" and a repository named "myRepo".
Ivy’s Ant tasks would then map to the Gradle tasks like this:

• <deliver> → generateDescriptorFileForMyLibraryPublication

• <publish> → publishMyLibraryPublicationToMyRepoRepository

There is also a convenient publish task that publishes all publications to all repositories. If you’d
prefer to limit which publications go to which repositories, check out the relevant section of the
Publishing chapter.

NOTE

On dependency versions

Ivy will, by default, automatically replace dynamic versions of dependencies with
the resolved "static" versions when it generates the module descriptor. Gradle does
not mimic this behavior: declared dependency versions are left unchanged.

You can replicate the default Ivy behavior by using the Nebula Ivy Resolved Plugin.
Alternatively, you can customize the descriptor file so that it contains the versions
you want.

Dealing with custom Ant tasks

One of the advantages of Ant is that it’s fairly easy to create a custom task and incorporate it into a
build. If you have such tasks, then there are two main options for migrating them to a Gradle build:

• Using the custom Ant task from the Gradle build

• Rewriting the task as a custom Gradle task type

The first option is usually quick and easy, but not always. And if you want to integrate the task into
incremental build, you must use the incremental build runtime API. You also often have to work
with Ant paths and filesets, which are clunky.

The second option is preferable in the long term, if you have the time. Gradle task types tend to be
simpler than Ant tasks because they don’t have to work with an XML-based interface. You also gain
access to Gradle’s rich APIs. Lastly, this approach can make use of the type-safe incremental build
API based on typed properties.

Working with files

Ant has many tasks for working with files, most of which have Gradle equivalents. As with other
areas of Ant to Gradle migration, you can use those Ant tasks from within your Gradle build.
However, we strongly recommend migrating to native Gradle constructs where possible so that the
build benefits from:

• Incremental build

• Easier integration with other parts of the build, such as dependency configurations

• More idiomatic build scripts

That said, it can be convenient to use those Ant tasks that have no direct equivalents, such as
<checksum> and <chown>. Even then, in the long run it may be better to convert these to native Gradle
task types that make use of standard Java APIs or third-party libraries to achieve the same thing.

https://plugins.gradle.org/plugin/nebula.ivy-resolved-dependencies
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)

Here are the most common file-related elements used by Ant builds, along with the Gradle
equivalents:

• <copy> — prefer the Gradle Copy task type

• <zip> (plus Java variants) — prefer the Zip task type (plus Jar, War, and Ear)

• <unzip> — prefer using the Project.zipTree() method with a Copy task

You can see several examples of Gradle’s file API and learn more about it in the Working with Files
chapter.

NOTE

On paths and filesets

Ant makes use of the concepts of path-like structures and filesets to enable users to
work with collections of files and directories. Gradle has a simpler, more powerful
model based on FileCollections and FileTrees that can be treated as objects from
within the build. Both types allow filtering based on Ant’s glob syntax, e.g.
**/books_*. Learn more about these types and other aspects of Gradle’s file API in
the Working with Files chapter.

You can still construct Ant paths and filesets from within your build via the ant
object if you need to interact with an Ant task that requires them. The chapter on
Ant integration has examples that use both <path> and <fileset>. There is even a
method on FileCollection that will convert a file collection to a fileset or similar Ant
type.

Migrating Ant properties

Ant makes use of a properties map to store values that can be reused throughout the build. The big
downsides to this approach are that property values are all strings and the properties themselves
behave like global variables.

TIP

Interacting with Ant properties in Gradle

Sometimes you will want to make use of an Ant task directly from your Gradle build
and that task requires one or more Ant properties to be set. If that’s the case, you can
easily set those properties via the ant object, as described in the Using Ant from Gradle
chapter.

Gradle does use something similar in the form of project properties, which are a reasonable way to
parameterize a build. These can be set from the command line, in a gradle.properties file, or even
via specially named system properties and environment variables.

If you have existing Ant properties files, you can copy their contents into the project’s
gradle.properties file. Just be aware of two important points:

• Properties set in gradle.properties do not override extra project properties defined in the build
script with the same name

• Imported Ant tasks will not automatically "see" the Gradle project properties — you must copy
them into the Ant properties map for that to happen

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Jar.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.War.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ear.Ear.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html#addToAntBuilder-java.lang.Object-java.lang.String-org.gradle.api.file.FileCollection.AntType-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html#addToAntBuilder-java.lang.Object-java.lang.String-org.gradle.api.file.FileCollection.AntType-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html#addToAntBuilder-java.lang.Object-java.lang.String-org.gradle.api.file.FileCollection.AntType-

Another important factor to understand is that a Gradle build script works with an object-oriented
API and it’s often best to use the properties of tasks, source sets and other objects where possible.
For example, this build script fragment creates tasks for packaging Javadoc documentation as a JAR
and unpacking it, linking tasks via their properties:

Example 17. Using task properties in place of project properties

build.gradle

def tmpDistDir = layout.buildDirectory.dir('dist')

tasks.register('javadocJarArchive', Jar) {
 from javadoc ①
 archiveClassifier = 'javadoc'
}

tasks.register('unpackJavadocs', Copy) {
 from zipTree(javadocJarArchive.archiveFile) ②
 into tmpDistDir ③
}

build.gradle.kts

val tmpDistDir = layout.buildDirectory.dir("dist")

tasks.register<Jar>("javadocJarArchive") {
 from(tasks.javadoc) ①
 archiveClassifier.set("javadoc")
}

tasks.register<Copy>("unpackJavadocs") {
 from(zipTree(tasks.named<Jar>("javadocJarArchive").get().archiveFile))
②
 into(tmpDistDir) ③
}

① Packages all javadoc's output files — equivalent to from javadoc.destinationDir

② Uses the location of the Javadoc JAR held by the javadocJar task

③ Uses an project property called tmpDistDir to define the location of the 'dist' directory

As you can see from the example with tmpDistDir, there is often still a need to define paths and the
like through properties, which is why Gradle also provides extra properties that can be attached to
the project, tasks and some other types of objects.

Migrating multi-project builds

Multi-project builds are a particular challenge to migrate because there is no standard approach in
Ant for either structuring them or handling inter-project dependencies. Most of them likely use the
<ant> task in some way, but that’s about all that one can say.

Fortunately, Gradle’s multi-project support can handle fairly diverse project structures and it
provides much more robust and helpful support than Ant for constructing and maintaining multi-
project builds. The ant.importBuild() method also handles <ant> and <antcall> tasks transparently,
which allows for a phased migration.

We will suggest one process for migration here and hope that it either works for your case or at
least gives you some ideas. It breaks down like this:

1. Start by learning how Gradle configures multi-project builds.

2. Create a Gradle build script in each project of the build, setting their contents to this line:

ant.importBuild 'build.xml'

ant.importBuild("build.xml")

Replace build.xml with the path to the actual Ant build file that corresponds to the project. If
there is no corresponding Ant build file, leave the Gradle build script empty. Your build may not
be suitable in that case for this migration approach, but continue with these steps to see
whether there is still a way to do a phased migration.

3. Create a settings file that includes all the projects that now have a Gradle build script.

4. Implement inter-project dependencies.

Some projects in your multi-project build will depend on artifacts produced by one or more
other projects in that build. Such projects need to ensure that those projects they depend on
have produced their artifacts and that they know the paths to those artifacts.

Ensuring the production of the required artifacts typically means calling into other projects'
builds via the <ant> task. This unfortunately bypasses the Gradle build, negating any changes
you make to the Gradle build scripts. You will need to replace targets that use <ant> tasks with
Gradle task dependencies.

For example, imagine you have a web project that depends on a "util" library that’s part of the
same build. The Ant build file for "web" might have a target like this:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

web/build.xml

 <target name="buildRequiredProjects">
 <ant dir="${root.dir}/util" target="build"/> ①
 </target>

① root.dir would have to be defined by the build

This can be replaced by an inter-project task dependency in the corresponding Gradle build
script, as demonstrated in the following example that assumes the "web" project’s "compile"
task is the thing that requires "util" to be built beforehand:

web/build.gradle

ant.importBuild 'build.xml'

compile.dependsOn = [':util:build']

web/build.gradle.kts

ant.importBuild("build.xml")

tasks {
 named<Task>("compile") {
 setDependsOn(listOf(":util:build"))
 }
}

This is not as robust or powerful as Gradle’s project dependencies, but it solves the immediate
problem without big changes to the build. Just be careful to remove or override any
dependencies on tasks that delegate to other subprojects, like the buildRequiredProjects task.

5. Identify the projects that have no dependencies on other projects and migrate them to idiomatic
Gradle builds scripts.

Just follow the advice in the rest of this guide to migrate individual project builds. As mentioned
elsewhere, you should ideally use Gradle standard plugins where possible. This may mean that
you need to add an extra copy task to each build that copies the generated artifacts to the
location expected by the rest of the Ant builds.

6. Migrate projects as and when they depend solely on projects with fully migrated Gradle builds.

At this point, you should be able to switch to using proper project dependencies attached to the
appropriate dependency configurations.

7. Clean up projects once no part of the Ant build depends on them.

We mentioned in step 5 that you might need to add copy tasks to satisfy the requirements of
dependent Ant builds. Once those builds have been migrated, such build logic will no longer be
needed and should be removed.

At the end of the process you should have a Gradle build that you are confident works as it should,
with much less build logic than before.

Further reading

This chapter has covered the major topics that are specific to migrating Ant builds to Gradle. All
that remain are a few other areas that may be useful during or after a migration:

• Learn how to configure Gradle’s build environment, including the JVM settings used to run it

• Learn how to structure your builds effectively

• Configure Gradle’s logging and use it from your builds

As a final note, this guide has only touched on a few of Gradle’s features and we encourage you to
learn about the rest from the other chapters of the user manual and from our step-by-step samples.

../samples/index.html

Running Gradle Builds

Build Environment

TIP
Interested in configuring your Build Cache to speed up builds? Register here for our
Build Cache training session to learn some of the tips and tricks top engineering teams
are using to increase build speed.

Gradle provides multiple mechanisms for configuring behavior of Gradle itself
and specific projects. The following is a reference for using these mechanisms.

When configuring Gradle behavior you can use these methods, listed in order of highest to lowest
precedence (first one wins):

• Command-line flags such as --build-cache. These have precedence over properties and
environment variables.

• System properties such as systemProp.http.proxyHost=somehost.org stored in a gradle.properties
file.

• Gradle properties such as org.gradle.caching=true that are typically stored in a
gradle.properties file in a project root directory or GRADLE_USER_HOME environment variable.

• Environment variables such as GRADLE_OPTS sourced by the environment that executes Gradle.

Aside from configuring the build environment, you can configure a given project build using
Project properties such as -PreleaseType=final.

Gradle properties

Gradle provides several options that make it easy to configure the Java process that will be used to
execute your build. While it’s possible to configure these in your local environment via GRADLE_OPTS
or JAVA_OPTS, it is useful to be able to store certain settings like JVM memory configuration and Java
home location in version control so that an entire team can work with a consistent environment. To
do so, place these settings into a gradle.properties file committed to your version control system.

The final configuration taken into account by Gradle is a combination of all Gradle properties set on
the command line and your gradle.properties files. If an option is configured in multiple locations,
the first one found in any of these locations wins:

• command line, as set using the -P / --project-prop environment options.

• gradle.properties in GRADLE_USER_HOME directory.

• gradle.properties in project root directory.

• gradle.properties in Gradle installation directory.

Note that the location of the Gradle user home may have been changed beforehand via the
-Dgradle.user.home system property passed on the command line.

https://gradle.com/training/build-cache-deep-dive/?bid=docs-build-environment

The following properties can be used to configure the Gradle build environment:

org.gradle.caching=(true,false)

When set to true, Gradle will reuse task outputs from any previous build, when possible,
resulting is much faster builds. Learn more about using the build cache. By default, the build
cache is not enabled.

org.gradle.caching.debug=(true,false)

When set to true, individual input property hashes and the build cache key for each task are
logged on the console. Learn more about task output caching. Default is false.

org.gradle.configureondemand=(true,false)

Enables incubating configuration on demand, where Gradle will attempt to configure only
necessary projects. Default is false.

org.gradle.console=(auto,plain,rich,verbose)

Customize console output coloring or verbosity. Default depends on how Gradle is invoked. See
command-line logging for additional details.

org.gradle.daemon=(true,false)

When set to true the Gradle Daemon is used to run the build. Default is true, builds will be run
using the daemon.

org.gradle.daemon.idletimeout=(# of idle millis)

Gradle Daemon will terminate itself after specified number of idle milliseconds. Default is
10800000 (3 hours).

org.gradle.debug=(true,false)

When set to true, Gradle will run the build with remote debugging enabled, listening on port
5005. Note that this is the equivalent of adding
-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005 to the JVM command line
and will suspend the virtual machine until a debugger is attached. Default is false.

org.gradle.java.home=(path to JDK home)

Specifies the Java home for the Gradle build process. The value can be set to either a jdk or jre
location, however, depending on what your build does, using a JDK is safer. This does not affect
the version of Java used to launch the Gradle client VM (see Environment variables). A
reasonable default is derived from your environment (JAVA_HOME or the path to java) if the setting is
unspecified.

org.gradle.jvmargs=(JVM arguments)

Specifies the JVM arguments used for the Gradle Daemon. The setting is particularly useful for
configuring JVM memory settings for build performance. This does not affect the JVM settings
for the Gradle client VM. The default is -Xmx512m "-XX:MaxMetaspaceSize=256m".

org.gradle.logging.level=(quiet,warn,lifecycle,info,debug)

When set to quiet, warn, lifecycle, info, or debug, Gradle will use this log level. The values are
not case sensitive. See Choosing a log level. The lifecycle level is the default.

org.gradle.parallel=(true,false)

When configured, Gradle will fork up to org.gradle.workers.max JVMs to execute projects in
parallel. To learn more about parallel task execution, see the section on Gradle build
performance. Default is false.

org.gradle.priority=(low,normal)

Specifies the scheduling priority for the Gradle daemon and all processes launched by it. See also
performance command-line options. Default is normal.

org.gradle.vfs.verbose=(true,false)

Configures verbose logging when watching the file system. Default is false.

org.gradle.vfs.watch=(true,false)

Toggles watching the file system. When enabled Gradle re-uses information it collects about the
file system between builds. Enabled by default on operating systems where Gradle supports this
feature.

org.gradle.warning.mode=(all,fail,summary,none)

When set to all, summary or none, Gradle will use different warning type display. See Command-
line logging options for details. Default is summary.

org.gradle.workers.max=(max # of worker processes)

When configured, Gradle will use a maximum of the given number of workers. See also
performance command-line options. Default is number of CPU processors.

The following example demonstrates usage of various properties.

Example 18. Setting properties with a gradle.properties file

gradle.properties

gradlePropertiesProp=gradlePropertiesValue
sysProp=shouldBeOverWrittenBySysProp
systemProp.system=systemValue

performance.pdf#parallel_execution
performance.pdf#parallel_execution

build.gradle

tasks.register('printProps') {
 doLast {
 println commandLineProjectProp
 println gradlePropertiesProp
 println systemProjectProp
 println System.properties['system']
 }
}

build.gradle.kts

// Project properties can be accessed via delegation
val commandLineProjectProp: String by project
val gradlePropertiesProp: String by project
val systemProjectProp: String by project

tasks.register("printProps") {
 doLast {
 println(commandLineProjectProp)
 println(gradlePropertiesProp)
 println(systemProjectProp)
 println(System.getProperty("system"))
 }
}

$ gradle -q -PcommandLineProjectProp=commandLineProjectPropValue
-Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps
commandLineProjectPropValue
gradlePropertiesValue
systemPropertyValue
systemValue

System properties

Using the -D command-line option, you can pass a system property to the JVM which runs Gradle.
The -D option of the gradle command has the same effect as the -D option of the java command.

You can also set system properties in gradle.properties files with the prefix systemProp.

Specifying system properties in gradle.properties

systemProp.gradle.wrapperUser=myuser
systemProp.gradle.wrapperPassword=mypassword

The following system properties are available. Note that command-line options take precedence
over system properties.

gradle.wrapperUser=(myuser)

Specify user name to download Gradle distributions from servers using HTTP Basic
Authentication. Learn more in Authenticated wrapper downloads.

gradle.wrapperPassword=(mypassword)

Specify password for downloading a Gradle distribution using the Gradle wrapper.

gradle.user.home=(path to directory)

Specify the Gradle user home directory.

https.protocols

Specify the supported TLS versions in a comma separated format. For example: TLSv1.2,TLSv1.3.

In a multi project build, “systemProp.” properties set in any project except the root will be ignored.
That is, only the root project’s gradle.properties file will be checked for properties that begin with
the “systemProp.” prefix.

Environment variables

The following environment variables are available for the gradle command. Note that command-
line options and system properties take precedence over environment variables.

GRADLE_OPTS

Specifies JVM arguments to use when starting the Gradle client VM. The client VM only handles
command line input/output, so it is rare that one would need to change its VM options. The
actual build is run by the Gradle daemon, which is not affected by this environment variable.

GRADLE_USER_HOME

Specifies the Gradle user home directory (which defaults to $USER_HOME/.gradle if not set).

JAVA_HOME

Specifies the JDK installation directory to use for the client VM. This VM is also used for the
daemon, unless a different one is specified in a Gradle properties file with org.gradle.java.home.

Project properties

You can add properties directly to your Project object via the -P command line option.

Gradle can also set project properties when it sees specially-named system properties or
environment variables. If the environment variable name looks like ORG_GRADLE_PROJECT

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html

_prop=somevalue, then Gradle will set a prop property on your project object, with the value of
somevalue. Gradle also supports this for system properties, but with a different naming pattern,
which looks like org.gradle.project.prop. Both of the following will set the foo property on your
Project object to "bar".

Setting a project property via a system property

org.gradle.project.foo=bar

Setting a project property via an environment variable

ORG_GRADLE_PROJECT_foo=bar

NOTE
The properties file in the user’s home directory has precedence over property files
in the project directories.

This feature is very useful when you don’t have admin rights to a continuous integration server and
you need to set property values that should not be easily visible. Since you cannot use the -P option
in that scenario, nor change the system-level configuration files, the correct strategy is to change
the configuration of your continuous integration build job, adding an environment variable setting
that matches an expected pattern. This won’t be visible to normal users on the system.

You can access a project property in your build script simply by using its name as you would use a
variable.

NOTE

If a project property is referenced but does not exist, an exception will be thrown
and the build will fail.

You should check for existence of optional project properties before you access
them using the Project.hasProperty(java.lang.String) method.

Configuring JVM memory

You can adjust JVM options for Gradle in the following ways:

The org.gradle.jvmargs Gradle property controls the VM running the build. It defaults to -Xmx512m
"-XX:MaxMetaspaceSize=256m"

Changing JVM settings for the build VM

org.gradle.jvmargs=-Xmx2g -XX:MaxMetaspaceSize=512m -XX:+HeapDumpOnOutOfMemoryError
-Dfile.encoding=UTF-8

The JAVA_OPTS environment variable controls the command line client, which is only used to display
console output. It defaults to -Xmx64m

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:hasProperty(java.lang.String)

Changing JVM settings for the client VM

JAVA_OPTS="-Xmx64m -XX:MaxPermSize=64m -XX:+HeapDumpOnOutOfMemoryError
-Dfile.encoding=UTF-8"

NOTE

There is one case where the client VM can also serve as the build VM: If you
deactivate the Gradle Daemon and the client VM has the same settings as required
for the build VM, the client VM will run the build directly. Otherwise the client VM
will fork a new VM to run the actual build in order to honor the different settings.

Certain tasks, like the test task, also fork additional JVM processes. You can configure these through
the tasks themselves. They all use -Xmx512m by default.

Example 19. Set Java compile options for JavaCompile tasks

build.gradle

plugins {
 id 'java'
}

tasks.withType(JavaCompile) {
 options.compilerArgs += ['-Xdoclint:none', '-Xlint:none', '-nowarn']
}

build.gradle.kts

plugins {
 java
}

tasks.withType<JavaCompile>().configureEach {
 options.compilerArgs = listOf("-Xdoclint:none", "-Xlint:none", "-nowarn")
}

See other examples in the Test API documentation and test execution in the Java plugin reference.

Build scans will tell you information about the JVM that executed the build when you use the --scan
option.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
https://scans.gradle.com

Configuring a task using project properties

It’s possible to change the behavior of a task based on project properties specified at invocation
time.

Suppose you’d like to ensure release builds are only triggered by CI. A simple way to handle this is
through an isCI project property.

https://scans.gradle.com/s/sample/cpp-parallel/infrastructure

Example 20. Prevent releasing outside of CI

build.gradle

tasks.register('performRelease') {
 doLast {
 if (project.hasProperty("isCI")) {
 println("Performing release actions")
 } else {
 throw new InvalidUserDataException("Cannot perform release
outside of CI")
 }
 }
}

build.gradle.kts

tasks.register("performRelease") {
 doLast {
 if (project.hasProperty("isCI")) {
 println("Performing release actions")
 } else {
 throw InvalidUserDataException("Cannot perform release outside of
CI")
 }
 }
}

$ gradle performRelease -PisCI=true --quiet
Performing release actions

Accessing the web through a HTTP proxy

Configuring an HTTP or HTTPS proxy (for downloading dependencies, for example) is done via
standard JVM system properties. These properties can be set directly in the build script; for
example, setting the HTTP proxy host would be done with System.setProperty('http.proxyHost',
'www.somehost.org'). Alternatively, the properties can be specified in gradle.properties.

Configuring an HTTP proxy using gradle.properties

systemProp.http.proxyHost=www.somehost.org
systemProp.http.proxyPort=8080
systemProp.http.proxyUser=userid
systemProp.http.proxyPassword=password
systemProp.http.nonProxyHosts=*.nonproxyrepos.com|localhost

There are separate settings for HTTPS.

Configuring an HTTPS proxy using gradle.properties

systemProp.https.proxyHost=www.somehost.org
systemProp.https.proxyPort=8080
systemProp.https.proxyUser=userid
systemProp.https.proxyPassword=password
systemProp.http.nonProxyHosts=*.nonproxyrepos.com|localhost

You may need to set other properties to access other networks. Here are 2 references that may be
helpful:

• ProxySetup.java in the Ant codebase

• JDK 7 Networking Properties

NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain
as well as the username and password. There are 2 ways that you can provide the domain for
authenticating to a NTLM proxy:

• Set the http.proxyUser system property to a value like domain/username.

• Provide the authentication domain via the http.auth.ntlm.domain system property.

The Gradle Daemon

A daemon is a computer program that runs as a background process, rather
than being under the direct control of an interactive user.

— Wikipedia

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries that require a
non-trivial initialization time. As a result, it can sometimes seem a little slow to start. The solution
to this problem is the Gradle Daemon: a long-lived background process that executes your builds
much more quickly than would otherwise be the case. We accomplish this by avoiding the
expensive bootstrapping process as well as leveraging caching, by keeping data about your project
in memory. Running Gradle builds with the Daemon is no different than without. Simply configure
whether you want to use it or not — everything else is handled transparently by Gradle.

https://git-wip-us.apache.org/repos/asf?p=ant.git;a=blob;f=src/main/org/apache/tools/ant/util/ProxySetup.java;hb=HEAD
http://download.oracle.com/javase/7/docs/technotes/guides/net/properties.html

Why the Gradle Daemon is important for performance

The Daemon is a long-lived process, so not only are we able to avoid the cost of JVM startup for
every build, but we are able to cache information about project structure, files, tasks, and more in
memory.

The reasoning is simple: improve build speed by reusing computations from previous builds.
However, the benefits are dramatic: we typically measure build times reduced by 15-75% on
subsequent builds. We recommend profiling your build by using --profile to get a sense of how
much impact the Gradle Daemon can have for you.

The Gradle Daemon is enabled by default starting with Gradle 3.0, so you don’t have to do anything
to benefit from it.

Running Daemon Status

To get a list of running Gradle Daemons and their statuses use the --status command.

Sample output:

 PID VERSION STATUS
 28411 3.0 IDLE
 34247 3.0 BUSY

Currently, a given Gradle version can only connect to daemons of the same version. This means the
status output will only show Daemons for the version of Gradle being invoked and not for any other
versions. Future versions of Gradle will lift this constraint and will show the running Daemons for
all versions of Gradle.

Disabling the Daemon

The Gradle Daemon is enabled by default, and we recommend always enabling it. You can disable
the long-lived Gradle daemon via the --no-daemon command-line option, or by adding
org.gradle.daemon=false to your gradle.properties file. You can find details of other ways to disable
(and enable) the Daemon in Daemon FAQ further down.

NOTE

In order to honour the required JVM options for your build, Gradle will normally
spawn a separate process for build invocation, even when the Daemon is disabled.
You can prevent this "single-use Daemon" by ensuring that the JVM settings for the
client VM match those required for the build VM. See Configuring JVM Memory for
more details.

Note that having the Daemon enabled, all your builds will take advantage of the speed boost,
regardless of the version of Gradle a particular build uses.

TIP

Continuous integration

Since Gradle 3.0, we enable Daemon by default and recommend using it for both
developers' machines and Continuous Integration servers. However, if you suspect
that Daemon makes your CI builds unstable, you can disable it to use a fresh runtime
for each build since the runtime is completely isolated from any previous builds.

Stopping an existing Daemon

As mentioned, the Daemon is a background process. You needn’t worry about a build up of Gradle
processes on your machine, though. Every Daemon monitors its memory usage compared to total
system memory and will stop itself if idle when available system memory is low. If you want to
explicitly stop running Daemon processes for any reason, just use the command gradle --stop.

This will terminate all Daemon processes that were started with the same version of Gradle used to
execute the command. If you have the Java Development Kit (JDK) installed, you can easily verify
that a Daemon has stopped by running the jps command. You’ll see any running Daemons listed
with the name GradleDaemon.

FAQ

How do I disable the Gradle Daemon?

There are two recommended ways to disable the Daemon persistently for an environment:

• Via environment variables: add the flag -Dorg.gradle.daemon=false to the GRADLE_OPTS
environment variable

• Via properties file: add org.gradle.daemon=false to the «GRADLE_USER_HOME»/gradle.properties file

NOTE

Note, «GRADLE_USER_HOME» defaults to «USER_HOME»/.gradle, where «USER_HOME» is the
home directory of the current user. This location can be configured via the -g and
--gradle-user-home command line switches, as well as by the GRADLE_USER_HOME
environment variable and org.gradle.user.home JVM system property.

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle
users choose the second option and add the entry to the user gradle.properties file.

On Windows, this command will disable the Daemon for the current user:

(if not exist "%USERPROFILE%/.gradle" mkdir "%USERPROFILE%/.gradle") && (echo. >>
"%USERPROFILE%/.gradle/gradle.properties" && echo org.gradle.daemon=false >>
"%USERPROFILE%/.gradle/gradle.properties")

On UNIX-like operating systems, the following Bash shell command will disable the Daemon for the
current user:

mkdir -p ~/.gradle && echo "org.gradle.daemon=false" >> ~/.gradle/gradle.properties

Once the Daemon is disabled for a build environment in this way, a Gradle Daemon will not be
started unless explicitly requested using the --daemon option.

The --daemon and --no-daemon command line options enable and disable usage of the Daemon for
individual build invocations when using the Gradle command line interface. These command line
options have the highest precedence when considering the build environment. Typically, it is more
convenient to enable the Daemon for an environment (e.g. a user account) so that all builds use the
Daemon without requiring to remember to supply the --daemon option.

Why is there more than one Daemon process on my machine?

There are several reasons why Gradle will create a new Daemon, instead of using one that is
already running. The basic rule is that Gradle will start a new Daemon if there are no existing idle
or compatible Daemons available. Gradle will kill any Daemon that has been idle for 3 hours or
more, so you don’t have to worry about cleaning them up manually.

idle

An idle Daemon is one that is not currently executing a build or doing other useful work.

compatible

A compatible Daemon is one that can (or can be made to) meet the requirements of the
requested build environment. The Java runtime used to execute the build is an example aspect
of the build environment. Another example is the set of JVM system properties required by the
build runtime.

Some aspects of the requested build environment may not be met by an Daemon. If the Daemon is
running with a Java 8 runtime, but the requested environment calls for Java 10, then the Daemon is
not compatible and another must be started. Moreover, certain properties of a Java runtime cannot
be changed once the JVM has started. For example, it is not possible to change the memory
allocation (e.g. -Xmx1024m), default text encoding, default locale, etc of a running JVM.

The “requested build environment” is typically constructed implicitly from aspects of the build
client’s (e.g. Gradle command line client, IDE etc.) environment and explicitly via command line
switches and settings. See Build Environment for details on how to specify and control the build
environment.

The following JVM system properties are effectively immutable. If the requested build environment
requires any of these properties, with a different value than a Daemon’s JVM has for this property,
the Daemon is not compatible.

• file.encoding

• user.language

• user.country

• user.variant

• java.io.tmpdir

• javax.net.ssl.keyStore

• javax.net.ssl.keyStorePassword

• javax.net.ssl.keyStoreType

• javax.net.ssl.trustStore

• javax.net.ssl.trustStorePassword

• javax.net.ssl.trustStoreType

• com.sun.management.jmxremote

The following JVM attributes, controlled by startup arguments, are also effectively immutable. The
corresponding attributes of the requested build environment and the Daemon’s environment must
match exactly in order for a Daemon to be compatible.

• The maximum heap size (i.e. the -Xmx JVM argument)

• The minimum heap size (i.e. the -Xms JVM argument)

• The boot classpath (i.e. the -Xbootclasspath argument)

• The “assertion” status (i.e. the -ea argument)

The required Gradle version is another aspect of the requested build environment. Daemon
processes are coupled to a specific Gradle runtime. Working on multiple Gradle projects during a
session that use different Gradle versions is a common reason for having more than one running
Daemon process.

How much memory does the Daemon use and can I give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up
to 512MB of heap. It will use the JVM’s default minimum heap size. 512MB is more than enough for
most builds. Larger builds with hundreds of subprojects, lots of configuration, and source code may
require, or perform better, with more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the
requested build environment. Please see Build Environment for details.

How can I stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity or less. If you
wish to stop a Daemon process before this, you can either kill the process via your operating system
or run the gradle --stop command. The --stop switch causes Gradle to request that all running
Daemon processes, of the same Gradle version used to run the command, terminate themselves.

What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and
unobtrusive during day to day development. However, Daemon processes can occasionally be
corrupted or exhausted. A Gradle build executes arbitrary code from multiple sources. While
Gradle itself is designed for and heavily tested with the Daemon, user build scripts and third party
plugins can destabilize the Daemon process through defects such as memory leaks or global state
corruption.

It is also possible to destabilize the Daemon (and build environment in general) by running builds

that do not release resources correctly. This is a particularly poignant problem when using
Microsoft Windows as it is less forgiving of programs that fail to close files after reading or writing.

Gradle actively monitors heap usage and attempts to detect when a leak is starting to exhaust the
available heap space in the daemon. When it detects a problem, the Gradle daemon will finish the
currently running build and proactively restart the daemon on the next build. This monitoring is
enabled by default, but can be disabled by setting the org.gradle.daemon.performance.enable-
monitoring system property to false.

If it is suspected that the Daemon process has become unstable, it can simply be killed. Recall that
the --no-daemon switch can be specified for a build to prevent use of the Daemon. This can be useful
to diagnose whether or not the Daemon is actually the culprit of a problem.

Tools & IDEs

The Gradle Tooling API that is used by IDEs and other tools to integrate with Gradle always uses the
Gradle Daemon to execute builds. If you are executing Gradle builds from within your IDE you are
using the Gradle Daemon and do not need to enable it for your environment.

How does the Gradle Daemon make builds faster?

The Gradle Daemon is a long lived build process. In between builds it waits idly for the next build.
This has the obvious benefit of only requiring Gradle to be loaded into memory once for multiple
builds, as opposed to once for each build. This in itself is a significant performance optimization,
but that’s not where it stops.

A significant part of the story for modern JVM performance is runtime code optimization. For
example, HotSpot (the JVM implementation provided by Oracle and used as the basis of OpenJDK)
applies optimization to code while it is running. The optimization is progressive and not
instantaneous. That is, the code is progressively optimized during execution which means that
subsequent builds can be faster purely due to this optimization process. Experiments with HotSpot
have shown that it takes somewhere between 5 and 10 builds for optimization to stabilize. The
difference in perceived build time between the first build and the 10th for a Daemon can be quite
dramatic.

The Daemon also allows more effective in memory caching across builds. For example, the classes
needed by the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly,
Gradle can maintain in-memory caches of build data such as the hashes of task inputs and outputs,
used for incremental building.

To detect changes on the file system, and to calculate what needs to be rebuilt, Gradle collects a lot
of information about the state of the file system during every build. On supported operating
systems the Daemon re-uses the already collected information from the last build (see watching the
file system). This can save a significant amount of time for incremental builds, where the number
of changes to the file system between two builds is typically low.

Watching the file system

To detect changes on the file system, and to calculate what needs to be rebuilt, Gradle collects

information about the file system in-memory during every build (aka Virtual File System). By
watching the file system, Gradle can keep the Virtual File System in sync with the file system even
between builds. Doing so allows the Daemon to save the time to rebuild the Virtual File System
from disk for the next build. For incremental builds, there are typically only a few changes between
builds. Therefore, incremental builds can re-use most of the Virtual File System from the last build
and benefit the most from watching the file system.

Gradle uses native operating system features for watching the file system. It supports the feature on
these operating systems:

• Windows 10, version 1709 and later,

• Linux (Ubuntu 16.04 or later, CentOS 8 or later, Red Hat Enterprise Linux 8 or later, Amazon
Linux 2 are tested),

• macOS 10.14 (Mojave) or later (Intel and ARM Macs included).

The feature supports the following file system types:

• APFS

• btrfs

• ext3

• ext4

• HFS+

• NTFS

File system watching supports working through VirtualBox’s shared folders, too.

Network file systems like Samba and NFS are not supported.

NOTE
If you have symlinks in your build, you won’t get the performance benefits for those
locations.

Enabling and disabling file system watching

File system watching is enabled by default for operating systems supported by Gradle.

When the feature is enabled by default, Gradle acts conservatively when it encounters content on
unsupported file systems. This can happen for example if a project directory, or one of its
subdirectories is mounted from a network drive. In default mode information about unsupported
file systems will not be retained in the Virtual File System between builds.

To force Gradle to keep information about unsupported file systems between builds, the feature
must be enabled explicitly by one of these methods:

Run with --watch-fs on the command line

This forces watching the file system for this build only.

Put org.gradle.vfs.watch=true in your gradle.properties

This forces watching the file system for all builds, unless explicitly disabled with --no-watch-fs.

File system watching can also be disabled completely regardless of file systems by supplying --no
-watch-fs on the command-line, or by specifying org.gradle.vfs.watch=false in gradle.properties.

Troubleshooting file system watching

Enable verbose logging

You can instruct Gradle to some more information about the state of the virtual file system, and the
events received from the file system using the org.gradle.vfs.verbose flag. This produces the
following output at the start and end of the build:

+

$ gradle assemble --watch-fs -Dorg.gradle.vfs.verbose=true
Received 3 file system events since last build while watching 1 locations
Virtual file system retained information about 2 files, 2 directories and 0 missing
files since last build
> Task :compileJava NO-SOURCE
> Task :processResources NO-SOURCE
> Task :classes UP-TO-DATE
> Task :jar UP-TO-DATE
> Task :assemble UP-TO-DATE

BUILD SUCCESSFUL in 58ms
1 actionable task: 1 up-to-date
Received 5 file system events during the current build while watching 1 locations
Virtual file system retains information about 3 files, 2 directories and 2 missing
files until next build

+ Note that on Windows and macOS Gradle might report changes received since the last build even
if you haven’t changed anything. These are harmless notifications about changes to Gradle’s own
caches and can be ignored safely.

Common problems

Gradle does not pick up some of my changes

Please let us know on the Gradle community Slack if that happens to you. If your build declares its
inputs and outputs correctly, this should not happen. So it’s either a bug we need to fix, or your
build is lacking the declaration of some inputs or outputs.

VFS state is dropped due to lost state

If you receive the Dropped VFS state due to lost state message during the build, please let us
know on the Gradle community Slack if that happens to you. This message means that either:

• the daemon received some unknown file system event,

• too many changes happened, and the watching API couldn’t handle it.

https://gradle-community.slack.com/app_redirect?channel=file-system-watching
https://gradle-community.slack.com/app_redirect?channel=file-system-watching
https://gradle-community.slack.com/app_redirect?channel=file-system-watching

In both cases the build cannot benefit from file system watching.

Too many open files on macOS

If you receive the java.io.IOException: Too many open files error on macOS, you need to raise
your open files limit, see here.

Linux-specific notes

File system watching uses inotify on Linux. Depending on the size of your build, it may be
necessary to increase inotify limits. If you are using an IDE, then you probably already had to
increase the limits in the past.

File system watching uses one inotify watch per watched directory. You can see the current limit of
inotify watches per user by running:

cat /proc/sys/fs/inotify/max_user_watches

To increase the limit to e.g. 512K watches run the following:

echo fs.inotify.max_user_watches=524288 | sudo tee -a /etc/sysctl.conf
sudo sysctl -p --system

Each used inotify watch takes up to 1KB of memory. Assuming inotify uses all the 512K watches
then around 500MB will be used for watching the file system. If your environment is memory
constraint, you may want to disable file system watching.

Initialization Scripts
Gradle provides a powerful mechanism to allow customizing the build based on the current
environment. This mechanism also supports tools that wish to integrate with Gradle.

Note that this is completely different from the “init” task provided by the “build-init” plugin (see
Build Init Plugin).

Basic usage

Initialization scripts (a.k.a. init scripts) are similar to other scripts in Gradle. These scripts, however,
are run before the build starts. Here are several possible uses:

• Set up enterprise-wide configuration, such as where to find custom plugins.

• Set up properties based on the current environment, such as a developer’s machine vs. a
continuous integration server.

• Supply personal information about the user that is required by the build, such as repository or
database authentication credentials.

• Define machine specific details, such as where JDKs are installed.

https://superuser.com/a/443168/8117
http://en.wikipedia.org/wiki/Inotify

• Register build listeners. External tools that wish to listen to Gradle events might find this useful.

• Register build loggers. You might wish to customize how Gradle logs the events that it generates.

One main limitation of init scripts is that they cannot access classes in the buildSrc project (see
Using buildSrc to extract imperative logic for details of this feature).

Using an init script

There are several ways to use an init script:

• Specify a file on the command line. The command line option is -I or --init-script followed by
the path to the script. The command line option can appear more than once, each time adding
another init script. The build will fail if any of the files specified on the command line does not
exist.

• Put a file called init.gradle (or init.gradle.kts for Kotlin) in the USER_HOME/.gradle/ directory.

• Put a file that ends with .gradle (or .init.gradle.kts for Kotlin) in the
USER_HOME/.gradle/init.d/ directory.

• Put a file that ends with .gradle (or .init.gradle.kts for Kotlin) in the GRADLE_HOME/init.d/
directory, in the Gradle distribution. This allows you to package up a custom Gradle distribution
containing some custom build logic and plugins. You can combine this with the Gradle wrapper
as a way to make custom logic available to all builds in your enterprise.

If more than one init script is found they will all be executed, in the order specified above. Scripts
in a given directory are executed in alphabetical order. This allows, for example, a tool to specify an
init script on the command line and the user to put one in their home directory for defining the
environment and both scripts will run when Gradle is executed.

Writing an init script

Similar to a Gradle build script, an init script is a Groovy or Kotlin script. Each init script has a
Gradle instance associated with it. Any property reference and method call in the init script will
delegate to this Gradle instance.

Each init script also implements the Script interface.

Configuring projects from an init script

You can use an init script to configure the projects in the build. This works in a similar way to
configuring projects in a multi-project build. The following sample shows how to perform extra
configuration from an init script before the projects are evaluated. This sample uses this feature to
configure an extra repository to be used only for certain environments.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.invocation.Gradle.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Script.html

Example 21. Using init script to perform extra configuration before projects are evaluated

build.gradle

repositories {
 mavenCentral()
}

tasks.register('showRepos') {
 doLast {
 println "All repos:"
 println repositories.collect { it.name }
 }
}

init.gradle

allprojects {
 repositories {
 mavenLocal()
 }
}

build.gradle.kts

repositories {
 mavenCentral()
}

tasks.register("showRepos") {
 doLast {
 println("All repos:")
 println(repositories.map { it.name })
 }
}

init.gradle.kts

allprojects {
 repositories {
 mavenLocal()
 }
}

Output when applying the init script

> gradle --init-script init.gradle -q showRepos
All repos:
[MavenLocal, MavenRepo]

> gradle --init-script init.gradle.kts -q showRepos
All repos:
[MavenLocal, MavenRepo]

External dependencies for the init script

In External dependencies for the build script it was explained how to add external dependencies to
a build script. Init scripts can also declare dependencies. You do this with the initscript() method,
passing in a closure which declares the init script classpath.

Example 22. Declaring external dependencies for an init script

init.gradle

initscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath 'org.apache.commons:commons-math:2.0'
 }
}

init.gradle.kts

initscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.apache.commons:commons-math:2.0")
 }
}

The closure passed to the initscript() method configures a ScriptHandler instance. You declare the
init script classpath by adding dependencies to the classpath configuration. This is the same way
you declare, for example, the Java compilation classpath. You can use any of the dependency types

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

described in Declaring Dependencies, except project dependencies.

Having declared the init script classpath, you can use the classes in your init script as you would
any other classes on the classpath. The following example adds to the previous example, and uses
classes from the init script classpath.

Example 23. An init script with external dependencies

init.gradle

import org.apache.commons.math.fraction.Fraction

initscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath 'org.apache.commons:commons-math:2.0'
 }
}

println Fraction.ONE_FIFTH.multiply(2)

build.gradle

tasks.register('doNothing')

init.gradle.kts

import org.apache.commons.math.fraction.Fraction

initscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.apache.commons:commons-math:2.0")
 }
}

println(Fraction.ONE_FIFTH.multiply(2))

build.gradle.kts

tasks.register("doNothing")

Output when applying the init script

> gradle --init-script init.gradle -q doNothing
2 / 5

> gradle --init-script init.gradle.kts -q doNothing
2 / 5

Init script plugins

Similar to a Gradle build script or a Gradle settings file, plugins can be applied on init scripts.

Example 24. Using plugins in init scripts

init.gradle

apply plugin: EnterpriseRepositoryPlugin

class EnterpriseRepositoryPlugin implements Plugin<Gradle> {

 private static String ENTERPRISE_REPOSITORY_URL =
"https://repo.gradle.org/gradle/repo"

 void apply(Gradle gradle) {
 // ONLY USE ENTERPRISE REPO FOR DEPENDENCIES
 gradle.allprojects { project ->
 project.repositories {

 // Remove all repositories not pointing to the enterprise
repository url
 all { ArtifactRepository repo ->
 if (!(repo instanceof MavenArtifactRepository) ||
 repo.url.toString() != ENTERPRISE_REPOSITORY_URL) {
 project.logger.lifecycle "Repository ${repo.url}
removed. Only $ENTERPRISE_REPOSITORY_URL is allowed"
 remove repo
 }
 }

 // add the enterprise repository
 maven {
 name "STANDARD_ENTERPRISE_REPO"
 url ENTERPRISE_REPOSITORY_URL
 }
 }
 }
 }
}

build.gradle

repositories{
 mavenCentral()
}

tasks.register('showRepositories') {
 doLast {
 repositories.each {
 println "repository: ${it.name} ('${it.url}')"
 }
 }
}

init.gradle.kts

apply<EnterpriseRepositoryPlugin>()

class EnterpriseRepositoryPlugin : Plugin<Gradle> {
 companion object {
 const val ENTERPRISE_REPOSITORY_URL =
"https://repo.gradle.org/gradle/repo"
 }

 override fun apply(gradle: Gradle) {
 // ONLY USE ENTERPRISE REPO FOR DEPENDENCIES
 gradle.allprojects {
 repositories {

 // Remove all repositories not pointing to the enterprise
repository url
 all {
 if (this !is MavenArtifactRepository || url.toString() !=
ENTERPRISE_REPOSITORY_URL) {
 project.logger.lifecycle("Repository ${(this as?
MavenArtifactRepository)?.url ?: name} removed. Only
$ENTERPRISE_REPOSITORY_URL is allowed")
 remove(this)
 }
 }

 // add the enterprise repository
 add(maven {
 name = "STANDARD_ENTERPRISE_REPO"
 url = uri(ENTERPRISE_REPOSITORY_URL)
 })
 }
 }
 }
}

build.gradle.kts

repositories{
 mavenCentral()
}

tasks.register("showRepositories") {
 doLast {
 repositories.map { it as MavenArtifactRepository }.forEach {
 println("repository: ${it.name} ('${it.url}')")
 }
 }
}

Output when applying the init script

> gradle --init-script init.gradle -q showRepositories
repository: STANDARD_ENTERPRISE_REPO ('https://repo.gradle.org/gradle/repo')

> gradle --init-script init.gradle.kts -q showRepositories
repository: STANDARD_ENTERPRISE_REPO ('https://repo.gradle.org/gradle/repo')

The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin
instance’s Plugin.apply(T) method. The gradle object is passed as a parameter, which can be used to
configure all aspects of a build. Of course, the applied plugin can be resolved as an external
dependency as described in External dependencies for the init script

Executing Multi-Project Builds
Only the smallest of projects has a single build file and source tree, unless it happens to be a
massive, monolithic application. It’s often much easier to digest and understand a project that has
been split into smaller, inter-dependent modules. The word “inter-dependent” is important, though,
and is why you typically want to link the modules together through a single build.

Gradle supports this scenario through multi-project builds.

For details about authoring multi-project builds, consult the Authoring Multi-Project Builds section
of the user manual.

Identifying project structure

To identify the project structure, you can use gradle projects command. As an example, let’s use a
multi-project build with the following structure:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html#apply-T-

> gradle -q projects

--
Root project 'multiproject'
--

Root project 'multiproject'
+--- Project ':api'
+--- Project ':services'
| +--- Project ':services:shared'
| \--- Project ':services:webservice'
\--- Project ':shared'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :api:tasks

From a user’s perspective, multi-project builds are still collections of tasks you can run. The
difference is that you may want to control which project’s tasks get executed. The following sections
will cover the two options you have for executing tasks in a multi-project build.

Executing tasks by name

The command gradle test will execute the test task in any subprojects, relative to the current
working directory, that have that task. If you run the command from the root project directory,
you’ll run test in api, shared, services:shared and services:webservice. If you run the command from
the services project directory, you’ll only execute the task in services:shared and services:webservice.

The basic rule behind Gradle’s behavior is: execute all tasks down the hierarchy which have this
name. Only complain if there is no such task found in any of the subprojects traversed.

NOTE

Some tasks selectors, like help or dependencies, will only run the task on the project
they are invoked on and not on all the subprojects. The main motivation for this is
that these tasks print out information that would be hard to process if it combined
the information from all projects.

Gradle looks down the hierarchy, starting with the current dir, for tasks with the given name and
executes them. One thing is very important to note. Gradle always evaluates every project of the
multi-project build and creates all existing task objects. Then, according to the task name
arguments and the current directory, Gradle filters the tasks which should be executed. Because of
Gradle’s cross project configuration, every project has to be evaluated before any task gets executed.

When you’re using the Gradle wrapper, executing a task for a specific subproject by running Gradle
from the subproject’s directory doesn’t work well because you have to specify the path to the
wrapper script if you’re not in the project root. For example, if want to run build task for the
webservice subproject and you’re in the webservice subproject directory, you would have to run
../../gradlew build. The next section shows how this can be achieved directly from the project’s
root directory.

Executing tasks by fully qualified name

You can use task’s fully qualified name to execute a specific task in a specific subproject. For
example: gradle :services:webservice:build will run the build task of the webservice subproject.
The fully qualified name of a task is simply its project path plus the task name.

A project path has the following pattern: It starts with an optional colon, which denotes the root
project. The root project is the only project in a path that is not specified by its name. The rest of a
project path is a colon-separated sequence of project names, where the next project is a subproject
of the previous project. You can see the project paths when running gradle projects as shown in
identifying project structure section.

This approach works for any task, so if you want to know what tasks are in a particular subproject,
just use the tasks task, e.g. gradle :services:webservice:tasks.

Regardless of which technique you use to execute tasks, Gradle will take care of building any
subprojects that the target depends on. You don’t have to worry about the inter-project
dependencies yourself. If you’re interested in how this is configured, you can read about writing
multi-project builds later in the user manual.

That’s all you really need to know about multi-project builds as a build user. You can now identify
whether a build is a multi-project one and you can discover its structure. And finally, you can
execute tasks within specific subprojects.

Multi-Project Building and Testing

The build task of the Java plugin is typically used to compile, test, and perform code style checks (if
the CodeQuality plugin is used) of a single project. In multi-project builds you may often want to do
all of these tasks across a range of projects. The buildNeeded and buildDependents tasks can help with
this.

In this example, the :services:person-service project depends on both the :api and :shared
projects. The :api project also depends on the :shared project.

Assume you are working on a single project, the :api project. You have been making changes, but
have not built the entire project since performing a clean. You want to build any necessary
supporting jars, but only perform code quality and unit tests on the project you have changed. The
build task does this.

Example 25. Build and Test Single Project

Output of gradle :api:build

> gradle :api:build
> Task :shared:compileJava
> Task :shared:processResources
> Task :shared:classes
> Task :shared:jar
> Task :api:compileJava
> Task :api:processResources
> Task :api:classes
> Task :api:jar
> Task :api:assemble
> Task :api:compileTestJava
> Task :api:processTestResources
> Task :api:testClasses
> Task :api:test
> Task :api:check
> Task :api:build

BUILD SUCCESSFUL in 0s

If you have just gotten the latest version of source from your version control system which included
changes in other projects that :api depends on, you might want to not only build all the projects
you depend on, but test them as well. The buildNeeded task also tests all the projects from the project
dependencies of the testRuntime configuration.

Example 26. Build and Test Depended On Projects

Output of gradle :api:buildNeeded

> gradle :api:buildNeeded
> Task :shared:compileJava
> Task :shared:processResources
> Task :shared:classes
> Task :shared:jar
> Task :api:compileJava
> Task :api:processResources
> Task :api:classes
> Task :api:jar
> Task :api:assemble
> Task :api:compileTestJava
> Task :api:processTestResources
> Task :api:testClasses
> Task :api:test
> Task :api:check
> Task :api:build
> Task :shared:assemble
> Task :shared:compileTestJava
> Task :shared:processTestResources
> Task :shared:testClasses
> Task :shared:test
> Task :shared:check
> Task :shared:build
> Task :shared:buildNeeded
> Task :api:buildNeeded

BUILD SUCCESSFUL in 0s

You also might want to refactor some part of the :api project that is used in other projects. If you
make these types of changes, it is not sufficient to test just the :api project, you also need to test all
projects that depend on the :api project. The buildDependents task also tests all the projects that
have a project dependency (in the testRuntime configuration) on the specified project.

Example 27. Build and Test Dependent Projects

Output of gradle :api:buildDependents

> gradle :api:buildDependents
> Task :shared:compileJava
> Task :shared:processResources
> Task :shared:classes
> Task :shared:jar
> Task :api:compileJava
> Task :api:processResources
> Task :api:classes
> Task :api:jar
> Task :api:assemble
> Task :api:compileTestJava
> Task :api:processTestResources
> Task :api:testClasses
> Task :api:test
> Task :api:check
> Task :api:build
> Task :services:person-service:compileJava
> Task :services:person-service:processResources
> Task :services:person-service:classes
> Task :services:person-service:jar
> Task :services:person-service:assemble
> Task :services:person-service:compileTestJava
> Task :services:person-service:processTestResources
> Task :services:person-service:testClasses
> Task :services:person-service:test
> Task :services:person-service:check
> Task :services:person-service:build
> Task :services:person-service:buildDependents
> Task :api:buildDependents

BUILD SUCCESSFUL in 0s

Finally, you may want to build and test everything in all projects. Any task you run in the root
project folder will cause that same named task to be run on all the children. So you can just run
gradle build to build and test all projects.

Build Cache

TIP
Want to learn the tips and tricks top engineering teams use to keep builds fast and
performant? Register here for our Build Cache Training.

https://gradle.com/training/build-cache-deep-dive/?bid=docs-build-cache

NOTE
The build cache feature described here is different from the Android plugin build
cache.

Overview

The Gradle build cache is a cache mechanism that aims to save time by reusing outputs produced by
other builds. The build cache works by storing (locally or remotely) build outputs and allowing
builds to fetch these outputs from the cache when it is determined that inputs have not changed,
avoiding the expensive work of regenerating them.

A first feature using the build cache is task output caching. Essentially, task output caching
leverages the same intelligence as up-to-date checks that Gradle uses to avoid work when a
previous local build has already produced a set of task outputs. But instead of being limited to the
previous build in the same workspace, task output caching allows Gradle to reuse task outputs from
any earlier build in any location on the local machine. When using a shared build cache for task
output caching this even works across developer machines and build agents.

Apart from tasks, artifact transforms can also leverage the build cache and re-use their outputs
similarly to task output caching.

TIP

For a hands-on approach to learning how to use the build cache, start with reading
through the use cases for the build cache and the follow up sections. It covers the
different scenarios that caching can improve and has detailed discussions of the
different caveats you need to be aware of when enabling caching for a build.

Enable the Build Cache

By default, the build cache is not enabled. You can enable the build cache in a couple of ways:

Run with --build-cache on the command-line

Gradle will use the build cache for this build only.

Put org.gradle.caching=true in your gradle.properties

Gradle will try to reuse outputs from previous builds for all builds, unless explicitly disabled
with --no-build-cache.

When the build cache is enabled, it will store build outputs in the Gradle user home. For
configuring this directory or different kinds of build caches see Configure the Build Cache.

Task Output Caching

Beyond incremental builds described in up-to-date checks, Gradle can save time by reusing outputs
from previous executions of a task by matching inputs to the task. Task outputs can be reused
between builds on one computer or even between builds running on different computers via a
build cache.

We have focused on the use case where users have an organization-wide remote build cache that is
populated regularly by continuous integration builds. Developers and other continuous integration

https://developer.android.com/studio/build/build-cache.html
https://developer.android.com/studio/build/build-cache.html
build_cache_use_cases.pdf#use_cases_cache

agents should load cache entries from the remote build cache. We expect that developers will not
be allowed to populate the remote build cache, and all continuous integration builds populate the
build cache after running the clean task.

For your build to play well with task output caching it must work well with the incremental build
feature. For example, when running your build twice in a row all tasks with outputs should be UP-
TO-DATE. You cannot expect faster builds or correct builds when enabling task output caching when
this prerequisite is not met.

Task output caching is automatically enabled when you enable the build cache, see Enable the
Build Cache.

What does it look like

Let us start with a project using the Java plugin which has a few Java source files. We run the build
the first time.

> gradle --build-cache compileJava
:compileJava
:processResources
:classes
:jar
:assemble

BUILD SUCCESSFUL

We see the directory used by the local build cache in the output. Apart from that the build was the
same as without the build cache. Let’s clean and run the build again.

> gradle clean
:clean

BUILD SUCCESSFUL

> gradle --build-cache assemble
:compileJava FROM-CACHE
:processResources
:classes
:jar
:assemble

BUILD SUCCESSFUL

Now we see that, instead of executing the :compileJava task, the outputs of the task have been
loaded from the build cache. The other tasks have not been loaded from the build cache since they
are not cacheable. This is due to :classes and :assemble being lifecycle tasks and :processResources
and :jar being Copy-like tasks which are not cacheable since it is generally faster to execute them.

Cacheable tasks

Since a task describes all of its inputs and outputs, Gradle can compute a build cache key that
uniquely defines the task’s outputs based on its inputs. That build cache key is used to request
previous outputs from a build cache or store new outputs in the build cache. If the previous build
outputs have been already stored in the cache by someone else, e.g. your continuous integration
server or other developers, you can avoid executing most tasks locally.

The following inputs contribute to the build cache key for a task in the same way that they do for
up-to-date checks:

• The task type and its classpath

• The names of the output properties

• The names and values of properties annotated as described in the section called "Custom task
types"

• The names and values of properties added by the DSL via TaskInputs

• The classpath of the Gradle distribution, buildSrc and plugins

• The content of the build script when it affects execution of the task

Task types need to opt-in to task output caching using the @CacheableTask annotation. Note that
@CacheableTask is not inherited by subclasses. Custom task types are not cacheable by default.

Built-in cacheable tasks

Currently, the following built-in Gradle tasks are cacheable:

• Java toolchain: JavaCompile, Javadoc

• Groovy toolchain: GroovyCompile, Groovydoc

• Scala toolchain: ScalaCompile, PlatformScalaCompile, ScalaDoc

• Native toolchain: CppCompile, CCompile, SwiftCompile

• Testing: Test

• Code quality tasks: Checkstyle, CodeNarc, Pmd

• JaCoCo: JacocoMerge, JacocoReport

• Other tasks: AntlrTask, ValidatePlugins, WriteProperties

All other built-in tasks are currently not cacheable.

Some tasks, like Copy or Jar, usually do not make sense to make cacheable because Gradle is only
copying files from one location to another. It also doesn’t make sense to make tasks cacheable that
do not produce outputs or have no task actions.

Third party plugins

There are third party plugins that work well with the build cache. The most prominent examples
are the Android plugin 3.1+ and the Kotlin plugin 1.2.21+. For other third party plugins, check their

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/CacheableTask.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/CacheableTask.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/scala/tasks/PlatformScalaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.scala.ScalaDoc.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/cpp/tasks/CppCompile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/c/tasks/CCompile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/swift/tasks/SwiftCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.Checkstyle.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.CodeNarc.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.Pmd.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoMerge.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.WriteProperties.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Jar.html
https://developer.android.com/studio/releases/gradle-plugin.html
https://blog.gradle.org/kotlin-build-cache-use

documentation to find out whether they support the build cache.

Declaring task inputs and outputs

It is very important that a cacheable task has a complete picture of its inputs and outputs, so that
the results from one build can be safely re-used somewhere else.

Missing task inputs can cause incorrect cache hits, where different results are treated as identical
because the same cache key is used by both executions. Missing task outputs can cause build
failures if Gradle does not completely capture all outputs for a given task. Wrongly declared task
inputs can lead to cache misses especially when containing volatile data or absolute paths. (See the
section called "Task inputs and outputs" on what should be declared as inputs and outputs.)

NOTE
The task path is not an input to the build cache key. This means that tasks with
different task paths can re-use each other’s outputs as long as Gradle determines
that executing them yields the same result.

In order to ensure that the inputs and outputs are properly declared use integration tests (for
example using TestKit) to check that a task produces the same outputs for identical inputs and
captures all output files for the task. We suggest adding tests to ensure that the task inputs are
relocatable, i.e. that the task can be loaded from the cache into a different build directory (see
@PathSensitive).

In order to handle volatile inputs for your tasks consider configuring input normalization.

Marking tasks as non-cacheable by default

There are certain tasks that don’t benefit from using the build cache. One example is a task that
only moves data around the file system, like a Copy task. You can signify that a task is not to be
cached by adding the @DisableCachingByDefault annotation to it. You can also give a human-
readable reason for not caching the task by default. The annotation can be used on its own, or
together with @CacheableTask.

NOTE
This annotation is only for documenting the reason behind not caching the task by
default. Build logic can override this decision via the runtime API (see below).

Enable caching of non-cacheable tasks

As we have seen, built-in tasks, or tasks provided by plugins, are cacheable if their class is
annotated with the Cacheable annotation. But what if you want to make cacheable a task whose
class is not cacheable? Let’s take a concrete example: your build script uses a generic NpmTask task to
create a JavaScript bundle by delegating to NPM (and running npm run bundle). This process is
similar to a complex compilation task, but NpmTask is too generic to be cacheable by default: it just
takes arguments and runs npm with those arguments.

The inputs and outputs of this task are simple to figure out. The inputs are the directory containing
the JavaScript files, and the NPM configuration files. The output is the bundle file generated by this
task.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/PathSensitive.html

Using annotations

We create a subclass of the NpmTask and use annotations to declare the inputs and outputs.

When possible, it is better to use delegation instead of creating a subclass. That is the case for the
built in JavaExec, Exec, Copy and Sync tasks, which have a method on Project to do the actual work.

If you’re a modern JavaScript developer, you know that bundling can be quite long, and is worth
caching. To achieve that, we need to tell Gradle that it’s allowed to cache the output of that task,
using the @CacheableTask annotation.

This is sufficient to make the task cacheable on your own machine. However, input files are
identified by default by their absolute path. So if the cache needs to be shared between several
developers or machines using different paths, that won’t work as expected. So we also need to set
the path sensitivity. In this case, the relative path of the input files can be used to identify them.

Note that it is possible to override property annotations from the base class by overriding the getter
of the base class and annotating that method.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/CacheableTask.html
build_cache_concepts.pdf#relocatability

Example 28. Custom cacheable BundleTask

build.gradle

@CacheableTask ①
abstract class BundleTask extends NpmTask {

 @Override @Internal ②
 ListProperty<String> getArgs() {
 super.getArgs()
 }

 @InputDirectory
 @SkipWhenEmpty
 @PathSensitive(PathSensitivity.RELATIVE) ③
 abstract DirectoryProperty getScripts()

 @InputFiles
 @PathSensitive(PathSensitivity.RELATIVE) ④
 abstract ConfigurableFileCollection getConfigFiles()

 @OutputFile
 abstract RegularFileProperty getBundle()

 BundleTask() {
 args.addAll("run", "bundle")
 bundle.set(project.layout.buildDirectory.file("bundle.js"))
 scripts.set(project.layout.projectDirectory.dir("scripts"))
 configFiles.from(project.layout.projectDirectory.file("package.json"
))
 configFiles.from(project.layout.projectDirectory.file("package-
lock.json"))
 }
}

tasks.register('bundle', BundleTask)

build.gradle.kts

@CacheableTask ①
abstract class BundleTask : NpmTask() {

 @get:Internal ②
 override val args
 get() = super.args

 @get:InputDirectory
 @get:SkipWhenEmpty
 @get:PathSensitive(PathSensitivity.RELATIVE) ③
 abstract val scripts: DirectoryProperty

 @get:InputFiles
 @get:PathSensitive(PathSensitivity.RELATIVE) ④
 abstract val configFiles: ConfigurableFileCollection

 @get:OutputFile
 abstract val bundle: RegularFileProperty

 init {
 args.addAll("run", "bundle")
 bundle.set(project.layout.buildDirectory.file("bundle.js"))
 scripts.set(project.layout.projectDirectory.dir("scripts"))

configFiles.from(project.layout.projectDirectory.file("package.json"))
 configFiles.from(project.layout.projectDirectory.file("package-
lock.json"))
 }
}

tasks.register<BundleTask>("bundle")

• (1) Add @CacheableTask to enable caching for the task.

• (2) Override the getter of a property of the base class to change the input annotation to
@Internal.

• (3) (4) Declare the path sensitivity.

Using the runtime API

If for some reason you cannot create a new custom task class, it is also possible to make a task
cacheable using the runtime API to declare the inputs and outputs.

For enabling caching for the task you need to use the TaskOutputs.cacheIf() method.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputs.html#cacheIf-org.gradle.api.specs.Spec-

The declarations via the runtime API have the same effect as the annotations described above. Note
that you cannot override file inputs and outputs via the runtime API. Input properties can be
overridden by specifying the same property name.

Example 29. Make the bundle task cacheable

build.gradle

tasks.register('bundle', NpmTask) {
 args = ['run', 'bundle']

 outputs.cacheIf { true }

 inputs.dir(file("scripts"))
 .withPropertyName("scripts")
 .withPathSensitivity(PathSensitivity.RELATIVE)

 inputs.files("package.json", "package-lock.json")
 .withPropertyName("configFiles")
 .withPathSensitivity(PathSensitivity.RELATIVE)

 outputs.file("$buildDir/bundle.js")
 .withPropertyName("bundle")
}

build.gradle.kts

tasks.register<NpmTask>("bundle") {
 args.set(listOf("run", "bundle"))

 outputs.cacheIf { true }

 inputs.dir(file("scripts"))
 .withPropertyName("scripts")
 .withPathSensitivity(PathSensitivity.RELATIVE)

 inputs.files("package.json", "package-lock.json")
 .withPropertyName("configFiles")
 .withPathSensitivity(PathSensitivity.RELATIVE)

 outputs.file("$buildDir/bundle.js")
 .withPropertyName("bundle")
}

Configure the Build Cache

You can configure the build cache by using the Settings.buildCache(org.gradle.api.Action) block in
settings.gradle.

Gradle supports a local and a remote build cache that can be configured separately. When both
build caches are enabled, Gradle tries to load build outputs from the local build cache first, and
then tries the remote build cache if no build outputs are found. If outputs are found in the remote
cache, they are also stored in the local cache, so next time they will be found locally. Gradle stores
("pushes") build outputs in any build cache that is enabled and has BuildCache.isPush() set to true.

By default, the local build cache has push enabled, and the remote build cache has push disabled.

The local build cache is pre-configured to be a DirectoryBuildCache and enabled by default. The
remote build cache can be configured by specifying the type of build cache to connect to
(BuildCacheConfiguration.remote(java.lang.Class)).

Built-in local build cache

The built-in local build cache, DirectoryBuildCache, uses a directory to store build cache artifacts.
By default, this directory resides in the Gradle user home directory, but its location is configurable.

Gradle will periodically clean-up the local cache directory by removing entries that have not been
used recently to conserve disk space. Note that cache entries are cleaned-up regardless of the
project they were produced by.

For more details on the configuration options refer to the DSL documentation of
DirectoryBuildCache. Here is an example of the configuration.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:buildCache(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/caching/configuration/BuildCache.html#isPush--
https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.local.DirectoryBuildCache.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.configuration.BuildCacheConfiguration.html#org.gradle.caching.configuration.BuildCacheConfiguration:remote(java.lang.Class)
https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.local.DirectoryBuildCache.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.local.DirectoryBuildCache.html

Example 30. Configure the local cache

settings.gradle

buildCache {
 local {
 directory = new File(rootDir, 'build-cache')
 removeUnusedEntriesAfterDays = 30
 }
}

settings.gradle.kts

buildCache {
 local {
 directory = File(rootDir, "build-cache")
 removeUnusedEntriesAfterDays = 30
 }
}

Remote HTTP build cache

HttpBuildCache provides the ability read to and write from a remote cache via HTTP.

With the following configuration, the local build cache will be used for storing build outputs while
the local and the remote build cache will be used for retrieving build outputs.

https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.http.HttpBuildCache.html

Example 31. Load from HttpBuildCache

settings.gradle

buildCache {
 remote(HttpBuildCache) {
 url = 'https://example.com:8123/cache/'
 }
}

settings.gradle.kts

buildCache {
 remote<HttpBuildCache> {
 url = uri("https://example.com:8123/cache/")
 }
}

When attempting to load an entry, a GET request is made to https://example.com:8123/cache/«cache-
key». The response must have a 2xx status and the cache entry as the body, or a 404 Not Found status
if the entry does not exist.

When attempting to store an entry, a PUT request is made to https://example.com:8123/cache/«cache-
key». Any 2xx response status is interpreted as success. A 413 Payload Too Large response may be
returned to indicate that the payload is larger than the server will accept, which will not be treated
as an error.

Specifying access credentials

HTTP Basic Authentication is supported, with credentials being sent preemptively.

https://en.wikipedia.org/wiki/Basic_access_authentication

Example 32. Specifying access credentials

settings.gradle

buildCache {
 remote(HttpBuildCache) {
 url = 'https://example.com:8123/cache/'
 credentials {
 username = 'build-cache-user'
 password = 'some-complicated-password'
 }
 }
}

settings.gradle.kts

buildCache {
 remote<HttpBuildCache> {
 url = uri("https://example.com:8123/cache/")
 credentials {
 username = "build-cache-user"
 password = "some-complicated-password"
 }
 }
}

Redirects

3xx redirecting responses will be followed automatically.

Servers must take care when redirecting PUT requests as only 307 and 308 redirect responses will be
followed with a PUT request. All other redirect responses will be followed with a GET request, as per
RFC 7231, without the entry payload as the body.

Network error handling

Requests that fail during request transmission, after having established a TCP connection, will be
retried automatically.

This prevents temporary problems, such as connection drops, read or write timeouts, and low level
network failures such as a connection resets, causing cache operations to fail and disabling the
remote cache for the remainder of the build.

Requests will be retried up to 3 times. If the problem persists, the cache operation will fail and the
remote cache will be disabled for the remainder of the build.

https://datatracker.ietf.org/doc/html/rfc7231#page-54

Using SSL

By default, use of HTTPS requires the server to present a certificate that is trusted by the build’s
Java runtime. If your server’s certificate is not trusted, you can:

1. Update the trust store of your Java runtime to allow it to be trusted

2. Change the build environment to use an alternative trust store for the build runtime

3. Disable the requirement for a trusted certificate

The trust requirement can be disabled by setting HttpBuildCache.isAllowUntrustedServer() to true.
Enabling this option is a security risk, as it allows any cache server to impersonate the intended
server. It should only be used as a temporary measure or in very tightly controlled network
environments.

Example 33. Allow untrusted cache server

settings.gradle

buildCache {
 remote(HttpBuildCache) {
 url = 'https://example.com:8123/cache/'
 allowUntrustedServer = true
 }
}

settings.gradle.kts

buildCache {
 remote<HttpBuildCache> {
 url = uri("https://example.com:8123/cache/")
 isAllowUntrustedServer = true
 }
}

HTTP expect-continue

Use of HTTP Expect-Continue can be enabled. This causes upload requests to happen in two parts:
first a check whether a body would be accepted, then transmission of the body if the server
indicates it will accept it.

This is useful when uploading to cache servers that routinely redirect or reject upload requests, as
it avoids uploading the cache entry just to have it rejected (e.g. the cache entry is larger than the
cache will allow) or redirected. This additional check incurs extra latency when the server accepts
the request, but reduces latency when the request is rejected or redirected.

https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:allowUntrustedServer
https://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.2.3

Not all HTTP servers and proxies reliably implement Expect-Continue. Be sure to check that your
cache server does support it before enabling.

To enable, set HttpBuildCache.isUseExpectContinue() to true.

Example 34. Use Expect-Continue

settings.gradle

buildCache {
 remote(HttpBuildCache) {
 url = 'https://example.com:8123/cache/'
 useExpectContinue = true
 }
}

settings.gradle.kts

buildCache {
 remote<HttpBuildCache> {
 url = uri("https://example.com:8123/cache/")
 isUseExpectContinue = true
 }
}

Configuration use cases

The recommended use case for the remote build cache is that your continuous integration server
populates it from clean builds while developers only load from it. The configuration would then
look as follows.

https://docs.gradle.org/7.3.2/dsl/org.gradle.caching.http.HttpBuildCache.html#org.gradle.caching.http.HttpBuildCache:useExpectContinue

Example 35. Recommended setup for CI push use case

settings.gradle

boolean isCiServer = System.getenv().containsKey("CI")

buildCache {
 remote(HttpBuildCache) {
 url = 'https://example.com:8123/cache/'
 push = isCiServer
 }
}

settings.gradle.kts

val isCiServer = System.getenv().containsKey("CI")

buildCache {
 remote<HttpBuildCache> {
 url = uri("https://example.com:8123/cache/")
 isPush = isCiServer
 }
}

It is also possible to configure the build cache from an init script, which can be used from the
command line, added to your Gradle user home or be a part of your custom Gradle distribution.

Example 36. Init script to configure the build cache

init.gradle

gradle.settingsEvaluated { settings ->
 settings.buildCache {
 // vvv Your custom configuration goes here
 remote(HttpBuildCache) {
 url = 'https://example.com:8123/cache/'
 }
 // ^^^ Your custom configuration goes here
 }
}

init.gradle.kts

gradle.settingsEvaluated {
 buildCache {
 // vvv Your custom configuration goes here
 remote<HttpBuildCache> {
 url = uri("https://example.com:8123/cache/")
 }
 // ^^^ Your custom configuration goes here
 }
}

Build cache, composite builds and buildSrc

Gradle’s composite build feature allows including other complete Gradle builds into another. Such
included builds will inherit the build cache configuration from the top level build, regardless of
whether the included builds define build cache configuration themselves or not.

The build cache configuration present for any included build is effectively ignored, in favour of the
top level build’s configuration. This also applies to any buildSrc projects of any included builds.

The buildSrc directory is treated as an included build, and as such it inherits the build cache
configuration from the top-level build.

How to set up an HTTP build cache backend

Gradle provides a Docker image for a build cache node, which can connect with Gradle Enterprise
for centralized management. The cache node can also be used without a Gradle Enterprise
installation with restricted functionality.

https://hub.docker.com/r/gradle/build-cache-node/

Implement your own Build Cache

Using a different build cache backend to store build outputs (which is not covered by the built-in
support for connecting to an HTTP backend) requires implementing your own logic for connecting
to your custom build cache backend. To this end, custom build cache types can be registered via
BuildCacheConfiguration.registerBuildCacheService(java.lang.Class, java.lang.Class).

Gradle Enterprise includes a high-performance, easy to install and operate, shared build cache
backend.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#registerBuildCacheService-java.lang.Class-java.lang.Class-
https://gradle.com/build-cache

Authoring Gradle Builds

Build Script Basics
This chapter introduces you to the basics of writing Gradle build scripts. It uses toy examples to
explain basic functionality of Gradle, which is helpful to get an understanding of the basic concepts.
Especially if you move to Gradle from other build tools like Ant and want to understand differences
and advantages.

However, to get started with a standard project setup, you don’t even need to go into these concepts
in detail. Instead, you can have a quick hands-on introduction, through our step-by-step samples.

Projects, plugins and tasks

Every Gradle build is made up of one or more projects. What a project represents depends on what
it is that you are doing with Gradle. For example, a project might represent a library JAR or a web
application. It might represent a distribution ZIP assembled from the JARs produced by other
projects. A project does not necessarily represent a thing to be built. It might represent a thing to be
done, such as deploying your application to staging or production environments. Don’t worry if this
seems a little vague for now. Gradle’s build-by-convention support adds a more concrete definition
for what a project is.

The work that Gradle can do on a project is defined by one or more tasks. A task represents some
atomic piece of work which a build performs. This might be compiling some classes, creating a JAR,
generating Javadoc, or publishing some archives to a repository.

Typically, tasks are provided by applying a plugin so that you do not have to define them yourself.
Still, to give you an idea of what a task is, we will look at defining some simple tasks in a build with
one project in this chapter.

Hello world

You run a Gradle build using the gradle command. The gradle command looks for a file called
build.gradle in the current directory.[1] We call this build.gradle file a build script, although strictly
speaking it is a build configuration script, as we will see later. The build script defines a project and
its tasks.

To try this out, create the following build script named build.gradle.

You run a Gradle build using the gradle command. The gradle command looks for a file called
build.gradle.kts in the current directory.[2] We call this build.gradle.kts file a build script, although
strictly speaking it is a build configuration script, as we will see later. The build script defines a
project and its tasks.

To try this out, create the following build script named build.gradle.kts.

Example 37. Your first build script

build.gradle

tasks.register('hello') {
 doLast {
 println 'Hello world!'
 }
}

build.gradle.kts

tasks.register("hello") {
 doLast {
 println("Hello world!")
 }
}

In a command-line shell, move to the containing directory and execute the build script with gradle
-q hello:

TIP

What does -q do?

Most of the examples in this user guide are run with the -q command-line option. This
suppresses Gradle’s log messages, so that only the output of the tasks is shown. This
keeps the example output in this user guide a little clearer. You don’t need to use this
option if you don’t want to. See Logging for more details about the command-line
options which affect Gradle’s output.

Example 38. Execution of a build script

Output of gradle -q hello

> gradle -q hello
Hello world!

What’s going on here? This build script defines a single task, called hello, and adds an action to it.
When you run gradle hello, Gradle executes the hello task, which in turn executes the action
you’ve provided. The action is simply a block containing some code to execute.

If you think this looks similar to Ant’s targets, you would be right. Gradle tasks are the equivalent to
Ant targets, but as you will see, they are much more powerful. We have used a different
terminology than Ant as we think the word task is more expressive than the word target.
Unfortunately this introduces a terminology clash with Ant, as Ant calls its commands, such as

javac or copy, tasks. So when we talk about tasks, we always mean Gradle tasks, which are the
equivalent to Ant’s targets. If we talk about Ant tasks (Ant commands), we explicitly say Ant task.

Build scripts are code

Gradle’s build scripts give you the full power of Groovy and Kotlin. As an appetizer, have a look at
this:

Example 39. Using Groovy or Kotlin in Gradle’s tasks

build.gradle

tasks.register('upper') {
 doLast {
 String someString = 'mY_nAmE'
 println "Original: $someString"
 println "Upper case: ${someString.toUpperCase()}"
 }
}

build.gradle.kts

tasks.register("upper") {
 doLast {
 val someString = "mY_nAmE"
 println("Original: $someString")
 println("Upper case: ${someString.toUpperCase()}")
 }
}

Output of gradle -q upper

> gradle -q upper
Original: mY_nAmE
Upper case: MY_NAME

or

Example 40. Using Groovy or Kotlin in Gradle’s tasks

build.gradle

tasks.register('count') {
 doLast {
 4.times { print "$it " }
 }
}

build.gradle.kts

tasks.register("count") {
 doLast {
 repeat(4) { print("$it ") }
 }
}

Output of gradle -q count

> gradle -q count
0 1 2 3

Task dependencies

As you probably have guessed, you can declare tasks that depend on other tasks.

Example 41. Declaration of task that depends on other task

build.gradle

tasks.register('hello') {
 doLast {
 println 'Hello world!'
 }
}
tasks.register('intro') {
 dependsOn tasks.hello
 doLast {
 println "I'm Gradle"
 }
}

build.gradle.kts

tasks.register("hello") {
 doLast {
 println("Hello world!")
 }
}
tasks.register("intro") {
 dependsOn("hello")
 doLast {
 println("I'm Gradle")
 }
}

Output of gradle -q intro

> gradle -q intro
Hello world!
I'm Gradle

To add a dependency, the corresponding task does not need to exist.

Example 42. Lazy dependsOn - the other task does not exist (yet)

build.gradle

tasks.register('taskX') {
 dependsOn 'taskY'
 doLast {
 println 'taskX'
 }
}
tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
}

build.gradle.kts

tasks.register("taskX") {
 dependsOn("taskY")
 doLast {
 println("taskX")
 }
}
tasks.register("taskY") {
 doLast {
 println("taskY")
 }
}

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

The dependency of taskX to taskY may be declared before taskY is defined. Task dependencies are
discussed in more detail in Adding dependencies to a task.

Flexible task registration

The power of Groovy or Kotlin can be used for more than defining what a task does For example,
you can use it to register multiple tasks of the same type in a loop.

Example 43. Flexible registration of a task

build.gradle

4.times { counter ->
 tasks.register("task$counter") {
 doLast {
 println "I'm task number $counter"
 }
 }
}

build.gradle.kts

repeat(4) { counter ->
 tasks.register("task$counter") {
 doLast {
 println("I'm task number $counter")
 }
 }
}

Output of gradle -q task1

> gradle -q task1
I'm task number 1

Manipulating existing tasks

Once tasks are registered, they can be accessed via an API. For instance, you could use this to
dynamically add dependencies to a task, at runtime. Ant doesn’t allow anything like this.

Example 44. Accessing a task via API - adding a dependency

build.gradle

4.times { counter ->
 tasks.register("task$counter") {
 doLast {
 println "I'm task number $counter"
 }
 }
}
tasks.named('task0') { dependsOn('task2', 'task3') }

build.gradle.kts

repeat(4) { counter ->
 tasks.register("task$counter") {
 doLast {
 println("I'm task number $counter")
 }
 }
}
tasks.named("task0") { dependsOn("task2", "task3") }

Output of gradle -q task0

> gradle -q task0
I'm task number 2
I'm task number 3
I'm task number 0

Or you can add behavior to an existing task.

Example 45. Accessing a task via API - adding behaviour

build.gradle

tasks.register('hello') {
 doLast {
 println 'Hello Earth'
 }
}
tasks.named('hello') {
 doFirst {
 println 'Hello Venus'
 }
}
tasks.named('hello') {
 doLast {
 println 'Hello Mars'
 }
}
tasks.named('hello') {
 doLast {
 println 'Hello Jupiter'
 }
}

build.gradle.kts

tasks.register("hello") {
 doLast {
 println("Hello Earth")
 }
}
tasks.named("hello") {
 doFirst {
 println("Hello Venus")
 }
}
tasks.named("hello") {
 doLast {
 println("Hello Mars")
 }
}
tasks.named("hello") {
 doLast {
 println("Hello Jupiter")
 }
}

Output of gradle -q hello

> gradle -q hello
Hello Venus
Hello Earth
Hello Mars
Hello Jupiter

The calls doFirst and doLast can be executed multiple times. They add an action to the beginning or
the end of the task’s actions list. When the task executes, the actions in the action list are executed
in order.

Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by
simply relying on Groovy. Groovy is shipped with the fantastic AntBuilder. Using Ant tasks from
Gradle is as convenient and more powerful than using Ant tasks from a build.xml file. And it is
usable from Kotlin too. From the example below, you can learn how to execute Ant tasks and how
to access Ant properties:

Example 46. Using AntBuilder to execute ant.loadfile target

build.gradle

tasks.register('loadfile') {
 doLast {
 def files = file('./antLoadfileResources').listFiles().sort()
 files.each { File file ->
 if (file.isFile()) {
 ant.loadfile(srcFile: file, property: file.name)
 println " *** $file.name ***"
 println "${ant.properties[file.name]}"
 }
 }
 }
}

build.gradle.kts

tasks.register("loadfile") {
 doLast {
 val files = file("./antLoadfileResources").listFiles().sorted()
 files.forEach { file ->
 if (file.isFile) {
 ant.withGroovyBuilder {
 "loadfile"("srcFile" to file, "property" to file.name)
 }
 println(" *** ${file.name} ***")
 println("${ant.properties[file.name]}")
 }
 }
 }
}

Output of gradle -q loadfile

> gradle -q loadfile
 *** agile.manifesto.txt ***
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
 *** gradle.manifesto.txt ***
Make the impossible possible, make the possible easy and make the easy elegant.
(inspired by Moshe Feldenkrais)

There is lots more you can do with Ant in your build scripts. You can find out more in Ant.

Using methods

Gradle scales in how you can organize your build logic. The first level of organizing your build logic
for the example above, is extracting a method.

Example 47. Using methods to organize your build logic

build.gradle

tasks.register('checksum') {
 doLast {
 fileList('./antLoadfileResources').each { File file ->
 ant.checksum(file: file, property: "cs_$file.name")
 println "$file.name Checksum: ${ant.properties["cs_$file.name"]}"
 }
 }
}

tasks.register('loadfile') {
 doLast {
 fileList('./antLoadfileResources').each { File file ->
 ant.loadfile(srcFile: file, property: file.name)
 println "I'm fond of $file.name"
 }
 }
}

File[] fileList(String dir) {
 file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()
}

build.gradle.kts

tasks.register("checksum") {
 doLast {
 fileList("./antLoadfileResources").forEach { file ->
 ant.withGroovyBuilder {
 "checksum"("file" to file, "property" to "cs_${file.name}")
 }
 println("$file.name Checksum:
${ant.properties["cs_${file.name}"]}")
 }
 }
}

tasks.register("loadfile") {
 doLast {
 fileList("./antLoadfileResources").forEach { file ->
 ant.withGroovyBuilder {
 "loadfile"("srcFile" to file, "property" to file.name)
 }
 println("I'm fond of ${file.name}")
 }
 }
}

fun fileList(dir: String): List<File> =
 file(dir).listFiles { file: File -> file.isFile }.sorted()

Output of gradle -q loadfile

> gradle -q loadfile
I'm fond of agile.manifesto.txt
I'm fond of gradle.manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If
your build logic becomes more complex, Gradle offers you other very convenient ways to organize
it. We have devoted a whole chapter to this. See Organizing Gradle Projects.

Default tasks

Gradle allows you to define one or more default tasks that are executed if no other tasks are
specified.

Example 48. Defining a default task

build.gradle

defaultTasks 'clean', 'run'

tasks.register('clean') {
 doLast {
 println 'Default Cleaning!'
 }
}

tasks.register('run') {
 doLast {
 println 'Default Running!'
 }
}

tasks.register('other') {
 doLast {
 println "I'm not a default task!"
 }
}

build.gradle.kts

defaultTasks("clean", "run")

tasks.register("clean") {
 doLast {
 println("Default Cleaning!")
 }
}

tasks.register("run") {
 doLast {
 println("Default Running!")
 }
}

tasks.register("other") {
 doLast {
 println("I'm not a default task!")
 }
}

Output of gradle -q

> gradle -q
Default Cleaning!
Default Running!

This is equivalent to running gradle clean run. In a multi-project build every subproject can have
its own specific default tasks. If a subproject does not specify default tasks, the default tasks of the
parent project are used (if defined).

External dependencies for the build script

NOTE
Instead of manipulating the script classpath directly, it is recommended to apply
plugins that come with their own classpath. For custom build logic, the
recommendation is to use a custom plugin.

If your build script needs to use external libraries, you can add them to the script’s classpath in the
build script itself. You do this using the buildscript() method, passing in a block which declares the
build script classpath.

Example 49. Declaring external dependencies for the build script

build.gradle

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath group: 'commons-codec', name: 'commons-codec', version:
'1.2'
 }
}

build.gradle.kts

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 "classpath"(group = "commons-codec", name = "commons-codec", version
= "1.2")
 }
}

The block passed to the buildscript() method configures a ScriptHandler instance. You declare the
build script classpath by adding dependencies to the classpath configuration. This is the same way
you declare, for example, the Java compilation classpath. You can use any of the dependency types
except project dependencies.

Having declared the build script classpath, you can use the classes in your build script as you would
any other classes on the classpath. The following example adds to the previous example, and uses
classes from the build script classpath.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Example 50. A build script with external dependencies

build.gradle

import org.apache.commons.codec.binary.Base64

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath group: 'commons-codec', name: 'commons-codec', version:
'1.2'
 }
}

tasks.register('encode') {
 doLast {
 def byte[] encodedString = new Base64().encode('hello world\n'
.getBytes())
 println new String(encodedString)
 }
}

build.gradle.kts

import org.apache.commons.codec.binary.Base64

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 "classpath"(group = "commons-codec", name = "commons-codec", version
= "1.2")
 }
}

tasks.register("encode") {
 doLast {
 val encodedString = Base64().encode("hello world\n".toByteArray())
 println(String(encodedString))
 }
}

Output of gradle -q encode

> gradle -q encode
aGVsbG8gd29ybGQK

For multi-project builds, the dependencies declared with a project’s buildscript() method are
available to the build scripts of all its sub-projects.

Build script dependencies may be Gradle plugins. Please consult Using Gradle Plugins for more
information on Gradle plugins.

Every project automatically has a buildEnvironment task of type BuildEnvironmentReportTask that
can be invoked to report on the resolution of the build script dependencies.

Further Reading

This chapter only scratched the surface with what’s possible. Here are some other topics that may
be interesting:

• Authoring maintainable build scripts

• Organizing your Gradle projects

• Writing Custom tasks

Authoring Tasks
In the introductory tutorial you learned how to create simple tasks. You also learned how to add
additional behavior to these tasks later on, and you learned how to create dependencies between
tasks. This was all about simple tasks, but Gradle takes the concept of tasks further. Gradle supports
tasks that have their own properties and methods. Such tasks are either provided by you or built
into Gradle.

Task outcomes

When Gradle executes a task, it can label the task with different outcomes in the console UI and via
the Tooling API. These labels are based on if a task has actions to execute, if it should execute those
actions, if it did execute those actions and if those actions made any changes.

(no label) or EXECUTED

Task executed its actions.

• Task has actions and Gradle has determined they should be executed as part of a build.

• Task has no actions and some dependencies, and any of the dependencies are executed. See
also Lifecycle Tasks.

UP-TO-DATE

Task’s outputs did not change.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html

• Task has outputs and inputs and they have not changed. See Incremental Builds.

• Task has actions, but the task tells Gradle it did not change its outputs.

• Task has no actions and some dependencies, but all of the dependencies are up-to-date,
skipped or from cache. See also Lifecycle Tasks.

• Task has no actions and no dependencies.

FROM-CACHE

Task’s outputs could be found from a previous execution.

• Task has outputs restored from the build cache. See Build Cache.

SKIPPED

Task did not execute its actions.

• Task has been explicitly excluded from the command-line. See Excluding tasks from
execution.

• Task has an onlyIf predicate return false. See Using a predicate.

NO-SOURCE

Task did not need to execute its actions.

• Task has inputs and outputs, but no sources. For example, source files are .java files for
JavaCompile.

Defining tasks

We have already seen how to define tasks using strings for task names in this chapter. There are a
few variations on this style, which you may need to use in certain situations.

NOTE
The task configuration APIs are described in more detail in the task configuration
avoidance chapter.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html
task_configuration_avoidance.pdf#task_configuration_avoidance
task_configuration_avoidance.pdf#task_configuration_avoidance

Example 51. Defining tasks using strings for task names

build.gradle

tasks.register('hello') {
 doLast {
 println 'hello'
 }
}

tasks.register('copy', Copy) {
 from(file('srcDir'))
 into(buildDir)
}

build.gradle.kts

tasks.register("hello") {
 doLast {
 println("hello")
 }
}

tasks.register<Copy>("copy") {
 from(file("srcDir"))
 into(buildDir)
}

We add the tasks to the tasks collection. Have a look at TaskContainer for more variations of the
register() method.

In the Kotlin DSL there is also a specific delegated properties syntax that is useful if you need the
registered task for further reference.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html
https://kotlinlang.org/docs/reference/delegated-properties.html

Example 52. Assigning tasks to variables with DSL specific syntax

build.gradle

// Assigning registered tasks to a variable in Groovy

def hello = tasks.register('hello') {
 doLast {
 println 'hello'
 }
}

def copy = tasks.register('copy', Copy) {
 from(file('srcDir'))
 into(buildDir)
}

build.gradle.kts

// Using Kotlin delegated properties

val hello by tasks.registering {
 doLast {
 println("hello")
 }
}

val copy by tasks.registering(Copy::class) {
 from(file("srcDir"))
 into(buildDir)
}

WARNING

If you look at the API of the tasks container you may notice that there are
additional methods to create tasks. The use of these methods is discouraged
and will be deprecated in future versions. These methods only exist for
backward compatibility as they were introduced before task configuration
avoidance was added to Gradle.

Locating tasks

You often need to locate the tasks that you have defined in the build file, for example, to configure
them or use them for dependencies. There are a number of ways of doing this. Firstly, just like with
defining tasks there are language specific syntaxes for the Groovy and Kotlin DSL:

In general, tasks are available through the tasks collection. You should use of the methods that

task_configuration_avoidance.pdf#task_configuration_avoidance
task_configuration_avoidance.pdf#task_configuration_avoidance

return a task provider – register() or named() – to make sure you do not break task configuration
avoidance.

Example 53. Accessing tasks via tasks collection

build.gradle

tasks.register('hello')
tasks.register('copy', Copy)

println tasks.named('hello').get().name

println tasks.named('copy').get().destinationDir

build.gradle.kts

tasks.register("hello")
tasks.register<Copy>("copy")

println(tasks.named("hello").get().name) // or just 'tasks.hello' if the task
was added by a plugin

println(tasks.named<Copy>("copy").get().destinationDir)

Tasks of a specific type can also be accessed by using the tasks.withType() method. This enables to
easily avoid duplication of code and reduce redundancy.

task_configuration_avoidance.pdf#task_configuration_avoidance
task_configuration_avoidance.pdf#task_configuration_avoidance

Example 54. Accessing tasks by their type

build.gradle

tasks.withType(Tar).configureEach {
 enabled = false
}

tasks.register('test') {
 dependsOn tasks.withType(Copy)
}

build.gradle.kts

tasks.withType<Tar>().configureEach {
 enabled = false
}

tasks.register("test") {
 dependsOn(tasks.withType<Copy>())
}

WARNING
The following shows how to access a task by path. This is not a recommended
practice anymore as it breaks task configuration avoidance and project
isolation. Dependencies between projects should be declared as dependencies.

You can access tasks from any project using the task’s path using the tasks.getByPath() method. You
can call the getByPath() method with a task name, or a relative path, or an absolute path.

task_configuration_avoidance.pdf#task_configuration_avoidance

Example 55. Accessing tasks by path

project-a/build.gradle

tasks.register('hello')

build.gradle

tasks.register('hello')

println tasks.getByPath('hello').path
println tasks.getByPath(':hello').path
println tasks.getByPath('project-a:hello').path
println tasks.getByPath(':project-a:hello').path

project-a/build.gradle.kts

tasks.register("hello")

build.gradle.kts

tasks.register("hello")

println(tasks.getByPath("hello").path)
println(tasks.getByPath(":hello").path)
println(tasks.getByPath("project-a:hello").path)
println(tasks.getByPath(":project-a:hello").path)

Output of gradle -q hello

> gradle -q hello
:hello
:hello
:project-a:hello
:project-a:hello

Have a look at TaskContainer for more options for locating tasks.

Configuring tasks

As an example, let’s look at the Copy task provided by Gradle. To register a Copy task for your build,
you can declare in your build script:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html

Example 56. Registering a copy task

build.gradle

tasks.register('myCopy', Copy)

build.gradle.kts

tasks.register<Copy>("myCopy")

This registers a copy task with no default behavior. The task can be configured using its API (see
Copy). The following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of this task is myCopy, but it is of type Copy. You can have
multiple tasks of the same type, but with different names. You’ll find this gives you a lot of power to
implement cross-cutting concerns across all tasks of a particular type.

Example 57. Configuring a task

build.gradle

tasks.named('myCopy') {
 from 'resources'
 into 'target'
 include('**/*.txt', '**/*.xml', '**/*.properties')
}

build.gradle.kts

tasks.named<Copy>("myCopy") {
 from("resources")
 into("target")
 include("**/*.txt", "**/*.xml", "**/*.properties")
}

You can also store the task reference in a variable and use to configure the task further at a later
point in the script.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html

Example 58. Retrieve a task reference and use it to configuring the task

build.gradle

// Configure task through a task provider
def myCopy = tasks.named('myCopy') {
 from 'resources'
 into 'target'
}
myCopy.configure {
 include('**/*.txt', '**/*.xml', '**/*.properties')
}

build.gradle.kts

// Configure task using Kotlin delegated properties and a lambda
val myCopy by tasks.existing(Copy::class) {
 from("resources")
 into("target")
}
myCopy {
 include("**/*.txt", "**/*.xml", "**/*.properties")
}

Have a look at TaskContainer for more options for configuring tasks.

TIP
If you use the Kotlin DSL and the task you want to configure was added by a plugin,
you can use a convenient accessor for the task. That is, instead of tasks.named("test")
you can just write tasks.test.

You can also use a configuration block when you define a task.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html

Example 59. Defining a task with a configuration block

build.gradle

tasks.register('copy', Copy) {
 from 'resources'
 into 'target'
 include('**/*.txt', '**/*.xml', '**/*.properties')
}

build.gradle.kts

tasks.register<Copy>("copy") {
 from("resources")
 into("target")
 include("**/*.txt", "**/*.xml", "**/*.properties")
}

TIP

Don’t forget about the build phases

A task has both configuration and actions. When using the doLast, you are simply
using a shortcut to define an action. Code defined in the configuration section of your
task will get executed during the configuration phase of the build regardless of what
task was targeted. See Build Lifecycle for more details about the build lifecycle.

Passing arguments to a task constructor

As opposed to configuring the mutable properties of a Task after creation, you can pass argument
values to the Task class’s constructor. In order to pass values to the Task constructor, you must
annotate the relevant constructor with @javax.inject.Inject.

Example 60. Task class with @Inject constructor

build.gradle

abstract class CustomTask extends DefaultTask {
 final String message
 final int number

 @Inject
 CustomTask(String message, int number) {
 this.message = message
 this.number = number
 }
}

build.gradle.kts

abstract class CustomTask @Inject constructor(
 private val message: String,
 private val number: Int
) : DefaultTask()

You can then create a task, passing the constructor arguments at the end of the parameter list.

Example 61. Registering a task with constructor arguments using TaskContainer

build.gradle

tasks.register('myTask', CustomTask, 'hello', 42)

build.gradle.kts

tasks.register<CustomTask>("myTask", "hello", 42)

NOTE
It’s recommended to use the Task Configuration Avoidance APIs to improve
configuration time.

In all circumstances, the values passed as constructor arguments must be non-null. If you attempt
to pass a null value, Gradle will throw a NullPointerException indicating which runtime value is
null.

task_configuration_avoidance.pdf#task_configuration_avoidance

Adding dependencies to a task

There are several ways you can define the dependencies of a task. In Task dependencies you were
introduced to defining dependencies using task names. Task names can refer to tasks in the same
project as the task, or to tasks in other projects. To refer to a task in another project, you prefix the
name of the task with the path of the project it belongs to. The following is an example which adds
a dependency from project-a:taskX to project-b:taskY:

Example 62. Adding dependency on task from another project

build.gradle

project('project-a') {
 tasks.register('taskX') {
 dependsOn ':project-b:taskY'
 doLast {
 println 'taskX'
 }
 }
}

project('project-b') {
 tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
 }
}

build.gradle.kts

project("project-a") {
 tasks.register("taskX") {
 dependsOn(":project-b:taskY")
 doLast {
 println("taskX")
 }
 }
}

project("project-b") {
 tasks.register("taskY") {
 doLast {
 println("taskY")
 }
 }
}

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

Instead of using a task name, you can define a dependency using a TaskProvider object, as shown in
this example:

Example 63. Adding dependency using task provider object

build.gradle

def taskX = tasks.register('taskX') {
 doLast {
 println 'taskX'
 }
}

def taskY = tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
}

taskX.configure {
 dependsOn taskY
}

build.gradle.kts

val taskX by tasks.registering {
 doLast {
 println("taskX")
 }
}

val taskY by tasks.registering {
 doLast {
 println("taskY")
 }
}

taskX {
 dependsOn(taskY)
}

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

For more advanced uses, you can define a task dependency using a lazy block. When evaluated, the

block is passed the task whose dependencies are being calculated. The lazy block should return a
single Task or collection of Task objects, which are then treated as dependencies of the task. The
following example adds a dependency from taskX to all the tasks in the project whose name starts
with lib:

Example 64. Adding dependency using a lazy block

build.gradle

def taskX = tasks.register('taskX') {
 doLast {
 println 'taskX'
 }
}

// Using a Gradle Provider
taskX.configure {
 dependsOn(provider {
 tasks.findAll { task -> task.name.startsWith('lib') }
 })
}

tasks.register('lib1') {
 doLast {
 println('lib1')
 }
}

tasks.register('lib2') {
 doLast {
 println('lib2')
 }
}

tasks.register('notALib') {
 doLast {
 println('notALib')
 }
}

build.gradle.kts

val taskX by tasks.registering {
 doLast {
 println("taskX")
 }
}

// Using a Gradle Provider
taskX {
 dependsOn(provider {
 tasks.filter { task -> task.name.startsWith("lib") }
 })
}

tasks.register("lib1") {
 doLast {
 println("lib1")
 }
}

tasks.register("lib2") {
 doLast {
 println("lib2")
 }
}

tasks.register("notALib") {
 doLast {
 println("notALib")
 }
}

Output of gradle -q taskX

> gradle -q taskX
lib1
lib2
taskX

For more information about task dependencies, see the Task API.

Ordering tasks

In some cases it is useful to control the order in which 2 tasks will execute, without introducing an
explicit dependency between those tasks. The primary difference between a task ordering and a
task dependency is that an ordering rule does not influence which tasks will be executed, only the

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html

order in which they will be executed.

Task ordering can be useful in a number of scenarios:

• Enforce sequential ordering of tasks: e.g. 'build' never runs before 'clean'.

• Run build validations early in the build: e.g. validate I have the correct credentials before
starting the work for a release build.

• Get feedback faster by running quick verification tasks before long verification tasks: e.g. unit
tests should run before integration tests.

• A task that aggregates the results of all tasks of a particular type: e.g. test report task combines
the outputs of all executed test tasks.

There are two ordering rules available: “must run after” and “should run after”.

When you use the “must run after” ordering rule you specify that taskB must always run after
taskA, whenever both taskA and taskB will be run. This is expressed as taskB.mustRunAfter(taskA).
The “should run after” ordering rule is similar but less strict as it will be ignored in two situations.
Firstly if using that rule introduces an ordering cycle. Secondly when using parallel execution and
all dependencies of a task have been satisfied apart from the “should run after” task, then this task
will be run regardless of whether its “should run after” dependencies have been run or not. You
should use “should run after” where the ordering is helpful but not strictly required.

With these rules present it is still possible to execute taskA without taskB and vice-versa.

Example 65. Adding a 'must run after' task ordering

build.gradle

def taskX = tasks.register('taskX') {
 doLast {
 println 'taskX'
 }
}
def taskY = tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
}
taskY.configure {
 mustRunAfter taskX
}

build.gradle.kts

val taskX by tasks.registering {
 doLast {
 println("taskX")
 }
}
val taskY by tasks.registering {
 doLast {
 println("taskY")
 }
}
taskY {
 mustRunAfter(taskX)
}

Output of gradle -q taskY taskX

> gradle -q taskY taskX
taskX
taskY

Example 66. Adding a 'should run after' task ordering

build.gradle

def taskX = tasks.register('taskX') {
 doLast {
 println 'taskX'
 }
}
def taskY = tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
}
taskY.configure {
 shouldRunAfter taskX
}

build.gradle.kts

val taskX by tasks.registering {
 doLast {
 println("taskX")
 }
}
val taskY by tasks.registering {
 doLast {
 println("taskY")
 }
}
taskY {
 shouldRunAfter(taskX)
}

Output of gradle -q taskY taskX

> gradle -q taskY taskX
taskX
taskY

In the examples above, it is still possible to execute taskY without causing taskX to run:

Example 67. Task ordering does not imply task execution

Output of gradle -q taskY

> gradle -q taskY
taskY

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the
Task.mustRunAfter(java.lang.Object...) and Task.shouldRunAfter(java.lang.Object...) methods. These
methods accept a task instance, a task name or any other input accepted by
Task.dependsOn(java.lang.Object...).

Note that “B.mustRunAfter(A)” or “B.shouldRunAfter(A)” does not imply any execution dependency
between the tasks:

• It is possible to execute tasks A and B independently. The ordering rule only has an effect when
both tasks are scheduled for execution.

• When run with --continue, it is possible for B to execute in the event that A fails.

As mentioned before, the “should run after” ordering rule will be ignored if it introduces an
ordering cycle:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Task.html#shouldRunAfter-java.lang.Object...-
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 68. A 'should run after' task ordering is ignored if it introduces an ordering cycle

build.gradle

def taskX = tasks.register('taskX') {
 doLast {
 println 'taskX'
 }
}
def taskY = tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
}
def taskZ = tasks.register('taskZ') {
 doLast {
 println 'taskZ'
 }
}
taskX.configure { dependsOn(taskY) }
taskY.configure { dependsOn(taskZ) }
taskZ.configure { shouldRunAfter(taskX) }

build.gradle.kts

val taskX by tasks.registering {
 doLast {
 println("taskX")
 }
}
val taskY by tasks.registering {
 doLast {
 println("taskY")
 }
}
val taskZ by tasks.registering {
 doLast {
 println("taskZ")
 }
}
taskX { dependsOn(taskY) }
taskY { dependsOn(taskZ) }
taskZ { shouldRunAfter(taskX) }

Output of gradle -q taskX

> gradle -q taskX
taskZ
taskY
taskX

Adding a description to a task

You can add a description to your task. This description is displayed when executing gradle tasks.

Example 69. Adding a description to a task

build.gradle

tasks.register('copy', Copy) {
 description 'Copies the resource directory to the target directory.'
 from 'resources'
 into 'target'
 include('**/*.txt', '**/*.xml', '**/*.properties')
}

build.gradle.kts

tasks.register<Copy>("copy") {
 description = "Copies the resource directory to the target directory."
 from("resources")
 into("target")
 include("**/*.txt", "**/*.xml", "**/*.properties")
}

Skipping tasks

Gradle offers multiple ways to skip the execution of a task.

Using a predicate

You can use the onlyIf() method to attach a predicate to a task. The task’s actions are only executed
if the predicate evaluates to true. You implement the predicate as a closure. The closure is passed
the task as a parameter, and should return true if the task should execute and false if the task
should be skipped. The predicate is evaluated just before the task is due to be executed.

Example 70. Skipping a task using a predicate

build.gradle

def hello = tasks.register('hello') {
 doLast {
 println 'hello world'
 }
}

hello.configure {
 onlyIf { !project.hasProperty('skipHello') }
}

build.gradle.kts

val hello by tasks.registering {
 doLast {
 println("hello world")
 }
}

hello {
 onlyIf { !project.hasProperty("skipHello") }
}

Output of gradle hello -PskipHello

> gradle hello -PskipHello
> Task :hello SKIPPED

BUILD SUCCESSFUL in 0s

Using StopExecutionException

If the logic for skipping a task can’t be expressed with a predicate, you can use the
StopExecutionException. If this exception is thrown by an action, the further execution of this
action as well as the execution of any following action of this task is skipped. The build continues
with executing the next task.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/StopExecutionException.html

Example 71. Skipping tasks with StopExecutionException

build.gradle

def compile = tasks.register('compile') {
 doLast {
 println 'We are doing the compile.'
 }
}

compile.configure {
 doFirst {
 // Here you would put arbitrary conditions in real life.
 if (true) {
 throw new StopExecutionException()
 }
 }
}
tasks.register('myTask') {
 dependsOn('compile')
 doLast {
 println 'I am not affected'
 }
}

build.gradle.kts

val compile by tasks.registering {
 doLast {
 println("We are doing the compile.")
 }
}

compile {
 doFirst {
 // Here you would put arbitrary conditions in real life.
 if (true) {
 throw StopExecutionException()
 }
 }
}
tasks.register("myTask") {
 dependsOn(compile)
 doLast {
 println("I am not affected")
 }
}

Output of gradle -q myTask

> gradle -q myTask
I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add conditional
execution of the built-in actions of such a task.[3]

Enabling and disabling tasks

Every task has an enabled flag which defaults to true. Setting it to false prevents the execution of
any of the task’s actions. A disabled task will be labelled SKIPPED.

Example 72. Enabling and disabling tasks

build.gradle

def disableMe = tasks.register('disableMe') {
 doLast {
 println 'This should not be printed if the task is disabled.'
 }
}

disableMe.configure {
 enabled = false
}

build.gradle.kts

val disableMe by tasks.registering {
 doLast {
 println("This should not be printed if the task is disabled.")
 }
}

disableMe {
 enabled = false
}

Output of gradle disableMe

> gradle disableMe
> Task :disableMe SKIPPED

BUILD SUCCESSFUL in 0s

Task timeouts

Every task has a timeout property which can be used to limit its execution time. When a task
reaches its timeout, its task execution thread is interrupted. The task will be marked as failed.
Finalizer tasks will still be run. If --continue is used, other tasks can continue running after it. Tasks
that don’t respond to interrupts can’t be timed out. All of Gradle’s built-in tasks respond to timeouts
in a timely manner.

Example 73. Specifying task timeouts

build.gradle

tasks.register("hangingTask") {
 doLast {
 Thread.sleep(100000)
 }
 timeout = Duration.ofMillis(500)
}

build.gradle.kts

tasks.register("hangingTask") {
 doLast {
 Thread.sleep(100000)
 }
 timeout.set(Duration.ofMillis(500))
}

Up-to-date checks (AKA Incremental Build)

An important part of any build tool is the ability to avoid doing work that has already been done.
Consider the process of compilation. Once your source files have been compiled, there should be no
need to recompile them unless something has changed that affects the output, such as the
modification of a source file or the removal of an output file. And compilation can take a significant
amount of time, so skipping the step when it’s not needed saves a lot of time.

Gradle supports this behavior out of the box through a feature it calls incremental build. You have
almost certainly already seen it in action: it’s active nearly every time the UP-TO-DATE text appears
next to the name of a task when you run a build. Task outcomes are described in Task outcomes.

How does incremental build work? And what does it take to make use of it in your own tasks? Let’s
take a look.

Task inputs and outputs

In the most common case, a task takes some inputs and generates some outputs. If we use the
compilation example from earlier, we can see that the source files are the inputs and, in the case of
Java, the generated class files are the outputs. Other inputs might include things like whether debug
information should be included.

Figure 7. Example task inputs and outputs

An important characteristic of an input is that it affects one or more outputs, as you can see from
the previous figure. Different bytecode is generated depending on the content of the source files
and the minimum version of the Java runtime you want to run the code on. That makes them task
inputs. But whether compilation has 500MB or 600MB of maximum memory available, determined
by the memoryMaximumSize property, has no impact on what bytecode gets generated. In Gradle
terminology, memoryMaximumSize is just an internal task property.

As part of incremental build, Gradle tests whether any of the task inputs or outputs has changed
since the last build. If they haven’t, Gradle can consider the task up to date and therefore skip
executing its actions. Also note that incremental build won’t work unless a task has at least one task
output, although tasks usually have at least one input as well.

What this means for build authors is simple: you need to tell Gradle which task properties are
inputs and which are outputs. If a task property affects the output, be sure to register it as an input,
otherwise the task will be considered up to date when it’s not. Conversely, don’t register properties
as inputs if they don’t affect the output, otherwise the task will potentially execute when it doesn’t
need to. Also be careful of non-deterministic tasks that may generate different output for exactly
the same inputs: these should not be configured for incremental build as the up-to-date checks
won’t work.

Let’s now look at how you can register task properties as inputs and outputs.

Custom task types

If you’re implementing a custom task as a class, then it takes just two steps to make it work with
incremental build:

1. Create typed properties (via getter methods) for each of your task inputs and outputs

2. Add the appropriate annotation to each of those properties

NOTE
Annotations must be placed on getters or on Groovy properties. Annotations placed
on setters, or on a Java field without a corresponding annotated getter, are ignored.

Gradle supports three main categories of inputs and outputs:

• Simple values

Things like strings and numbers. More generally, a simple value can have any type that
implements Serializable.

• Filesystem types

These consist of the standard File class but also derivatives of Gradle’s FileCollection type and
anything else that can be passed to either the Project.file(java.lang.Object) method — for single
file/directory properties — or the Project.files(java.lang.Object...) method.

• Nested values

Custom types that don’t conform to the other two categories but have their own properties that
are inputs or outputs. In effect, the task inputs or outputs are nested inside these custom types.

As an example, imagine you have a task that processes templates of varying types, such as
FreeMarker, Velocity, Moustache, etc. It takes template source files and combines them with some
model data to generate populated versions of the template files.

This task will have three inputs and one output:

• Template source files

• Model data

• Template engine

• Where the output files are written

When you’re writing a custom task class, it’s easy to register properties as inputs or outputs via
annotations. To demonstrate, here is a skeleton task implementation with some suitable inputs and
outputs, along with their annotations:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Example 74. Custom task class

buildSrc/src/main/java/org/example/ProcessTemplates.java

package org.example;

import java.util.HashMap;
import org.gradle.api.DefaultTask;
import org.gradle.api.file.ConfigurableFileCollection;
import org.gradle.api.file.DirectoryProperty;
import org.gradle.api.provider.Property;
import org.gradle.api.tasks.*;

public abstract class ProcessTemplates extends DefaultTask {

 @Input
 public abstract Property<TemplateEngineType> getTemplateEngine();

 @InputFiles
 public abstract ConfigurableFileCollection getSourceFiles();

 @Nested
 public abstract TemplateData getTemplateData();

 @OutputDirectory
 public abstract DirectoryProperty getOutputDir();

 @TaskAction
 public void processTemplates() {
 // ...
 }
}

buildSrc/src/main/java/org/example/TemplateData.java

package org.example;

import org.gradle.api.provider.MapProperty;
import org.gradle.api.provider.Property;
import org.gradle.api.tasks.Input;

public abstract class TemplateData {

 @Input
 public abstract Property<String> getName();

 @Input
 public abstract MapProperty<String, String> getVariables();
}

Output of gradle processTemplates

> gradle processTemplates
> Task :processTemplates

BUILD SUCCESSFUL in 0s
3 actionable tasks: 3 up-to-date

Output of gradle processTemplates (run again)

> gradle processTemplates
> Task :processTemplates UP-TO-DATE

BUILD SUCCESSFUL in 0s
3 actionable tasks: 3 up-to-date

There’s plenty to talk about in this example, so let’s work through each of the input and output
properties in turn:

• templateEngine

Represents which engine to use when processing the source templates, e.g. FreeMarker,
Velocity, etc. You could implement this as a string, but in this case we have gone for a custom
enum as it provides greater type information and safety. Since enums implement Serializable
automatically, we can treat this as a simple value and use the @Input annotation, just as we
would with a String property.

• sourceFiles

The source templates that the task will be processing. Single files and collections of files need
their own special annotations. In this case, we’re dealing with a collection of input files and so
we use the @InputFiles annotation. You’ll see more file-oriented annotations in a table later.

• templateData

For this example, we’re using a custom class to represent the model data. However, it does not
implement Serializable, so we can’t use the @Input annotation. That’s not a problem as the
properties within TemplateData — a string and a hash map with serializable type parameters —
are serializable and can be annotated with @Input. We use @Nested on templateData to let Gradle
know that this is a value with nested input properties.

• outputDir

The directory where the generated files go. As with input files, there are several annotations for
output files and directories. A property representing a single directory requires
@OutputDirectory. You’ll learn about the others soon.

These annotated properties mean that Gradle will skip the task if none of the source files, template
engine, model data or generated files has changed since the previous time Gradle executed the task.

This will often save a significant amount of time. You can learn how Gradle detects changes later.

This example is particularly interesting because it works with collections of source files. What
happens if only one source file changes? Does the task process all the source files again or just the
modified one? That depends on the task implementation. If the latter, then the task itself is
incremental, but that’s a different feature to the one we’re discussing here. Gradle does help task
implementers with this via its incremental task inputs feature.

Now that you have seen some of the input and output annotations in practice, let’s take a look at all
the annotations available to you and when you should use them. The table below lists the available
annotations and the corresponding property type you can use with each one.

Table 3. Incremental build property type annotations

Annotation Expected property type Description

@Input Any Serializable type A simple input value

@InputFile File* A single input file (not
directory)

@InputDirectory File* A single input directory (not
file)

@InputFiles Iterable<File>* An iterable of input files and
directories

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Input.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/InputFile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/InputDirectory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/InputFiles.html

Annotation Expected property type Description

@Classpath Iterable<File>* An iterable of input files and
directories that represent a
Java classpath. This allows the
task to ignore irrelevant
changes to the property, such as
different names for the same
files. It is similar to annotating
the property
@PathSensitive(RELATIVE) but it
will ignore the names of JAR
files directly added to the
classpath, and it will consider
changes in the order of the files
as a change in the classpath.
Gradle will inspect the contents
of jar files on the classpath and
ignore changes that do not
affect the semantics of the
classpath (such as file dates and
entry order). See also Using the
classpath annotations.

Note: The @Classpath
annotation was introduced in
Gradle 3.2. To stay compatible
with earlier Gradle versions,
classpath properties should also
be annotated with @InputFiles.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Classpath.html

Annotation Expected property type Description

@CompileClasspath Iterable<File>* An iterable of input files and
directories that represent a
Java compile classpath. This
allows the task to ignore
irrelevant changes that do not
affect the API of the classes in
classpath. See also Using the
classpath annotations.

The following kinds of changes
to the classpath will be ignored:

• Changes to the path of jar or
top level directories.

• Changes to timestamps and
the order of entries in Jars.

• Changes to resources and
Jar manifests, including
adding or removing
resources.

• Changes to private class
elements, such as private
fields, methods and inner
classes.

• Changes to code, such as
method bodies, static
initializers and field
initializers (except for
constants).

• Changes to debug
information, for example
when a change to a
comment affects the line
numbers in class debug
information.

• Changes to directories,
including directory entries
in Jars.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/CompileClasspath.html

NOTE

The
@CompileClasspa
th annotation
was introduced
in Gradle 3.4. To
stay compatible
with Gradle 3.3
and 3.2, compile
classpath
properties
should also be
annotated with
@Classpath. For
compatibility
with Gradle
versions before
3.2 the property
should also be
annotated with
@InputFiles.

Annotation Expected property type Description

@OutputFile File* A single output file (not
directory)

@OutputDirectory File* A single output directory (not
file)

@OutputFiles Map<String, File>** or
Iterable<File>*

An iterable or map of output
files. Using a file tree turns
caching off for the task.

@OutputDirectories Map<String, File>** or
Iterable<File>*

An iterable of output
directories. Using a file tree
turns caching off for the task.

@Destroys File or Iterable<File>* Specifies one or more files that
are removed by this task. Note
that a task can define either
inputs/outputs or destroyables,
but not both.

@LocalState File or Iterable<File>* Specifies one or more files that
represent the local state of the
task. These files are removed
when the task is loaded from
cache.

@Nested Any custom type A custom type that may not
implement Serializable but
does have at least one field or
property marked with one of
the annotations in this table. It
could even be another @Nested.

@Console Any type Indicates that the property is
neither an input nor an output.
It simply affects the console
output of the task in some way,
such as increasing or
decreasing the verbosity of the
task.

@Internal Any type Indicates that the property is
used internally but is neither
an input nor an output.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/OutputFile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/OutputDirectory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/OutputFiles.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/OutputDirectories.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Destroys.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/LocalState.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Console.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Internal.html

Annotation Expected property type Description

@ReplacedBy Any type Indicates that the property has
been replaced by another and
should be ignored as an input
or output.

@SkipWhenEmpty File or Iterable<File>* Used with @InputFiles or
@InputDirectory to tell Gradle to
skip the task if the
corresponding files or directory
are empty, along with all other
input files declared with this
annotation. Tasks that have
been skipped due to all of their
input files that were declared
with this annotation being
empty will result in a distinct
“no source” outcome. For
example, NO-SOURCE will be
emitted in the console output.

Implies @Incremental.

@Incremental Provider<FileSystemLocation>
or FileCollection

Used with @InputFiles or
@InputDirectory to instruct
Gradle to track changes to the
annotated file property, so the
changes can be queried via
@InputChanges.getFileChanges().
Required for incremental tasks.

@Optional Any type Used with any of the property
type annotations listed in the
Optional API documentation.
This annotation disables
validation checks on the
corresponding property. See the
section on validation for more
details.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ReplacedBy.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/work/Incremental.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Optional.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Optional.html

Annotation Expected property type Description

@PathSensitive File or Iterable<File>* Used with any input file
property to tell Gradle to only
consider the given part of the
file paths as important. For
example, if a property is
annotated with
@PathSensitive(PathSensitivity
.NAME_ONLY), then moving the
files around without changing
their contents will not make the
task out-of-date.

@IgnoreEmptyDirectories File or Iterable<File>* Used with @InputFiles or
@InputDirectory to instruct
Gradle to track only changes to
the contents of directories and
not differences in the
directories themselves. For
example, removing, renaming
or adding an empty directory
somewhere in the directory
structure will not make the task
out-of-date.

@NormalizeLineEndings File or Iterable<File>* Used with @InputFiles,
@InputDirectory or @Classpath to
instruct Gradle to normalize
line endings when calculating
up-to-date checks or build
cache keys. For example,
switching a file between Unix
line endings and Windows line
endings (or vice-versa) will not
make the task out-of-date.

NOTE

* In fact, File can be any type accepted by Project.file(java.lang.Object) and
Iterable<File> can be any type accepted by Project.files(java.lang.Object…
). This includes instances of Callable, such as closures, allowing for lazy
evaluation of the property values. Be aware that the types FileCollection
and FileTree are Iterable<File>s.

** Similar to the above, File can be any type accepted by
Project.file(java.lang.Object). The Map itself can be wrapped in Callables,
such as closures.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/PathSensitive.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/IgnoreEmptyDirectories.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/work/NormalizeLineEndings.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Annotations are inherited from all parent types including implemented interfaces. Property type
annotations override any other property type annotation declared in a parent type. This way an
@InputFile property can be turned into an @InputDirectory property in a child task type.

Annotations on a property declared in a type override similar annotations declared by the
superclass and in any implemented interfaces. Superclass annotations take precedence over
annotations declared in implemented interfaces.

The Console and Internal annotations in the table are special cases as they don’t declare either task
inputs or task outputs. So why use them? It’s so that you can take advantage of the Java Gradle
Plugin Development plugin to help you develop and publish your own plugins. This plugin checks
whether any properties of your custom task classes lack an incremental build annotation. This
protects you from forgetting to add an appropriate annotation during development.

Using the classpath annotations

Besides @InputFiles, for JVM-related tasks Gradle understands the concept of classpath inputs. Both
runtime and compile classpaths are treated differently when Gradle is looking for changes.

As opposed to input properties annotated with @InputFiles, for classpath properties the order of the
entries in the file collection matter. On the other hand, the names and paths of the directories and
jar files on the classpath itself are ignored. Timestamps and the order of class files and resources
inside jar files on a classpath are ignored, too, thus recreating a jar file with different file dates will
not make the task out of date.

Runtime classpaths are marked with @Classpath, and they offer further customization via classpath
normalization.

Input properties annotated with @CompileClasspath are considered Java compile classpaths.
Additionally to the aforementioned general classpath rules, compile classpaths ignore changes to
everything but class files. Gradle uses the same class analysis described in Java compile avoidance
to further filter changes that don’t affect the class' ABIs. This means that changes which only touch
the implementation of classes do not make the task out of date.

Nested inputs

When analyzing @Nested task properties for declared input and output sub-properties Gradle uses
the type of the actual value. Hence it can discover all sub-properties declared by a runtime sub-
type.

When adding @Nested to a Provider, the value of the Provider is treated as a nested input.

When adding @Nested to an iterable, each element is treated as a separate nested input. Each nested
input in the iterable is assigned a name, which by default is the dollar sign followed by the index in
the iterable, e.g. $2. If an element of the iterable implements Named, then the name is used as
property name. The ordering of the elements in the iterable is crucial for for reliable up-to-date
checks and caching if not all of the elements implement Named. Multiple elements which have the
same name are not allowed.

When adding @Nested to a map, then for each value a nested input is added, using the key as name.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Console.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Internal.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/InputFiles.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Classpath.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/CompileClasspath.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Named.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Named.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html

The type and classpath of nested inputs is tracked, too. This ensures that changes to the
implementation of a nested input causes the build to be out of date. By this it is also possible to add
user provided code as an input, e.g. by annotating an @Action property with @Nested. Note that any
inputs to such actions should be tracked, either by annotated properties on the action or by
manually registering them with the task.

Using nested inputs allows richer modeling and extensibility for tasks, as e.g. shown by
Test.getJvmArgumentProviders().

This allows us to model the JaCoCo Java agent, thus declaring the necessary JVM arguments and
providing the inputs and outputs to Gradle:

JacocoAgent.java

class JacocoAgent implements CommandLineArgumentProvider {
 private final JacocoTaskExtension jacoco;

 public JacocoAgent(JacocoTaskExtension jacoco) {
 this.jacoco = jacoco;
 }

 @Nested
 @Optional
 public JacocoTaskExtension getJacoco() {
 return jacoco.isEnabled() ? jacoco : null;
 }

 @Override
 public Iterable<String> asArguments() {
 return jacoco.isEnabled() ? ImmutableList.of(jacoco.getAsJvmArg()) :
Collections.<String>emptyList();
 }
}

test.getJvmArgumentProviders().add(new JacocoAgent(extension));

For this to work, JacocoTaskExtension needs to have the correct input and output annotations.

The approach works for Test JVM arguments, since Test.getJvmArgumentProviders() is an Iterable
annotated with @Nested.

There are other task types where this kind of nested inputs are available:

• JavaExec.getArgumentProviders() - model e.g. custom tools

• JavaExec.getJvmArgumentProviders() - used for Jacoco Java agent

• CompileOptions.getCompilerArgumentProviders() - model e.g. annotation processors

• Exec.getArgumentProviders() - model e.g. custom tools

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Action.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:jvmArgumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:jvmArgumentProviders
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:argumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:jvmArgumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:compilerArgumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Exec.html#org.gradle.api.tasks.Exec:argumentProviders

• JavaCompile.getOptions().getForkOptions().getJvmArgumentProviders() - model Java compiler
daemon command line arguments

• GroovyCompile.getGroovyOptions().getForkOptions().getJvmArgumentProviders() - model
Groovy compiler daemon command line arguments

• ScalaCompile.getScalaOptions().getForkOptions().getJvmArgumentProviders() - model Scala
compiler daemon command line arguments

In the same way, this kind of modelling is available to custom tasks.

Runtime validation

When executing the build Gradle checks if task types are declared with the proper annotations. It
tries to identify problems where e.g. annotations are used on incompatible types, or on setters etc.
Any getter not annotated with an input/output annotation is also flagged. These problems then fail
the build or are turned into deprecation warnings when the task is executed.

NOTE

Tasks that have a validation warning are executed without any optimizations.
Specifically, they never can be:

• up-to-date,

• loaded from or stored in the build cache,

• executed in parallel with other tasks, even if parallel execution is enabled,

• executed incrementally.

The in-memory representation of the file system state (aka Virtual File System) is
also invalidated before an invalid task is executed.

Runtime API

Custom task classes are an easy way to bring your own build logic into the arena of incremental
build, but you don’t always have that option. That’s why Gradle also provides an alternative API
that can be used with any tasks, which we look at next.

When you don’t have access to the source for a custom task class, there is no way to add any of the
annotations we covered in the previous section. Fortunately, Gradle provides a runtime API for
scenarios just like that. It can also be used for ad-hoc tasks, as you’ll see next.

Using it for ad-hoc tasks

This runtime API is provided through a couple of aptly named properties that are available on
every Gradle task:

• Task.getInputs() of type TaskInputs

• Task.getOutputs() of type TaskOutputs

• Task.getDestroyables() of type TaskDestroyables

These objects have methods that allow you to specify files, directories and values which constitute

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.ForkOptions.html#org.gradle.api.tasks.compile.ForkOptions:jvmArgumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.GroovyForkOptions.html#org.gradle.api.tasks.compile.GroovyForkOptions:jvmArgumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.scala.ScalaForkOptions.html#org.gradle.api.tasks.scala.ScalaForkOptions:jvmArgumentProviders
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:inputs
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputs.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:outputs
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputs.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:destroyables
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskDestroyables.html

the task’s inputs and outputs. In fact, the runtime API has almost feature parity with the
annotations. All it lacks is an equivalent for @Nested.

Let’s take the template processing example from before and see how it would look as an ad-hoc task
that uses the runtime API:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html

Example 75. Ad-hoc task

build.gradle

tasks.register('processTemplatesAdHoc') {
 inputs.property('engine', TemplateEngineType.FREEMARKER)
 inputs.files(fileTree('src/templates'))
 .withPropertyName('sourceFiles')
 .withPathSensitivity(PathSensitivity.RELATIVE)
 inputs.property('templateData.name', 'docs')
 inputs.property('templateData.variables', [year: '2013'])
 outputs.dir(layout.buildDirectory.dir('genOutput2'))
 .withPropertyName('outputDir')

 doLast {
 // Process the templates here
 }
}

build.gradle.kts

tasks.register("processTemplatesAdHoc") {
 inputs.property("engine", TemplateEngineType.FREEMARKER)
 inputs.files(fileTree("src/templates"))
 .withPropertyName("sourceFiles")
 .withPathSensitivity(PathSensitivity.RELATIVE)
 inputs.property("templateData.name", "docs")
 inputs.property("templateData.variables", mapOf("year" to "2013"))
 outputs.dir(layout.buildDirectory.dir("genOutput2"))
 .withPropertyName("outputDir")

 doLast {
 // Process the templates here
 }
}

Output of gradle processTemplatesAdHoc

> gradle processTemplatesAdHoc
> Task :processTemplatesAdHoc

BUILD SUCCESSFUL in 0s
3 actionable tasks: 3 executed

As before, there’s much to talk about. To begin with, you should really write a custom task class for

this as it’s a non-trivial implementation that has several configuration options. In this case, there
are no task properties to store the root source folder, the location of the output directory or any of
the other settings. That’s deliberate to highlight the fact that the runtime API doesn’t require the
task to have any state. In terms of incremental build, the above ad-hoc task will behave the same as
the custom task class.

All the input and output definitions are done through the methods on inputs and outputs, such as
property(), files(), and dir(). Gradle performs up-to-date checks on the argument values to
determine whether the task needs to run again or not. Each method corresponds to one of the
incremental build annotations, for example inputs.property() maps to @Input and outputs.dir()
maps to @OutputDirectory.

The files that a task removes can be specified through destroyables.register().

Example 76. Ad-hoc task declaring a destroyable

build.gradle

tasks.register('removeTempDir') {
 destroyables.register(layout.projectDirectory.dir('tmpDir'))
 doLast {
 delete(layout.projectDirectory.dir('tmpDir'))
 }
}

build.gradle.kts

tasks.register("removeTempDir") {
 destroyables.register(layout.projectDirectory.dir("tmpDir"))
 doLast {
 delete(layout.projectDirectory.dir("tmpDir"))
 }
}

One notable difference between the runtime API and the annotations is the lack of a method that
corresponds directly to @Nested. That’s why the example uses two property() declarations for the
template data, one for each TemplateData property. You should utilize the same technique when
using the runtime API with nested values. Any given task can either declare destroyables or
inputs/outputs, but cannot declare both.

Fine-grained configuration

The runtime API methods only allow you to declare your inputs and outputs in themselves.
However, the file-oriented ones return a builder — of type TaskInputFilePropertyBuilder — that
lets you provide additional information about those inputs and outputs.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskInputFilePropertyBuilder.html

You can learn about all the options provided by the builder in its API documentation, but we’ll
show you a simple example here to give you an idea of what you can do.

Let’s say we don’t want to run the processTemplates task if there are no source files, regardless of
whether it’s a clean build or not. After all, if there are no source files, there’s nothing for the task to
do. The builder allows us to configure this like so:

Example 77. Using skipWhenEmpty() via the runtime API

build.gradle

tasks.register('processTemplatesAdHocSkipWhenEmpty') {
 // ...

 inputs.files(fileTree('src/templates') {
 include '**/*.fm'
 })
 .skipWhenEmpty()
 .withPropertyName('sourceFiles')
 .withPathSensitivity(PathSensitivity.RELATIVE)

 // ...
}

build.gradle.kts

tasks.register("processTemplatesAdHocSkipWhenEmpty") {
 // ...

 inputs.files(fileTree("src/templates") {
 include("**/*.fm")
 })
 .skipWhenEmpty()
 .withPropertyName("sourceFiles")
 .withPathSensitivity(PathSensitivity.RELATIVE)

 // ...
}

Output of gradle clean processTemplatesAdHocSkipWhenEmpty

> gradle clean processTemplatesAdHocSkipWhenEmpty
> Task :processTemplatesAdHocSkipWhenEmpty NO-SOURCE

BUILD SUCCESSFUL in 0s
3 actionable tasks: 2 executed, 1 up-to-date

The TaskInputs.files() method returns a builder that has a skipWhenEmpty() method. Invoking this
method is equivalent to annotating to the property with @SkipWhenEmpty.

Now that you have seen both the annotations and the runtime API, you may be wondering which
API you should be using. Our recommendation is to use the annotations wherever possible, and it’s

sometimes worth creating a custom task class just so that you can make use of them. The runtime
API is more for situations in which you can’t use the annotations.

Using it for custom task types

Another type of example involves registering additional inputs and outputs for instances of a
custom task class. For example, imagine that the ProcessTemplates task also needs to read
src/headers/headers.txt (e.g. because it is included from one of the sources). You’d want Gradle to
know about this input file, so that it can re-execute the task whenever the contents of this file
change. With the runtime API you can do just that:

Example 78. Using runtime API with custom task type

build.gradle

tasks.register('processTemplatesWithExtraInputs', ProcessTemplates) {
 // ...

 inputs.file('src/headers/headers.txt')
 .withPropertyName('headers')
 .withPathSensitivity(PathSensitivity.NONE)
}

build.gradle.kts

tasks.register<ProcessTemplates>("processTemplatesWithExtraInputs") {
 // ...

 inputs.file("src/headers/headers.txt")
 .withPropertyName("headers")
 .withPathSensitivity(PathSensitivity.NONE)
}

Using the runtime API like this is a little like using doLast() and doFirst() to attach extra actions to
a task, except in this case we’re attaching information about inputs and outputs.

WARNING
If the task type is already using the incremental build annotations, registering
inputs or outputs with the same property names will result in an error.

Important beneficial side effects

Once you declare a task’s formal inputs and outputs, Gradle can then infer things about those
properties. For example, if an input of one task is set to the output of another, that means the first
task depends on the second, right? Gradle knows this and can act upon it.

We’ll look at this feature next and also some other features that come from Gradle knowing things
about inputs and outputs.

Inferred task dependencies

Consider an archive task that packages the output of the processTemplates task. A build author will
see that the archive task obviously requires processTemplates to run first and so may add an explicit
dependsOn. However, if you define the archive task like so:

Example 79. Inferred task dependency via task outputs

build.gradle

tasks.register('packageFiles', Zip) {
 from processTemplates.map {it.outputs }
}

build.gradle.kts

tasks.register<Zip>("packageFiles") {
 from(processTemplates.map {it.outputs })
}

Output of gradle clean packageFiles

> gradle clean packageFiles
> Task :processTemplates
> Task :packageFiles

BUILD SUCCESSFUL in 0s
5 actionable tasks: 4 executed, 1 up-to-date

Gradle will automatically make packageFiles depend on processTemplates. It can do this because it’s
aware that one of the inputs of packageFiles requires the output of the processTemplates task. We
call this an inferred task dependency.

The above example can also be written as

Example 80. Inferred task dependency via a task argument

build.gradle

tasks.register('packageFiles2', Zip) {
 from processTemplates
}

build.gradle.kts

tasks.register<Zip>("packageFiles2") {
 from(processTemplates)
}

Output of gradle clean packageFiles2

> gradle clean packageFiles2
> Task :processTemplates
> Task :packageFiles2

BUILD SUCCESSFUL in 0s
5 actionable tasks: 4 executed, 1 up-to-date

This is because the from() method can accept a task object as an argument. Behind the scenes,
from() uses the project.files() method to wrap the argument, which in turn exposes the task’s
formal outputs as a file collection. In other words, it’s a special case!

Input and output validation

The incremental build annotations provide enough information for Gradle to perform some basic
validation on the annotated properties. In particular, it does the following for each property before
the task executes:

• @InputFile - verifies that the property has a value and that the path corresponds to a file (not a
directory) that exists.

• @InputDirectory - same as for @InputFile, except the path must correspond to a directory.

• @OutputDirectory - verifies that the path doesn’t match a file and also creates the directory if it
doesn’t already exist.

If one task produces an output in a location and another task consumes that location by referring to
it as an input, then Gradle checks that the consumer task depends on the producer task. When the
producer and the consumer tasks are executing at the same time, the build fails to avoid capturing
an incorrect state.

Such validation improves the robustness of the build, allowing you to identify issues related to
inputs and outputs quickly.

You will occasionally want to disable some of this validation, specifically when an input file may
validly not exist. That’s why Gradle provides the @Optional annotation: you use it to tell Gradle that
a particular input is optional and therefore the build should not fail if the corresponding file or
directory doesn’t exist.

Continuous build

Another benefit of defining task inputs and outputs is continuous build. Since Gradle knows what
files a task depends on, it can automatically run a task again if any of its inputs change. By
activating continuous build when you run Gradle — through the --continuous or -t options — you
will put Gradle into a state in which it continually checks for changes and executes the requested
tasks when it encounters such changes.

You can find out more about this feature in Continuous build.

Task parallelism

One last benefit of defining task inputs and outputs is that Gradle can use this information to make
decisions about how to run tasks when the "--parallel" option is used. For instance, Gradle will
inspect the outputs of tasks when selecting the next task to run and will avoid concurrent execution
of tasks that write to the same output directory. Similarly, Gradle will use the information about
what files a task destroys (e.g. specified by the Destroys annotation) and avoid running a task that
removes a set of files while another task is running that consumes or creates those same files (and
vice versa). It can also determine that a task that creates a set of files has already run and that a
task that consumes those files has yet to run and will avoid running a task that removes those files
in between. By providing task input and output information in this way, Gradle can infer
creation/consumption/destruction relationships between tasks and can ensure that task execution
does not violate those relationships.

How does it work?

Before a task is executed for the first time, Gradle takes a fingerprint of the inputs. This fingerprint
contains the paths of input files and a hash of the contents of each file. Gradle then executes the
task. If the task completes successfully, Gradle takes a fingerprint of the outputs. This fingerprint
contains the set of output files and a hash of the contents of each file. Gradle persists both
fingerprints for the next time the task is executed.

Each time after that, before the task is executed, Gradle takes a new fingerprint of the inputs and
outputs. If the new fingerprints are the same as the previous fingerprints, Gradle assumes that the
outputs are up to date and skips the task. If they are not the same, Gradle executes the task. Gradle
persists both fingerprints for the next time the task is executed.

If the stats of a file (i.e. lastModified and size) did not change, Gradle will reuse the file’s fingerprint
from the previous run. That means that Gradle does not detect changes when the stats of a file did
not change.

Gradle also considers the code of the task as part of the inputs to the task. When a task, its actions,

or its dependencies change between executions, Gradle considers the task as out-of-date.

Gradle understands if a file property (e.g. one holding a Java classpath) is order-sensitive. When
comparing the fingerprint of such a property, even a change in the order of the files will result in
the task becoming out-of-date.

Note that if a task has an output directory specified, any files added to that directory since the last
time it was executed are ignored and will NOT cause the task to be out of date. This is so unrelated
tasks may share an output directory without interfering with each other. If this is not the behaviour
you want for some reason, consider using TaskOutputs.upToDateWhen(groovy.lang.Closure)

Note also that changing the availability of an unavailable file (e.g. modifying the target of a broken
symlink to a valid file, or vice versa), will be detected and handled by up-to-date check.

The inputs for the task are also used to calculate the build cache key used to load task outputs when
enabled. For more details see Task output caching.

NOTE

For tracking the implementation of tasks, task actions and nested inputs, Gradle
uses the class name and an identifier for the classpath which contains the
implementation. There are some situations when Gradle is not able to track the
implementation precisely:

Unknown classloader

When the classloader which loaded the implementation has not been created by
Gradle, the classpath cannot be determined.

Java lambda

Java lambda classes are created at runtime with a non-deterministic classname.
Therefore, the class name does not identify the implementation of the lambda
and changes between different Gradle runs.

When the implementation of a task, task action or a nested input cannot be tracked
precisely, Gradle disables any caching for the task. That means that the task will
never be up-to-date or loaded from the build cache.

Advanced techniques

Everything you’ve seen so far in this section will cover most of the use cases you’ll encounter, but
there are some scenarios that need special treatment. We’ll present a few of those next with the
appropriate solutions.

Adding your own cached input/output methods

Have you ever wondered how the from() method of the Copy task works? It’s not annotated with
@InputFiles and yet any files passed to it are treated as formal inputs of the task. What’s
happening?

The implementation is quite simple and you can use the same technique for your own tasks to
improve their APIs. Write your methods so that they add files directly to the appropriate annotated
property. As an example, here’s how to add a sources() method to the custom ProcessTemplates class

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-

we introduced earlier:

Example 81. Declaring a method to add task inputs

build.gradle

tasks.register('processTemplates', ProcessTemplates) {
 templateEngine = TemplateEngineType.FREEMARKER
 templateData.name = 'test'
 templateData.variables = [year: '2012']
 outputDir = file(layout.buildDirectory.dir('genOutput'))

 sources fileTree('src/templates')
}

build.gradle.kts

tasks.register<ProcessTemplates>("processTemplates") {
 templateEngine.set(TemplateEngineType.FREEMARKER)
 templateData.name.set("test")
 templateData.variables.set(mapOf("year" to "2012"))
 outputDir.set(file(layout.buildDirectory.dir("genOutput")))

 sources(fileTree("src/templates"))
}

ProcessTemplates.java

public abstract class ProcessTemplates extends DefaultTask {
 // ...
 @SkipWhenEmpty
 @InputFiles
 @PathSensitive(PathSensitivity.NONE)
 public abstract ConfigurableFileCollection getSourceFiles();

 public void sources(FileCollection sourceFiles) {
 getSourceFiles().from(sourceFiles);
 }

 // ...
}

Output of gradle processTemplates

> gradle processTemplates
> Task :processTemplates

BUILD SUCCESSFUL in 0s
3 actionable tasks: 3 executed

In other words, as long as you add values and files to formal task inputs and outputs during the
configuration phase, they will be treated as such regardless from where in the build you add them.

If we want to support tasks as arguments as well and treat their outputs as the inputs, we can use
the project.layout.files() method like so:

Example 82. Declaring a method to add a task as an input

build.gradle

def copyTemplates = tasks.register('copyTemplates', Copy) {
 into file(layout.buildDirectory.dir('tmp'))
 from 'src/templates'
}

tasks.register('processTemplates2', ProcessTemplates) {
 // ...
 sources copyTemplates
}

build.gradle.kts

val copyTemplates by tasks.registering(Copy::class) {
 into(file(layout.buildDirectory.dir("tmp")))
 from("src/templates")
}

tasks.register<ProcessTemplates>("processTemplates2") {
 // ...
 sources(copyTemplates)
}

ProcessTemplates.java

 // ...
 public void sources(TaskProvider<?> inputTask) {
 getSourceFiles().from(getProject().getLayout().files(inputTask));
 }
 // ...

Output of gradle processTemplates2

> gradle processTemplates2
> Task :copyTemplates
> Task :processTemplates2

BUILD SUCCESSFUL in 0s
4 actionable tasks: 4 executed

This technique can make your custom task easier to use and result in cleaner build files. As an

added benefit, our use of getProject().getLayout().files() means that our custom method can set
up an inferred task dependency.

One last thing to note: if you are developing a task that takes collections of source files as inputs,
like this example, consider using the built-in SourceTask. It will save you having to implement some
of the plumbing that we put into ProcessTemplates.

Linking an @OutputDirectory to an @InputFiles

When you want to link the output of one task to the input of another, the types often match and a
simple property assignment will provide that link. For example, a File output property can be
assigned to a File input.

Unfortunately, this approach breaks down when you want the files in a task’s @OutputDirectory (of
type File) to become the source for another task’s @InputFiles property (of type FileCollection).
Since the two have different types, property assignment won’t work.

As an example, imagine you want to use the output of a Java compilation task — via the
destinationDir property — as the input of a custom task that instruments a set of files containing
Java bytecode. This custom task, which we’ll call Instrument, has a classFiles property annotated
with @InputFiles. You might initially try to configure the task like so:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.SourceTask.html

Example 83. Failed attempt at setting up an inferred task dependency

build.gradle

plugins {
 id 'java-library'
}

tasks.register('badInstrumentClasses', Instrument) {
 classFiles.from fileTree(tasks.named('compileJava').map { it
.destinationDir })
 destinationDir = file(layout.buildDirectory.dir('instrumented'))
}

build.gradle.kts

plugins {
 id("java-library")
}

tasks.register<Instrument>("badInstrumentClasses") {
 classFiles.from(fileTree(tasks.compileJava.map { it.destinationDir }))
 destinationDir.set(file(layout.buildDirectory.dir("instrumented")))
}

Output of gradle clean badInstrumentClasses

> gradle clean badInstrumentClasses
> Task :clean UP-TO-DATE
> Task :badInstrumentClasses NO-SOURCE

BUILD SUCCESSFUL in 0s
3 actionable tasks: 2 executed, 1 up-to-date

There’s nothing obviously wrong with this code, but you can see from the console output that the
compilation task is missing. In this case you would need to add an explicit task dependency
between instrumentClasses and compileJava via dependsOn. The use of fileTree() means that Gradle
can’t infer the task dependency itself.

One solution is to use the TaskOutputs.files property, as demonstrated by the following example:

Example 84. Setting up an inferred task dependency between output dir and input files

build.gradle

tasks.register('instrumentClasses', Instrument) {
 classFiles.from tasks.named('compileJava').map { it.outputs.files }
 destinationDir = file(layout.buildDirectory.dir('instrumented'))
}

build.gradle.kts

tasks.register<Instrument>("instrumentClasses") {
 classFiles.from(tasks.compileJava.map { it.outputs.files })
 destinationDir.set(file(layout.buildDirectory.dir("instrumented")))
}

Output of gradle clean instrumentClasses

> gradle clean instrumentClasses
> Task :clean UP-TO-DATE
> Task :compileJava
> Task :instrumentClasses

BUILD SUCCESSFUL in 0s
5 actionable tasks: 4 executed, 1 up-to-date

Alternatively, you can get Gradle to access the appropriate property itself by using one of
project.files(), project.layout.files() or project.objects.fileCollection() in place of
project.fileTree():

Example 85. Setting up an inferred task dependency with layout.files()

build.gradle

tasks.register('instrumentClasses2', Instrument) {
 classFiles.from layout.files(tasks.named('compileJava'))
 destinationDir = file(layout.buildDirectory.dir('instrumented'))
}

build.gradle.kts

tasks.register<Instrument>("instrumentClasses2") {
 classFiles.from(layout.files(tasks.compileJava))
 destinationDir.set(file(layout.buildDirectory.dir("instrumented")))
}

Output of gradle clean instrumentClasses2

> gradle clean instrumentClasses2
> Task :clean UP-TO-DATE
> Task :compileJava
> Task :instrumentClasses2

BUILD SUCCESSFUL in 0s
5 actionable tasks: 4 executed, 1 up-to-date

Remember that files(), layout.files() and objects.fileCollection() can take tasks as arguments,
whereas fileTree() cannot.

The downside of this approach is that all file outputs of the source task become the input files of the
target — instrumentClasses in this case. That’s fine as long as the source task only has a single file-
based output, like the JavaCompile task. But if you have to link just one output property among
several, then you need to explicitly tell Gradle which task generates the input files using the builtBy
method:

Example 86. Setting up an inferred task dependency with builtBy()

build.gradle

tasks.register('instrumentClassesBuiltBy', Instrument) {
 classFiles.from fileTree(tasks.named('compileJava').map { it
.destinationDir }) {
 builtBy tasks.named('compileJava')
 }
 destinationDir = file(layout.buildDirectory.dir('instrumented'))
}

build.gradle.kts

tasks.register<Instrument>("instrumentClassesBuiltBy") {
 classFiles.from(fileTree(tasks.compileJava.map { it.destinationDir }) {
 builtBy(tasks.compileJava)
 })
 destinationDir.set(file(layout.buildDirectory.dir("instrumented")))
}

Output of gradle clean instrumentClassesBuiltBy

> gradle clean instrumentClassesBuiltBy
> Task :clean UP-TO-DATE
> Task :compileJava
> Task :instrumentClassesBuiltBy

BUILD SUCCESSFUL in 0s
5 actionable tasks: 4 executed, 1 up-to-date

You can of course just add an explicit task dependency via dependsOn, but the above approach
provides more semantic meaning, explaining why compileJava has to run beforehand.

Disabling up-to-date checks

Gradle automatically handles up-to-date checks for output files and directories, but what if the task
output is something else entirely? Perhaps it’s an update to a web service or a database table. Or
sometimes you have a task which should always run.

That’s where the doNoTrackState() method on Task comes in. One can use this to disable up-to-date
checks completely for a task, like so:

Example 87. Ignoring up-to-date checks

build.gradle

tasks.register('alwaysInstrumentClasses', Instrument) {
 classFiles.from layout.files(tasks.named('compileJava'))
 destinationDir = file(layout.buildDirectory.dir('instrumented'))
 doNotTrackState("Instrumentation needs to re-run every time")
}

build.gradle.kts

tasks.register<Instrument>("alwaysInstrumentClasses") {
 classFiles.from(layout.files(tasks.compileJava))
 destinationDir.set(file(layout.buildDirectory.dir("instrumented")))
 doNotTrackState("Instrumentation needs to re-run every time")
}

Output of gradle clean alwaysInstrumentClasses

> gradle clean alwaysInstrumentClasses
> Task :compileJava
> Task :alwaysInstrumentClasses

BUILD SUCCESSFUL in 0s
4 actionable tasks: 1 executed, 3 up-to-date

Output of gradle alwaysInstrumentClasses

> gradle alwaysInstrumentClasses
> Task :compileJava UP-TO-DATE
> Task :alwaysInstrumentClasses

BUILD SUCCESSFUL in 0s
4 actionable tasks: 1 executed, 3 up-to-date

If you are writing your own task that always should run, then you can also use the @UntrackedTask
annotation on the task class instead of calling Task.doNotTrackState().

Integrate an external tool which does its own up-to-date checking

Sometimes you want to integrate an external tool like Git or Npm, both of which do their own up-to-
date checking. In that case it doesn’t make much sense for Gradle to also do up-to-date checks. You
can disable Gradle’s up-to-date checks by using the @UntrackedTask annotation on the task wrapping

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/UntrackedTask.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/UntrackedTask.html

the tool. Alternatively, you can use the runtime API method @Task.doNotTrackState().

For example, let’s say you want to implement a task which clones a Git repository.

{groovyDslDoc}/org.gradle.api.Task.html#org.gradle.api.Task:doNotTrackState(java.lang.String)

Example 88. Task for Git clone

buildSrc/src/main/java/org/example/GitClone.java

@UntrackedTask(because = "Git tracks the state")
①
public abstract class GitClone extends DefaultTask {

 @Input
 public abstract Property<String> getRemoteUri();

 @Input
 public abstract Property<String> getCommitId();

 @OutputDirectory
 public abstract DirectoryProperty getDestinationDir();

 @TaskAction
 public void gitClone() throws IOException {
 File destinationDir = getDestinationDir().get().getAsFile()
.getAbsoluteFile(); ②
 String remoteUri = getRemoteUri().get();
 // Fetch origin or clone and checkout
 // ...
 }

}

build.gradle

tasks.register("cloneGradleProfiler", GitClone) {
 destinationDir = layout.buildDirectory.dir("gradle-profiler")
③
 remoteUri = "https://github.com/gradle/gradle-profiler.git"
 commitId = "d6c18a21ca6c45fd8a9db321de4478948bdf801b"
}

build.gradle.kts

tasks.register<GitClone>("cloneGradleProfiler") {
 destinationDir.set(layout.buildDirectory.dir("gradle-profiler"))
③
 remoteUri.set("https://github.com/gradle/gradle-profiler.git")
 commitId.set("d6c18a21ca6c45fd8a9db321de4478948bdf801b")
}

• (1) Declare the task as untracked.

• (2) Use the output directory to run the external tool.

• (3) Add the task and configure the output directory in your build.

Configure input normalization

For up to date checks and the build cache Gradle needs to determine if two task input properties
have the same value. In order to do so, Gradle first normalizes both inputs and then compares the
result. For example, for a compile classpath, Gradle extracts the ABI signature from the classes on
the classpath and then compares signatures between the last Gradle run and the current Gradle run
as described in Java compile avoidance.

Normalization applies to all zip files on the classpath (e.g. jars, wars, aars, apks, etc). This allows
Gradle to recognize when two zip files are functionally the same, even though the zip files
themselves might be slightly different due to metadata (such as timestamps or file order).
Normalization applies not only to zip files directly on the classpath, but also to zip files nested
inside directories or inside other zip files on the classpath.

It is possible to customize Gradle’s built-in strategy for runtime classpath normalization. All inputs
annotated with @Classpath are considered to be runtime classpaths.

Let’s say you want to add a file build-info.properties to all your produced jar files which contains
information about the build, e.g. the timestamp when the build started or some ID to identify the CI
job that published the artifact. This file is only for auditing purposes, and has no effect on the
outcome of running tests. Nonetheless, this file is part of the runtime classpath for the test task and
changes on every build invocation. Therefore, the test would be never up-to-date or pulled from
the build cache. In order to benefit from incremental builds again, you are able tell Gradle to ignore
this file on the runtime classpath at the project level by using
Project.normalization(org.gradle.api.Action) (in the consuming project):

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Classpath.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:normalization(org.gradle.api.Action)

Example 89. Runtime classpath normalization

build.gradle

normalization {
 runtimeClasspath {
 ignore 'build-info.properties'
 }
}

build.gradle.kts

normalization {
 runtimeClasspath {
 ignore("build-info.properties")
 }
}

If adding such a file to your jar files is something you do for all of the projects in your build, and
you want to filter this file for all consumers, you should consider configuring such normalization in
a convention plugin to share it between subprojects.

The effect of this configuration would be that changes to build-info.properties would be ignored
for up-to-date checks and build cache key calculations. Note that this will not change the runtime
behavior of the test task — i.e. any test is still able to load build-info.properties and the runtime
classpath is still the same as before.

Properties file normalization

By default, properties files (i.e. files that end in a .properties extension) will be normalized to
ignore differences in comments, whitespace and the order of properties. Gradle does this by
loading the properties files and only considering the individual properties during up-to-date checks
or build cache key calculations.

It is sometimes the case, though, that certain properties have a runtime impact, while others do not.
If a property is changing that does not have an impact on the runtime classpath, it may be desirable
to exclude it from up-to-date checks and build cache key calculations. However, excluding the
entire file would also exclude the properties that do have a runtime impact. In this case, properties
can be excluded selectively from any or all properties files on the runtime classpath.

A rule for ignoring properties can be applied to a specific set of files using the patterns described in
RuntimeClasspathNormalization. In the event that a file matches a rule, but cannot be loaded as a
properties file (e.g. because it is not formatted properly or uses a non-standard encoding), it will be
incorporated into the up-to-date or build cache key calculation as a normal file. In other words, if
the file cannot be loaded as a properties file, any changes to whitespace, property order, or

https://docs.gradle.org/7.3.2/dsl/org.gradle.normalization.RuntimeClasspathNormalization.html

comments may cause the task to become out-of-date or cause a cache miss.

Example 90. Ignore a property in selected properties files

build.gradle

normalization {
 runtimeClasspath {
 properties('**/build-info.properties') {
 ignoreProperty 'timestamp'
 }
 }
}

build.gradle.kts

normalization {
 runtimeClasspath {
 properties("**/build-info.properties") {
 ignoreProperty("timestamp")
 }
 }
}

Example 91. Ignore a property in all properties files

build.gradle

normalization {
 runtimeClasspath {
 properties {
 ignoreProperty 'timestamp'
 }
 }
}

build.gradle.kts

normalization {
 runtimeClasspath {
 properties {
 ignoreProperty("timestamp")
 }
 }
}

Java META-INF normalization

For files in the META-INF directory of jar archives it’s not always possible to ignore files completely
due to their runtime impact.

Manifest files within META-INF are normalized to ignore comments, whitespace and order
differences. Manifest attribute names are compared case-and-order insensitively. Manifest
properties files are normalized according to Properties File Normalization.

Example 92. Ignore META-INF manifest attributes

build.gradle

normalization {
 runtimeClasspath {
 metaInf {
 ignoreAttribute("Implementation-Version")
 }
 }
}

build.gradle.kts

normalization {
 runtimeClasspath {
 metaInf {
 ignoreAttribute("Implementation-Version")
 }
 }
}

Example 93. Ignore META-INF property keys

build.gradle

normalization {
 runtimeClasspath {
 metaInf {
 ignoreProperty("app.version")
 }
 }
}

build.gradle.kts

normalization {
 runtimeClasspath {
 metaInf {
 ignoreProperty("app.version")
 }
 }
}

Example 94. Ignore META-INF/MANIFEST.MF

build.gradle

normalization {
 runtimeClasspath {
 metaInf {
 ignoreManifest()
 }
 }
}

build.gradle.kts

normalization {
 runtimeClasspath {
 metaInf {
 ignoreManifest()
 }
 }
}

Example 95. Ignore all files and directories inside META-INF

build.gradle

normalization {
 runtimeClasspath {
 metaInf {
 ignoreCompletely()
 }
 }
}

build.gradle.kts

normalization {
 runtimeClasspath {
 metaInf {
 ignoreCompletely()
 }
 }
}

Providing custom up-to-date logic

Gradle automatically handles up-to-date checks for output files and directories, but what if the task
output is something else entirely? Perhaps it’s an update to a web service or a database table.
Gradle has no way of knowing how to check whether the task is up to date in such cases.

That’s where the upToDateWhen() method on TaskOutputs comes in. This takes a predicate function
that is used to determine whether a task is up to date or not. For example, you could read the
version number of your database schema from the database. Or, you could check whether a
particular record in a database table exists or has changed for example.

Just be aware that up-to-date checks should save you time. Don’t add checks that cost as much or
more time than the standard execution of the task. In fact, if a task ends up running frequently
anyway, because it’s rarely up to date, then it may not be worth having no up-to-date checks at all
as described in Disabling up-to-date checks. Remember that your checks will always run if the task
is in the execution task graph.

One common mistake is to use upToDateWhen() instead of Task.onlyIf(). If you want to skip a task on
the basis of some condition unrelated to the task inputs and outputs, then you should use onlyIf().
For example, in cases where you want to skip a task when a particular property is set or not set.

Stale task outputs

When the Gradle version changes, Gradle detects that outputs from tasks that ran with older
versions of Gradle need to be removed to ensure that the newest version of the tasks are starting
from a known clean state.

NOTE
Automatic clean-up of stale output directories has only been implemented for the
output of source sets (Java/Groovy/Scala compilation).

Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value
range of parameters. A very nice and expressive way to provide such tasks are task rules:

Example 96. Task rule

build.gradle

tasks.addRule("Pattern: ping<ID>") { String taskName ->

 if (taskName.startsWith("ping")) {
 task(taskName) {
 doLast {
 println "Pinging: " + (taskName - 'ping')
 }
 }
 }
}

build.gradle.kts

tasks.addRule("Pattern: ping<ID>") {
 val taskName = this
 if (startsWith("ping")) {
 task(taskName) {
 doLast {
 println("Pinging: " + (taskName.replace("ping", "")))
 }
 }
 }
}

Output of gradle -q pingServer1

> gradle -q pingServer1
Pinging: Server1

The String parameter is used as a description for the rule, which is shown with gradle tasks.

Rules are not only used when calling tasks from the command line. You can also create dependsOn
relations on rule based tasks:

Example 97. Dependency on rule based tasks

build.gradle

tasks.addRule("Pattern: ping<ID>") { String taskName ->

 if (taskName.startsWith("ping")) {
 task(taskName) {
 doLast {
 println "Pinging: " + (taskName - 'ping')
 }
 }
 }
}

tasks.register('groupPing') {
 dependsOn 'pingServer1', 'pingServer2'
}

build.gradle.kts

tasks.addRule("Pattern: ping<ID>") {
 val taskName = this
 if (startsWith("ping")) {
 task(taskName) {
 doLast {
 println("Pinging: " + (taskName.replace("ping", "")))
 }
 }
 }
}

tasks.register("groupPing") {
 dependsOn("pingServer1", "pingServer2")
}

Output of gradle -q groupPing

> gradle -q groupPing
Pinging: Server1
Pinging: Server2

If you run gradle -q tasks you won’t find a task named pingServer1 or pingServer2, but this script is
executing logic based on the request to run those tasks.

Finalizer tasks

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to
run.

Example 98. Adding a task finalizer

build.gradle

def taskX = tasks.register('taskX') {
 doLast {
 println 'taskX'
 }
}
def taskY = tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
}

taskX.configure { finalizedBy taskY }

build.gradle.kts

val taskX by tasks.registering {
 doLast {
 println("taskX")
 }
}
val taskY by tasks.registering {
 doLast {
 println("taskY")
 }
}

taskX { finalizedBy(taskY) }

Output of gradle -q taskX

> gradle -q taskX
taskX
taskY

Finalizer tasks will be executed even if the finalized task fails.

Example 99. Task finalizer for a failing task

build.gradle

def taskX = tasks.register('taskX') {
 doLast {
 println 'taskX'
 throw new RuntimeException()
 }
}
def taskY = tasks.register('taskY') {
 doLast {
 println 'taskY'
 }
}

taskX.configure { finalizedBy taskY }

build.gradle.kts

val taskX by tasks.registering {
 doLast {
 println("taskX")
 throw RuntimeException()
 }
}
val taskY by tasks.registering {
 doLast {
 println("taskY")
 }
}

taskX { finalizedBy(taskY) }

Output of gradle -q taskX

> gradle -q taskX
taskX
taskY

FAILURE: Build failed with an exception.

* Where:
Build file '/home/user/gradle/samples/build.gradle' line: 4

* What went wrong:
Execution failed for task ':taskX'.
> java.lang.RuntimeException (no error message)

* Try:
> Run with --stacktrace option to get the stack trace.
> Run with --info or --debug option to get more log output.
> Run with --scan to get full insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 0s

On the other hand, finalizer tasks are not executed if the finalized task didn’t do any work, for
example if it is considered up to date or if a dependent task fails.

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up
regardless of the build failing or succeeding. An example of such a resource is a web container that
is started before an integration test task and which should be always shut down, even if some of the
tests fail.

To specify a finalizer task you use the Task.finalizedBy(java.lang.Object…) method. This method
accepts a task instance, a task name, or any other input accepted by
Task.dependsOn(java.lang.Object…).

Lifecycle tasks

Lifecycle tasks are tasks that do not do work themselves. They typically do not have any task
actions. Lifecycle tasks can represent several concepts:

• a work-flow step (e.g., run all checks with check)

• a buildable thing (e.g., create a debug 32-bit executable for native components with
debug32MainExecutable)

• a convenience task to execute many of the same logical tasks (e.g., run all compilation tasks with
compileAll)

The Base Plugin defines several standard lifecycle tasks, such as build, assemble, and check. All the

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

core language plugins, like the Java Plugin, apply the Base Plugin and hence have the same base set
of lifecycle tasks.

Unless a lifecycle task has actions, its outcome is determined by its task dependencies. If any of
those dependencies are executed, the lifecycle task will be considered EXECUTED. If all of the task
dependencies are up to date, skipped or from cache, the lifecycle task will be considered UP-TO-DATE.

Summary

If you are coming from Ant, an enhanced Gradle task like Copy seems like a cross between an Ant
target and an Ant task. Although Ant’s tasks and targets are really different entities, Gradle
combines these notions into a single entity. Simple Gradle tasks are like Ant’s targets, but enhanced
Gradle tasks also include aspects of Ant tasks. All of Gradle’s tasks share a common API and you can
create dependencies between them. These tasks are much easier to configure than an Ant task.
They make full use of the type system, and are more expressive and easier to maintain.

Writing Build Scripts
This chapter looks at some of the details of writing a build script.

The Gradle build language

Gradle provides a domain specific language, or DSL, for describing builds. This build language is
available in Groovy and Kotlin.

A Groovy build script can contain any Groovy language element.[4] A Kotlin build script can contain
any Kotlin language element. Gradle assumes that each build script is encoded using UTF-8.

The Project API

Build scripts describe your build by configuring projects. A project is an abstract concept, but you
typically map a Gradle project to a software component that needs to be built, like a library or an
application. Each build script you have is associated with an object of type Project and as the build
script executes, it configures this Project.

In fact, almost all top-level properties and blocks in a build script are part of the Project API. To
demonstrate, take a look at this example build script that prints the name of its project, which is
accessed via the Project.name property:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name

Example 100. Accessing property of the Project object

build.gradle

println name
println project.name

build.gradle.kts

println(name)
println(project.name)

Output of gradle -q check

> gradle -q check
project-api
project-api

Both println statements print out the same property. The first uses the top-level reference to the
name property of the Project object. The other statement uses the project property available to any
build script, which returns the associated Project object. Only if you define a property or a method
which has the same name as a member of the Project object, would you need to use the project
property.

Standard project properties

The Project object provides some standard properties, which are available in your build script. The
following table lists a few of the commonly used ones.

Table 4. Project Properties

Name Type Default Value

project Project The Project instance

name String The name of the project directory.

path String The absolute path of the project.

description String A description for the project.

projectDir File The directory containing the build script.

buildDir File projectDir/build

group Object unspecified

version Object unspecified

ant AntBuilder An AntBuilder instance

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html

IMPORTANT

Script with other targets

The build scripts described here target Project objects. There are also
settings scripts and init scripts that respectively target Settings and Gradle
objects.

The script API

When Gradle executes a Groovy build script (.gradle), it compiles the script into a class which
implements Script. This means that all of the properties and methods declared by the Script
interface are available in your script.

When Gradle executes a Kotlin build script (.gradle.kts), it compiles the script into a subclass of
KotlinBuildScript. This means that all of the visible properties and functions declared by the
KotlinBuildScript type are available in your script. Also see the KotlinSettingsScript and
KotlinInitScript types respectively for settings scripts and init scripts.

Declaring variables

There are two kinds of variables that can be declared in a build script: local variables and extra
properties.

Local variables

Local variables are declared with the def keyword. They are only visible in the scope where they
have been declared. Local variables are a feature of the underlying Groovy language.

Local variables are declared with the val keyword. They are only visible in the scope where they
have been declared. Local variables are a feature of the underlying Kotlin language.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.invocation.Gradle.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Script.html
https://gradle.github.io/kotlin-dsl-docs/api/org.gradle.kotlin.dsl/-kotlin-build-script/index.html
https://gradle.github.io/kotlin-dsl-docs/api/org.gradle.kotlin.dsl/-kotlin-settings-script/index.html
https://gradle.github.io/kotlin-dsl-docs/api/org.gradle.kotlin.dsl/-kotlin-init-script/index.html

Example 101. Using local variables

build.gradle

def dest = 'dest'

tasks.register('copy', Copy) {
 from 'source'
 into dest
}

build.gradle.kts

val dest = "dest"

tasks.register<Copy>("copy") {
 from("source")
 into(dest)
}

Extra properties

All enhanced objects in Gradle’s domain model can hold extra user-defined properties. This
includes, but is not limited to, projects, tasks, and source sets.

Extra properties can be added, read and set via the owning object’s ext property. Alternatively, an
ext block can be used to add multiple properties at once.

Extra properties can be added, read and set via the owning object’s extra property. Alternatively,
they can be addressed via Kotlin delegated properties using by extra.

Example 102. Using extra properties

build.gradle

plugins {
 id 'java-library'
}

ext {
 springVersion = "3.1.0.RELEASE"
 emailNotification = "build@master.org"
}

sourceSets.all { ext.purpose = null }

sourceSets {
 main {
 purpose = "production"
 }
 test {
 purpose = "test"
 }
 plugin {
 purpose = "production"
 }
}

tasks.register('printProperties') {
 doLast {
 println springVersion
 println emailNotification
 sourceSets.matching { it.purpose == "production" }.each { println it
.name }
 }
}

build.gradle.kts

plugins {
 id("java-library")
}

val springVersion by extra("3.1.0.RELEASE")
val emailNotification by extra { "build@master.org" }

sourceSets.all { extra["purpose"] = null }

sourceSets {
 main {
 extra["purpose"] = "production"
 }
 test {
 extra["purpose"] = "test"
 }
 create("plugin") {
 extra["purpose"] = "production"
 }
}

tasks.register("printProperties") {
 doLast {
 println(springVersion)
 println(emailNotification)
 sourceSets.matching { it.extra["purpose"] == "production" }.forEach {
println(it.name) }
 }
}

Output of gradle -q printProperties

> gradle -q printProperties
3.1.0.RELEASE
build@master.org
main
plugin

In this example, an ext block adds two extra properties to the project object. Additionally, a
property named purpose is added to each source set by setting ext.purpose to null (null is a
permissible value). Once the properties have been added, they can be read and set like predefined
properties.

In this example, two extra properties are added to the project object using by extra. Additionally, a
property named purpose is added to each source set by setting extra["purpose"] to null (null is a

permissible value). Once the properties have been added, they can be read and set on extra.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to
set a (predefined or extra) property but the property is misspelled or does not exist. Extra
properties can be accessed from anywhere their owning object can be accessed, giving them a
wider scope than local variables. Extra properties on a project are visible from its subprojects.

For further details on extra properties and their API, see the ExtraPropertiesExtension class in the
API documentation.

Configuring arbitrary objects

You can configure arbitrary objects in the following very readable way.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

Example 103. Configuring arbitrary objects

build.gradle

import java.text.FieldPosition

tasks.register('configure') {
 doLast {
 def pos = configure(new FieldPosition(10)) {
 beginIndex = 1
 endIndex = 5
 }
 println pos.beginIndex
 println pos.endIndex
 }
}

build.gradle.kts

import java.text.FieldPosition

tasks.register("configure") {
 doLast {
 val pos = FieldPosition(10).apply {
 beginIndex = 1
 endIndex = 5
 }
 println(pos.beginIndex)
 println(pos.endIndex)
 }
}

Output of gradle -q configure

> gradle -q configure
1
5

Configuring arbitrary objects using an external script

You can also configure arbitrary objects using an external script.

CAUTION

Only supported from a Groovy script

Configuring arbitrary objects using an external script is not yet supported by
the Kotlin DSL. See gradle/kotlin-dsl#659 for more information.

Example 104. Configuring arbitrary objects using a script

build.gradle

tasks.register('configure') {
 doLast {
 def pos = new java.text.FieldPosition(10)
 // Apply the script
 apply from: 'other.gradle', to: pos
 println pos.beginIndex
 println pos.endIndex
 }
}

other.gradle

// Set properties.
beginIndex = 1
endIndex = 5

Output of gradle -q configure

> gradle -q configure
1
5

Some Groovy basics

TIP
Looking for some Kotlin basics, the Kotlin reference documentation and Kotlin Koans
should be useful to you.

The Groovy language provides plenty of features for creating DSLs, and the Gradle build language
takes advantage of these. Understanding how the build language works will help you when you
write your build script, and in particular, when you start to write custom plugins and tasks.

Groovy JDK

Groovy adds lots of useful methods to the standard Java classes. For example, Iterable gets an each
method, which iterates over the elements of the Iterable:

https://github.com/gradle/kotlin-dsl/issues/659
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/tutorials/koans.html
https://docs.groovy-lang.org/latest/html/documentation/index.html

Example 105. Groovy JDK methods

build.gradle

// Iterable gets an each() method
configurations.runtimeClasspath.each { File f -> println f }

Have a look at https://groovy-lang.org/gdk.html for more details.

Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter
method.

Example 106. Property accessors

build.gradle

// Using a getter method
println project.buildDir
println getProject().getBuildDir()

// Using a setter method
project.buildDir = 'target'
getProject().setBuildDir('target')

Optional parentheses on method calls

Parentheses are optional for method calls.

Example 107. Method call without parentheses

build.gradle

test.systemProperty 'some.prop', 'value'
test.systemProperty('some.prop', 'value')

List and map literals

Groovy provides some shortcuts for defining List and Map instances. Both kinds of literals are
straightforward, but map literals have some interesting twists.

https://groovy-lang.org/gdk.html

For instance, the “apply” method (where you typically apply plugins) actually takes a map
parameter. However, when you have a line like “apply plugin:'java'”, you aren’t actually using a
map literal, you’re actually using “named parameters”, which have almost exactly the same syntax
as a map literal (without the wrapping brackets). That named parameter list gets converted to a
map when the method is called, but it doesn’t start out as a map.

Example 108. List and map literals

build.gradle

// List literal
test.includes = ['org/gradle/api/**', 'org/gradle/internal/**']

List<String> list = new ArrayList<String>()
list.add('org/gradle/api/**')
list.add('org/gradle/internal/**')
test.includes = list

// Map literal.
Map<String, String> map = [key1:'value1', key2: 'value2']

// Groovy will coerce named arguments
// into a single map argument
apply plugin: 'java'

Closures as the last parameter in a method

The Gradle DSL uses closures in many places. You can find out more about closures here. When the
last parameter of a method is a closure, you can place the closure after the method call:

Example 109. Closure as method parameter

build.gradle

repositories {
 println "in a closure"
}
repositories() { println "in a closure" }
repositories({ println "in a closure" })

Closure delegate

Each closure has a delegate object, which Groovy uses to look up variable and method references
which are not local variables or parameters of the closure. Gradle uses this for configuration

https://docs.groovy-lang.org/latest/html/documentation/index.html#_closures

closures, where the delegate object is set to the object to be configured.

Example 110. Closure delegates

build.gradle

dependencies {
 assert delegate == project.dependencies
 testImplementation('junit:junit:4.13')
 delegate.testImplementation('junit:junit:4.13')
}

Default imports

To make build scripts more concise, Gradle automatically adds a set of import statements to the
Gradle scripts. This means that instead of using throw new
org.gradle.api.tasks.StopExecutionException() you can just type throw new
StopExecutionException() instead.

Listed below are the imports added to each script:

Gradle default imports

import org.gradle.*
import org.gradle.api.*
import org.gradle.api.artifacts.*
import org.gradle.api.artifacts.component.*
import org.gradle.api.artifacts.dsl.*
import org.gradle.api.artifacts.ivy.*
import org.gradle.api.artifacts.maven.*
import org.gradle.api.artifacts.query.*
import org.gradle.api.artifacts.repositories.*
import org.gradle.api.artifacts.result.*
import org.gradle.api.artifacts.transform.*
import org.gradle.api.artifacts.type.*
import org.gradle.api.artifacts.verification.*
import org.gradle.api.attributes.*
import org.gradle.api.attributes.java.*
import org.gradle.api.attributes.plugin.*
import org.gradle.api.capabilities.*
import org.gradle.api.component.*
import org.gradle.api.credentials.*
import org.gradle.api.distribution.*
import org.gradle.api.distribution.plugins.*
import org.gradle.api.execution.*
import org.gradle.api.file.*
import org.gradle.api.initialization.*
import org.gradle.api.initialization.definition.*

import org.gradle.api.initialization.dsl.*
import org.gradle.api.initialization.resolve.*
import org.gradle.api.invocation.*
import org.gradle.api.java.archives.*
import org.gradle.api.jvm.*
import org.gradle.api.logging.*
import org.gradle.api.logging.configuration.*
import org.gradle.api.model.*
import org.gradle.api.plugins.*
import org.gradle.api.plugins.antlr.*
import org.gradle.api.plugins.catalog.*
import org.gradle.api.plugins.jvm.*
import org.gradle.api.plugins.quality.*
import org.gradle.api.plugins.scala.*
import org.gradle.api.provider.*
import org.gradle.api.publish.*
import org.gradle.api.publish.ivy.*
import org.gradle.api.publish.ivy.plugins.*
import org.gradle.api.publish.ivy.tasks.*
import org.gradle.api.publish.maven.*
import org.gradle.api.publish.maven.plugins.*
import org.gradle.api.publish.maven.tasks.*
import org.gradle.api.publish.plugins.*
import org.gradle.api.publish.tasks.*
import org.gradle.api.reflect.*
import org.gradle.api.reporting.*
import org.gradle.api.reporting.components.*
import org.gradle.api.reporting.dependencies.*
import org.gradle.api.reporting.dependents.*
import org.gradle.api.reporting.model.*
import org.gradle.api.reporting.plugins.*
import org.gradle.api.resources.*
import org.gradle.api.services.*
import org.gradle.api.specs.*
import org.gradle.api.tasks.*
import org.gradle.api.tasks.ant.*
import org.gradle.api.tasks.application.*
import org.gradle.api.tasks.bundling.*
import org.gradle.api.tasks.compile.*
import org.gradle.api.tasks.diagnostics.*
import org.gradle.api.tasks.incremental.*
import org.gradle.api.tasks.javadoc.*
import org.gradle.api.tasks.options.*
import org.gradle.api.tasks.scala.*
import org.gradle.api.tasks.testing.*
import org.gradle.api.tasks.testing.junit.*
import org.gradle.api.tasks.testing.junitplatform.*
import org.gradle.api.tasks.testing.testng.*
import org.gradle.api.tasks.util.*
import org.gradle.api.tasks.wrapper.*
import org.gradle.authentication.*

import org.gradle.authentication.aws.*
import org.gradle.authentication.http.*
import org.gradle.build.event.*
import org.gradle.buildinit.*
import org.gradle.buildinit.plugins.*
import org.gradle.buildinit.tasks.*
import org.gradle.caching.*
import org.gradle.caching.configuration.*
import org.gradle.caching.http.*
import org.gradle.caching.local.*
import org.gradle.concurrent.*
import org.gradle.external.javadoc.*
import org.gradle.ide.visualstudio.*
import org.gradle.ide.visualstudio.plugins.*
import org.gradle.ide.visualstudio.tasks.*
import org.gradle.ide.xcode.*
import org.gradle.ide.xcode.plugins.*
import org.gradle.ide.xcode.tasks.*
import org.gradle.ivy.*
import org.gradle.jvm.*
import org.gradle.jvm.application.scripts.*
import org.gradle.jvm.application.tasks.*
import org.gradle.jvm.tasks.*
import org.gradle.jvm.toolchain.*
import org.gradle.language.*
import org.gradle.language.assembler.*
import org.gradle.language.assembler.plugins.*
import org.gradle.language.assembler.tasks.*
import org.gradle.language.base.*
import org.gradle.language.base.artifact.*
import org.gradle.language.base.compile.*
import org.gradle.language.base.plugins.*
import org.gradle.language.base.sources.*
import org.gradle.language.c.*
import org.gradle.language.c.plugins.*
import org.gradle.language.c.tasks.*
import org.gradle.language.cpp.*
import org.gradle.language.cpp.plugins.*
import org.gradle.language.cpp.tasks.*
import org.gradle.language.java.artifact.*
import org.gradle.language.jvm.tasks.*
import org.gradle.language.nativeplatform.*
import org.gradle.language.nativeplatform.tasks.*
import org.gradle.language.objectivec.*
import org.gradle.language.objectivec.plugins.*
import org.gradle.language.objectivec.tasks.*
import org.gradle.language.objectivecpp.*
import org.gradle.language.objectivecpp.plugins.*
import org.gradle.language.objectivecpp.tasks.*
import org.gradle.language.plugins.*
import org.gradle.language.rc.*

import org.gradle.language.rc.plugins.*
import org.gradle.language.rc.tasks.*
import org.gradle.language.scala.tasks.*
import org.gradle.language.swift.*
import org.gradle.language.swift.plugins.*
import org.gradle.language.swift.tasks.*
import org.gradle.maven.*
import org.gradle.model.*
import org.gradle.nativeplatform.*
import org.gradle.nativeplatform.platform.*
import org.gradle.nativeplatform.plugins.*
import org.gradle.nativeplatform.tasks.*
import org.gradle.nativeplatform.test.*
import org.gradle.nativeplatform.test.cpp.*
import org.gradle.nativeplatform.test.cpp.plugins.*
import org.gradle.nativeplatform.test.cunit.*
import org.gradle.nativeplatform.test.cunit.plugins.*
import org.gradle.nativeplatform.test.cunit.tasks.*
import org.gradle.nativeplatform.test.googletest.*
import org.gradle.nativeplatform.test.googletest.plugins.*
import org.gradle.nativeplatform.test.plugins.*
import org.gradle.nativeplatform.test.tasks.*
import org.gradle.nativeplatform.test.xctest.*
import org.gradle.nativeplatform.test.xctest.plugins.*
import org.gradle.nativeplatform.test.xctest.tasks.*
import org.gradle.nativeplatform.toolchain.*
import org.gradle.nativeplatform.toolchain.plugins.*
import org.gradle.normalization.*
import org.gradle.platform.base.*
import org.gradle.platform.base.binary.*
import org.gradle.platform.base.component.*
import org.gradle.platform.base.plugins.*
import org.gradle.plugin.devel.*
import org.gradle.plugin.devel.plugins.*
import org.gradle.plugin.devel.tasks.*
import org.gradle.plugin.management.*
import org.gradle.plugin.use.*
import org.gradle.plugins.ear.*
import org.gradle.plugins.ear.descriptor.*
import org.gradle.plugins.ide.*
import org.gradle.plugins.ide.api.*
import org.gradle.plugins.ide.eclipse.*
import org.gradle.plugins.ide.idea.*
import org.gradle.plugins.signing.*
import org.gradle.plugins.signing.signatory.*
import org.gradle.plugins.signing.signatory.pgp.*
import org.gradle.plugins.signing.type.*
import org.gradle.plugins.signing.type.pgp.*
import org.gradle.process.*
import org.gradle.swiftpm.*
import org.gradle.swiftpm.plugins.*

import org.gradle.swiftpm.tasks.*
import org.gradle.testing.base.*
import org.gradle.testing.base.plugins.*
import org.gradle.testing.jacoco.plugins.*
import org.gradle.testing.jacoco.tasks.*
import org.gradle.testing.jacoco.tasks.rules.*
import org.gradle.testkit.runner.*
import org.gradle.util.*
import org.gradle.vcs.*
import org.gradle.vcs.git.*
import org.gradle.work.*
import org.gradle.workers.*

Working With Files
Almost every Gradle build interacts with files in some way: think source files, file dependencies,
reports and so on. That’s why Gradle comes with a comprehensive API that makes it simple to
perform the file operations you need.

The API has two parts to it:

• Specifying which files and directories to process

• Specifying what to do with them

The File paths in depth section covers the first of these in detail, while subsequent sections, like File
copying in depth, cover the second. To begin with, we’ll show you examples of the most common
scenarios that users encounter.

Copying a single file

You copy a file by creating an instance of Gradle’s builtin Copy task and configuring it with the
location of the file and where you want to put it. This example mimics copying a generated report
into a directory that will be packed into an archive, such as a ZIP or TAR:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html

Example 111. How to copy a single file

build.gradle

tasks.register('copyReport', Copy) {
 from layout.buildDirectory.dir("reports/my-report.pdf")
 into layout.buildDirectory.dir("toArchive")
}

build.gradle.kts

tasks.register<Copy>("copyReport") {
 from(layout.buildDirectory.dir("reports/my-report.pdf"))
 into(layout.buildDirectory.dir("toArchive"))
}

The Project.file(java.lang.Object) method is used to create a file or directory path relative to the
current project and is a common way to make build scripts work regardless of the project path. The
file and directory paths are then used to specify what file to copy using
Copy.from(java.lang.Object…) and which directory to copy it to using Copy.into(java.lang.Object).

You can even use the path directly without the file() method, as explained early in the section File
copying in depth:

Example 112. Using implicit string paths

build.gradle

tasks.register('copyReport2', Copy) {
 from "$buildDir/reports/my-report.pdf"
 into "$buildDir/toArchive"
}

build.gradle.kts

tasks.register<Copy>("copyReport2") {
 from("$buildDir/reports/my-report.pdf")
 into("$buildDir/toArchive")
}

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:from(java.lang.Object[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:into(java.lang.Object)

Although hard-coded paths make for simple examples, they also make the build brittle. It’s better to
use a reliable, single source of truth, such as a task or shared project property. In the following
modified example, we use a report task defined elsewhere that has the report’s location stored in
its outputFile property:

Example 113. Prefer task/project properties over hard-coded paths

build.gradle

tasks.register('copyReport3', Copy) {
 from myReportTask.outputFile
 into archiveReportsTask.dirToArchive
}

build.gradle.kts

tasks.register<Copy>("copyReport3") {
 val outputFile: File by myReportTask.get().extra
 val dirToArchive: File by archiveReportsTask.get().extra
 from(outputFile)
 into(dirToArchive)
}

We have also assumed that the reports will be archived by archiveReportsTask, which provides us
with the directory that will be archived and hence where we want to put the copies of the reports.

Copying multiple files

You can extend the previous examples to multiple files very easily by providing multiple arguments
to from():

Example 114. Using multiple arguments with from()

build.gradle

tasks.register('copyReportsForArchiving', Copy) {
 from layout.buildDirectory.file("reports/my-report.pdf"), layout
.projectDirectory.file("src/docs/manual.pdf")
 into layout.buildDirectory.dir("toArchive")
}

build.gradle.kts

tasks.register<Copy>("copyReportsForArchiving") {
 from(layout.buildDirectory.file("reports/my-report.pdf"),
layout.projectDirectory.file("src/docs/manual.pdf"))
 into(layout.buildDirectory.dir("toArchive"))
}

Two files are now copied into the archive directory. You can also use multiple from() statements to
do the same thing, as shown in the first example of the section File copying in depth.

Now consider another example: what if you want to copy all the PDFs in a directory without having
to specify each one? To do this, attach inclusion and/or exclusion patterns to the copy specification.
Here we use a string pattern to include PDFs only:

Example 115. Using a flat filter

build.gradle

tasks.register('copyPdfReportsForArchiving', Copy) {
 from layout.buildDirectory.dir("reports")
 include "*.pdf"
 into layout.buildDirectory.dir("toArchive")
}

build.gradle.kts

tasks.register<Copy>("copyPdfReportsForArchiving") {
 from(layout.buildDirectory.dir("reports"))
 include("*.pdf")
 into(layout.buildDirectory.dir("toArchive"))
}

One thing to note, as demonstrated in the following diagram, is that only the PDFs that reside
directly in the reports directory are copied:

Figure 8. The effect of a flat filter on copying

You can include files in subdirectories by using an Ant-style glob pattern (**/*), as done in this
updated example:

Example 116. Using a deep filter

build.gradle

tasks.register('copyAllPdfReportsForArchiving', Copy) {
 from layout.buildDirectory.dir("reports")
 include "**/*.pdf"
 into layout.buildDirectory.dir("toArchive")
}

build.gradle.kts

tasks.register<Copy>("copyAllPdfReportsForArchiving") {
 from(layout.buildDirectory.dir("reports"))
 include("**/*.pdf")
 into(layout.buildDirectory.dir("toArchive"))
}

This task has the following effect:

Figure 9. The effect of a deep filter on copying

One thing to bear in mind is that a deep filter like this has the side effect of copying the directory
structure below reports as well as the files. If you just want to copy the files without the directory
structure, you need to use an explicit fileTree(dir) { includes }.files expression. We talk more
about the difference between file trees and file collections in the File trees section.

This is just one of the variations in behavior you’re likely to come across when dealing with file
operations in Gradle builds. Fortunately, Gradle provides elegant solutions to almost all those use
cases. Read the in-depth sections later in the chapter for more detail on how the file operations
work in Gradle and what options you have for configuring them.

Copying directory hierarchies

You may have a need to copy not just files, but the directory structure they reside in as well. This is
the default behavior when you specify a directory as the from() argument, as demonstrated by the
following example that copies everything in the reports directory, including all its subdirectories, to

the destination:

Example 117. Copying an entire directory

build.gradle

tasks.register('copyReportsDirForArchiving', Copy) {
 from layout.buildDirectory.dir("reports")
 into layout.buildDirectory.dir("toArchive")
}

build.gradle.kts

tasks.register<Copy>("copyReportsDirForArchiving") {
 from(layout.buildDirectory.dir("reports"))
 into(layout.buildDirectory.dir("toArchive"))
}

The key aspect that users struggle with is controlling how much of the directory structure goes to
the destination. In the above example, do you get a toArchive/reports directory or does everything
in reports go straight into toArchive? The answer is the latter. If a directory is part of the from()
path, then it won’t appear in the destination.

So how do you ensure that reports itself is copied across, but not any other directory in $buildDir?
The answer is to add it as an include pattern:

Example 118. Copying an entire directory, including itself

build.gradle

tasks.register('copyReportsDirForArchiving2', Copy) {
 from(layout.buildDirectory) {
 include "reports/**"
 }
 into layout.buildDirectory.dir("toArchive")
}

build.gradle.kts

tasks.register<Copy>("copyReportsDirForArchiving2") {
 from(layout.buildDirectory) {
 include("reports/**")
 }
 into(layout.buildDirectory.dir("toArchive"))
}

You’ll get the same behavior as before except with one extra level of directory in the destination, i.e.
toArchive/reports.

One thing to note is how the include() directive applies only to the from(), whereas the directive in
the previous section applied to the whole task. These different levels of granularity in the copy
specification allow you to easily handle most requirements that you will come across. You can learn
more about this in the section on child specifications.

Creating archives (zip, tar, etc.)

From the perspective of Gradle, packing files into an archive is effectively a copy in which the
destination is the archive file rather than a directory on the file system. This means that creating
archives looks a lot like copying, with all of the same features!

The simplest case involves archiving the entire contents of a directory, which this example
demonstrates by creating a ZIP of the toArchive directory:

Example 119. Archiving a directory as a ZIP

build.gradle

tasks.register('packageDistribution', Zip) {
 archiveFileName = "my-distribution.zip"
 destinationDirectory = layout.buildDirectory.dir('dist')

 from layout.buildDirectory.dir("toArchive")
}

build.gradle.kts

tasks.register<Zip>("packageDistribution") {
 archiveFileName.set("my-distribution.zip")
 destinationDirectory.set(layout.buildDirectory.dir("dist"))

 from(layout.buildDirectory.dir("toArchive"))
}

Notice how we specify the destination and name of the archive instead of an into(): both are
required. You often won’t see them explicitly set, because most projects apply the Base Plugin. It
provides some conventional values for those properties. The next example demonstrates this and
you can learn more about the conventions in the archive naming section.

Each type of archive has its own task type, the most common ones being Zip, Tar and Jar. They all
share most of the configuration options of Copy, including filtering and renaming.

One of the most common scenarios involves copying files into specified subdirectories of the
archive. For example, let’s say you want to package all PDFs into a docs directory in the root of the
archive. This docs directory doesn’t exist in the source location, so you have to create it as part of
the archive. You do this by adding an into() declaration for just the PDFs:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Jar.html

Example 120. Using the Base Plugin for its archive name convention

build.gradle

plugins {
 id 'base'
}

version = "1.0.0"

tasks.register('packageDistribution', Zip) {
 from(layout.buildDirectory.dir("toArchive")) {
 exclude "**/*.pdf"
 }

 from(layout.buildDirectory.dir("toArchive")) {
 include "**/*.pdf"
 into "docs"
 }
}

build.gradle.kts

plugins {
 base
}

version = "1.0.0"

tasks.register<Zip>("packageDistribution") {
 from(layout.buildDirectory.dir("toArchive")) {
 exclude("**/*.pdf")
 }

 from(layout.buildDirectory.dir("toArchive")) {
 include("**/*.pdf")
 into("docs")
 }
}

As you can see, you can have multiple from() declarations in a copy specification, each with its own
configuration. See Using child copy specifications for more information on this feature.

Unpacking archives

Archives are effectively self-contained file systems, so unpacking them is a case of copying the files
from that file system onto the local file system — or even into another archive. Gradle enables this
by providing some wrapper functions that make archives available as hierarchical collections of
files (file trees).

The two functions of interest are Project.zipTree(java.lang.Object) and
Project.tarTree(java.lang.Object), which produce a FileTree from a corresponding archive file. That
file tree can then be used in a from() specification, like so:

Example 121. Unpacking a ZIP file

build.gradle

tasks.register('unpackFiles', Copy) {
 from zipTree("src/resources/thirdPartyResources.zip")
 into layout.buildDirectory.dir("resources")
}

build.gradle.kts

tasks.register<Copy>("unpackFiles") {
 from(zipTree("src/resources/thirdPartyResources.zip"))
 into(layout.buildDirectory.dir("resources"))
}

As with a normal copy, you can control which files are unpacked via filters and even rename files
as they are unpacked.

More advanced processing can be handled by the eachFile() method. For example, you might need
to extract different subtrees of the archive into different paths within the destination directory. The
following sample uses the method to extract the files within the archive’s libs directory into the
root destination directory, rather than into a libs subdirectory:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.AbstractCopyTask.html#eachFile(org.gradle.api.Action)

Example 122. Unpacking a subset of a ZIP file

build.gradle

tasks.register('unpackLibsDirectory', Copy) {
 from(zipTree("src/resources/thirdPartyResources.zip")) {
 include "libs/**" ①
 eachFile { fcd ->
 fcd.relativePath = new RelativePath(true, fcd.relativePath
.segments.drop(1)) ②
 }
 includeEmptyDirs = false ③
 }
 into layout.buildDirectory.dir("resources")
}

build.gradle.kts

tasks.register<Copy>("unpackLibsDirectory") {
 from(zipTree("src/resources/thirdPartyResources.zip")) {
 include("libs/**") ①
 eachFile {
 relativePath = RelativePath(true,
*relativePath.segments.drop(1).toTypedArray()) ②
 }
 includeEmptyDirs = false ③
 }
 into(layout.buildDirectory.dir("resources"))
}

① Extracts only the subset of files that reside in the libs directory

② Remaps the path of the extracting files into the destination directory by dropping the libs
segment from the file path

③ Ignores the empty directories resulting from the remapping, see Caution note below

CAUTION
You can not change the destination path of empty directories with this
technique. You can learn more in this issue.

If you’re a Java developer and are wondering why there is no jarTree() method, that’s because
zipTree() works perfectly well for JARs, WARs and EARs.

Creating "uber" or "fat" JARs

In the Java space, applications and their dependencies typically used to be packaged as separate

https://github.com/gradle/gradle/issues/2940

JARs within a single distribution archive. That still happens, but there is another approach that is
now common: placing the classes and resources of the dependencies directly into the application
JAR, creating what is known as an uber or fat JAR.

Gradle makes this approach easy to accomplish. Consider the aim: to copy the contents of other JAR
files into the application JAR. All you need for this is the Project.zipTree(java.lang.Object) method
and the Jar task, as demonstrated by the uberJar task in the following example:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Jar.html

Example 123. Creating a Java uber or fat JAR

build.gradle

plugins {
 id 'java'
}

version = '1.0.0'

repositories {
 mavenCentral()
}

dependencies {
 implementation 'commons-io:commons-io:2.6'
}

tasks.register('uberJar', Jar) {
 archiveClassifier = 'uber'

 from sourceSets.main.output

 dependsOn configurations.runtimeClasspath
 from {
 configurations.runtimeClasspath.findAll { it.name.endsWith('jar') }
.collect { zipTree(it) }
 }
}

build.gradle.kts

plugins {
 java
}

version = "1.0.0"

repositories {
 mavenCentral()
}

dependencies {
 implementation("commons-io:commons-io:2.6")
}

tasks.register<Jar>("uberJar") {
 archiveClassifier.set("uber")

 from(sourceSets.main.get().output)

 dependsOn(configurations.runtimeClasspath)
 from({
 configurations.runtimeClasspath.get().filter {
it.name.endsWith("jar") }.map { zipTree(it) }
 })
}

In this case, we’re taking the runtime dependencies of the project —
configurations.runtimeClasspath.files — and wrapping each of the JAR files with the zipTree()
method. The result is a collection of ZIP file trees, the contents of which are copied into the uber JAR
alongside the application classes.

Creating directories

Many tasks need to create directories to store the files they generate, which is why Gradle
automatically manages this aspect of tasks when they explicitly define file and directory outputs.
You can learn about this feature in the incremental build section of the user manual. All core
Gradle tasks ensure that any output directories they need are created if necessary using this
mechanism.

In cases where you need to create a directory manually, you can use the
Project.mkdir(java.lang.Object) method from within your build scripts or custom task
implementations. Here’s a simple example that creates a single images directory in the project
folder:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:mkdir(java.lang.Object)

Example 124. Manually creating a directory

build.gradle

tasks.register('ensureDirectory') {
 doLast {
 mkdir "images"
 }
}

build.gradle.kts

tasks.register("ensureDirectory") {
 doLast {
 mkdir("images")
 }
}

As described in the Apache Ant manual, the mkdir task will automatically create all necessary
directories in the given path and will do nothing if the directory already exists.

Moving files and directories

Gradle has no API for moving files and directories around, but you can use the Apache Ant
integration to easily do that, as shown in this example:

https://ant.apache.org/manual/Tasks/mkdir.html

Example 125. Moving a directory using the Ant task

build.gradle

tasks.register('moveReports') {
 doLast {
 ant.move file: "${buildDir}/reports",
 todir: "${buildDir}/toArchive"
 }
}

build.gradle.kts

tasks.register("moveReports") {
 doLast {
 ant.withGroovyBuilder {
 "move"("file" to "${buildDir}/reports", "todir" to
"${buildDir}/toArchive")
 }
 }
}

This is not a common requirement and should be used sparingly as you lose information and can
easily break a build. It’s generally preferable to copy directories and files instead.

Renaming files on copy

The files used and generated by your builds sometimes don’t have names that suit, in which case
you want to rename those files as you copy them. Gradle allows you to do this as part of a copy
specification using the rename() configuration.

The following example removes the "-staging-" marker from the names of any files that have it:

Example 126. Renaming files as they are copied

build.gradle

tasks.register('copyFromStaging', Copy) {
 from "src/main/webapp"
 into layout.buildDirectory.dir('explodedWar')

 rename '(.+)-staging(.+)', '$1$2'
}

build.gradle.kts

tasks.register<Copy>("copyFromStaging") {
 from("src/main/webapp")
 into(layout.buildDirectory.dir("explodedWar"))

 rename("(.+)-staging(.+)", "$1$2")
}

You can use regular expressions for this, as in the above example, or closures that use more
complex logic to determine the target filename. For example, the following task truncates
filenames:

Example 127. Truncating filenames as they are copied

build.gradle

tasks.register('copyWithTruncate', Copy) {
 from layout.buildDirectory.dir("reports")
 rename { String filename ->
 if (filename.size() > 10) {
 return filename[0..7] + "~" + filename.size()
 }
 else return filename
 }
 into layout.buildDirectory.dir("toArchive")
}

build.gradle.kts

tasks.register<Copy>("copyWithTruncate") {
 from(layout.buildDirectory.dir("reports"))
 rename { filename: String ->
 if (filename.length > 10) {
 filename.slice(0..7) + "~" + filename.length
 }
 else filename
 }
 into(layout.buildDirectory.dir("toArchive"))
}

As with filtering, you can also apply renaming to a subset of files by configuring it as part of a child
specification on a from().

Deleting files and directories

You can easily delete files and directories using either the Delete task or the
Project.delete(org.gradle.api.Action) method. In both cases, you specify which files and directories
to delete in a way supported by the Project.files(java.lang.Object…) method.

For example, the following task deletes the entire contents of a build’s output directory:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:delete(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Example 128. Deleting a directory

build.gradle

tasks.register('myClean', Delete) {
 delete buildDir
}

build.gradle.kts

tasks.register<Delete>("myClean") {
 delete(buildDir)
}

If you want more control over which files are deleted, you can’t use inclusions and exclusions in
the same way as for copying files. Instead, you have to use the builtin filtering mechanisms of
FileCollection and FileTree. The following example does just that to clear out temporary files from
a source directory:

Example 129. Deleting files matching a specific pattern

build.gradle

tasks.register('cleanTempFiles', Delete) {
 delete fileTree("src").matching {
 include "**/*.tmp"
 }
}

build.gradle.kts

tasks.register<Delete>("cleanTempFiles") {
 delete(fileTree("src").matching {
 include("**/*.tmp")
 })
}

You’ll learn more about file collections and file trees in the next section.

File paths in depth

In order to perform some action on a file, you need to know where it is, and that’s the information
provided by file paths. Gradle builds on the standard Java File class, which represents the location
of a single file, and provides new APIs for dealing with collections of paths. This section shows you
how to use the Gradle APIs to specify file paths for use in tasks and file operations.

But first, an important note on using hard-coded file paths in your builds.

On hard-coded file paths

Many examples in this chapter use hard-coded paths as string literals. This makes them easy to
understand, but it’s not good practice for real builds. The problem is that paths often change and
the more places you need to change them, the more likely you are to miss one and break the build.

Where possible, you should use tasks, task properties, and project properties — in that order of
preference — to configure file paths. For example, if you were to create a task that packages the
compiled classes of a Java application, you should aim for something like this:

Example 130. How to minimize the number of hard-coded paths in your build

build.gradle

def archivesDirPath = layout.buildDirectory.dir('archives')

tasks.register('packageClasses', Zip) {
 archiveAppendix = "classes"
 destinationDirectory = archivesDirPath

 from compileJava
}

build.gradle.kts

val archivesDirPath = layout.buildDirectory.dir("archives")

tasks.register<Zip>("packageClasses") {
 archiveAppendix.set("classes")
 destinationDirectory.set(archivesDirPath)

 from(tasks.compileJava)
}

See how we’re using the compileJava task as the source of the files to package and we’ve created a
project property archivesDirPath to store the location where we put archives, on the basis we’re

https://docs.oracle.com/javase/8/docs/api/java/io/File.html

likely to use it elsewhere in the build.

Using a task directly as an argument like this relies on it having defined outputs, so it won’t always
be possible. In addition, this example could be improved further by relying on the Java plugin’s
convention for destinationDirectory rather than overriding it, but it does demonstrate the use of
project properties.

Single files and directories

Gradle provides the Project.file(java.lang.Object) method for specifying the location of a single file
or directory. Relative paths are resolved relative to the project directory, while absolute paths
remain unchanged.

CAUTION
Never use new File(relative path) because this creates a path relative to the
current working directory (CWD). Gradle can make no guarantees about the
location of the CWD, which means builds that rely on it may break at any time.

Here are some examples of using the file() method with different types of argument:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Example 131. Locating files

build.gradle

// Using a relative path
File configFile = file('src/config.xml')

// Using an absolute path
configFile = file(configFile.absolutePath)

// Using a File object with a relative path
configFile = file(new File('src/config.xml'))

// Using a java.nio.file.Path object with a relative path
configFile = file(Paths.get('src', 'config.xml'))

// Using an absolute java.nio.file.Path object
configFile = file(Paths.get(System.getProperty('user.home')).resolve('global-
config.xml'))

build.gradle.kts

// Using a relative path
var configFile = file("src/config.xml")

// Using an absolute path
configFile = file(configFile.absolutePath)

// Using a File object with a relative path
configFile = file(File("src/config.xml"))

// Using a java.nio.file.Path object with a relative path
configFile = file(Paths.get("src", "config.xml"))

// Using an absolute java.nio.file.Path object
configFile = file(Paths.get(System.getProperty("user.home")).resolve("global-
config.xml"))

As you can see, you can pass strings, File instances and Path instances to the file() method, all of
which result in an absolute File object. You can find other options for argument types in the
reference guide, linked in the previous paragraph.

What happens in the case of multi-project builds? The file() method will always turn relative
paths into paths that are relative to the current project directory, which may be a child project. If
you want to use a path that’s relative to the root project directory, then you need to use the special

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html

Project.getRootDir() property to construct an absolute path, like so:

Example 132. Creating a path relative to a parent project

build.gradle

File configFile = file("$rootDir/shared/config.xml")

build.gradle.kts

val configFile = file("$rootDir/shared/config.xml")

Let’s say you’re working on a multi-project build in a dev/projects/AcmeHealth directory. You use the
above example in the build of the library you’re fixing — at
AcmeHealth/subprojects/AcmePatientRecordLib/build.gradle. The file path will resolve to the
absolute version of dev/projects/AcmeHealth/shared/config.xml.

The file() method can be used to configure any task that has a property of type File. Many tasks,
though, work on multiple files, so we look at how to specify sets of files next.

File collections

A file collection is simply a set of file paths that’s represented by the FileCollection interface. Any file
paths. It’s important to understand that the file paths don’t have to be related in any way, so they
don’t have to be in the same directory or even have a shared parent directory. You will also find
that many parts of the Gradle API use FileCollection, such as the copying API discussed later in this
chapter and dependency configurations.

The recommended way to specify a collection of files is to use the
ProjectLayout.files(java.lang.Object...) method, which returns a FileCollection instance. This
method is very flexible and allows you to pass multiple strings, File instances, collections of strings,
collections of Files, and more. You can even pass in tasks as arguments if they have defined
outputs. Learn about all the supported argument types in the reference guide.

CAUTION

Although the files() method accepts File instances, never use new
File(relative path) with it because this creates a path relative to the current
working directory (CWD). Gradle can make no guarantees about the location of
the CWD, which means builds that rely on it may break at any time.

As with the Project.file(java.lang.Object) method covered in the previous section, all relative paths
are evaluated relative to the current project directory. The following example demonstrates some
of the variety of argument types you can use — strings, File instances, a list and a Path:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:rootDir
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html

Example 133. Creating a file collection

build.gradle

FileCollection collection = layout.files('src/file1.txt',
 new File('src/file2.txt'),
 ['src/file3.csv', 'src/file4.csv'],
 Paths.get('src', 'file5.txt'))

build.gradle.kts

val collection: FileCollection = layout.files(
 "src/file1.txt",
 File("src/file2.txt"),
 listOf("src/file3.csv", "src/file4.csv"),
 Paths.get("src", "file5.txt")
)

File collections have some important attributes in Gradle. They can be:

• created lazily

• iterated over

• filtered

• combined

Lazy creation of a file collection is useful when you need to evaluate the files that make up a
collection at the time a build runs. In the following example, we query the file system to find out
what files exist in a particular directory and then make those into a file collection:

Example 134. Implementing a file collection

build.gradle

tasks.register('list') {
 doLast {
 File srcDir

 // Create a file collection using a closure
 collection = layout.files { srcDir.listFiles() }

 srcDir = file('src')
 println "Contents of $srcDir.name"
 collection.collect { relativePath(it) }.sort().each { println it }

 srcDir = file('src2')
 println "Contents of $srcDir.name"
 collection.collect { relativePath(it) }.sort().each { println it }
 }
}

build.gradle.kts

tasks.register("list") {
 doLast {
 var srcDir: File? = null

 val collection = layout.files({
 srcDir?.listFiles()
 })

 srcDir = file("src")
 println("Contents of ${srcDir.name}")
 collection.map { relativePath(it) }.sorted().forEach { println(it) }

 srcDir = file("src2")
 println("Contents of ${srcDir.name}")
 collection.map { relativePath(it) }.sorted().forEach { println(it) }
 }
}

Output of gradle -q list

> gradle -q list
Contents of src
src/dir1
src/file1.txt
Contents of src2
src2/dir1
src2/dir2

The key to lazy creation is passing a closure (in Groovy) or a Provider (in Kotlin) to the files()
method. Your closure/provider simply needs to return a value of a type accepted by files(), such as
List<File>, String, FileCollection, etc.

Iterating over a file collection can be done through the each() method (in Groovy) of forEach method
(in Kotlin) on the collection or using the collection in a for loop. In both approaches, the file
collection is treated as a set of File instances, i.e. your iteration variable will be of type File.

The following example demonstrates such iteration as well as how you can convert file collections
to other types using the as operator or supported properties:

Example 135. Using a file collection

build.gradle

 // Iterate over the files in the collection
 collection.each { File file ->
 println file.name
 }

 // Convert the collection to various types
 Set set = collection.files
 Set set2 = collection as Set
 List list = collection as List
 String path = collection.asPath
 File file = collection.singleFile

 // Add and subtract collections
 def union = collection + layout.files('src/file2.txt')
 def difference = collection - layout.files('src/file2.txt')

build.gradle.kts

 // Iterate over the files in the collection
 collection.forEach { file: File ->
 println(file.name)
 }

 // Convert the collection to various types
 val set: Set<File> = collection.files
 val list: List<File> = collection.toList()
 val path: String = collection.asPath
 val file: File = collection.singleFile

 // Add and subtract collections
 val union = collection + layout.files("src/file2.txt")
 val difference = collection - layout.files("src/file2.txt")

You can also see at the end of the example how to combine file collections using the + and -
operators to merge and subtract them. An important feature of the resulting file collections is that
they are live. In other words, when you combine file collections in this way, the result always
reflects what’s currently in the source file collections, even if they change during the build.

For example, imagine collection in the above example gains an extra file or two after union is
created. As long as you use union after those files are added to collection, union will also contain
those additional files. The same goes for the different file collection.

Live collections are also important when it comes to filtering. If you want to use a subset of a file
collection, you can take advantage of the FileCollection.filter(org.gradle.api.specs.Spec) method to
determine which files to "keep". In the following example, we create a new collection that consists
of only the files that end with .txt in the source collection:

Example 136. Filtering a file collection

build.gradle

 FileCollection textFiles = collection.filter { File f ->
 f.name.endsWith(".txt")
 }

build.gradle.kts

 val textFiles: FileCollection = collection.filter { f: File ->
 f.name.endsWith(".txt")
 }

Output of gradle -q filterTextFiles

> gradle -q filterTextFiles
src/file1.txt
src/file2.txt
src/file5.txt

If collection changes at any time, either by adding or removing files from itself, then textFiles will
immediately reflect the change because it is also a live collection. Note that the closure you pass to
filter() takes a File as an argument and should return a boolean.

File trees

A file tree is a file collection that retains the directory structure of the files it contains and has the
type FileTree. This means that all the paths in a file tree must have a shared parent directory. The
following diagram highlights the distinction between file trees and file collections in the common
case of copying files:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html#filter-org.gradle.api.specs.Spec-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html

Figure 10. The differences in how file trees and file collections behave when copying files

NOTE

Although FileTree extends FileCollection (an is-a relationship), their behaviors do
differ. In other words, you can use a file tree wherever a file collection is required,
but remember: a file collection is a flat list/set of files, while a file tree is a file and
directory hierarchy. To convert a file tree to a flat collection, use the
FileTree.getFiles() property.

The simplest way to create a file tree is to pass a file or directory path to the
Project.fileTree(java.lang.Object) method. This will create a tree of all the files and directories in
that base directory (but not the base directory itself). The following example demonstrates how to
use the basic method and, in addition, how to filter the files and directories using Ant-style
patterns:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html#getFiles--
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

Example 137. Creating a file tree

build.gradle

// Create a file tree with a base directory
ConfigurableFileTree tree = fileTree(dir: 'src/main')

// Add include and exclude patterns to the tree
tree.include '**/*.java'
tree.exclude '**/Abstract*'

// Create a tree using closure
tree = fileTree('src') {
 include '**/*.java'
}

// Create a tree using a map
tree = fileTree(dir: 'src', include: '**/*.java')
tree = fileTree(dir: 'src', includes: ['**/*.java', '**/*.xml'])
tree = fileTree(dir: 'src', include: '**/*.java', exclude: '**/*test*/**')

build.gradle.kts

// Create a file tree with a base directory
var tree: ConfigurableFileTree = fileTree("src/main")

// Add include and exclude patterns to the tree
tree.include("**/*.java")
tree.exclude("**/Abstract*")

// Create a tree using closure
tree = fileTree("src") {
 include("**/*.java")
}

// Create a tree using a map
tree = fileTree("dir" to "src", "include" to "**/*.java")
tree = fileTree("dir" to "src", "includes" to listOf("**/*.java",
"**/*.xml"))
tree = fileTree("dir" to "src", "include" to "**/*.java", "exclude" to
"**/*test*/**")

You can see more examples of supported patterns in the API docs for PatternFilterable. Also, see the
API documentation for fileTree() to see what types you can pass as the base directory.

By default, fileTree() returns a FileTree instance that applies some default exclude patterns for

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/util/PatternFilterable.html

convenience — the same defaults as Ant in fact. For the complete default exclude list, see the Ant
manual.

If those default excludes prove problematic, you can workaround the issue by changing the default
excludes in the settings script:

Example 138. Changing default excludes in the settings script

settings.gradle

import org.apache.tools.ant.DirectoryScanner

DirectoryScanner.removeDefaultExclude('**/.git')
DirectoryScanner.removeDefaultExclude('**/.git/**')

settings.gradle.kts

import org.apache.tools.ant.DirectoryScanner

DirectoryScanner.removeDefaultExclude("**/.git")
DirectoryScanner.removeDefaultExclude("**/.git/**")

NOTE Currently, Gradle’s default excludes are configured via Ant’s DirectoryScanner class.

NOTE Gradle does not support changing default excludes during the execution phase.

You can do many of the same things with file trees that you can with file collections:

• iterate over them (depth first)

• filter them (using FileTree.matching(org.gradle.api.Action) and Ant-style patterns)

• merge them

You can also traverse file trees using the FileTree.visit(org.gradle.api.Action) method. All of these
techniques are demonstrated in the following example:

http://ant.apache.org/manual/dirtasks.html#defaultexcludes
http://ant.apache.org/manual/dirtasks.html#defaultexcludes
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html#matching-org.gradle.api.Action-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html#visit-org.gradle.api.Action-

Example 139. Using a file tree

build.gradle

// Iterate over the contents of a tree
tree.each {File file ->
 println file
}

// Filter a tree
FileTree filtered = tree.matching {
 include 'org/gradle/api/**'
}

// Add trees together
FileTree sum = tree + fileTree(dir: 'src/test')

// Visit the elements of the tree
tree.visit {element ->
 println "$element.relativePath => $element.file"
}

build.gradle.kts

// Iterate over the contents of a tree
tree.forEach{ file: File ->
 println(file)
}

// Filter a tree
val filtered: FileTree = tree.matching {
 include("org/gradle/api/**")
}

// Add trees together
val sum: FileTree = tree + fileTree("src/test")

// Visit the elements of the tree
tree.visit {
 println("${this.relativePath} => ${this.file}")
}

We’ve discussed how to create your own file trees and file collections, but it’s also worth bearing in
mind that many Gradle plugins provide their own instances of file trees, such as Java’s source sets.
These can be used and manipulated in exactly the same way as the file trees you create yourself.

Another specific type of file tree that users commonly need is the archive, i.e. ZIP files, TAR files, etc.
We look at those next.

Using archives as file trees

An archive is a directory and file hierarchy packed into a single file. In other words, it’s a special
case of a file tree, and that’s exactly how Gradle treats archives. Instead of using the fileTree()
method, which only works on normal file systems, you use the Project.zipTree(java.lang.Object) and
Project.tarTree(java.lang.Object) methods to wrap archive files of the corresponding type (note that
JAR, WAR and EAR files are ZIPs). Both methods return FileTree instances that you can then use in
the same way as normal file trees. For example, you can extract some or all of the files of an archive
by copying its contents to some directory on the file system. Or you can merge one archive into
another.

Here are some simple examples of creating archive-based file trees:

Example 140. Using an archive as a file tree

build.gradle

// Create a ZIP file tree using path
FileTree zip = zipTree('someFile.zip')

// Create a TAR file tree using path
FileTree tar = tarTree('someFile.tar')

//tar tree attempts to guess the compression based on the file extension
//however if you must specify the compression explicitly you can:
FileTree someTar = tarTree(resources.gzip('someTar.ext'))

build.gradle.kts

// Create a ZIP file tree using path
val zip: FileTree = zipTree("someFile.zip")

// Create a TAR file tree using path
val tar: FileTree = tarTree("someFile.tar")

// tar tree attempts to guess the compression based on the file extension
// however if you must specify the compression explicitly you can:
val someTar: FileTree = tarTree(resources.gzip("someTar.ext"))

You can see a practical example of extracting an archive file in among the common scenarios we
cover.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

Understanding implicit conversion to file collections

Many objects in Gradle have properties which accept a set of input files. For example, the
JavaCompile task has a source property that defines the source files to compile. You can set the
value of this property using any of the types supported by the files() method, as mentioned in the
api docs. This means you can, for example, set the property to a File, String, collection,
FileCollection or even a closure or Provider.

This is a feature of specific tasks! That means implicit conversion will not happen for just any
task that has a FileCollection or FileTree property. If you want to know whether implicit
conversion happens in a particular situation, you will need to read the relevant documentation,
such as the corresponding task’s API docs. Alternatively, you can remove all doubt by explicitly
using ProjectLayout.files(java.lang.Object...) in your build.

Here are some examples of the different types of arguments that the source property can take:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-

Example 141. Specifying a set of files

build.gradle

tasks.register('compile', JavaCompile) {

 // Use a File object to specify the source directory
 source = file('src/main/java')

 // Use a String path to specify the source directory
 source = 'src/main/java'

 // Use a collection to specify multiple source directories
 source = ['src/main/java', '../shared/java']

 // Use a FileCollection (or FileTree in this case) to specify the source
files
 source = fileTree(dir: 'src/main/java').matching { include
'org/gradle/api/**' }

 // Using a closure to specify the source files.
 source = {
 // Use the contents of each zip file in the src dir
 file('src').listFiles().findAll {it.name.endsWith('.zip')}.collect {
zipTree(it) }
 }
}

build.gradle.kts

tasks.register<JavaCompile>("compile") {
 // Use a File object to specify the source directory
 source = fileTree(file("src/main/java"))

 // Use a String path to specify the source directory
 source = fileTree("src/main/java")

 // Use a collection to specify multiple source directories
 source = fileTree(listOf("src/main/java", "../shared/java"))

 // Use a FileCollection (or FileTree in this case) to specify the source
files
 source = fileTree("src/main/java").matching {
include("org/gradle/api/**") }

 // Using a closure to specify the source files.
 setSource({
 // Use the contents of each zip file in the src dir
 file("src").listFiles().filter { it.name.endsWith(".zip") }.map {
zipTree(it) }
 })
}

One other thing to note is that properties like source have corresponding methods in core Gradle
tasks. Those methods follow the convention of appending to collections of values rather than
replacing them. Again, this method accepts any of the types supported by the files() method, as
shown here:

Example 142. Appending a set of files

build.gradle

compile {
 // Add some source directories use String paths
 source 'src/main/java', 'src/main/groovy'

 // Add a source directory using a File object
 source file('../shared/java')

 // Add some source directories using a closure
 source { file('src/test/').listFiles() }
}

build.gradle.kts

tasks.named<JavaCompile>("compile") {
 // Add some source directories use String paths
 source("src/main/java", "src/main/groovy")

 // Add a source directory using a File object
 source(file("../shared/java"))

 // Add some source directories using a closure
 setSource({ file("src/test/").listFiles() })
}

As this is a common convention, we recommend that you follow it in your own custom tasks.
Specifically, if you plan to add a method to configure a collection-based property, make sure the
method appends rather than replaces values.

File copying in depth

The basic process of copying files in Gradle is a simple one:

• Define a task of type Copy

• Specify which files (and potentially directories) to copy

• Specify a destination for the copied files

But this apparent simplicity hides a rich API that allows fine-grained control of which files are
copied, where they go, and what happens to them as they are copied — renaming of the files and
token substitution of file content are both possibilities, for example.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html

Let’s start with the last two items on the list, which form what is known as a copy specification. This
is formally based on the CopySpec interface, which the Copy task implements, and offers:

• A CopySpec.from(java.lang.Object…) method to define what to copy

• An CopySpec.into(java.lang.Object) method to define the destination

CopySpec has several additional methods that allow you to control the copying process, but these
two are the only required ones. into() is straightforward, requiring a directory path as its
argument in any form supported by the Project.file(java.lang.Object) method. The from()
configuration is far more flexible.

Not only does from() accept multiple arguments, it also allows several different types of argument.
For example, some of the most common types are:

• A String — treated as a file path or, if it starts with "file://", a file URI

• A File — used as a file path

• A FileCollection or FileTree — all files in the collection are included in the copy

• A task — the files or directories that form a task’s defined outputs are included

In fact, from() accepts all the same arguments as Project.files(java.lang.Object…) so see that method
for a more detailed list of acceptable types.

Something else to consider is what type of thing a file path refers to:

• A file — the file is copied as is

• A directory — this is effectively treated as a file tree: everything in it, including subdirectories,
is copied. However, the directory itself is not included in the copy.

• A non-existent file — the path is ignored

Here is an example that uses multiple from() specifications, each with a different argument type.
You will probably also notice that into() is configured lazily using a closure (in Groovy) or a
Provider (in Kotlin) — a technique that also works with from():

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object...-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#into-java.lang.Object-
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Example 143. Specifying copy task source files and destination directory

build.gradle

tasks.register('anotherCopyTask', Copy) {
 // Copy everything under src/main/webapp
 from 'src/main/webapp'
 // Copy a single file
 from 'src/staging/index.html'
 // Copy the output of a task
 from copyTask
 // Copy the output of a task using Task outputs explicitly.
 from copyTaskWithPatterns.outputs
 // Copy the contents of a Zip file
 from zipTree('src/main/assets.zip')
 // Determine the destination directory later
 into { getDestDir() }
}

build.gradle.kts

tasks.register<Copy>("anotherCopyTask") {
 // Copy everything under src/main/webapp
 from("src/main/webapp")
 // Copy a single file
 from("src/staging/index.html")
 // Copy the output of a task
 from(copyTask)
 // Copy the output of a task using Task outputs explicitly.
 from(tasks["copyTaskWithPatterns"].outputs)
 // Copy the contents of a Zip file
 from(zipTree("src/main/assets.zip"))
 // Determine the destination directory later
 into({ getDestDir() })
}

Note that the lazy configuration of into() is different from a child specification, even though the
syntax is similar. Keep an eye on the number of arguments to distinguish between them.

Filtering files

You’ve already seen that you can filter file collections and file trees directly in a Copy task, but you
can also apply filtering in any copy specification through the CopySpec.include(java.lang.String…)
and CopySpec.exclude(java.lang.String…) methods.

Both of these methods are normally used with Ant-style include or exclude patterns, as described in

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#include-java.lang.String...-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#exclude-java.lang.String...-

PatternFilterable. You can also perform more complex logic by using a closure that takes a
FileTreeElement and returns true if the file should be included or false otherwise. The following
example demonstrates both forms, ensuring that only .html and .jsp files are copied, except for
those .html files with the word "DRAFT" in their content:

Example 144. Selecting the files to copy

build.gradle

tasks.register('copyTaskWithPatterns', Copy) {
 from 'src/main/webapp'
 into layout.buildDirectory.dir('explodedWar')
 include '**/*.html'
 include '**/*.jsp'
 exclude { FileTreeElement details ->
 details.file.name.endsWith('.html') &&
 details.file.text.contains('DRAFT')
 }
}

build.gradle.kts

tasks.register<Copy>("copyTaskWithPatterns") {
 from("src/main/webapp")
 into(layout.buildDirectory.dir("explodedWar"))
 include("**/*.html")
 include("**/*.jsp")
 exclude { details: FileTreeElement ->
 details.file.name.endsWith(".html") &&
 details.file.readText().contains("DRAFT")
 }
}

A question you may ask yourself at this point is what happens when inclusion and exclusion
patterns overlap? Which pattern wins? Here are the basic rules:

• If there are no explicit inclusions or exclusions, everything is included

• If at least one inclusion is specified, only files and directories matching the patterns are
included

• Any exclusion pattern overrides any inclusions, so if a file or directory matches at least one
exclusion pattern, it won’t be included, regardless of the inclusion patterns

Bear these rules in mind when creating combined inclusion and exclusion specifications so that
you end up with the exact behavior you want.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTreeElement.html

Note that the inclusions and exclusions in the above example will apply to all from() configurations.
If you want to apply filtering to a subset of the copied files, you’ll need to use child specifications.

Renaming files

The example of how to rename files on copy gives you most of the information you need to perform
this operation. It demonstrates the two options for renaming:

• Using a regular expression

• Using a closure

Regular expressions are a flexible approach to renaming, particularly as Gradle supports regex
groups that allow you to remove and replaces parts of the source filename. The following example
shows how you can remove the string "-staging-" from any filename that contains it using a simple
regular expression:

Example 145. Renaming files as they are copied

build.gradle

tasks.register('rename', Copy) {
 from 'src/main/webapp'
 into layout.buildDirectory.dir('explodedWar')
 // Use a closure to convert all file names to upper case
 rename { String fileName ->
 fileName.toUpperCase()
 }
 // Use a regular expression to map the file name
 rename '(.+)-staging-(.+)', '$1$2'
 rename(/(.+)-staging-(.+)/, '$1$2')
}

build.gradle.kts

tasks.register<Copy>("rename") {
 from("src/main/webapp")
 into(layout.buildDirectory.dir("explodedWar"))
 // Use a closure to convert all file names to upper case
 rename { fileName: String ->
 fileName.toUpperCase()
 }
 // Use a regular expression to map the file name
 rename("(.+)-staging-(.+)", "$1$2")
 rename("(.+)-staging-(.+)".toRegex().pattern, "$1$2")
}

You can use any regular expression supported by the Java Pattern class and the substitution string
(the second argument of rename() works on the same principles as the Matcher.appendReplacement()
method.

NOTE

Regular expressions in Groovy build scripts

There are two common issues people come across when using regular expressions
in this context:

1. If you use a slashy string (those delimited by '/') for the first argument, you must
include the parentheses for rename() as shown in the above example.

2. It’s safest to use single quotes for the second argument, otherwise you need to
escape the '$' in group substitutions, i.e. "\$1\$2"

The first is a minor inconvenience, but slashy strings have the advantage that you
don’t have to escape backslash ('\') characters in the regular expression. The second
issue stems from Groovy’s support for embedded expressions using ${ } syntax in
double-quoted and slashy strings.

The closure syntax for rename() is straightforward and can be used for any requirements that
simple regular expressions can’t handle. You’re given the name of a file and you return a new name
for that file, or null if you don’t want to change the name. Do be aware that the closure will be
executed for every file that’s copied, so try to avoid expensive operations where possible.

Filtering file content (token substitution, templating, etc.)

Not to be confused with filtering which files are copied, file content filtering allows you to transform
the content of files while they are being copied. This can involve basic templating that uses token
substitution, removal of lines of text, or even more complex filtering using a full-blown template
engine.

The following example demonstrates several forms of filtering, including token substitution using
the CopySpec.expand(java.util.Map) method and another using CopySpec.filter(java.lang.Class) with
an Ant filter:

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#appendReplacement(java.lang.StringBuffer,%20java.lang.String)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#expand-java.util.Map-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#filter-java.lang.Class-
https://ant.apache.org/manual/Types/filterchain.html

Example 146. Filtering files as they are copied

build.gradle

import org.apache.tools.ant.filters.FixCrLfFilter
import org.apache.tools.ant.filters.ReplaceTokens

tasks.register('filter', Copy) {
 from 'src/main/webapp'
 into layout.buildDirectory.dir('explodedWar')
 // Substitute property tokens in files
 expand(copyright: '2009', version: '2.3.1')
 expand(project.properties)
 // Use some of the filters provided by Ant
 filter(FixCrLfFilter)
 filter(ReplaceTokens, tokens: [copyright: '2009', version: '2.3.1'])
 // Use a closure to filter each line
 filter { String line ->
 "[$line]"
 }
 // Use a closure to remove lines
 filter { String line ->
 line.startsWith('-') ? null : line
 }
 filteringCharset = 'UTF-8'
}

build.gradle.kts

import org.apache.tools.ant.filters.FixCrLfFilter
import org.apache.tools.ant.filters.ReplaceTokens
tasks.register<Copy>("filter") {
 from("src/main/webapp")
 into(layout.buildDirectory.dir("explodedWar"))
 // Substitute property tokens in files
 expand("copyright" to "2009", "version" to "2.3.1")
 expand(project.properties)
 // Use some of the filters provided by Ant
 filter(FixCrLfFilter::class)
 filter(ReplaceTokens::class, "tokens" to mapOf("copyright" to "2009",
"version" to "2.3.1"))
 // Use a closure to filter each line
 filter { line: String ->
 "[$line]"
 }
 // Use a closure to remove lines
 filter { line: String ->
 if (line.startsWith('-')) null else line
 }
 filteringCharset = "UTF-8"
}

The filter() method has two variants, which behave differently:

• one takes a FilterReader and is designed to work with Ant filters, such as ReplaceTokens

• one takes a closure or Transformer that defines the transformation for each line of the source
file

Note that both variants assume the source files are text based. When you use the ReplaceTokens
class with filter(), the result is a template engine that replaces tokens of the form @tokenName@ (the
Ant-style token) with values that you define.

The expand() method treats the source files as Groovy templates, which evaluate and expand
expressions of the form ${expression}. You can pass in property names and values that are then
expanded in the source files. expand() allows for more than basic token substitution as the
embedded expressions are full-blown Groovy expressions.

NOTE

It’s good practice to specify the character set when reading and writing the file,
otherwise the transformations won’t work properly for non-ASCII text. You
configure the character set with the CopySpec.getFilteringCharset() property. If it’s
not specified, the JVM default character set is used, which is likely to be different
from the one you want.

https://docs.oracle.com/javase/8/docs/api/java/io/FilterReader.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Transformer.html
https://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#getFilteringCharset--

Using the CopySpec class

A copy specification (or copy spec for short) determines what gets copied to where, and what
happens to files during the copy. You’ve alread seen many examples in the form of configuration for
Copy and archiving tasks. But copy specs have two attributes that are worth covering in more detail:

1. They can be independent of tasks

2. They are hierarchical

The first of these attributes allows you to share copy specs within a build. The second provides fine-
grained control within the overall copy specification.

Sharing copy specs

Consider a build that has several tasks that copy a project’s static website resources or add them to
an archive. One task might copy the resources to a folder for a local HTTP server and another might
package them into a distribution. You could manually specify the file locations and appropriate
inclusions each time they are needed, but human error is more likely to creep in, resulting in
inconsistencies between tasks.

One solution Gradle provides is the Project.copySpec(org.gradle.api.Action) method. This allows you
to create a copy spec outside of a task, which can then be attached to an appropriate task using the
CopySpec.with(org.gradle.api.file.CopySpec…) method. The following example demonstrates how
this is done:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#with-org.gradle.api.file.CopySpec...-

Example 147. Sharing copy specifications

build.gradle

CopySpec webAssetsSpec = copySpec {
 from 'src/main/webapp'
 include '**/*.html', '**/*.png', '**/*.jpg'
 rename '(.+)-staging(.+)', '$1$2'
}

tasks.register('copyAssets', Copy) {
 into layout.buildDirectory.dir("inPlaceApp")
 with webAssetsSpec
}

tasks.register('distApp', Zip) {
 archiveFileName = 'my-app-dist.zip'
 destinationDirectory = layout.buildDirectory.dir('dists')

 from appClasses
 with webAssetsSpec
}

build.gradle.kts

val webAssetsSpec: CopySpec = copySpec {
 from("src/main/webapp")
 include("**/*.html", "**/*.png", "**/*.jpg")
 rename("(.+)-staging(.+)", "$1$2")
}

tasks.register<Copy>("copyAssets") {
 into(layout.buildDirectory.dir("inPlaceApp"))
 with(webAssetsSpec)
}

tasks.register<Zip>("distApp") {
 archiveFileName.set("my-app-dist.zip")
 destinationDirectory.set(layout.buildDirectory.dir("dists"))

 from(appClasses)
 with(webAssetsSpec)
}

Both the copyAssets and distApp tasks will process the static resources under src/main/webapp, as

specified by webAssetsSpec.

NOTE

The configuration defined by webAssetsSpec will not apply to the app classes
included by the distApp task. That’s because from appClasses is its own child
specification independent of with webAssetsSpec.

This can be confusing to understand, so it’s probably best to treat with() as an extra
from() specification in the task. Hence it doesn’t make sense to define a standalone
copy spec without at least one from() defined.

If you encounter a scenario in which you want to apply the same copy configuration to different sets
of files, then you can share the configuration block directly without using copySpec(). Here’s an
example that has two independent tasks that happen to want to process image files only:

Example 148. Sharing copy patterns only

build.gradle

def webAssetPatterns = {
 include '**/*.html', '**/*.png', '**/*.jpg'
}

tasks.register('copyAppAssets', Copy) {
 into layout.buildDirectory.dir("inPlaceApp")
 from 'src/main/webapp', webAssetPatterns
}

tasks.register('archiveDistAssets', Zip) {
 archiveFileName = 'distribution-assets.zip'
 destinationDirectory = layout.buildDirectory.dir('dists')

 from 'distResources', webAssetPatterns
}

build.gradle.kts

val webAssetPatterns = Action<CopySpec> {
 include("**/*.html", "**/*.png", "**/*.jpg")
}

tasks.register<Copy>("copyAppAssets") {
 into(layout.buildDirectory.dir("inPlaceApp"))
 from("src/main/webapp", webAssetPatterns)
}

tasks.register<Zip>("archiveDistAssets") {
 archiveFileName.set("distribution-assets.zip")
 destinationDirectory.set(layout.buildDirectory.dir("dists"))

 from("distResources", webAssetPatterns)
}

In this case, we assign the copy configuration to its own variable and apply it to whatever from()
specification we want. This doesn’t just work for inclusions, but also exclusions, file renaming, and
file content filtering.

Using child specifications

If you only use a single copy spec, the file filtering and renaming will apply to all the files that are
copied. Sometimes this is what you want, but not always. Consider the following example that

copies files into a directory structure that can be used by a Java Servlet container to deliver a
website:

Figure 11. Creating an exploded WAR for a Servlet container

This is not a straightforward copy as the WEB-INF directory and its subdirectories don’t exist within
the project, so they must be created during the copy. In addition, we only want HTML and image
files going directly into the root folder — build/explodedWar — and only JavaScript files going into
the js directory. So we need separate filter patterns for those two sets of files.

The solution is to use child specifications, which can be applied to both from() and into()
declarations. The following task definition does the necessary work:

Example 149. Nested copy specs

build.gradle

tasks.register('nestedSpecs', Copy) {
 into layout.buildDirectory.dir("explodedWar")
 exclude '**/*staging*'
 from('src/dist') {
 include '**/*.html', '**/*.png', '**/*.jpg'
 }
 from(sourceSets.main.output) {
 into 'WEB-INF/classes'
 }
 into('WEB-INF/lib') {
 from configurations.runtimeClasspath
 }
}

build.gradle.kts

tasks.register<Copy>("nestedSpecs") {
 into(layout.buildDirectory.dir("explodedWar"))
 exclude("**/*staging*")
 from("src/dist") {
 include("**/*.html", "**/*.png", "**/*.jpg")
 }
 from(sourceSets.main.get().output) {
 into("WEB-INF/classes")
 }
 into("WEB-INF/lib") {
 from(configurations.runtimeClasspath)
 }
}

Notice how the src/dist configuration has a nested inclusion specification: that’s the child copy
spec. You can of course add content filtering and renaming here as required. A child copy spec is
still a copy spec.

The above example also demonstrates how you can copy files into a subdirectory of the destination
either by using a child into() on a from() or a child from() on an into(). Both approaches are
acceptable, but you may want to create and follow a convention to ensure consistency across your
build files.

NOTE

Don’t get your into() specifications mixed up! For a normal copy — one to the
filesystem rather than an archive — there should always be one "root" into() that
simply specifies the overall destination directory of the copy. Any other into()
should have a child spec attached and its path will be relative to the root into().

One final thing to be aware of is that a child copy spec inherits its destination path, include
patterns, exclude patterns, copy actions, name mappings and filters from its parent. So be careful
where you place your configuration.

Copying files in your own tasks

There might be occasions when you want to copy files or directories as part of a task. For example,
a custom archiving task based on an unsupported archive format might want to copy files to a
temporary directory before they are then archived. You still want to take advantage of Gradle’s
copy API, but without introducing an extra Copy task.

The solution is to use the Project.copy(org.gradle.api.Action) method. It works the same way as the
Copy task by configuring it with a copy spec. Here’s a trivial example:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

Example 150. Copying files using the copy() method without up-to-date check

build.gradle

tasks.register('copyMethod') {
 doLast {
 copy {
 from 'src/main/webapp'
 into layout.buildDirectory.dir('explodedWar')
 include '**/*.html'
 include '**/*.jsp'
 }
 }
}

build.gradle.kts

tasks.register("copyMethod") {
 doLast {
 copy {
 from("src/main/webapp")
 into(layout.buildDirectory.dir("explodedWar"))
 include("**/*.html")
 include("**/*.jsp")
 }
 }
}

The above example demonstrates the basic syntax and also highlights two major limitations of
using the copy() method:

1. The copy() method is not incremental. The example’s copyMethod task will always execute
because it has no information about what files make up the task’s inputs. You have to manually
define the task inputs and outputs.

2. Using a task as a copy source, i.e. as an argument to from(), won’t set up an automatic task
dependency between your task and that copy source. As such, if you are using the copy()
method as part of a task action, you must explicitly declare all inputs and outputs in order to get
the correct behavior.

The following example shows you how to workaround these limitations by using the dynamic API
for task inputs and outputs:

Example 151. Copying files using the copy() method with up-to-date check

build.gradle

tasks.register('copyMethodWithExplicitDependencies') {
 // up-to-date check for inputs, plus add copyTask as dependency
 inputs.files(copyTask)
 .withPropertyName("inputs")
 .withPathSensitivity(PathSensitivity.RELATIVE)
 outputs.dir('some-dir') // up-to-date check for outputs
 .withPropertyName("outputDir")
 doLast{
 copy {
 // Copy the output of copyTask
 from copyTask
 into 'some-dir'
 }
 }
}

build.gradle.kts

tasks.register("copyMethodWithExplicitDependencies") {
 // up-to-date check for inputs, plus add copyTask as dependency
 inputs.files(copyTask)
 .withPropertyName("inputs")
 .withPathSensitivity(PathSensitivity.RELATIVE)
 outputs.dir("some-dir") // up-to-date check for outputs
 .withPropertyName("outputDir")
 doLast {
 copy {
 // Copy the output of copyTask
 from(copyTask)
 into("some-dir")
 }
 }
}

These limitations make it preferable to use the Copy task wherever possible, because of its builtin
support for incremental building and task dependency inference. That is why the copy() method is
intended for use by custom tasks that need to copy files as part of their function. Custom tasks that
use the copy() method should declare the necessary inputs and outputs relevant to the copy action.

Mirroring directories and file collections with the Sync task

The Sync task, which extends the Copy task, copies the source files into the destination directory and
then removes any files from the destination directory which it did not copy. In other words, it
synchronizes the contents of a directory with its source. This can be useful for doing things such as
installing your application, creating an exploded copy of your archives, or maintaining a copy of
the project’s dependencies.

Here is an example which maintains a copy of the project’s runtime dependencies in the build/libs
directory.

Example 152. Using the Sync task to copy dependencies

build.gradle

tasks.register('libs', Sync) {
 from configurations.runtime
 into layout.buildDirectory.dir('libs')
}

build.gradle.kts

tasks.register<Sync>("libs") {
 from(configurations["runtime"])
 into(layout.buildDirectory.dir("libs"))
}

You can also perform the same function in your own tasks with the
Project.sync(org.gradle.api.Action) method.

Deploying single files into application servers

When working with application servers, you can use a Copy task to deploy the application archive
(e.g. a WAR file). Since you are deploying a single file, the destination directory of the Copy is the
whole deployment directory. The deployment directory sometimes does contain unreadable files
like named pipes, so Gradle may have problems doing up-to-date checks. In order to support this
use-case, you can use Task.doNotTrackState().

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Sync.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:sync(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doNotTrackState(java.lang.String)

Example 153. Using Copy to deploy a WAR file

build.gradle

plugins {
 id 'war'
}

tasks.register("deployToTomcat", Copy) {
 from war
 into layout.projectDirectory.dir('tomcat/webapps')
 doNotTrackState("Deployment directory contains unreadable files")
}

build.gradle.kts

plugins {
 war
}

tasks.register<Copy>("deployToTomcat") {
 from(tasks.war)
 into(layout.projectDirectory.dir("tomcat/webapps"))
 doNotTrackState("Deployment directory contains unreadable files")
}

Installing executables

When you are building a standalone executable, you may want to install this file on your system, so
it ends up in your path. You can use a Copy task to install the executable into shared directories like
/usr/local/bin. The installation directory probably contains many other executables, some of
which may even be unreadable by Gradle. To support the unreadable files in the Copy task’s
destination directory and to avoid time consuming up-to-date checks, you can use
Task.doNotTrackState().

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doNotTrackState(java.lang.String)

Example 154. Using Copy to install an executable

build.gradle

tasks.register("installExecutable", Copy) {
 from "build/my-binary"
 into "/usr/local/bin"
 doNotTrackState("Installation directory contains unrelated files")
}

build.gradle.kts

tasks.register<Copy>("installExecutable") {
 from("build/my-binary")
 into("/usr/local/bin")
 doNotTrackState("Installation directory contains unrelated files")
}

Archive creation in depth

Archives are essentially self-contained file systems and Gradle treats them as such. This is why
working with archives is very similar to working with files and directories, including such things as
file permissions.

Out of the box, Gradle supports creation of both ZIP and TAR archives, and by extension Java’s JAR,
WAR and EAR formats — Java’s archive formats are all ZIPs. Each of these formats has a
corresponding task type to create them: Zip, Tar, Jar, War, and Ear. These all work the same way
and are based on copy specifications, just like the Copy task.

Creating an archive file is essentially a file copy in which the destination is implicit, i.e. the archive
file itself. Here’s a basic example that specifies the path and name of the target archive file:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Jar.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.War.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ear.Ear.html

Example 155. Archiving a directory as a ZIP

build.gradle

tasks.register('packageDistribution', Zip) {
 archiveFileName = "my-distribution.zip"
 destinationDirectory = layout.buildDirectory.dir('dist')

 from layout.buildDirectory.dir("toArchive")
}

build.gradle.kts

tasks.register<Zip>("packageDistribution") {
 archiveFileName.set("my-distribution.zip")
 destinationDirectory.set(layout.buildDirectory.dir("dist"))

 from(layout.buildDirectory.dir("toArchive"))
}

In the next section you’ll learn about convention-based archive names, which can save you from
always configuring the destination directory and archive name.

The full power of copy specifications are available to you when creating archives, which means you
can do content filtering, file renaming or anything else that is covered in the previous section. A
particularly common requirement is copying files into subdirectories of the archive that don’t exist
in the source folders, something that can be achieved with into() child specifications.

Gradle does of course allow you create as many archive tasks as you want, but it’s worth bearing in
mind that many convention-based plugins provide their own. For example, the Java plugin adds a
jar task for packaging a project’s compiled classes and resources in a JAR. Many of these plugins
provide sensible conventions for the names of archives as well as the copy specifications used. We
recommend you use these tasks wherever you can, rather than overriding them with your own.

Archive naming

Gradle has several conventions around the naming of archives and where they are created based
on the plugins your project uses. The main convention is provided by the Base Plugin, which
defaults to creating archives in the $buildDir/distributions directory and typically uses archive
names of the form [projectName]-[version].[type].

The following example comes from a project named archive-naming, hence the myZip task creates an
archive named archive-naming-1.0.zip:

Example 156. Creation of ZIP archive

build.gradle

plugins {
 id 'base'
}

version = 1.0

tasks.register('myZip', Zip) {
 from 'somedir'

 doLast {
 println archiveFileName.get()
 println relativePath(destinationDirectory)
 println relativePath(archiveFile)
 }
}

build.gradle.kts

plugins {
 base
}

version = "1.0"

tasks.register<Zip>("myZip") {
 from("somedir")

 doLast {
 println(archiveFileName.get())
 println(relativePath(destinationDirectory))
 println(relativePath(archiveFile))
 }
}

Output of gradle -q myZip

> gradle -q myZip
archive-naming-1.0.zip
build/distributions
build/distributions/archive-naming-1.0.zip

Note that the name of the archive does not derive from the name of the task that creates it.

If you want to change the name and location of a generated archive file, you can provide values for
the archiveFileName and destinationDirectory properties of the corresponding task. These override
any conventions that would otherwise apply.

Alternatively, you can make use of the default archive name pattern provided by
AbstractArchiveTask.getArchiveFileName(): [archiveBaseName]-[archiveAppendix]-[archiveVersion]-
[archiveClassifier].[archiveExtension]. You can set each of these properties on the task separately if
you wish. Note that the Base Plugin uses the convention of project name for archiveBaseName,
project version for archiveVersion and the archive type for archiveExtension. It does not provide
values for the other properties.

This example — from the same project as the one above — configures just the archiveBaseName
property, overriding the default value of the project name:

Example 157. Configuration of archive task - custom archive name

build.gradle

tasks.register('myCustomZip', Zip) {
 archiveBaseName = 'customName'
 from 'somedir'

 doLast {
 println archiveFileName.get()
 }
}

build.gradle.kts

tasks.register<Zip>("myCustomZip") {
 archiveBaseName.set("customName")
 from("somedir")

 doLast {
 println(archiveFileName.get())
 }
}

Output of gradle -q myCustomZip

> gradle -q myCustomZip
customName-1.0.zip

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:archiveFileName

You can also override the default archiveBaseName value for all the archive tasks in your build by
using the project property archivesBaseName, as demonstrated by the following example:

Example 158. Configuration of archive task - appendix & classifier

build.gradle

plugins {
 id 'base'
}

version = 1.0
// tag::base-plugin-config[]
base {
 archivesName = "gradle"
 distsDirectory = layout.buildDirectory.dir('custom-dist')
 libsDirectory = layout.buildDirectory.dir('custom-libs')
}
// end::base-plugin-config[]

tasks.register('myZip', Zip) {
 from 'somedir'
}

tasks.register('myOtherZip', Zip) {
 archiveAppendix = 'wrapper'
 archiveClassifier = 'src'
 from 'somedir'
}

tasks.register('echoNames') {
 doLast {
 println "Project name: ${project.name}"
 println myZip.archiveFileName.get()
 println myOtherZip.archiveFileName.get()
 }
}

build.gradle.kts

plugins {
 base
}

version = "1.0"

// tag::base-plugin-config[]
base {
 archivesName.set("gradle")
 distsDirectory.set(layout.buildDirectory.dir("custom-dist"))
 libsDirectory.set(layout.buildDirectory.dir("custom-libs"))
}
// end::base-plugin-config[]

val myZip by tasks.registering(Zip::class) {
 from("somedir")
}

val myOtherZip by tasks.registering(Zip::class) {
 archiveAppendix.set("wrapper")
 archiveClassifier.set("src")
 from("somedir")
}

tasks.register("echoNames") {
 doLast {
 println("Project name: ${project.name}")
 println(myZip.get().archiveFileName.get())
 println(myOtherZip.get().archiveFileName.get())
 }
}

Output of gradle -q echoNames

> gradle -q echoNames
Project name: archives-changed-base-name
gradle-1.0.zip
gradle-wrapper-1.0-src.zip

You can find all the possible archive task properties in the API documentation for
AbstractArchiveTask, but we have also summarized the main ones here:

archiveFileName — Property<String>, default: archiveBaseName-archiveAppendix-archiveVersion-
archiveClassifier.archiveExtension

The complete file name of the generated archive. If any of the properties in the default value are

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html

empty, their '-' separator is dropped.

archiveFile — Provider<RegularFile>, read-only, default: destinationDirectory/archiveFileName

The absolute file path of the generated archive.

destinationDirectory — DirectoryProperty, default: depends on archive type

The target directory in which to put the generated archive. By default, JARs and WARs go into
$buildDir/libs. ZIPs and TARs go into $buildDir/distributions.

archiveBaseName — Property<String>, default: project.name

The base name portion of the archive file name, typically a project name or some other
descriptive name for what it contains.

archiveAppendix — Property<String>, default: null

The appendix portion of the archive file name that comes immediately after the base name. It is
typically used to distinguish between different forms of content, such as code and docs, or a
minimal distribution versus a full or complete one.

archiveVersion — Property<String>, default: project.version

The version portion of the archive file name, typically in the form of a normal project or product
version.

archiveClassifier — Property<String>, default: null

The classifier portion of the archive file name. Often used to distinguish between archives that
target different platforms.

archiveExtension — Property<String>, default: depends on archive type and compression type

The filename extension for the archive. By default, this is set based on the archive task type and
the compression type (if you’re creating a TAR). Will be one of: zip, jar, war, tar, tgz or tbz2. You
can of course set this to a custom extension if you wish.

Sharing content between multiple archives

As described earlier, you can use the Project.copySpec(org.gradle.api.Action) method to share
content between archives.

Reproducible builds

Sometimes it’s desirable to recreate archives exactly the same, byte for byte, on different machines.
You want to be sure that building an artifact from source code produces the same result no matter
when and where it is built. This is necessary for projects like reproducible-builds.org.

Reproducing the same byte-for-byte archive poses some challenges since the order of the files in an
archive is influenced by the underlying file system. Each time a ZIP, TAR, JAR, WAR or EAR is built
from source, the order of the files inside the archive may change. Files that only have a different
timestamp also causes differences in archives from build to build. All AbstractArchiveTask (e.g. Jar,
Zip) tasks shipped with Gradle include support for producing reproducible archives.

For example, to make a Zip task reproducible you need to set Zip.isReproducibleFileOrder() to true

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://reproducible-builds.org/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:reproducibleFileOrder

and Zip.isPreserveFileTimestamps() to false. In order to make all archive tasks in your build
reproducible, consider adding the following configuration to your build file:

Example 159. Activating reproducible archives

build.gradle

tasks.withType(AbstractArchiveTask).configureEach {
 preserveFileTimestamps = false
 reproducibleFileOrder = true
}

build.gradle.kts

tasks.withType<AbstractArchiveTask>().configureEach {
 isPreserveFileTimestamps = false
 isReproducibleFileOrder = true
}

Often you will want to publish an archive, so that it is usable from another project. This process is
described in Cross-Project publications.

Using Gradle Plugins
Gradle at its core intentionally provides very little for real world automation. All of the useful
features, like the ability to compile Java code, are added by plugins. Plugins add new tasks (e.g.
JavaCompile), domain objects (e.g. SourceSet), conventions (e.g. Java source is located at
src/main/java) as well as extending core objects and objects from other plugins.

In this chapter we discuss how to use plugins and the terminology and concepts surrounding
plugins.

What plugins do

Applying a plugin to a project allows the plugin to extend the project’s capabilities. It can do things
such as:

• Extend the Gradle model (e.g. add new DSL elements that can be configured)

• Configure the project according to conventions (e.g. add new tasks or configure sensible
defaults)

• Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a number of
benefits. Applying plugins:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:preserveFileTimestamps
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.SourceSet.html

• Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects

• Allows a higher degree of modularization, enhancing comprehensibility and organization

• Encapsulates imperative logic and allows build scripts to be as declarative as possible

Types of plugins

There are two general types of plugins in Gradle, binary plugins and script plugins. Binary plugins
are written either programmatically by implementing Plugin interface or declaratively using one of
Gradle’s DSL languages. Binary plugins can reside within a build script, within the project
hierarchy or externally in a plugin jar. Script plugins are additional build scripts that further
configure the build and usually implement a declarative approach to manipulating the build. They
are typically used within a build although they can be externalized and accessed from a remote
location.

A plugin often starts out as a script plugin (because they are easy to write) and then, as the code
becomes more valuable, it’s migrated to a binary plugin that can be easily tested and shared
between multiple projects or organizations.

Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needs to
resolve the plugin, and then it needs to apply the plugin to the target, usually a Project.

Resolving a plugin means finding the correct version of the jar which contains a given plugin and
adding it to the script classpath. Once a plugin is resolved, its API can be used in a build script.
Script plugins are self-resolving in that they are resolved from the specific file path or URL
provided when applying them. Core binary plugins provided as part of the Gradle distribution are
automatically resolved.

Applying a plugin means actually executing the plugin’s Plugin.apply(T) on the Project you want to
enhance with the plugin. Applying plugins is idempotent. That is, you can safely apply any plugin
multiple times without side effects.

The most common use case for using a plugin is to both resolve the plugin and apply it to the
current project. Since this is such a common use case, it’s recommended that build authors use the
plugins DSL to both resolve and apply plugins in one step.

Binary plugins

You apply plugins by their plugin id, which is a globally unique identifier, or name, for plugins. Core
Gradle plugins are special in that they provide short names, such as 'java' for the core JavaPlugin.
All other binary plugins must use the fully qualified form of the plugin id (e.g. com.github.foo.bar),
although some legacy plugins may still utilize a short, unqualified form. Where you put the plugin
id depends on whether you are using the plugins DSL or the buildscript block.

Locations of binary plugins

A plugin is simply any class that implements the Plugin interface. Gradle provides the core plugins

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html#apply-T-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/JavaPlugin.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html

(e.g. JavaPlugin) as part of its distribution which means they are automatically resolved. However,
non-core binary plugins need to be resolved before they can be applied. This can be achieved in a
number of ways:

• Including the plugin from the plugin portal or a custom repository using the plugins DSL (see
Applying plugins using the plugins DSL).

• Including the plugin from an external jar defined as a buildscript dependency (see Applying
plugins using the buildscript block).

• Defining the plugin as a source file under the buildSrc directory in the project (see Using
buildSrc to extract functional logic).

• Defining the plugin as an inline class declaration inside a build script.

For more on defining your own plugins, see Custom Plugins.

Applying plugins with the plugins DSL

The plugins DSL provides a succinct and convenient way to declare plugin dependencies. It works
with the Gradle plugin portal to provide easy access to both core and community plugins. The
plugins DSL block configures an instance of PluginDependenciesSpec.

To apply a core plugin, the short name can be used:

Example 160. Applying a core plugin

build.gradle

plugins {
 id 'java'
}

build.gradle.kts

plugins {
 java
}

To apply a community plugin from the portal, the fully qualified plugin id must be used:

http://plugins.gradle.org
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

Example 161. Applying a community plugin

build.gradle

plugins {
 id 'com.jfrog.bintray' version '1.8.5'
}

build.gradle.kts

plugins {
 id("com.jfrog.bintray") version "1.8.5"
}

See PluginDependenciesSpec for more information on using the Plugin DSL.

Limitations of the plugins DSL

This way of adding plugins to a project is much more than a more convenient syntax. The plugins
DSL is processed in a way which allows Gradle to determine the plugins in use very early and very
quickly. This allows Gradle to do smart things such as:

• Optimize the loading and reuse of plugin classes.

• Allow different plugins to use different versions of dependencies.

• Provide editors detailed information about the potential properties and values in the buildscript
for editing assistance.

This requires that plugins be specified in a way that Gradle can easily and quickly extract, before
executing the rest of the build script. It also requires that the definition of plugins to use be
somewhat static.

There are some key differences between the plugins {} block mechanism and the “traditional”
apply() method mechanism. There are also some constraints, some of which are temporary
limitations while the mechanism is still being developed and some are inherent to the new
approach.

Constrained Syntax

The plugins {} block does not support arbitrary code. It is constrained, in order to be idempotent
(produce the same result every time) and side effect free (safe for Gradle to execute at any time).

The form is:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

build.gradle

plugins {
 id «plugin id» ①
 id «plugin id» version «plugin version» [apply «false»] ②
}

① for core Gradle plugins or plugins already available to the build script

② for binary Gradle plugins that need to be resolved

build.gradle.kts

plugins {
 `«plugin id»` ①
 id(«plugin id») ②
 id(«plugin id») version «plugin version» [apply «false»] ③
}

① for core Gradle plugins

② for core Gradle plugins or plugins already available to the build script

③ for binary Gradle plugins that need to be resolved

Where «plugin id» and «plugin version» must be constant, literal, strings and the apply statement
with a boolean can be used to disable the default behavior of applying the plugin immediately (e.g.
you want to apply it only in subprojects). No other statements are allowed; their presence will
cause a compilation error.

Where «plugin id», in case #1 is a static Kotlin extension property, named after the core plugin ID ;
and in cases #2 and #3 is a string. «plugin version» is also a string. The apply statement with a
boolean can be used to disable the default behavior of applying the plugin immediately (e.g. you
want to apply it only in subprojects).

See plugin version management if you want to use a variable to define a plugin version.

The plugins {} block must also be a top level statement in the buildscript. It cannot be nested inside
another construct (e.g. an if-statement or for-loop).

Can only be used in build scripts and settings file

The plugins {} block can currently only be used in a project’s build script and the settings.gradle
file. It cannot be used in script plugins or init scripts.

Future versions of Gradle will remove this restriction.

If the restrictions of the plugins {} block are prohibitive, the recommended approach is to apply

plugins using the buildscript {} block.

Applying external plugins with same version to subprojects

If you have a multi-project build, you probably want to apply plugins to some or all of the
subprojects in your build, but not to the root project. The default behavior of the plugins {} block is
to immediately resolve and apply the plugins. But, you can use the apply false syntax to tell Gradle
not to apply the plugin to the current project and then use the plugins {} block without the version
in subprojects' build scripts:

Example 162. Applying plugins only on certain subprojects

settings.gradle

include 'hello-a'
include 'hello-b'
include 'goodbye-c'

build.gradle

plugins {
 id 'com.example.hello' version '1.0.0' apply false
 id 'com.example.goodbye' version '1.0.0' apply false
}

hello-a/build.gradle

plugins {
 id 'com.example.hello'
}

hello-b/build.gradle

plugins {
 id 'com.example.hello'
}

goodbye-c/build.gradle

plugins {
 id 'com.example.goodbye'
}

settings.gradle.kts

include("hello-a")
include("hello-b")
include("goodbye-c")

build.gradle.kts

plugins {
 id("com.example.hello") version "1.0.0" apply false
 id("com.example.goodbye") version "1.0.0" apply false
}

hello-a/build.gradle.kts

plugins {
 id("com.example.hello")
}

hello-b/build.gradle.kts

plugins {
 id("com.example.hello")
}

goodbye-c/build.gradle.kts

plugins {
 id("com.example.goodbye")
}

Even better - you can encapsulate the versions of external plugins by composing the build logic
using your own convention plugins.

Applying plugins from the buildSrc directory

You can apply plugins that reside in a project’s buildSrc directory as long as they have a defined ID.
The following example shows how to tie a plugin implementation class — my.MyPlugin — defined in
buildSrc to the ID "my-plugin":

Example 163. Defining a buildSrc plugin with an ID

buildSrc/build.gradle

plugins {
 id 'java-gradle-plugin'
}

gradlePlugin {
 plugins {
 myPlugins {
 id = 'my-plugin'
 implementationClass = 'my.MyPlugin'
 }
 }
}

buildSrc/build.gradle.kts

plugins {
 `java-gradle-plugin`
}

gradlePlugin {
 plugins {
 create("myPlugins") {
 id = "my-plugin"
 implementationClass = "my.MyPlugin"
 }
 }
}

The plugin can then be applied by ID as normal:

Example 164. Applying a plugin from buildSrc

build.gradle

plugins {
 id 'my-plugin'
}

build.gradle.kts

plugins {
 id("my-plugin")
}

Plugin Management

The pluginManagement {} block may only appear in either the settings.gradle file, where it must be
the first block in the file, or in an Initialization Script.

Example 165. Configuring pluginManagement per-project and globally

settings.gradle

pluginManagement {
 plugins {
 }
 resolutionStrategy {
 }
 repositories {
 }
}
rootProject.name = 'plugin-management'

init.gradle

settingsEvaluated { settings ->
 settings.pluginManagement {
 plugins {
 }
 resolutionStrategy {
 }
 repositories {
 }
 }
}

settings.gradle.kts

pluginManagement {
 plugins {
 }
 resolutionStrategy {
 }
 repositories {
 }
}
rootProject.name = "plugin-management"

init.gradle.kts

settingsEvaluated {
 pluginManagement {
 plugins {
 }
 resolutionStrategy {
 }
 repositories {
 }
 }
}

Custom Plugin Repositories

By default, the plugins {} DSL resolves plugins from the public Gradle Plugin Portal. Many build
authors would also like to resolve plugins from private Maven or Ivy repositories because the
plugins contain proprietary implementation details, or just to have more control over what plugins
are available to their builds.

To specify custom plugin repositories, use the repositories {} block inside pluginManagement {}:

https://plugins.gradle.org

Example 166. Example: Using plugins from custom plugin repositories.

settings.gradle

pluginManagement {
 repositories {
 maven {
 url './maven-repo'
 }
 gradlePluginPortal()
 ivy {
 url './ivy-repo'
 }
 }
}

settings.gradle.kts

pluginManagement {
 repositories {
 maven(url = "./maven-repo")
 gradlePluginPortal()
 ivy(url = "./ivy-repo")
 }
}

This tells Gradle to first look in the Maven repository at ../maven-repo when resolving plugins and
then to check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you
don’t want the Gradle Plugin Portal to be searched, omit the gradlePluginPortal() line. Finally, the
Ivy repository at ../ivy-repo will be checked.

Plugin Version Management

A plugins {} block inside pluginManagement {} allows all plugin versions for the build to be defined
in a single location. Plugins can then be applied by id to any build script via the plugins {} block.

One benefit of setting plugin versions this way is that the pluginManagement.plugins {} does not
have the same constrained syntax as the build script plugins {} block. This allows plugin versions
to be taken from gradle.properties, or loaded via another mechanism.

Example 167. Example: Managing plugin versions via pluginManagement.

settings.gradle

pluginManagement {
 plugins {
 id 'com.example.hello' version "${helloPluginVersion}"
 }
}

build.gradle

plugins {
 id 'com.example.hello'
}

gradle.properties

helloPluginVersion=1.0.0

settings.gradle.kts

pluginManagement {
 val helloPluginVersion: String by settings
 plugins {
 id("com.example.hello") version "${helloPluginVersion}"
 }
}

build.gradle.kts

plugins {
 id("com.example.hello")
}

gradle.properties

helloPluginVersion=1.0.0

The plugin version is loaded from gradle.properties and configured in the settings script, allowing
the plugin to be added to any project without specifying the version.

Plugin Resolution Rules

Plugin resolution rules allow you to modify plugin requests made in plugins {} blocks, e.g.
changing the requested version or explicitly specifying the implementation artifact coordinates.

To add resolution rules, use the resolutionStrategy {} inside the pluginManagement {} block:

Example 168. Plugin resolution strategy.

settings.gradle

pluginManagement {
 resolutionStrategy {
 eachPlugin {
 if (requested.id.namespace == 'com.example') {
 useModule('com.example:sample-plugins:1.0.0')
 }
 }
 }
 repositories {
 maven {
 url './maven-repo'
 }
 gradlePluginPortal()
 ivy {
 url './ivy-repo'
 }
 }
}

settings.gradle.kts

pluginManagement {
 resolutionStrategy {
 eachPlugin {
 if (requested.id.namespace == "com.example") {
 useModule("com.example:sample-plugins:1.0.0")
 }
 }
 }
 repositories {
 maven {
 url = uri("./maven-repo")
 }
 gradlePluginPortal()
 ivy {
 url = uri("./ivy-repo")
 }
 }
}

This tells Gradle to use the specified plugin implementation artifact instead of using its built-in

default mapping from plugin ID to Maven/Ivy coordinates.

Custom Maven and Ivy plugin repositories must contain plugin marker artifacts in addition to the
artifacts which actually implement the plugin. For more information on publishing plugins to
custom repositories read Gradle Plugin Development Plugin.

See PluginManagementSpec for complete documentation for using the pluginManagement {} block.

Plugin Marker Artifacts

Since the plugins {} DSL block only allows for declaring plugins by their globally unique plugin id
and version properties, Gradle needs a way to look up the coordinates of the plugin implementation
artifact. To do so, Gradle will look for a Plugin Marker Artifact with the coordinates
plugin.id:plugin.id.gradle.plugin:plugin.version. This marker needs to have a dependency on the
actual plugin implementation. Publishing these markers is automated by the java-gradle-plugin.

For example, the following complete sample from the sample-plugins project shows how to publish
a com.example.hello plugin and a com.example.goodbye plugin to both an Ivy and Maven repository
using the combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-publish
plugin.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/management/PluginManagementSpec.html

Example 169. Complete Plugin Publishing Sample

build.gradle

plugins {
 id 'java-gradle-plugin'
 id 'maven-publish'
 id 'ivy-publish'
}

group 'com.example'
version '1.0.0'

gradlePlugin {
 plugins {
 hello {
 id = 'com.example.hello'
 implementationClass = 'com.example.hello.HelloPlugin'
 }
 goodbye {
 id = 'com.example.goodbye'
 implementationClass = 'com.example.goodbye.GoodbyePlugin'
 }
 }
}

publishing {
 repositories {
 maven {
 url '../../consuming/maven-repo'
 }
 ivy {
 url '../../consuming/ivy-repo'
 }
 }
}

build.gradle.kts

plugins {
 `java-gradle-plugin`
 `maven-publish`
 `ivy-publish`
}

group = "com.example"
version = "1.0.0"

gradlePlugin {
 plugins {
 create("hello") {
 id = "com.example.hello"
 implementationClass = "com.example.hello.HelloPlugin"
 }
 create("goodbye") {
 id = "com.example.goodbye"
 implementationClass = "com.example.goodbye.GoodbyePlugin"
 }
 }
}

publishing {
 repositories {
 maven {
 url = uri("../../consuming/maven-repo")
 }
 ivy {
 url = uri("../../consuming/ivy-repo")
 }
 }
}

Running gradle publish in the sample directory creates the following Maven repository layout (the
Ivy layout is similar):

Legacy Plugin Application

With the introduction of the plugins DSL, users should have little reason to use the legacy method
of applying plugins. It is documented here in case a build author cannot use the plugins DSL due to
restrictions in how it currently works.

Applying Binary Plugins

Example 170. Applying a binary plugin

build.gradle

apply plugin: 'java'

build.gradle.kts

apply(plugin = "java")

Plugins can be applied using a plugin id. In the above case, we are using the short name ‘java’ to
apply the JavaPlugin.

Rather than using a plugin id, plugins can also be applied by simply specifying the class of the
plugin:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/JavaPlugin.html

Example 171. Applying a binary plugin by type

build.gradle

apply plugin: JavaPlugin

build.gradle.kts

apply<JavaPlugin>()

The JavaPlugin symbol in the above sample refers to the JavaPlugin. This class does not strictly need
to be imported as the org.gradle.api.plugins package is automatically imported in all build scripts
(see Default imports).

Furthermore, it is not necessary to append .class to identify a class literal in Groovy as it is in Java.

Furthermore, one need to append the ::class suffix to identify a class literal in Kotlin instead of
.class in Java.

Applying plugins with the buildscript block

Binary plugins that have been published as external jar files can be added to a project by adding
the plugin to the build script classpath and then applying the plugin. External jars can be added to
the build script classpath using the buildscript {} block as described in External dependencies for
the build script.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/JavaPlugin.html

Example 172. Applying a plugin with the buildscript block

build.gradle

buildscript {
 repositories {
 gradlePluginPortal()
 }
 dependencies {
 classpath 'com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.5'
 }
}

apply plugin: 'com.jfrog.bintray'

build.gradle.kts

buildscript {
 repositories {
 gradlePluginPortal()
 }
 dependencies {
 classpath("com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.5")
 }
}

apply(plugin = "com.jfrog.bintray")

Script plugins

Example 173. Applying a script plugin

build.gradle

apply from: 'other.gradle'

build.gradle.kts

apply(from = "other.gradle.kts")

Script plugins are automatically resolved and can be applied from a script on the local filesystem or
at a remote location. Filesystem locations are relative to the project directory, while remote script
locations are specified with an HTTP URL. Multiple script plugins (of either form) can be applied to
a given target.

Finding community plugins

Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of
capabilities. The Gradle plugin portal provides an interface for searching and exploring community
plugins.

More on plugins

This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more
information on the inner workings of plugins, see Custom Plugins.

Build Lifecycle
We said earlier that the core of Gradle is a language for dependency based programming. In Gradle
terms this means that you can define tasks and dependencies between tasks. Gradle guarantees that
these tasks are executed in the order of their dependencies, and that each task is executed only
once. These tasks form a Directed Acyclic Graph. There are build tools that build up such a
dependency graph as they execute their tasks. Gradle builds the complete dependency graph before
any task is executed. This lies at the heart of Gradle and makes many things possible which would
not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build
configuration scripts.

Build phases

A Gradle build has three distinct phases.

Initialization

Gradle supports single and multi-project builds. During the initialization phase, Gradle
determines which projects are going to take part in the build, and creates a Project instance for
each of these projects.

Configuration

During this phase the project objects are configured. The build scripts of all projects which are
part of the build are executed.

Execution

Gradle determines the subset of the tasks, created and configured during the configuration
phase, to be executed. The subset is determined by the task name arguments passed to the gradle
command and the current directory. Gradle then executes each of the selected tasks.

https://plugins.gradle.org
http://en.wikipedia.org/wiki/Directed_acyclic_graph
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html

Settings file

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle
via a naming convention. The default name for this file is settings.gradle. Later in this chapter we
explain how Gradle looks for a settings file.

The settings file is executed during the initialization phase. A multi-project build must have a
settings.gradle file in the root project of the multi-project hierarchy. It is required because the
settings file defines which projects are taking part in the multi-project build (see Authoring Multi-
Project Builds). For a single-project build, a settings file is optional. Besides defining the included
projects, you might need it to add libraries to your build script classpath (see Organizing Gradle
Projects). Let’s first do some introspection with a single project build:

Example 174. Single project build

settings.gradle

rootProject.name = 'basic'
println 'This is executed during the initialization phase.'

build.gradle

println 'This is executed during the configuration phase.'

tasks.register('configured') {
 println 'This is also executed during the configuration phase, because
:configured is used in the build.'
}

tasks.register('test') {
 doLast {
 println 'This is executed during the execution phase.'
 }
}

tasks.register('testBoth') {
 doFirst {
 println 'This is executed first during the execution phase.'
 }
 doLast {
 println 'This is executed last during the execution phase.'
 }
 println 'This is executed during the configuration phase as well, because
:testBoth is used in the build.'
}

settings.gradle.kts

rootProject.name = "basic"
println("This is executed during the initialization phase.")

build.gradle.kts

println("This is executed during the configuration phase.")

tasks.register("configured") {
 println("This is also executed during the configuration phase, because
:configured is used in the build.")
}

tasks.register("test") {
 doLast {
 println("This is executed during the execution phase.")
 }
}

tasks.register("testBoth") {
 doFirst {
 println("This is executed first during the execution phase.")
 }
 doLast {
 println("This is executed last during the execution phase.")
 }
 println("This is executed during the configuration phase as well, because
:testBoth is used in the build.")
}

Output of gradle test testBoth

> gradle test testBoth
This is executed during the initialization phase.

> Configure project :
This is executed during the configuration phase.
This is executed during the configuration phase as well, because :testBoth is used in
the build.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

> gradle test testBoth
This is executed during the initialization phase.

> Configure project :
This is executed during the configuration phase.
This is executed during the configuration phase as well, because :testBoth is used in
the build.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

For a build script, the property access and method calls are delegated to a project object. Similarly
property access and method calls within the settings file is delegated to a settings object. Look at the
Settings class in the API documentation for more information.

Initialization

How does Gradle know whether to do a single or multi-project build? If you trigger a multi-project
build from a directory with a settings.gradle file, Gradle uses it to configure the build. Gradle also
allows you to execute the build from within any subproject taking part in the build.[5] If you execute
Gradle from within a project with no settings.gradle file, Gradle looks for a settings.gradle file in
the following way:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html

• It looks for settings.gradle in parent directories.

• If not found, the build is executed as a single project build.

• If a settings.gradle file is found, Gradle checks if the current project is part of the multi-project
hierarchy defined in the found settings.gradle file. If not, the build is executed as a single
project build. Otherwise a multi-project build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you are in is a
subproject of a multi-project build or not. Of course, if it is a subproject, only the subproject and its
dependent projects are built, but Gradle needs to create the build configuration for the whole multi-
project build (see Configuration and Execution). If the current project contains a settings.gradle
file, the build is always executed as:

• a single project build, if the settings.gradle file does not define a multi-project hierarchy

• a multi-project build, if the settings.gradle file does define a multi-project hierarchy.

The automatic search for a settings.gradle file only works for multi-project builds with a default
project layout where project paths match the physical subproject layout on disk. Gradle supports
arbitrary physical layouts for a multi-project build, but for such arbitrary layouts you need to
execute the build from the directory where the settings file is located. For information on how to
run partial builds from the root, see Executing tasks by their fully qualified name.

Gradle creates a Project object for every project taking part in the build. For a multi-project build
these are the projects specified in the Settings object (plus the root project). Each project object has
by default a name equal to the name of its top level directory, and every project except the root
project has a parent project. Any project may have child projects.

Configuration and execution of a single project build

For a single project build, the workflow of the after initialization phases are pretty simple. The build
script is executed against the project object that was created during the initialization phase. Then
Gradle looks for tasks with names equal to those passed as command line arguments. If these task
names exist, they are executed as a separate build in the order you have passed them. The
configuration and execution for multi-project builds is discussed in Configuration and Execution.

Responding to the lifecycle in the build script

Your build script can receive notifications as the build progresses through its lifecycle. These
notifications generally take two forms: You can either implement a particular listener interface, or
you can provide a closure to execute when the notification is fired. The examples below use
closures. For details on how to use the listener interfaces, refer to the API documentation.

Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used
to do things like performing additional configuration once all the definitions in a build script have
been applied, or for some custom logging or profiling.

Below is an example which adds a test task to each project which has a hasTests property value of

true.

Example 175. Adding of test task to each project which has certain property set

build.gradle

allprojects {
 afterEvaluate { project ->
 if (project.hasTests) {
 println "Adding test task to $project"
 project.task('test') {
 doLast {
 println "Running tests for $project"
 }
 }
 }
 }
}

project-a.gradle

hasTests = true

build.gradle.kts

allprojects {
 afterEvaluate {
 if (extra["hasTests"] as Boolean) {
 println("Adding test task to $project")
 tasks.register("test") {
 doLast {
 println("Running tests for $project")
 }
 }
 }
 }
}

project-a.gradle.kts

extra["hasTests"] = true

Output of gradle -q test

> gradle -q test
Adding test task to project ':project-a'
Running tests for project ':project-a'

This example uses method Project.afterEvaluate() to add a closure which is executed after the
project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs
some custom logging of project evaluation. Notice that the afterProject notification is received
regardless of whether the project evaluates successfully or fails with an exception.

Example 176. Notifications

build.gradle

gradle.afterProject { project ->
 if (project.state.failure) {
 println "Evaluation of $project FAILED"
 } else {
 println "Evaluation of $project succeeded"
 }
}

build.gradle.kts

gradle.afterProject {
 if (state.failure != null) {
 println("Evaluation of $project FAILED")
 } else {
 println("Evaluation of $project succeeded")
 }
}

Output of gradle -q test

> gradle -q test
Evaluation of root project 'build-project-evaluate-events' succeeded
Evaluation of project ':project-a' succeeded
Evaluation of project ':project-b' FAILED

FAILURE: Build failed with an exception.

* Where:
Build file '/home/user/gradle/samples/project-b.gradle' line: 1

* What went wrong:
A problem occurred evaluating project ':project-b'.
> broken

* Try:
> Run with --stacktrace option to get the stack trace.
> Run with --info or --debug option to get more log output.
> Run with --scan to get full insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 0s

> gradle -q test
Evaluation of root project 'build-project-evaluate-events' succeeded
Evaluation of project ':project-a' succeeded
Evaluation of project ':project-b' FAILED

FAILURE: Build failed with an exception.

* Where:
Build file '/home/user/gradle/samples/project-b.gradle.kts' line: 1

* What went wrong:
broken

* Try:
> Run with --stacktrace option to get the stack trace.
> Run with --info or --debug option to get more log output.
> Run with --scan to get full insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 0s

You can also add a ProjectEvaluationListener to the Gradle to receive these events.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/ProjectEvaluationListener.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.invocation.Gradle.html

Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set
some default values or add behaviour before the task is made available in the build file.

The following example sets the srcDir property of each task as it is created.

Example 177. Setting of certain property to all tasks

build.gradle

tasks.whenTaskAdded { task ->
 task.ext.srcDir = 'src/main/java'
}

tasks.register('a')

println "source dir is $a.srcDir"

build.gradle.kts

tasks.whenTaskAdded {
 extra["srcDir"] = "src/main/java"
}

val a by tasks.registering

println("source dir is ${a.get().extra["srcDir"]}")

Output of gradle -q a

> gradle -q a
source dir is src/main/java

You can also add an Action to a TaskContainer to receive these events.

Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated.

You can also add a TaskExecutionGraphListener to the TaskExecutionGraph to receive these events.

Task execution

You can receive a notification immediately before and after any task is executed.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Action.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskContainer.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

The following example logs the start and end of each task execution. Notice that the afterTask
notification is received regardless of whether the task completes successfully or fails with an
exception.

Example 178. Logging of start and end of each task execution

build.gradle

tasks.register('ok')

tasks.register('broken') {
 dependsOn ok
 doLast {
 throw new RuntimeException('broken')
 }
}

gradle.taskGraph.beforeTask { Task task ->
 println "executing $task ..."
}

gradle.taskGraph.afterTask { Task task, TaskState state ->
 if (state.failure) {
 println "FAILED"
 }
 else {
 println "done"
 }
}

build.gradle.kts

tasks.register("ok")

tasks.register("broken") {
 dependsOn("ok")
 doLast {
 throw RuntimeException("broken")
 }
}

gradle.taskGraph.beforeTask {
 println("executing $this ...")
}

gradle.taskGraph.afterTask {
 if (state.failure != null) {
 println("FAILED")
 } else {
 println("done")
 }
}

Output of gradle -q broken

> gradle -q broken
executing task ':ok' ...
done
executing task ':broken' ...
FAILED

FAILURE: Build failed with an exception.

* Where:
Build file '/home/user/gradle/samples/build.gradle' line: 6

* What went wrong:
Execution failed for task ':broken'.
> broken

* Try:
> Run with --stacktrace option to get the stack trace.
> Run with --info or --debug option to get more log output.
> Run with --scan to get full insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 0s

> gradle -q broken
executing task ':ok' ...
done
executing task ':broken' ...
FAILED

FAILURE: Build failed with an exception.

* What went wrong:
Execution failed for task ':broken'.
> broken

* Try:
> Run with --stacktrace option to get the stack trace.
> Run with --info or --debug option to get more log output.
> Run with --scan to get full insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 0s

You can also use a TaskExecutionListener to the TaskExecutionGraph to receive these events.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskExecutionListener.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Logging
The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily
hidden by this. On the other hand you need relevant information for figuring out if things have
gone wrong. Gradle defines 6 log levels, as shown in Log levels. There are two Gradle-specific log
levels, in addition to the ones you might normally see. Those levels are QUIET and LIFECYCLE. The
latter is the default, and is used to report build progress.

Log levels

ERROR Error messages

QUIET Important information messages

WARNING Warning messages

LIFECYCLE Progress information messages

INFO Information messages

DEBUG Debug messages

NOTE
The rich components of the console (build status and work in progress area) are
displayed regardless of the log level used. Before Gradle 4.0 those rich components
were only displayed at log level LIFECYCLE or below.

Choosing a log level

You can use the command line switches shown in Log level command-line options to choose
different log levels. You can also configure the log level using gradle.properties, see Gradle
properties. In Stacktrace command-line options you find the command line switches which affect
stacktrace logging.

Table 5. Log level command-line options

Option Outputs Log Levels

no logging options LIFECYCLE and higher

-q or --quiet QUIET and higher

-w or --warn WARN and higher

-i or --info INFO and higher

-d or --debug DEBUG and higher (that is, all log messages)

CAUTION The DEBUG log level can expose security sensitive information to the console.

Stacktrace command-line options

-s or --stacktrace

Truncated stacktraces are printed. We recommend this over full stacktraces. Groovy full
stacktraces are extremely verbose (Due to the underlying dynamic invocation mechanisms. Yet
they usually do not contain relevant information for what has gone wrong in your code.) This
option renders stacktraces for deprecation warnings.

-S or --full-stacktrace

The full stacktraces are printed out. This option renders stacktraces for deprecation warnings.

<No stacktrace options>

No stacktraces are printed to the console in case of a build error (e.g. a compile error). Only in
case of internal exceptions will stacktraces be printed. If the DEBUG log level is chosen, truncated
stacktraces are always printed.

Logging Sensitive Information

Running Gradle with the DEBUG log level can expose security sensitive information to the console
and build log.

This information can include but is not limited to:

• Environment variables

• Private repository credentials

• Build cache & Gradle Enterprise Credentials

• Plugin Portal publishing credentials

The DEBUG log level should not be used when running on public Continuous Integration services.
Build logs for public Continuous Integration services are world-viewable and can expose this
sensitive information. Depending upon your organization’s threat model, logging sensitive
credentials in private CI may also be a vulnerability. Please discuss this with your organization’s
security team.

Some CI providers attempt to scrub sensitive credentials from logs; however, this will be imperfect
and usually only scrubs exact-matches of pre-configured secrets.

If you believe a Gradle Plugin may be exposing sensitive information, please contact
security@gradle.com for disclosure assistance.

Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle
redirects anything written to standard output to its logging system at the QUIET log level.

https://plugins.gradle.org/
mailto:security@gradle.com

Example 179. Using stdout to write log messages

build.gradle

println 'A message which is logged at QUIET level'

build.gradle.kts

println("A message which is logged at QUIET level")

Gradle also provides a logger property to a build script, which is an instance of Logger. This
interface extends the SLF4J Logger interface and adds a few Gradle specific methods to it. Below is
an example of how this is used in the build script:

Example 180. Writing your own log messages

build.gradle

logger.quiet('An info log message which is always logged.')
logger.error('An error log message.')
logger.warn('A warning log message.')
logger.lifecycle('A lifecycle info log message.')
logger.info('An info log message.')
logger.debug('A debug log message.')
logger.trace('A trace log message.') // Gradle never logs TRACE level logs

build.gradle.kts

logger.quiet("An info log message which is always logged.")
logger.error("An error log message.")
logger.warn("A warning log message.")
logger.lifecycle("A lifecycle info log message.")
logger.info("An info log message.")
logger.debug("A debug log message.")
logger.trace("A trace log message.") // Gradle never logs TRACE level logs

Use the typical SLF4J pattern to replace a placeholder with an actual value as part of the log
message.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/logging/Logger.html
https://www.slf4j.org/manual.html#typical_usage

Example 181. Writing a log message with placeholder

build.gradle

logger.info('A {} log message', 'info')

build.gradle.kts

logger.info("A {} log message", "info")

You can also hook into Gradle’s logging system from within other classes used in the build (classes
from the buildSrc directory for example). Simply use an SLF4J logger. You can use this logger the
same way as you use the provided logger in the build script.

Example 182. Using SLF4J to write log messages

build.gradle

import org.slf4j.LoggerFactory

def slf4jLogger = LoggerFactory.getLogger('some-logger')
slf4jLogger.info('An info log message logged using SLF4j')

build.gradle.kts

import org.slf4j.LoggerFactory

val slf4jLogger = LoggerFactory.getLogger("some-logger")
slf4jLogger.info("An info log message logged using SLF4j")

Logging from external tools and libraries

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their
logging output into the Gradle logging system. There is a 1:1 mapping from the Ant/Ivy log levels to
the Gradle log levels, except the Ant/Ivy TRACE log level, which is mapped to Gradle DEBUG log level.
This means the default Gradle log level will not show any Ant/Ivy output unless it is an error or a
warning.

There are many tools out there which still use standard output for logging. By default, Gradle
redirects standard output to the QUIET log level and standard error to the ERROR level. This behavior

is configurable. The project object provides a LoggingManager, which allows you to change the log
levels that standard out or error are redirected to when your build script is evaluated.

Example 183. Configuring standard output capture

build.gradle

logging.captureStandardOutput LogLevel.INFO
println 'A message which is logged at INFO level'

build.gradle.kts

logging.captureStandardOutput(LogLevel.INFO)
println("A message which is logged at INFO level")

To change the log level for standard out or error during task execution, tasks also provide a
LoggingManager.

Example 184. Configuring standard output capture for a task

build.gradle

tasks.register('logInfo') {
 logging.captureStandardOutput LogLevel.INFO
 doFirst {
 println 'A task message which is logged at INFO level'
 }
}

build.gradle.kts

tasks.register("logInfo") {
 logging.captureStandardOutput(LogLevel.INFO)
 doFirst {
 println("A task message which is logged at INFO level")
 }
}

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j
logging toolkits. Any log messages which your build classes write using these logging toolkits will be

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/logging/LoggingManager.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/logging/LoggingManager.html

redirected to Gradle’s logging system.

Changing what Gradle logs

You can replace much of Gradle’s logging UI with your own. You might do this, for example, if you
want to customize the UI in some way - to log more or less information, or to change the formatting.
You replace the logging using the Gradle.useLogger(java.lang.Object) method. This is accessible
from a build script, or an init script, or via the embedding API. Note that this completely disables
Gradle’s default output. Below is an example init script which changes how task execution and
build completion is logged.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)

Example 185. Customizing what Gradle logs

customLogger.init.gradle

useLogger(new CustomEventLogger())

class CustomEventLogger extends BuildAdapter implements TaskExecutionListener
{

 void beforeExecute(Task task) {
 println "[$task.name]"
 }

 void afterExecute(Task task, TaskState state) {
 println()
 }

 void buildFinished(BuildResult result) {
 println 'build completed'
 if (result.failure != null) {
 result.failure.printStackTrace()
 }
 }
}

customLogger.init.gradle.kts

useLogger(CustomEventLogger())

class CustomEventLogger() : BuildAdapter(), TaskExecutionListener {

 override fun beforeExecute(task: Task) {
 println("[${task.name}]")
 }

 override fun afterExecute(task: Task, state: TaskState) {
 println()
 }

 override fun buildFinished(result: BuildResult) {
 println("build completed")
 if (result.failure != null) {
 (result.failure as Throwable).printStackTrace()
 }
 }
}

$ gradle -I customLogger.init.gradle build

> Task :compile
[compile]
compiling source

> Task :testCompile
[testCompile]
compiling test source

> Task :test
[test]
running unit tests

> Task :build
[build]

build completed
3 actionable tasks: 3 executed

$ gradle -I customLogger.init.gradle.kts build

> Task :compile
[compile]
compiling source

> Task :testCompile
[testCompile]
compiling test source

> Task :test
[test]
running unit tests

> Task :build
[build]

build completed
3 actionable tasks: 3 executed

Your logger can implement any of the listener interfaces listed below. When you register a logger,
only the logging for the interfaces that it implements is replaced. Logging for the other interfaces is

left untouched. You can find out more about the listener interfaces in Build lifecycle events.

• BuildListener

• ProjectEvaluationListener

• TaskExecutionGraphListener

• TaskExecutionListener

• TaskActionListener

Structuring and Building a Software Component with
Gradle
If you are building a software of a certain size with Gradle, you have two basic structuring
mechanisms. First, this chapter describes how to structure your software project using a Gradle
multi-project. In this documentation, we consider this to be a single software component which is
structured internally. Second, you may regard your software as a software product that is composed
of multiple software components where each component is represented by a separate Gradle build.
This is described in detail in the chapter on structuring software products with Gradle

Creating a multi-project build

A multi-project build in Gradle consists of one root project, and one or more subprojects.

A basic multi-project build contains a root project and a single subproject. This is a structure of a
multi-project build that contains a single subproject called app:

Example 186. Basic multi-project build

Project layout

.
├── app
│ ...
│ └── build.gradle
└── settings.gradle

Project layout

.
├── app
│ ...
│ └── build.gradle.kts
└── settings.gradle.kts

https://docs.gradle.org/7.3.2/javadoc/org/gradle/BuildListener.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/ProjectEvaluationListener.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskExecutionListener.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/execution/TaskActionListener.html
structuring_software_products.pdf#structure_large_projects

This is the recommended project structure for starting any Gradle project. The build init plugin also
generates skeleton projects that follow this structure - a root project with a single subproject.

Note that the root project does not have a Gradle build file, only a settings file that defines the
subprojects to include.

settings.gradle

rootProject.name = 'basic-multiproject'
include 'app'

settings.gradle.kts

rootProject.name = "basic-multiproject"
include("app")

In this case, Gradle will look for a build file in the app directory.

We can view the structure of a multi-project build by running the gradle projects command.

> gradle -q projects

--
Root project 'basic-multiproject'
--

Root project 'basic-multiproject'
\--- Project ':app'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :app:tasks

Let’s say the app subproject is a Java application by applying the application plugin and configuring
the main class:

app/build.gradle

plugins {
 id 'application'
}

application {
 mainClass = 'com.example.Hello'
}

app/build.gradle.kts

plugins {
 id("application")
}

application {
 mainClass.set("com.example.Hello")
}

app/src/main/java/com/example/Hello.java

package com.example;

public class Hello {
 public static void main(String[] args) {
 System.out.println("Hello, world!");
 }
}

We can then run the application by executing the run task from the application plugin.

> gradle -q run
Hello, world!

And that’s how simple it is to create a basic multi-project build.

Adding subprojects

Let’s say we want to add another subproject called lib to the previously created project. All we
need to do is add another include statement in the root settings file:

settings.gradle

rootProject.name = 'basic-multiproject'
include 'app'
include 'lib'

settings.gradle.kts

rootProject.name = "basic-multiproject"
include("app")
include("lib")

Gradle will then look for the build file for the new subproject in the lib/ subdirectory of the
project:

Example 187. Multi-project build with two subprojects

Project layout

.
├── app
│ ...
│ └── build.gradle
├── lib
│ ...
│ └── build.gradle
└── settings.gradle

Project layout

.
├── app
│ ...
│ └── build.gradle.kts
├── lib
│ ...
│ └── build.gradle.kts
└── settings.gradle.kts

Next, will explore how build logic can be shared between subprojects and how subprojects can
depend on one another.

Naming recommendations

As your project grows, naming and consistency gets increasingly more important. To keep your
builds maintainable, we recommend the following:

1. Keep default project names for subprojects: It is possible to configure custom project names in
the settings file. However, it’s an unnecessary extra effort for the developers to keep track of
which project belongs to what folders.

2. Use kebab case formatting for all project names: A kebab case formatting is when all letters
lowercase, words separated with a dash (‘-’) character (e.g.kebab-case-formatting). This is
already the de-facto pattern for many large projects. Besides, Gradle supports name
abbreviation for kebab case names.

3. Define the root project name in the settings file: The ´rootProject.name´ effectively assigns a
name to the build as a whole, which is used in reports like build scans. If the root project name
is not set, the name will be the container directory name, which can be unstable (i.e. you can
check out your project to any directory).

Sharing Build Logic between Subprojects

Convention Plugins

Usually, subprojects in a multi-project build share some common traits. For example, several
subprojects may contain code in a particular programming language while another subproject may
be dedicated for documentation. Code quality rules apply to all of the code subprojects but not the
documentation subproject. At the same time, the subprojects that share one common trait may
serve different purposes - they may produce different artifact types that further differentiate them,
for example:

• public libraries - libraries that are published to some repository

• internal libraries - libraries on which other subprojects depend on internally within the project

• command line applications - applications with specific packaging requirements

• web services - applications with specific packaging requirements that are different from above

• etc

Some other code subprojects may be dedicated for testing purposes and so on.

The traits above identify a subproject’s type. Or in other words, a subproject’s type tells us what
traits the project has.

Gradle’s recommended way of organizing build logic is to use its plugin system. A plugin should
define the type of a subproject. In fact, Gradle core plugins are modeled in the same way - for
example, the Java Plugin configures a generic java project, while Java Library Plugin internally
applies the Java Plugin and configures aspects specific to a Java library in addition. Similarly, the

Application Plugin applies and configures the Java Plugin and the Distribution Plugin.

You can compose custom build logic by applying and configuring both core and external plugins
and create custom plugins that define new project types and configure conventions specific to your
project or organization. For each of the example traits from the beginning of this section, we can
write a plugin that encapsulates the logic common to the subproject of a given type.

We recommend putting source code and tests for the convention plugins in the special buildSrc
directory in the root directory of the project. For more information about buildSrc, consult Using
buildSrc to organize build logic.

Have a look at the sample that demonstrates a multi-project build that models the build logic using
convention plugins.

Another, more complex and real-world example of a multi-project build that composes build logic
using convention plugins is the build of the Gradle Build Tool itself.

Cross project configuration

Another, discouraged, way to share build logic between subproject is cross project configuration via
the subprojects {} and allprojects {} DSL constructs. With cross configuration, build logic can be
injected into a subproject and this is not obvious when looking at the subproject’s build script,
making it harder to understand the logic of a particular subproject. In the long run, cross
configuration usually grows complex with more and more conditional logic and a higher
maintenance burden. Cross configuration can also introduce configuration-time coupling between
projects, which can prevent optimizations like configuration-on-demand from working properly.

There are two most common uses of cross-configuration that can be better modelled using
convention plugins:

• Applying plugins or other configuration to subprojects of certain type. Often the cross-
configuration section will do if subproject is of type X, then configure Y. This is equivalent
to applying X-conventions plugin directly to a subproject.

• Extracting information from subprojects of a certain type. This use case can be modelled using
outgoing configuration variants.

Fine Tuning the Project Layout
A multi-project build is a build where you build more than one project during a single execution of
Gradle. You have to declare the projects taking part in the multi-project build in the settings file.

Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree
represents a project. A project has a path which denotes the position of the project in the multi-
project build tree. In most cases the project path is consistent with the physical location of the
project in the file system. However, this behavior is configurable. The project tree is created in the
settings.gradle file. The location of the settings file is also the location of the root project.

../samples/sample_convention_plugins.html
../samples/sample_convention_plugins.html
https://github.com/gradle/gradle

Building the tree

In the settings file you can use the include method to build the project tree.

Example 188. Project layout

settings.gradle

include 'project1', 'project2:child', 'project3:child1'

settings.gradle.kts

include("project1", "project2:child", "project3:child1")

The include method takes project paths as arguments. The project path is assumed to be equal to
the relative physical file system path. For example, a path 'services:api' is mapped by default to a
folder 'services/api' (relative from the project root). You only need to specify the leaves of the tree.
This means that the inclusion of the path 'services:hotels:api' will result in creating 3 projects:
'services', 'services:hotels' and 'services:hotels:api'. More examples of how to work with the project
path can be found in the DSL documentation of Settings.include(java.lang.String[]).

Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called project descriptors. You can
modify these descriptors in the settings file at any time. To access a descriptor you can do:

Example 189. Lookup of elements of the project tree

settings.gradle

include('project-a')
println rootProject.name
println project(':project-a').name

settings.gradle.kts

println(rootProject.name)
println(project(":project-a").name)

Using this descriptor you can change the name, project directory and build file of a project.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

Example 190. Modification of elements of the project tree

settings.gradle

rootProject.name = 'main'
include('project-a')
project(':project-a').projectDir = file('my-project-a')
project(':project-a').buildFileName = 'project-a.gradle'

settings.gradle.kts

rootProject.name = "main"
project(":project-a").projectDir = file("my-project-a")
project(":project-a").buildFileName = "project-a.gradle"

Look at the ProjectDescriptor class in the API documentation for more information.

Declaring Dependencies between Subprojects

Project dependencies

What if one project needs the jar produced by another project on its compile classpath? What if it
also requires the transitive dependencies of the other project? Obviously this is a very common use
case for Java multi-project builds. As mentioned in Project dependencies, Gradle offers project
dependencies for this.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

Example 191. Project dependencies

Project layout

.
├── buildSrc
│ ...
├── api
│ ├── src
│ │ └──...
│ └── build.gradle
├── services
│ └── person-service
│ ├── src
│ │ └──...
│ └── build.gradle
├── shared
│ ├── src
│ │ └──...
│ └── build.gradle
└── settings.gradle

Project layout

.
├── buildSrc
│ ...
├── api
│ ├── src
│ │ └──...
│ └── build.gradle.kts
├── services
│ └── person-service
│ ├── src
│ │ └──...
│ └── build.gradle.kts
├── shared
│ ├── src
│ │ └──...
│ └── build.gradle.kts
└── settings.gradle.kts

We have the projects shared, api and person-service. The person-service project has a dependency
on the other two projects. The api project has a dependency on the shared project. It has no build
script and gets nothing injected by another build script. We use the : separator to define a project

path. Consult the DSL documentation of Settings.include(java.lang.String[]) for more information
about defining project paths.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

settings.gradle

rootProject.name = 'dependencies-java'
include 'api', 'shared', 'services:person-service'

buildSrc/src/main/groovy/myproject.java-conventions.gradle

plugins {
 id 'java'
}

group = 'com.example'
version = '1.0'

repositories {
 mavenCentral()
}

dependencies {
 testImplementation "junit:junit:4.13"
}

api/build.gradle

plugins {
 id 'myproject.java-conventions'
}

dependencies {
 implementation project(':shared')
}

shared/build.gradle

plugins {
 id 'myproject.java-conventions'
}

services/person-service/build.gradle

plugins {
 id 'myproject.java-conventions'
}

dependencies {
 implementation project(':shared')
 implementation project(':api')
}

settings.gradle.kts

rootProject.name = "dependencies-java"
include("api", "shared", "services:person-service")

buildSrc/src/main/kotlin/myproject.java-conventions.gradle.kts

plugins {
 id("java")
}

group = "com.example"
version = "1.0"

repositories {
 mavenCentral()
}

dependencies {
 testImplementation("junit:junit:4.13")
}

api/build.gradle.kts

plugins {
 id("myproject.java-conventions")
}

dependencies {
 implementation(project(":shared"))
}

shared/build.gradle.kts

plugins {
 id("myproject.java-conventions")
}

services/person-service/build.gradle.kts

plugins {
 id("myproject.java-conventions")
}

dependencies {
 implementation(project(":shared"))
 implementation(project(":api"))
}

Shared build logic is extracted into a convention plugin that is applied in the subprojects' build
scripts that also define project dependencies. A project dependency is a special form of an
execution dependency. It causes the other project to be built first and adds the jar with the classes
of the other project to the classpath. It also adds the dependencies of the other project to the
classpath. You can trigger a gradle :api:compile. First the shared project is built and then the api
project is built. Project dependencies enable partial multi-project builds.

Depending on artifacts produced by another project

Project dependencies model dependencies between modules. Effectively, you are saying that you
depend on the main output of another project. In a Java-based project that’s usually a JAR file.

Sometimes you may want to depend on an output produced by another task. In turn, you’ll want to
make sure that the task is executed beforehand to produce that very output. Declaring a task
dependency from one project to another is a poor way to model this kind of relationship and
introduces unnecessary coupling. The recommended way to model such a dependency is to
produce the output, mark it as an "outgoing" artifact or add it to the output of the main source set
which you can depend on in the consuming project.

Let’s say you are working in a multi-project build with the two subprojects producer and consumer.
The subproject producer defines a task named buildInfo that generates a properties file containing
build information e.g. the project version. You can then map the task provider to its output file and
Gradle will automatically establish a task dependency.

Example 192. Task generating a property file containing build information

build.gradle

plugins {
 id 'java-library'
}

version = '1.0'

def buildInfo = tasks.register("buildInfo", BuildInfo) {
 version = project.version
 outputFile = layout.buildDirectory.file('generated-resources/build-
info.properties')
}

sourceSets {
 main {
 output.dir(buildInfo.map { it.outputFile.asFile.get().parentFile })
 }
}

build.gradle.kts

plugins {
 id("java-library")
}

version = "1.0"

val buildInfo by tasks.registering(BuildInfo::class) {
 version.set(project.version.toString())
 outputFile.set(layout.buildDirectory.file("generated-resources/build-
info.properties"))
}

sourceSets {
 main {
 output.dir(buildInfo.map { it.outputFile.asFile.get().parentFile })
 }
}

buildSrc/src/main/java/BuildInfo.java

public abstract class BuildInfo extends DefaultTask {

 @Input
 public abstract Property<String> getVersion();

 @OutputFile
 public abstract RegularFileProperty getOutputFile();

 @TaskAction
 public void create() throws IOException {
 Properties prop = new Properties();
 prop.setProperty("version", getVersion().get());
 try (OutputStream output = new FileOutputStream(getOutputFile().getAsFile
().get())) {
 prop.store(output, null);
 }
 }
}

The consuming project is supposed to be able to read the properties file at runtime. Declaring a
project dependency on the producing project takes care of creating the properties beforehand and
making it available to the runtime classpath.

Example 193. Declaring a project dependency on the project producing the properties file

build.gradle

dependencies {
 runtimeOnly project(':producer')
}

build.gradle.kts

dependencies {
 runtimeOnly(project(":producer"))
}

In the example above, the consumer now declares a dependency on the outputs of the producer
project.

Depending on the main output artifact from another project is only one example. Gradle has one of
the most powerful dependency management engines that allows you to share arbitrary artifacts

between projects and let Gradle build them on demand. For more details see the section on sharing
outputs between projects.

Configuration time and execution time
Build phases describes the phases of every Gradle build. Let’s zoom into the configuration and
execution phases of a multi-project build. Configuration here means evaluating the build script file
of a project, which includes downloading all plugins and build script dependencies. By default, the
configuration of all projects happens before any task is executed. This means that when a single
task, from a single project is requested, all projects of a multi-project build are configured first. The
reason every project needs to be configured is to support the flexibility of accessing and changing
any part of the Gradle project model.

Parallel project execution

With more and more CPU cores available on developer desktops and CI servers, it is important that
Gradle is able to fully utilise these processing resources. More specifically, parallel execution
attempts to:

• Reduce total build time for a multi-project build where execution is IO bound or otherwise does
not consume all available CPU resources.

• Provide faster feedback for execution of small projects without awaiting completion of other
projects.

Although Gradle already offers parallel test execution via Test.setMaxParallelForks(int) the feature
described in this section is parallel execution at a project level.

Parallel project execution allows the separate projects in a decoupled multi-project build to be
executed in parallel (see also Decoupled projects). While parallel execution does not strictly require
decoupling at configuration time, the long-term goal is to provide a powerful set of features that
will be available for fully decoupled projects. Such features include:

• Configuration on-demand.

• Configuration of projects in parallel.

• Re-use of configuration for unchanged projects.

• Project-level up-to-date checks.

• Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use parallel mode. You can use
the --parallel command line argument or configure your build environment (Gradle properties).
Unless you provide a specific number of parallel threads, Gradle attempts to choose the right
number based on available CPU cores. Every parallel worker exclusively owns a given project while
executing a task. Task dependencies are fully supported and parallel workers will start executing
upstream tasks first. Bear in mind that the alphabetical ordering of decoupled tasks, as can be seen
during sequential execution, is not guaranteed in parallel mode. In other words, in parallel mode
tasks will run as soon as their dependencies complete and a task worker is available to run them,
which may be earlier than they would start during a sequential build. You should make sure that

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks-int-

task dependencies and task inputs/outputs are declared correctly to avoid ordering issues.

Decoupled Projects

Gradle allows any project to access any other project during both the configuration and execution
phases. While this provides a great deal of power and flexibility to the build author, it also limits
the flexibility that Gradle has when building those projects. For instance, this effectively prevents
Gradle from correctly building multiple projects in parallel, configuring only a subset of projects, or
from substituting a pre-built artifact in place of a project dependency.

Two projects are said to be decoupled if they do not directly access each other’s project model.
Decoupled projects may only interact in terms of declared dependencies: project dependencies
and/or task dependencies. Any other form of project interaction (i.e. by modifying another project
object or by reading a value from another project object) causes the projects to be coupled. The
consequence of coupling during the configuration phase is that if gradle is invoked with the
'configuration on demand' option, the result of the build can be flawed in several ways. The
consequence of coupling during execution phase is that if gradle is invoked with the parallel option,
one project task runs too late to influence a task of a project building in parallel. Gradle does not
attempt to detect coupling and warn the user, as there are too many possibilities to introduce
coupling.

A very common way for projects to be coupled is by using configuration injection. It may not be
immediately apparent, but using key Gradle features like the allprojects and subprojects keywords
automatically cause your projects to be coupled. This is because these keywords are used in a
build.gradle file, which defines a project. Often this is a “root project” that does nothing more than
define common configuration, but as far as Gradle is concerned this root project is still a fully-
fledged project, and by using allprojects that project is effectively coupled to all other projects.
Coupling of the root project to subprojects does not impact configuration on-demand, but using the
allprojects and subprojects in any subproject’s build.gradle file will have an impact.

This means that using any form of shared build script logic or configuration injection (allprojects,
subprojects, etc.) will cause your projects to be coupled. As we extend the concept of project
decoupling and provide features that take advantage of decoupled projects, we will also introduce
new features to help you to solve common use cases (like configuration injection) without causing
your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel
and 'configuration on demand' options, follow these recommendations:

• Avoid a subproject’s build script referencing other subprojects; preferring cross configuration
from the root project.

• Avoid changing the configuration of other projects at execution time.

Configuration on demand

The Configuration injection feature and access to the complete project model are possible because
every project is configured before the execution phase. Yet, this approach may not be the most
efficient in a very large multi-project build. There are Gradle builds with a hierarchy of hundreds of
subprojects. The configuration time of huge multi-project builds may become noticeable.

Configuration on demand attempts to configure only projects that are relevant for requested tasks,
i.e. it only executes the build script file of projects that are participating in the build. This way, the
configuration time of a large multi-project build can be reduced.

The configuration on demand feature is incubating, so not every build is guaranteed to work
correctly. The feature should work very well for multi-project builds that have decoupled projects.
In “configuration on demand” mode, projects are configured as follows:

• The root project is always configured.

• The project in the directory where the build is executed is also configured, but only when
Gradle is executed without any tasks. This way the default tasks behave correctly when projects
are configured on demand.

• The standard project dependencies are supported and makes relevant projects configured. If
project A has a compile dependency on project B then building A causes configuration of both
projects.

• The task dependencies declared via task path are supported and cause relevant projects to be
configured. Example: someTask.dependsOn(":some-other-project:someOtherTask")

• A task requested via task path from the command line (or Tooling API) causes the relevant
project to be configured. For example, building 'project-a:project-b:someTask' causes
configuration of project-b.

To configure on demand with every build run see Gradle properties. To configure on demand just
for a given build, see command-line performance-oriented options.

Organizing Gradle Projects
Source code and build logic of every software project should be organized in a meaningful way.
This page lays out the best practices that lead to readable, maintainable projects. The following
sections also touch on common problems and how to avoid them.

Separate language-specific source files

Gradle’s language plugins establish conventions for discovering and compiling source code. For
example, a project applying the Java plugin will automatically compile the code in the directory
src/main/java. Other language plugins follow the same pattern. The last portion of the directory
path usually indicates the expected language of the source files.

Some compilers are capable of cross-compiling multiple languages in the same source directory.
The Groovy compiler can handle the scenario of mixing Java and Groovy source files located in
src/main/groovy. Gradle recommends that you place sources in directories according to their
language, because builds are more performant and both the user and build can make stronger
assumptions.

The following source tree contains Java and Kotlin source files. Java source files live in
src/main/java, whereas Kotlin source files live in src/main/kotlin.

.
├── build.gradle
└── src
 └── main
 ├── java
 │ └── HelloWorld.java
 └── kotlin
 └── Utils.kt

.
├── build.gradle.kts
└── src
 └── main
 ├── java
 │ └── HelloWorld.java
 └── kotlin
 └── Utils.kt

Separate source files per test type

It’s very common that a project defines and executes different types of tests e.g. unit tests,
integration tests, functional tests or smoke tests. Optimally, the test source code for each test type
should be stored in dedicated source directories. Separated test source code has a positive impact
on maintainability and separation of concerns as you can run test types independent from each
other.

Have a look at the sample that demonstrates how a separate integration tests configuration can be
added to a Java-based project.

Use standard conventions as much as possible

All Gradle core plugins follow the software engineering paradigm convention over configuration.
The plugin logic provides users with sensible defaults and standards, the conventions, in a certain
context. Let’s take the Java plugin as an example.

• It defines the directory src/main/java as the default source directory for compilation.

• The output directory for compiled source code and other artifacts (like the JAR file) is build.

By sticking to the default conventions, new developers to the project immediately know how to find
their way around. While those conventions can be reconfigured, it makes it harder to build script
users and authors to manage the build logic and its outcome. Try to stick to the default conventions
as much as possible except if you need to adapt to the layout of a legacy project. Refer to the

../samples/sample_jvm_multi_project_with_additional_test_types.html
https://en.wikipedia.org/wiki/Convention_over_configuration

reference page of the relevant plugin to learn about its default conventions.

Always define a settings file

Gradle tries to locate a settings.gradle (Groovy DSL) or a settings.gradle.kts (Kotlin DSL) file with
every invocation of the build. For that purpose, the runtime walks the hierarchy of the directory
tree up to the root directory. The algorithm stops searching as soon as it finds the settings file.

Always add a settings.gradle to the root directory of your build to avoid the initial performance
impact. This recommendation applies to single project builds as well as multi-project builds. The
file can either be empty or define the desired name of the project.

A typical Gradle project with a settings file look as such:

.
├── settings.gradle
├── subproject-one
│ └── build.gradle
└── subproject-two
 └── build.gradle

.
├── settings.gradle.kts
├── subproject-one
│ └── build.gradle.kts
└── subproject-two
 └── build.gradle.kts

Use buildSrc to abstract imperative logic

Complex build logic is usually a good candidate for being encapsulated either as custom task or
binary plugin. Custom task and plugin implementations should not live in the build script. It is very
convenient to use buildSrc for that purpose as long as the code does not need to be shared among
multiple, independent projects.

The directory buildSrc is treated as an included build. Upon discovery of the directory, Gradle
automatically compiles and tests this code and puts it in the classpath of your build script. For
multi-project builds there can be only one buildSrc directory, which has to sit in the root project
directory. buildSrc should be preferred over script plugins as it is easier to maintain, refactor and
test the code.

buildSrc uses the same source code conventions applicable to Java and Groovy projects. It also
provides direct access to the Gradle API. Additional dependencies can be declared in a dedicated

build.gradle under buildSrc.

Example 194. Custom buildSrc build script

buildSrc/build.gradle

repositories {
 mavenCentral()
}

dependencies {
 testImplementation 'junit:junit:4.13'
}

buildSrc/build.gradle.kts

repositories {
 mavenCentral()
}

dependencies {
 testImplementation("junit:junit:4.13")
}

A typical project including buildSrc has the following layout. Any code under buildSrc should use a
package similar to application code. Optionally, the buildSrc directory can host a build script if
additional configuration is needed (e.g. to apply plugins or to declare dependencies).

.
├── buildSrc
│ ├── build.gradle
│ └── src
│ ├── main
│ │ └── java
│ │ └── com
│ │ └── enterprise
│ │ ├── Deploy.java
│ │ └── DeploymentPlugin.java
│ └── test
│ └── java
│ └── com
│ └── enterprise
│ └── DeploymentPluginTest.java
├── settings.gradle
├── subprojecto-one
│ └── build.gradle.kts
└── subproject-two
 └── build.gradle.kts

.
├── buildSrc
│ ├── build.gradle.kts
│ └── src
│ ├── main
│ │ └── java
│ │ └── com
│ │ └── enterprise
│ │ ├── Deploy.java
│ │ └── DeploymentPlugin.java
│ └── test
│ └── java
│ └── com
│ └── enterprise
│ └── DeploymentPluginTest.java
├── settings.gradle.kts
├── subproject-one
│ └── build.gradle.kts
└── subproject-two
 └── build.gradle.kts

NOTE

A change in buildSrc causes the whole project to become out-of-date. Thus, when
making small incremental changes, the --no-rebuild command-line option is often
helpful to get faster feedback. Remember to run a full build regularly or at least
when you’re done, though.

Declare properties in gradle.properties file

In Gradle, properties can be defined in the build script, in a gradle.properties file or as parameters
on the command line.

It’s common to declare properties on the command line for ad-hoc scenarios. For example you may
want to pass in a specific property value to control runtime behavior just for this one invocation of
the build. Properties in a build script can easily become a maintenance headache and convolute the
build script logic. The gradle.properties helps with keeping properties separate from the build
script and should be explored as viable option. It’s a good location for placing properties that
control the build environment.

A typical project setup places the gradle.properties file in the root directory of the build.
Alternatively, the file can also live in the GRADLE_USER_HOME directory if you want to it apply to all
builds on your machine.

.
├── gradle.properties
└── settings.gradle
├── subproject-a
│ └── build.gradle
└── subproject-b
 └── build.gradle

.
├── gradle.properties
└── settings.gradle.kts
├── subproject-a
│ └── build.gradle.kts
└── subproject-b
 └── build.gradle.kts

Avoid overlapping task outputs

Tasks should define inputs and outputs to get the performance benefits of incremental build
functionality. When declaring the outputs of a task, make sure that the directory for writing
outputs is unique among all the tasks in your project.

Intermingling or overwriting output files produced by different tasks compromises up-to-date
checking causing slower builds. In turn, these filesystem changes may prevent Gradle’s build cache
from properly identifying and caching what would otherwise be cacheable tasks.

Standardizing builds with a custom Gradle distribution

Often enterprises want to standardize the build platform for all projects in the organization by
defining common conventions or rules. You can achieve that with the help of initialization scripts.
Initialization scripts make it extremely easy to apply build logic across all projects on a single
machine. For example, to declare a in-house repository and its credentials.

There are some drawbacks to the approach. First of all, you will have to communicate the setup
process across all developers in the company. Furthermore, updating the initialization script logic
uniformly can prove challenging.

Custom Gradle distributions are a practical solution to this very problem. A custom Gradle
distribution is comprised of the standard Gradle distribution plus one or many custom initialization
scripts. The initialization scripts come bundled with the distribution and are applied every time the
build is run. Developers only need to point their checked-in Wrapper files to the URL of the custom
Gradle distribution.

Custom Gradle distributions may also contain a gradle.properties file in the root of the distribution,
which provide an organization-wide set of properties that control the build environment.

The following steps are typical for creating a custom Gradle distribution:

1. Implement logic for downloading and repackaging a Gradle distribution.

2. Define one or many initialization scripts with the desired logic.

3. Bundle the initialization scripts with the Gradle distribution.

4. Upload the Gradle distribution archive to a HTTP server.

5. Change the Wrapper files of all projects to point to the URL of the custom Gradle distribution.

Example 195. Building a custom Gradle distribution

build.gradle

plugins {
 id 'base'
}

// This is defined in buildSrc
import org.gradle.distribution.DownloadGradle

version = '0.1'

tasks.register('downloadGradle', DownloadGradle) {
 description = 'Downloads the Gradle distribution with a given version.'
 gradleVersion = '4.6'
}

tasks.register('createCustomGradleDistribution', Zip) {
 description = 'Builds custom Gradle distribution and bundles
initialization scripts.'

 dependsOn downloadGradle

 def projectVersion = project.version
 archiveFileName = downloadGradle.gradleVersion.map { gradleVersion ->
 "mycompany-gradle-${gradleVersion}-${projectVersion}-bin.zip"
 }

 from zipTree(downloadGradle.destinationFile)

 from('src/init.d') {
 into "${downloadGradle.distributionNameBase.get()}/init.d"
 }
}

Best practices for authoring maintainable builds
Gradle has a rich API with several approaches to creating build logic. The associated flexibility can
easily lead to unnecessarily complex builds with custom code commonly added directly to build
scripts. In this chapter, we present several best practices that will help you develop expressive and
maintainable builds that are easy to use.

NOTE
The third-party Gradle lint plugin helps with enforcing a desired code style in build
scripts if that’s something that would interest you.

https://github.com/nebula-plugins/gradle-lint-plugin

Avoid using imperative logic in scripts

The Gradle runtime does not enforce a specific style for build logic. For that very reason, it’s easy to
end up with a build script that mixes declarative DSL elements with imperative, procedural code.
Let’s talk about some concrete examples.

• Declarative code: Built-in, language-agnostic DSL elements (e.g. Project.dependencies{} or
Project.repositories{}) or DSLs exposed by plugins

• Imperative code: Conditional logic or very complex task action implementations

The end goal of every build script should be to only contain declarative language elements which
makes the code easier to understand and maintain. Imperative logic should live in binary plugins
and which in turn is applied to the build script. As a side product, you automatically enable your
team to reuse the plugin logic in other projects if you publish the artifact to a binary repository.

The following sample build shows a negative example of using conditional logic directly in the
build script. While this code snippet is small, it is easy to imagine a full-blown build script using
numerous procedural statements and the impact it would have on readability and maintainability.
By moving the code into a class, it can also be tested individually.

Example 196. A build script using conditional logic to create a task

build.gradle

if (project.findProperty('releaseEngineer') != null) {
 tasks.register('release') {
 doLast {
 logger.quiet 'Releasing to production...'

 // release the artifact to production
 }
 }
}

build.gradle.kts

if (project.findProperty("releaseEngineer") != null) {
 tasks.register("release") {
 doLast {
 logger.quiet("Releasing to production...")

 // release the artifact to production
 }
 }
}

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
../samples/sample_publishing_convention_plugins.html

Let’s compare the build script with the same logic implemented as a binary plugin. The code might
look more involved at first but clearly looks more like typical application code. This particular
plugin class lives in the buildSrc directory which makes it available to the build script
automatically.

Example 197. A binary plugin implementing imperative logic

ReleasePlugin.java

package com.enterprise;

import org.gradle.api.Action;
import org.gradle.api.Plugin;
import org.gradle.api.Project;
import org.gradle.api.Task;
import org.gradle.api.tasks.TaskProvider;

public class ReleasePlugin implements Plugin<Project> {
 private static final String RELEASE_ENG_ROLE_PROP = "releaseEngineer";
 private static final String RELEASE_TASK_NAME = "release";

 @Override
 public void apply(Project project) {
 if (project.findProperty(RELEASE_ENG_ROLE_PROP) != null) {
 Task task = project.getTasks().create(RELEASE_TASK_NAME);

 task.doLast(new Action<Task>() {
 @Override
 public void execute(Task task) {
 task.getLogger().quiet("Releasing to production...");

 // release the artifact to production
 }
 });
 }
 }
}

Now that the build logic has been translated into a plugin, you can apply it in the build script. The
build script has been shrunk from 8 lines of code to a one liner.

Example 198. A build script applying a plugin that encapsulates imperative logic

build.gradle

plugins {
 id 'com.enterprise.release'
}

build.gradle.kts

plugins {
 id("com.enterprise.release")
}

Avoid using internal Gradle APIs

Use of Gradle internal APIs in plugins and build scripts has the potential to break builds when
either Gradle or plugins change.

The following packages are listed in the Gradle public API definition, with the exception of any
subpackage with internal in the name:

https://github.com/gradle/gradle/blob/180b9d3fa84b91768364c603380e82947437eda1/buildSrc/subprojects/configuration/src/main/kotlin/org/gradle/gradlebuild/public-api.kt

org/gradle/*
org/gradle/api/**
org/gradle/authentication/**
org/gradle/buildinit/**
org/gradle/caching/**
org/gradle/concurrent/**
org/gradle/deployment/**
org/gradle/external/javadoc/**
org/gradle/ide/**
org/gradle/includedbuild/**
org/gradle/ivy/**
org/gradle/jvm/**
org/gradle/language/**
org/gradle/maven/**
org/gradle/nativeplatform/**
org/gradle/normalization/**
org/gradle/platform/**
org/gradle/play/**
org/gradle/plugin/devel/**
org/gradle/plugin/repository/*
org/gradle/plugin/use/*
org/gradle/plugin/management/*
org/gradle/plugins/**
org/gradle/process/**
org/gradle/testfixtures/**
org/gradle/testing/jacoco/**
org/gradle/tooling/**
org/gradle/swiftpm/**
org/gradle/model/**
org/gradle/testkit/**
org/gradle/testing/**
org/gradle/vcs/**
org/gradle/workers/**

Alternatives for oft-used internal APIs

To provide a nested DSL for your custom task, don’t use org.gradle.internal.reflect.Instantiator;
use ObjectFactory instead. It may also be helpful to read the chapter on lazy configuration.

Don’t use org.gradle.api.internal.ConventionMapping. Use Provider and/or Property. You can find
an example for capturing user input to configure runtime behavior in the implementing plugins
section.

Instead of org.gradle.internal.os.OperatingSystem, use another method to detect operating system,
such as Apache commons-lang SystemUtils or System.getProperty("os.name").

Use other collections or I/O frameworks instead of org.gradle.util.CollectionUtils,
org.gradle.util.internal.GFileUtils, and other classes under org.gradle.util.*.

Gradle plugin authors may find the Designing Gradle Plugins subsection on restricting the plugin

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
implementing_gradle_plugins.pdf#capturing_user_input_to_configure_plugin_runtime_behavior
implementing_gradle_plugins.pdf#capturing_user_input_to_configure_plugin_runtime_behavior
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/SystemUtils.html
designing_gradle_plugins.pdf#restricting_the_plugin_implementation_to_gradle_s_public_api

implementation to Gradle’s public API helpful.

Follow conventions when declaring tasks

The task API gives a build author a lot of flexibility to declare tasks in a build script. For optimal
readability and maintainability follow these rules:

• The task type should be the only key-value pair within the parentheses after the task name.

• Other configuration should be done within the task’s configuration block.

• Task actions added when declaring a task should only be declared with the methods
Task.doFirst{} or Task.doLast{}.

• When declaring an ad-hoc task — one that doesn’t have an explicit type — you should use
Task.doLast{} if you’re only declaring a single action.

• A task should define a group and description.

designing_gradle_plugins.pdf#restricting_the_plugin_implementation_to_gradle_s_public_api
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)

Example 199. Definition of tasks following best practices

build.gradle

import com.enterprise.DocsGenerate

def generateHtmlDocs = tasks.register('generateHtmlDocs', DocsGenerate) {
 group = JavaBasePlugin.DOCUMENTATION_GROUP
 description = 'Generates the HTML documentation for this project.'
 title = 'Project docs'
 outputDir = layout.buildDirectory.dir('docs')
}

tasks.register('allDocs') {
 group = JavaBasePlugin.DOCUMENTATION_GROUP
 description = 'Generates all documentation for this project.'
 dependsOn generateHtmlDocs

 doLast {
 logger.quiet('Generating all documentation...')
 }
}

build.gradle.kts

import com.enterprise.DocsGenerate

tasks.register<DocsGenerate>("generateHtmlDocs") {
 group = JavaBasePlugin.DOCUMENTATION_GROUP
 description = "Generates the HTML documentation for this project."
 title.set("Project docs")
 outputDir.set(layout.buildDirectory.dir("docs"))
}

tasks.register("allDocs") {
 group = JavaBasePlugin.DOCUMENTATION_GROUP
 description = "Generates all documentation for this project."
 dependsOn("generateHtmlDocs")

 doLast {
 logger.quiet("Generating all documentation...")
 }
}

Improve task discoverability

Even new users to a build should to be able to find crucial information quickly and effortlessly. In
Gradle you can declare a group and a description for any task of the build. The tasks report uses the
assigned values to organize and render the task for easy discoverability. Assigning a group and
description is most helpful for any task that you expect build users to invoke.

The example task generateDocs generates documentation for a project in the form of HTML pages.
The task should be organized underneath the bucket Documentation. The description should express
its intent.

Example 200. A task declaring the group and description

build.gradle

tasks.register('generateDocs') {
 group = 'Documentation'
 description = 'Generates the HTML documentation for this project.'

 doLast {
 // action implementation
 }
}

build.gradle.kts

tasks.register("generateDocs") {
 group = "Documentation"
 description = "Generates the HTML documentation for this project."

 doLast {
 // action implementation
 }
}

The output of the tasks report reflects the assigned values.

> gradle tasks

> Task :tasks

Documentation tasks

generateDocs - Generates the HTML documentation for this project.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:description

Minimize logic executed during the configuration phase

It’s important for every build script developer to understand the different phases of the build
lifecycle and their implications on performance and evaluation order of build logic. During the
configuration phase the project and its domain objects should be configured, whereas the execution
phase only executes the actions of the task(s) requested on the command line plus their
dependencies. Be aware that any code that is not part of a task action will be executed with every
single run of the build. A build scan can help you with identifying the time spent during each of the
lifecycle phases. It’s an invaluable tool for diagnosing common performance issues.

Let’s consider the following incantation of the anti-pattern described above. In the build script you
can see that the dependencies assigned to the configuration printArtifactNames are resolved outside
of the task action.

Example 201. Executing logic during configuration should be avoided

build.gradle

dependencies {
 implementation 'log4j:log4j:1.2.17'
}

tasks.register('printArtifactNames') {
 // always executed
 def libraryNames = configurations.compileClasspath.collect { it.name }

 doLast {
 logger.quiet libraryNames
 }
}

build.gradle.kts

dependencies {
 implementation("log4j:log4j:1.2.17")
}

tasks.register("printArtifactNames") {
 // always executed
 val libraryNames = configurations.compileClasspath.get().map { it.name }

 doLast {
 logger.quiet(libraryNames.toString())
 }
}

https://scans.gradle.com/get-started

The code for resolving the dependencies should be moved into the task action to avoid the
performance impact of resolving the dependencies before they are actually needed.

Example 202. Executing logic during execution phase is preferred

build.gradle

dependencies {
 implementation 'log4j:log4j:1.2.17'
}

tasks.register('printArtifactNames') {
 doLast {
 def libraryNames = configurations.compileClasspath.collect { it.name
}
 logger.quiet libraryNames
 }
}

build.gradle.kts

dependencies {
 implementation("log4j:log4j:1.2.17")
}

tasks.register("printArtifactNames") {
 doLast {
 val libraryNames = configurations.compileClasspath.get().map {
it.name }
 logger.quiet(libraryNames.toString())
 }
}

Avoid using the GradleBuild task type

The GradleBuild task type allows a build script to define a task that invokes another Gradle build.
The use of this type is generally discouraged. There are some corner cases where the invoked build
doesn’t expose the same runtime behavior as from the command line or through the Tooling API
leading to unexpected results.

Usually, there’s a better way to model the requirement. The appropriate approach depends on the
problem at hand. Here’re some options:

• Model the build as multi-project build if the intention is to execute tasks from different modules
as unified build.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.GradleBuild.html

• Use composite builds for projects that are physically separated but should occasionally be built
as a single unit.

Avoid inter-project configuration

Gradle does not restrict build script authors from reaching into the domain model from one project
into another one in a multi-project build. Strongly-coupled projects hurts build execution
performance as well as readability and maintainability of code.

The following practices should be avoided:

• Explicitly depending on a task from another project via Task.dependsOn(java.lang.Object...).

• Setting property values or calling methods on domain objects from another project.

• Executing another portion of the build with GradleBuild.

• Declaring unnecessary project dependencies.

Externalize and encrypt your passwords

Most builds need to consume one or many passwords. The reasons for this need may vary. Some
builds need a password for publishing artifacts to a secured binary repository, other builds need a
password for downloading binary files. Passwords should always kept safe to prevent fraud. Under
no circumstance should you add the password to the build script in plain text or declare it in
gradle.properties file in the project’s directory. Those files usually live in a version control
repository and can be viewed by anyone that has access to it.

Passwords together with any other sensitive data should be kept external from the version
controlled project files. Gradle exposes an API for providing credentials in ProviderFactory as well
as Artifact Repositories that allows to supply credential values using Gradle properties when they
are needed by the build. This way the credentials can be stored in the gradle.properties file that
resides in the user’s home directory or be injected to the build using command line arguments or
environment variables.

If you store sensitive credentials in user home’s gradle.properties, consider encrypting them. At the
moment Gradle does not provide a built-in mechanism for encrypting, storing and accessing
passwords. A good solution for solving this problem is the Gradle Credentials plugin.

Lazy Configuration
As a build grows in complexity, knowing when and where a particular value is configured can
become difficult to reason about. Gradle provides several ways to manage this complexity using
lazy configuration.

Lazy properties

Gradle provides lazy properties, which delay the calculation of a property’s value until it’s actually
required. These provide three main benefits to build script and plugin authors:

1. Build authors can wire together Gradle models without worrying when a particular property’s

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ProviderFactory.html#credentials-java.lang.Class-java.lang.String-
https://github.com/etiennestuder/gradle-credentials-plugin

value will be known. For example, you may want to set the input source files of a task based on
the source directories property of an extension but the extension property value isn’t known
until the build script or some other plugin configures them.

2. Build authors can wire an output property of a task into an input property of some other task
and Gradle automatically determines the task dependencies based on this connection. Property
instances carry information about which task, if any, produces their value. Build authors do not
need to worry about keeping task dependencies in sync with configuration changes.

3. Build authors can avoid resource intensive work during the configuration phase, which can
have a large impact on build performance. For example, when a configuration value comes
from parsing a file but is only used when functional tests are run, using a property instance to
capture this means that the file is parsed only when the functional tests are run, but not when,
for example, clean is run.

Gradle represents lazy properties with two interfaces:

• Provider represents a value that can only be queried and cannot be changed.

◦ Properties with these types are read-only.

◦ The method Provider.get() returns the current value of the property.

◦ A Provider can be created from another Provider using Provider.map(Transformer).

◦ Many other types extend Provider and can be used where-ever a Provider is required.

• Property represents a value that can be queried and also changed.

◦ Properties with these types are configurable.

◦ Property extends the Provider interface.

◦ The method Property.set(T) specifies a value for the property, overwriting whatever value
may have been present.

◦ The method Property.set(Provider) specifies a Provider for the value for the property,
overwriting whatever value may have been present. This allows you to wire together
Provider and Property instances before the values are configured.

◦ A Property can be created by the factory method ObjectFactory.property(Class).

Lazy properties are intended to be passed around and only queried when required. Usually, this
will happen during the execution phase. For more information about the Gradle build phases,
please see Build Lifecycle.

The following demonstrates a task with a configurable greeting property and a read-only message
property that is derived from this:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#get--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html#set-T-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html#set-org.gradle.api.provider.Provider-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

Example 203. Using a read-only and configurable property

build.gradle

// A task that displays a greeting
abstract class Greeting extends DefaultTask {
 // A configurable greeting
 @Input
 abstract Property<String> getGreeting()

 // Read-only property calculated from the greeting
 @Internal
 final Provider<String> message = greeting.map { it + ' from Gradle' }

 @TaskAction
 void printMessage() {
 logger.quiet(message.get())
 }
}

tasks.register("greeting", Greeting) {
 // Configure the greeting
 greeting.set('Hi')
 greeting = 'Hi' // Alternative notation to calling Property.set() - only
available in Groovy DSL
}

build.gradle.kts

// A task that displays a greeting
abstract class Greeting : DefaultTask() {
 // Configurable by the user
 @get:Input
 abstract val greeting: Property<String>

 // Read-only property calculated from the greeting
 @Internal
 val message: Provider<String> = greeting.map { it + " from Gradle" }

 @TaskAction
 fun printMessage() {
 logger.quiet(message.get())
 }
}

tasks.register<Greeting>("greeting") {
 // Configure the greeting
 greeting.set("Hi")

}

Output of gradle greeting

$ gradle greeting

> Task :greeting
Hi from Gradle

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

The Greeting task has a property of type Property<String> to represent the configurable greeting
and a property of type Provider<String> to represent the calculated, read-only, message. The
message Provider is created from the greeting Property using the map() method, and so its value is
kept up-to-date as the value of the greeting property changes.

NOTE

Note that Gradle Groovy DSL generates setter methods for each Property-typed
property in a task implementation. These setter methods allow you to configure the
property using the assignment (=) operator as a convenience.

In Kotlin DSL, the set() method on the property needs to be used instead of =.

Creating a Property or Provider instance

Neither Provider nor its subtypes such as Property are intended to be implemented by a build script
or plugin author. Gradle provides factory methods to create instances of these types instead. See the
Quick Reference for all of the types and factories available. In the previous example, we have seen
2 factory methods:

• ObjectFactory.property(Class) create a new Property instance. An instance of the ObjectFactory
can be referenced from Project.getObjects() or by injecting ObjectFactory through a constructor
or method.

• Provider.map(Transformer) creates a new Provider from an existing Provider or Property
instance.

A Provider can also be created by the factory method ProviderFactory.provider(Callable). You
should prefer using map() instead, as this has some useful benefits, which we will see later.

NOTE

There are no specific methods create a provider using a groovy.lang.Closure. When
writing a plugin or build script with Groovy, you can use the map(Transformer)
method with a closure and Groovy will take care of converting the closure to a
Transformer. You can see this in action in the previous example.

Similarly, when writing a plugin or build script with Kotlin, the Kotlin compiler will
take care of converting a Kotlin function into a Transformer.

Connecting properties together

An important feature of lazy properties is that they can be connected together so that changes to
one property are automatically reflected in other properties. Here’s an example where the property
of a task is connected to a property of a project extension:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Project.html#getObjects--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-

Example 204. Connecting properties together

build.gradle

// A project extension
interface MessageExtension {
 // A configurable greeting
 Property<String> getGreeting()
}

// A task that displays a greeting
abstract class Greeting extends DefaultTask {
 // Configurable by the user
 @Input
 abstract Property<String> getGreeting()

 // Read-only property calculated from the greeting
 @Internal
 final Provider<String> message = greeting.map { it + ' from Gradle' }

 @TaskAction
 void printMessage() {
 logger.quiet(message.get())
 }
}

// Create the project extension
project.extensions.create('messages', MessageExtension)

// Create the greeting task
tasks.register("greeting", Greeting) {
 // Attach the greeting from the project extension
 // Note that the values of the project extension have not been configured
yet
 greeting = messages.greeting
}

messages {
 // Configure the greeting on the extension
 // Note that there is no need to reconfigure the task's `greeting`
property. This is automatically updated as the extension property changes
 greeting = 'Hi'
}

build.gradle.kts

// A project extension
interface MessageExtension {
 // A configurable greeting
 abstract val greeting: Property<String>
}

// A task that displays a greeting
abstract class Greeting : DefaultTask() {
 // Configurable by the user
 @get:Input
 abstract val greeting: Property<String>

 // Read-only property calculated from the greeting
 @Internal
 val message: Provider<String> = greeting.map { it + " from Gradle" }

 @TaskAction
 fun printMessage() {
 logger.quiet(message.get())
 }
}

// Create the project extension
val messages = project.extensions.create<MessageExtension>("messages")

// Create the greeting task
tasks.register<Greeting>("greeting") {
 // Attach the greeting from the project extension
 // Note that the values of the project extension have not been configured
yet
 greeting.set(messages.greeting)
}

messages.apply {
 // Configure the greeting on the extension
 // Note that there is no need to reconfigure the task's `greeting`
property. This is automatically updated as the extension property changes
 greeting.set("Hi")
}

Output of gradle greeting

$ gradle greeting

> Task :greeting
Hi from Gradle

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

This example calls the Property.set(Provider) method to attach a Provider to a Property to supply the
value of the property. In this case, the Provider happens to be a Property as well, but you can
connect any Provider implementation, for example one created using Provider.map()

Working with files

In Working with Files, we introduced four collection types for File-like objects:

Table 6. Collection of files recap

Read-only
Type

Configurable Type

FileCollection ConfigurableFileCollection

FileTree ConfigurableFileTree

All of these types are also considered lazy types.

In this section, we are going to introduce more strongly typed models types to represent elements
of the file system: Directory and RegularFile. These types shouldn’t be confused with the standard
Java File type as they are used to tell Gradle, and other people, that you expect more specific values
such as a directory or a non-directory, regular file.

Gradle provides two specialized Property subtypes for dealing with values of these types:
RegularFileProperty and DirectoryProperty. ObjectFactory has methods to create these:
ObjectFactory.fileProperty() and ObjectFactory.directoryProperty().

A DirectoryProperty can also be used to create a lazily evaluated Provider for a Directory and
RegularFile via DirectoryProperty.dir(String) and DirectoryProperty.file(String) respectively. These
methods create providers whose values are calculated relative to the location for the
DirectoryProperty they were created from. The values returned from these providers will reflect
changes to the DirectoryProperty.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html#set-org.gradle.api.provider.Provider-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileTree.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/Directory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/RegularFile.html
https://docs.oracle.com/javase/8/docs/api/java/io/File.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/RegularFileProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#fileProperty--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#directoryProperty--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-

Example 205. Using file and directory property

build.gradle

// A task that generates a source file and writes the result to an output
directory
abstract class GenerateSource extends DefaultTask {
 // The configuration file to use to generate the source file
 @InputFile
 abstract RegularFileProperty getConfigFile()

 // The directory to write source files to
 @OutputDirectory
 abstract DirectoryProperty getOutputDir()

 @TaskAction
 def compile() {
 def inFile = configFile.get().asFile
 logger.quiet("configuration file = $inFile")
 def dir = outputDir.get().asFile
 logger.quiet("output dir = $dir")
 def className = inFile.text.trim()
 def srcFile = new File(dir, "${className}.java")
 srcFile.text = "public class ${className} { ... }"
 }
}

// Create the source generation task
tasks.register('generate', GenerateSource) {
 // Configure the locations, relative to the project and build directories
 configFile = layout.projectDirectory.file('src/config.txt')
 outputDir = layout.buildDirectory.dir('generated-source')
}

// Change the build directory
// Don't need to reconfigure the task properties. These are automatically
updated as the build directory changes
layout.buildDirectory = layout.projectDirectory.dir('output')

build.gradle.kts

// A task that generates a source file and writes the result to an output
directory
abstract class GenerateSource : DefaultTask() {
 // The configuration file to use to generate the source file
 @get:InputFile
 abstract val configFile: RegularFileProperty

 // The directory to write source files to
 @get:OutputDirectory
 abstract val outputDir: DirectoryProperty

 @TaskAction
 fun compile() {
 val inFile = configFile.get().asFile
 logger.quiet("configuration file = $inFile")
 val dir = outputDir.get().asFile
 logger.quiet("output dir = $dir")
 val className = inFile.readText().trim()
 val srcFile = File(dir, "${className}.java")
 srcFile.writeText("public class ${className} { }")
 }
}

// Create the source generation task
tasks.register<GenerateSource>("generate") {
 // Configure the locations, relative to the project and build directories
 configFile.set(layout.projectDirectory.file("src/config.txt"))
 outputDir.set(layout.buildDirectory.dir("generated-source"))
}

// Change the build directory
// Don't need to reconfigure the task properties. These are automatically
updated as the build directory changes
layout.buildDirectory.set(layout.projectDirectory.dir("output"))

Output of gradle print

$ gradle print

> Task :generate
configuration file = /home/user/gradle/samples/src/config.txt
output dir = /home/user/gradle/samples/output/generated-source

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

Output of gradle print

$ gradle print

> Task :generate
configuration file = /home/user/gradle/samples/kotlin/src/config.txt
output dir = /home/user/gradle/samples/kotlin/output/generated-source

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

This example creates providers that represent locations in the project and build directories through
Project.getLayout() with ProjectLayout.getBuildDirectory() and ProjectLayout.getProjectDirectory().

To close the loop, note that a DirectoryProperty, or a simple Directory, can be turned into a FileTree
that allows the files and directories contained in the directory to be queried with
DirectoryProperty.getAsFileTree() or Directory.getAsFileTree(). Moreover, from a DirectoryProperty,
or a Directory, you can also create FileCollection instances containing a set of the files contained in
the directory with DirectoryProperty.files(Object...) or Directory.files(Object...).

Working with task inputs and outputs

Many builds have several tasks connected together, where one task consumes the outputs of
another task as an input. To make this work, we would need to configure each task to know where
to look for its inputs and place its outputs, make sure that the producing and consuming tasks are
configured with the same location, and attach task dependencies between the tasks. This can be
cumbersome and brittle if any of these values are configurable by a user or configured by multiple
plugins, as task properties need to be configured in the correct order and locations and task
dependencies kept in sync as values change.

The Property API makes this easier by keeping track of not just the value for a property, which we
have seen already, but also the task that produces the value, so that you don’t have to specify it as
well. As an example consider the following plugin with a producer and consumer task which are
wired together:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Project.html#getLayout--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#getBuildDirectory--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#getProjectDirectory--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#getAsFileTree--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/Directory.html#getAsFileTree--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#files-java.lang.Object...-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/Directory.html#files-java.lang.Object...-

Example 206. Implicit task input file dependency

build.gradle

abstract class Producer extends DefaultTask {
 @OutputFile
 abstract RegularFileProperty getOutputFile()

 @TaskAction
 void produce() {
 String message = 'Hello, World!'
 def output = outputFile.get().asFile
 output.text = message
 logger.quiet("Wrote '${message}' to ${output}")
 }
}

abstract class Consumer extends DefaultTask {
 @InputFile
 abstract RegularFileProperty getInputFile()

 @TaskAction
 void consume() {
 def input = inputFile.get().asFile
 def message = input.text
 logger.quiet("Read '${message}' from ${input}")
 }
}

def producer = tasks.register("producer", Producer)
def consumer = tasks.register("consumer", Consumer)

consumer.configure {
 // Connect the producer task output to the consumer task input
 // Don't need to add a task dependency to the consumer task. This is
automatically added
 inputFile = producer.flatMap { it.outputFile }
}

producer.configure {
 // Set values for the producer lazily
 // Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes
 outputFile = layout.buildDirectory.file('file.txt')
}

// Change the build directory.
// Don't need to update producer.outputFile and consumer.inputFile. These are
automatically updated as the build directory changes
layout.buildDirectory = layout.projectDirectory.dir('output')

build.gradle.kts

abstract class Producer : DefaultTask() {
 @get:OutputFile
 abstract val outputFile: RegularFileProperty

 @TaskAction
 fun produce() {
 val message = "Hello, World!"
 val output = outputFile.get().asFile
 output.writeText(message)
 logger.quiet("Wrote '${message}' to ${output}")
 }
}

abstract class Consumer : DefaultTask() {
 @get:InputFile
 abstract val inputFile: RegularFileProperty

 @TaskAction
 fun consume() {
 val input = inputFile.get().asFile
 val message = input.readText()
 logger.quiet("Read '${message}' from ${input}")
 }
}

val producer = tasks.register<Producer>("producer")
val consumer = tasks.register<Consumer>("consumer")

consumer {
 // Connect the producer task output to the consumer task input
 // Don't need to add a task dependency to the consumer task. This is
automatically added
 inputFile.set(producer.flatMap { it.outputFile })
}

producer {
 // Set values for the producer lazily
 // Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes
 outputFile.set(layout.buildDirectory.file("file.txt"))
}

// Change the build directory.
// Don't need to update producer.outputFile and consumer.inputFile. These are
automatically updated as the build directory changes
layout.buildDirectory.set(layout.projectDirectory.dir("output"))

Output of gradle consumer

$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/output/file.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/output/file.txt

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

Output of gradle consumer

$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/output/file.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/kotlin/output/file.txt

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

In the example above, the task outputs and inputs are connected before any location is defined. The
setters can be called at any time before the task is executed and the change will automatically affect
all related input and output properties.

Another important thing to note in this example is the absence of any explicit task dependency.
Task outputs represented using Providers keep track of which task produces their value, and using
them as task inputs will implicitly add the correct task dependencies.

Implicit task dependencies also works for input properties that are not files.

Example 207. Implicit task input dependency

build.gradle

abstract class Producer extends DefaultTask {
 @OutputFile
 abstract RegularFileProperty getOutputFile()

 @TaskAction
 void produce() {
 String message = 'Hello, World!'
 def output = outputFile.get().asFile
 output.text = message
 logger.quiet("Wrote '${message}' to ${output}")
 }
}

abstract class Consumer extends DefaultTask {
 @Input
 abstract Property<String> getMessage()

 @TaskAction
 void consume() {
 logger.quiet(message.get())
 }
}

def producer = tasks.register('producer', Producer) {
 // Set values for the producer lazily
 // Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes
 outputFile = layout.buildDirectory.file('file.txt')
}
tasks.register('consumer', Consumer) {
 // Connect the producer task output to the consumer task input
 // Don't need to add a task dependency to the consumer task. This is
automatically added
 message = producer.map { it.outputFile.get().asFile.text }
}

build.gradle.kts

abstract class Producer : DefaultTask() {
 @get:OutputFile
 abstract val outputFile: RegularFileProperty

 @TaskAction
 fun produce() {
 val message = "Hello, World!"
 val output = outputFile.get().asFile
 output.writeText(message)
 logger.quiet("Wrote '${message}' to ${output}")
 }
}

abstract class Consumer : DefaultTask() {
 @get:Input
 abstract val message: Property<String>

 @TaskAction
 fun consume() {
 logger.quiet(message.get())
 }
}

val producer = tasks.register<Producer>("producer") {
 // Set values for the producer lazily
 // Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes
 outputFile.set(layout.buildDirectory.file("file.txt"))
}
tasks.register<Consumer>("consumer") {
 // Connect the producer task output to the consumer task input
 // Don't need to add a task dependency to the consumer task. This is
automatically added
 message.set(producer.map { it.outputFile.get().asFile.readText() })
}

Output of gradle consumer

$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/build/file.txt

> Task :consumer
Hello, World!

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

Output of gradle consumer

$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/build/file.txt

> Task :consumer
Hello, World!

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

Working with collections

Gradle provides two lazy property types to help configure Collection properties. These work
exactly like any other Provider and, just like file providers, they have additional modeling around
them:

• For List values the interface is called ListProperty. You can create a new ListProperty using
ObjectFactory.listProperty(Class) and specifying the element type.

• For Set values the interface is called SetProperty. You can create a new SetProperty using
ObjectFactory.setProperty(Class) and specifying the element type.

This type of property allows you to overwrite the entire collection value with
HasMultipleValues.set(Iterable) and HasMultipleValues.set(Provider) or add new elements through
the various add methods:

• HasMultipleValues.add(T): Add a single element to the collection

• HasMultipleValues.add(Provider): Add a lazily calculated element to the collection

• HasMultipleValues.addAll(Provider): Add a lazily calculated collection of elements to the list

Just like every Provider, the collection is calculated when Provider.get() is called. The following
example shows the ListProperty in action:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ListProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/SetProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-java.lang.Iterable-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-org.gradle.api.provider.Provider-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-T-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-org.gradle.api.provider.Provider-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/HasMultipleValues.html#addAll-org.gradle.api.provider.Provider-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#get--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ListProperty.html

Example 208. List property

build.gradle

abstract class Producer extends DefaultTask {
 @OutputFile
 abstract RegularFileProperty getOutputFile()

 @TaskAction
 void produce() {
 String message = 'Hello, World!'
 def output = outputFile.get().asFile
 output.text = message
 logger.quiet("Wrote '${message}' to ${output}")
 }
}

abstract class Consumer extends DefaultTask {
 @InputFiles
 abstract ListProperty<RegularFile> getInputFiles()

 @TaskAction
 void consume() {
 inputFiles.get().each { inputFile ->
 def input = inputFile.asFile
 def message = input.text
 logger.quiet("Read '${message}' from ${input}")
 }
 }
}

def producerOne = tasks.register('producerOne', Producer)
def producerTwo = tasks.register('producerTwo', Producer)
tasks.register('consumer', Consumer) {
 // Connect the producer task outputs to the consumer task input
 // Don't need to add task dependencies to the consumer task. These are
automatically added
 inputFiles.add(producerOne.get().outputFile)
 inputFiles.add(producerTwo.get().outputFile)
}

// Set values for the producer tasks lazily
// Don't need to update the consumer.inputFiles property. This is
automatically updated as producer.outputFile changes
producerOne.configure { outputFile = layout.buildDirectory.file('one.txt') }
producerTwo.configure { outputFile = layout.buildDirectory.file('two.txt') }

// Change the build directory.
// Don't need to update the task properties. These are automatically updated
as the build directory changes
layout.buildDirectory = layout.projectDirectory.dir('output')

build.gradle.kts

abstract class Producer : DefaultTask() {
 @get:OutputFile
 abstract val outputFile: RegularFileProperty

 @TaskAction
 fun produce() {
 val message = "Hello, World!"
 val output = outputFile.get().asFile
 output.writeText(message)
 logger.quiet("Wrote '${message}' to ${output}")
 }
}

abstract class Consumer : DefaultTask() {
 @get:InputFiles
 abstract val inputFiles: ListProperty<RegularFile>

 @TaskAction
 fun consume() {
 inputFiles.get().forEach { inputFile ->
 val input = inputFile.asFile
 val message = input.readText()
 logger.quiet("Read '${message}' from ${input}")
 }
 }
}

val producerOne = tasks.register<Producer>("producerOne")
val producerTwo = tasks.register<Producer>("producerTwo")
tasks.register<Consumer>("consumer") {
 // Connect the producer task outputs to the consumer task input
 // Don't need to add task dependencies to the consumer task. These are
automatically added
 inputFiles.add(producerOne.get().outputFile)
 inputFiles.add(producerTwo.get().outputFile)
}

// Set values for the producer tasks lazily
// Don't need to update the consumer.inputFiles property. This is
automatically updated as producer.outputFile changes
producerOne { outputFile.set(layout.buildDirectory.file("one.txt")) }
producerTwo { outputFile.set(layout.buildDirectory.file("two.txt")) }

// Change the build directory.
// Don't need to update the task properties. These are automatically updated
as the build directory changes
layout.buildDirectory.set(layout.projectDirectory.dir("output"))

Output of gradle consumer

$ gradle consumer

> Task :producerOne
Wrote 'Hello, World!' to /home/user/gradle/samples/output/one.txt

> Task :producerTwo
Wrote 'Hello, World!' to /home/user/gradle/samples/output/two.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/output/one.txt
Read 'Hello, World!' from /home/user/gradle/samples/output/two.txt

BUILD SUCCESSFUL in 0s
3 actionable tasks: 3 executed

Output of gradle consumer

$ gradle consumer

> Task :producerOne
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/output/one.txt

> Task :producerTwo
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/output/two.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/kotlin/output/one.txt
Read 'Hello, World!' from /home/user/gradle/samples/kotlin/output/two.txt

BUILD SUCCESSFUL in 0s
3 actionable tasks: 3 executed

Working with maps

Gradle provides a lazy MapProperty type to allow Map values to be configured. You can create a
MapProperty instance using ObjectFactory.mapProperty(Class, Class).

Similar to other property types, a MapProperty has a set() method that you can use to specify the
value for the property. There are some additional methods to allow entries with lazy values to be
added to the map.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/MapProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#mapProperty-java.lang.Class-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/MapProperty.html#set-java.util.Map-

Example 209. Map property

build.gradle

abstract class Generator extends DefaultTask {
 @Input
 abstract MapProperty<String, Integer> getProperties()

 @TaskAction
 void generate() {
 properties.get().each { key, value ->
 logger.quiet("${key} = ${value}")
 }
 }
}

// Some values to be configured later
def b = 0
def c = 0

tasks.register('generate', Generator) {
 properties.put("a", 1)
 // Values have not been configured yet
 properties.put("b", providers.provider { b })
 properties.putAll(providers.provider { [c: c, d: c + 1] })
}

// Configure the values. There is no need to reconfigure the task
b = 2
c = 3

build.gradle.kts

abstract class Generator: DefaultTask() {
 @get:Input
 abstract val properties: MapProperty<String, Int>

 @TaskAction
 fun generate() {
 properties.get().forEach { entry ->
 logger.quiet("${entry.key} = ${entry.value}")
 }
 }
}

// Some values to be configured later
var b = 0
var c = 0

tasks.register<Generator>("generate") {
 properties.put("a", 1)
 // Values have not been configured yet
 properties.put("b", providers.provider { b })
 properties.putAll(providers.provider { mapOf("c" to c, "d" to c + 1) })
}

// Configure the values. There is no need to reconfigure the task
b = 2
c = 3

Output of gradle consumer

$ gradle generate

> Task :generate
a = 1
b = 2
c = 3
d = 4

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

Applying a convention to a property

Often you want to apply some convention, or default value, to a property to be used if no value has
been configured for the property. You can use the convention() method for this. This method
accepts either a value or a Provider and this will be used as the value until some other value is

configured.

Example 210. Property conventions

build.gradle

def property = objects.property(String)

// Set a convention
property.convention("convention 1")
println("value = " + property.get())

// Can replace the convention
property.convention("convention 2")
println("value = " + property.get())

property.set("value")

// Once a value is set, the convention is ignored
property.convention("ignored convention")
println("value = " + property.get())

build.gradle.kts

val property = objects.property(String::class)

// Set a convention
property.convention("convention 1")
println("value = " + property.get())

// Can replace the convention
property.convention("convention 2")
println("value = " + property.get())

property.set("value")

// Once a value is set, the convention is ignored
property.convention("ignored convention")
println("value = " + property.get())

Output of gradle show

$ gradle show

> Task :show
value = convention 1
value = convention 2
value = value

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

Making a property unmodifiable

Most properties of a task or project are intended to be configured by plugins or build scripts and
then the resulting value used to do something useful. For example, a property that specifies the
output directory for a compilation task may start off with a value specified by a plugin, then a build
script might change the value to some custom location, then this value is used by the task when it
runs. However, once the task starts to run, we want to prevent any further change to the property.
This way we avoid errors that result from different consumers, such as the task action or Gradle’s
up-to-date checks or build caching or other tasks, using different values for the property.

Lazy properties provide several methods that you can use to disallow changes to their value once
the value has been configured. The finalizeValue() method calculates the final value for the
property and prevents further changes to the property. When the value of the property comes from
a Provider, the provider is queried for its current value and the result becomes the final value for
the property. This final value replaces the provider and the property no longer tracks the value of
the provider. Calling this method also makes a property instance unmodifiable and any further
attempts to change the value of the property will fail. Gradle automatically makes the properties of
a task final when the task starts execution.

The finalizeValueOnRead() method is similar, except that the property’s final value is not calculated
until the value of the property is queried. In other words, this method calculates the final value
lazily as required, whereas finalizeValue() calculates the final value eagerly. This method can be
used when the value may be expensive to calculate or may not have been configured yet, but you
also want to ensure that all consumers of the property see the same value when they query the
value.

Guidelines

This section will introduce guidelines to be successful with the Provider API. To see those guidelines
in action, have a look at gradle-site-plugin, a Gradle plugin demonstrating established techniques
and practices for plugin development.

• The Property and Provider types have all of the overloads you need to query or configure a
value. For this reason, you should follow the following guidelines:

◦ For configurable properties, expose the Property directly through a single getter.

◦ For non-configurable properties, expose an Provider directly through a single getter.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html#finalizeValue--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/HasConfigurableValue.html#finalizeValueOnRead--
https://github.com/gradle/gradle-site-plugin
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html

• Avoid simplifying calls like obj.getProperty().get() and obj.getProperty().set(T) in your code
by introducing additional getters and setters.

• When migrating your plugin to use providers, follow these guidelines:

◦ If it’s a new property, expose it as a Property or Provider using a single getter.

◦ If it’s incubating, change it to use a Property or Provider using a single getter.

◦ If it’s a stable property, add a new Property or Provider and deprecate the old one. You
should wire the old getter/setters into the new property as appropriate.

Future development

Going forward, new properties will use the Provider API. The Groovy Gradle DSL adds convenience
methods to make the use of Providers mostly transparent in build scripts. Existing tasks will have
their existing "raw" properties replaced by Providers as needed and in a backwards compatible
way. New tasks will be designed with the Provider API.

Provider Files API Reference

Use these types for read-only values:

Provider<RegularFile>

File on disk

Factories

• Provider.map(Transformer).

• Provider.flatMap(Transformer).

• DirectoryProperty.file(String)

Provider<Directory>

Directory on disk

Factories

• Provider.map(Transformer).

• Provider.flatMap(Transformer).

• DirectoryProperty.dir(String)

FileCollection

Unstructured collection of files

Factories

• Project.files(Object[])

• ProjectLayout.files(Object...)

• DirectoryProperty.files(Object...)

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/RegularFile.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#flatMap-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/Directory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#flatMap-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#files-java.lang.Object...-

FileTree

Hierarchy of files

Factories

• Project.fileTree(Object) will produce a ConfigurableFileTree, or you can use
Project.zipTree(Object) and Project.tarTree(Object)

• DirectoryProperty.getAsFileTree()

Property Files API Reference

Use these types for mutable values:

RegularFileProperty

File on disk

Factories

• ObjectFactory.fileProperty()

DirectoryProperty

Directory on disk

Factories

• ObjectFactory.directoryProperty()

ConfigurableFileCollection

Unstructured collection of files

Factories

• ObjectFactory.fileCollection()

ConfigurableFileTree

Hierarchy of files

Factories

• ObjectFactory.fileTree()

SourceDirectorySet

Hierarchy of source directories

Factories

• ObjectFactory.sourceDirectorySet(String, String)

Lazy Collections API Reference

Use these types for mutable values:

ListProperty<T>

a property whose value is List<T>

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileTree.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Project.html#zipTree-java.lang.Object-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Project.html#tarTree-java.lang.Object-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html#getAsFileTree--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/RegularFileProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#fileProperty--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#directoryProperty--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#fileCollection--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileTree.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#fileTree--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/SourceDirectorySet.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#sourceDirectorySet-java.lang.String-java.lang.String-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ListProperty.html

Factories

• ObjectFactory.listProperty(Class)

SetProperty<T>

a property whose value is Set<T>

Factories

• ObjectFactory.setProperty(Class)

Lazy Objects API Reference

Use these types for read only values:

Provider<T>

a property whose value is an instance of T

Factories

• Provider.map(Transformer).

• Provider.flatMap(Transformer).

• ProviderFactory.provider(Callable). Always prefer one of the other factory methods over
this method.

Use these types for mutable values:

Property<T>

a property whose value is an instance of T

Factories

• ObjectFactory.property(Class)

Testing Build Logic with TestKit
The Gradle TestKit (a.k.a. just TestKit) is a library that aids in testing Gradle plugins and build logic
generally. At this time, it is focused on functional testing. That is, testing build logic by exercising it
as part of a programmatically executed build. Over time, the TestKit will likely expand to facilitate
other kinds of tests.

Usage

To use the TestKit, include the following in your plugin’s build:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/SetProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Provider.html#flatMap-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ProviderFactory.html#provider-java.util.concurrent.Callable-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

Example 211. Declaring the TestKit dependency

build.gradle

dependencies {
 testImplementation gradleTestKit()
}

build.gradle.kts

dependencies {
 testImplementation(gradleTestKit())
}

The gradleTestKit() encompasses the classes of the TestKit, as well as the Gradle Tooling API client.
It does not include a version of JUnit, TestNG, or any other test execution framework. Such a
dependency must be explicitly declared.

Example 212. Declaring the JUnit dependency

build.gradle

dependencies {
 testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
}

tasks.withType(Test).configureEach {
 useJUnitPlatform()
}

build.gradle.kts

dependencies {
 testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
}

tasks.withType<Test>().configureEach {
 useJUnitPlatform()
}

https://junit.org
https://testng.org

Functional testing with the Gradle runner

The GradleRunner facilitates programmatically executing Gradle builds, and inspecting the result.

A contrived build can be created (e.g. programmatically, or from a template) that exercises the
“logic under test”. The build can then be executed, potentially in a variety of ways (e.g. different
combinations of tasks and arguments). The correctness of the logic can then be verified by asserting
the following, potentially in combination:

• The build’s output;

• The build’s logging (i.e. console output);

• The set of tasks executed by the build and their results (e.g. FAILED, UP-TO-DATE etc.).

After creating and configuring a runner instance, the build can be executed via the
GradleRunner.build() or GradleRunner.buildAndFail() methods depending on the anticipated
outcome.

The following demonstrates the usage of the Gradle runner in a Java JUnit test:

Example: Using GradleRunner with Java and JUnit

BuildLogicFunctionalTest.java

import org.gradle.testkit.runner.BuildResult;
import org.gradle.testkit.runner.GradleRunner;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.io.TempDir;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;

import static org.gradle.testkit.runner.TaskOutcome.SUCCESS;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;

public class BuildLogicFunctionalTest {

 @TempDir File testProjectDir;
 private File settingsFile;
 private File buildFile;

 @BeforeEach
 public void setup() {
 settingsFile = new File(testProjectDir, "settings.gradle");
 buildFile = new File(testProjectDir, "build.gradle");
 }

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#build--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#buildAndFail--

 @Test
 public void testHelloWorldTask() throws IOException {
 writeFile(settingsFile, "rootProject.name = 'hello-world'");
 String buildFileContent = "task helloWorld {" +
 " doLast {" +
 " println 'Hello world!'" +
 " }" +
 "}";
 writeFile(buildFile, buildFileContent);

 BuildResult result = GradleRunner.create()
 .withProjectDir(testProjectDir)
 .withArguments("helloWorld")
 .build();

 assertTrue(result.getOutput().contains("Hello world!"));
 assertEquals(SUCCESS, result.task(":helloWorld").getOutcome());
 }

 private void writeFile(File destination, String content) throws IOException {
 BufferedWriter output = null;
 try {
 output = new BufferedWriter(new FileWriter(destination));
 output.write(content);
 } finally {
 if (output != null) {
 output.close();
 }
 }
 }
}

Any test execution framework can be used.

As Gradle build scripts can also be written in the Groovy programming language, it is often a
productive choice to write Gradle functional tests in Groovy. Furthermore, it is recommended to
use the (Groovy based) Spock test execution framework as it offers many compelling features over
the use of JUnit.

The following demonstrates the usage of the Gradle runner in a Groovy Spock test:

Example: Using GradleRunner with Groovy and Spock

https://code.google.com/p/spock/

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner
import static org.gradle.testkit.runner.TaskOutcome.*
import spock.lang.TempDir
import spock.lang.Specification

class BuildLogicFunctionalTest extends Specification {
 @TempDir File testProjectDir
 File settingsFile
 File buildFile

 def setup() {
 settingsFile = new File(testProjectDir, 'settings.gradle')
 buildFile = new File(testProjectDir, 'build.gradle')
 }

 def "hello world task prints hello world"() {
 given:
 settingsFile << "rootProject.name = 'hello-world'"
 buildFile << """
 task helloWorld {
 doLast {
 println 'Hello world!'
 }
 }
 """

 when:
 def result = GradleRunner.create()
 .withProjectDir(testProjectDir)
 .withArguments('helloWorld')
 .build()

 then:
 result.output.contains('Hello world!')
 result.task(":helloWorld").outcome == SUCCESS
 }
}

It is a common practice to implement any custom build logic (like plugins and task types) that is
more complex in nature as external classes in a standalone project. The main driver behind this
approach is bundle the compiled code into a JAR file, publish it to a binary repository and reuse it
across various projects.

Getting the plugin-under-test into the test build

The GradleRunner uses the Tooling API to execute builds. An implication of this is that the builds
are executed in a separate process (i.e. not the same process executing the tests). Therefore, the test
build does not share the same classpath or classloaders as the test process and the code under test

is not implicitly available to the test build.

Starting with version 2.13, Gradle provides a conventional mechanism to inject the code under test
into the test build.

Automatic injection with the Java Gradle Plugin Development plugin

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle
plugins. Starting with Gradle version 2.13, the plugin provides a direct integration with TestKit.
When applied to a project, the plugin automatically adds the gradleTestKit() dependency to the
testApi configuration. Furthermore, it automatically generates the classpath for the code under test
and injects it via GradleRunner.withPluginClasspath() for any GradleRunner instance created by the
user. It’s important to note that the mechanism currently only works if the plugin under test is
applied using the plugins DSL. If the target Gradle version is prior to 2.8, automatic plugin classpath
injection is not performed.

The plugin uses the following conventions for applying the TestKit dependency and injecting the
classpath:

• Source set containing code under test: sourceSets.main

• Source set used for injecting the plugin classpath: sourceSets.test

Any of these conventions can be reconfigured with the help of the class
GradlePluginDevelopmentExtension.

The following Groovy-based sample demonstrates how to automatically inject the plugin classpath
by using the standard conventions applied by the Java Gradle Plugin Development plugin.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html

Example 213. Using the Java Gradle Development plugin for generating the plugin metadata

build.gradle

plugins {
 id 'groovy'
 id 'java-gradle-plugin'
}

dependencies {
 testImplementation('org.spockframework:spock-core:2.0-groovy-3.0') {
 exclude group: 'org.codehaus.groovy'
 }
}

build.gradle.kts

plugins {
 groovy
 `java-gradle-plugin`
}

dependencies {
 testImplementation("org.spockframework:spock-core:2.0-groovy-3.0") {
 exclude(group = "org.codehaus.groovy")
 }
}

Example: Automatically injecting the code under test classes into test builds

src/test/groovy/org/gradle/sample/BuildLogicFunctionalTest.groovy

def "hello world task prints hello world"() {
 given:
 settingsFile << "rootProject.name = 'hello-world'"
 buildFile << """
 plugins {
 id 'org.gradle.sample.helloworld'
 }
 """

 when:
 def result = GradleRunner.create()
 .withProjectDir(testProjectDir)
 .withArguments('helloWorld')
 .withPluginClasspath()
 .build()

 then:
 result.output.contains('Hello world!')
 result.task(":helloWorld").outcome == SUCCESS
}

The following build script demonstrates how to reconfigure the conventions provided by the Java
Gradle Plugin Development plugin for a project that uses a custom Test source set.

NOTE
A new configuration DSL for modeling the below functionalTest suite is available
via the incubating JVM Test Suite plugin.

jvm_test_suite_plugin.pdf#jvm_test_suite_plugin

Example 214. Reconfiguring the classpath generation conventions of the Java Gradle Development plugin

build.gradle

plugins {
 id 'groovy'
 id 'java-gradle-plugin'
}

def functionalTest = sourceSets.create('functionalTest')
def functionalTestTask = tasks.register('functionalTest', Test) {
 group = 'verification'
 testClassesDirs = sourceSets.functionalTest.output.classesDirs
 classpath = sourceSets.functionalTest.runtimeClasspath
 useJUnitPlatform()
}

tasks.named("check") {
 dependsOn functionalTestTask
}

gradlePlugin {
 testSourceSets sourceSets.functionalTest
}

dependencies {
 functionalTestImplementation('org.spockframework:spock-core:2.0-groovy-
3.0') {
 exclude group: 'org.codehaus.groovy'
 }
}

build.gradle.kts

plugins {
 groovy
 `java-gradle-plugin`
}

val functionalTest = sourceSets.create("functionalTest")
val functionalTestTask = tasks.register<Test>("functionalTest") {
 group = "verification"
 testClassesDirs = functionalTest.output.classesDirs
 classpath = functionalTest.runtimeClasspath
 useJUnitPlatform()
}

tasks.check {
 dependsOn(functionalTestTask)
}

gradlePlugin {
 testSourceSets(functionalTest)
}

dependencies {
 "functionalTestImplementation"("org.spockframework:spock-core:2.0-groovy-
3.0") {
 exclude(group = "org.codehaus.groovy")
 }
}

Controlling the build environment

The runner executes the test builds in an isolated environment by specifying a dedicated "working
directory" in a directory inside the JVM’s temp directory (i.e. the location specified by the
java.io.tmpdir system property, typically /tmp). Any configuration in the default Gradle user home
directory (e.g. ~/.gradle/gradle.properties) is not used for test execution. The TestKit does not
expose a mechanism for fine grained control of all aspects of the environment (e.g., JDK). Future
versions of the TestKit will provide improved configuration options.

The TestKit uses dedicated daemon processes that are automatically shut down after test execution.

The dedicated working directory is not deleted by the runner after the build. The TestKit provides
two ways to specify a location that is regularly cleaned, such as the project’s build folder:

• The org.gradle.testkit.dir system property;

• The GradleRunner.withTestKitDir(file testKitDir) method.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withTestKitDir-java.io.File-

The Gradle version used to test

The Gradle runner requires a Gradle distribution in order to execute the build. The TestKit does not
depend on all of Gradle’s implementation.

By default, the runner will attempt to find a Gradle distribution based on where the GradleRunner
class was loaded from. That is, it is expected that the class was loaded from a Gradle distribution, as
is the case when using the gradleTestKit() dependency declaration.

When using the runner as part of tests being executed by Gradle (e.g. executing the test task of a
plugin project), the same distribution used to execute the tests will be used by the runner. When
using the runner as part of tests being executed by an IDE, the same distribution of Gradle that was
used when importing the project will be used. This means that the plugin will effectively be tested
with the same version of Gradle that it is being built with.

Alternatively, a different and specific version of Gradle to use can be specified by the any of the
following GradleRunner methods:

• GradleRunner.withGradleVersion(java.lang.String)

• GradleRunner.withGradleInstallation(java.io.File)

• GradleRunner.withGradleDistribution(java.net.URI)

This can potentially be used to test build logic across Gradle versions. The following demonstrates a
cross-version compatibility test written as Groovy Spock test:

Example: Specifying a Gradle version for test execution

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleVersion-java.lang.String-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleInstallation-java.io.File-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleDistribution-java.net.URI-

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner
import static org.gradle.testkit.runner.TaskOutcome.*
import spock.lang.TempDir
import spock.lang.Specification
import spock.lang.Unroll

class BuildLogicFunctionalTest extends Specification {
 @TempDir File testProjectDir
 File settingsFile
 File buildFile

 def setup() {
 settingsFile = new File(testProjectDir, 'settings.gradle')
 buildFile = new File(testProjectDir, 'build.gradle')
 }

 @Unroll
 def "can execute hello world task with Gradle version #gradleVersion"() {
 given:
 buildFile << """
 task helloWorld {
 doLast {
 logger.quiet 'Hello world!'
 }
 }
 """
 settingsFile << ""

 when:
 def result = GradleRunner.create()
 .withGradleVersion(gradleVersion)
 .withProjectDir(testProjectDir)
 .withArguments('helloWorld')
 .build()

 then:
 result.output.contains('Hello world!')
 result.task(":helloWorld").outcome == SUCCESS

 where:
 gradleVersion << ['5.0', '6.0.1']
 }
}

Feature support when testing with different Gradle versions

It is possible to use the GradleRunner to execute builds with Gradle 1.0 and later. However, some
runner features are not supported on earlier versions. In such cases, the runner will throw an

exception when attempting to use the feature.

The following table lists the features that are sensitive to the Gradle version being used.

Table 7. Gradle version compatibility

Feature Minimum
Version

Description

Inspecting executed tasks 2.5 Inspecting the executed tasks, using
BuildResult.getTasks() and similar methods.

Plugin classpath injection 2.8 Injecting the code under test
viaGradleRunner.withPluginClasspath(java.lang.Iterab
le).

Inspecting build output in
debug mode

2.9 Inspecting the build’s text output when run in debug
mode, using BuildResult.getOutput().

Automatic plugin classpath
injection

2.13 Injecting the code under test automatically via
GradleRunner.withPluginClasspath() by applying the
Java Gradle Plugin Development plugin.

Setting environment variables
to be used by the build.

3.5 The Gradle Tooling API only supports setting
environment variables in later versions.

Debugging build logic

The runner uses the Tooling API to execute builds. An implication of this is that the builds are
executed in a separate process (i.e. not the same process executing the tests). Therefore, executing
your tests in debug mode does not allow you to debug your build logic as you may expect. Any
breakpoints set in your IDE will be not be tripped by the code being exercised by the test build.

The TestKit provides two different ways to enable the debug mode:

• Setting “org.gradle.testkit.debug” system property to true for the JVM using the GradleRunner
(i.e. not the build being executed with the runner);

• Calling the GradleRunner.withDebug(boolean) method.

The system property approach can be used when it is desirable to enable debugging support
without making an adhoc change to the runner configuration. Most IDEs offer the capability to set
JVM system properties for test execution, and such a feature can be used to set this system property.

Testing with the Build Cache

To enable the Build Cache in your tests, you can pass the --build-cache argument to GradleRunner
or use one of the other methods described in Enable the build cache. You can then check for the
task outcome TaskOutcome.FROM_CACHE when your plugin’s custom task is cached. This outcome
is only valid for Gradle 3.5 and newer.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/BuildResult.html#getTasks--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withDebug-boolean-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/TaskOutcome.html#FROM_CACHE

Example: Testing cacheable tasks

BuildLogicFunctionalTest.groovy

def "cacheableTask is loaded from cache"() {
 given:
 buildFile << """
 plugins {
 id 'org.gradle.sample.helloworld'
 }
 """

 when:
 def result = runner()
 .withArguments('--build-cache', 'cacheableTask')
 .build()

 then:
 result.task(":cacheableTask").outcome == SUCCESS

 when:
 new File(testProjectDir, 'build').deleteDir()
 result = runner()
 .withArguments('--build-cache', 'cacheableTask')
 .build()

 then:
 result.task(":cacheableTask").outcome == FROM_CACHE
}

Note that TestKit re-uses a Gradle user home between tests (see
GradleRunner.withTestKitDir(java.io.File)) which contains the default location for the local build
cache. For testing with the build cache, the build cache directory should be cleaned between tests.
The easiest way to accomplish this is to configure the local build cache to use a temporary directory.

Example: Clean build cache between tests

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testkit/runner/GradleRunner.html#withTestKitDir-java.io.File-

BuildLogicFunctionalTest.groovy

@TempDir File testProjectDir
File buildFile
File localBuildCacheDirectory

def setup() {
 localBuildCacheDirectory = new File(testProjectDir, 'local-cache')
 buildFile = new File(testProjectDir,'settings.gradle') << """
 buildCache {
 local {
 directory '${localBuildCacheDirectory.toURI()}'
 }
 }
 """
 buildFile = new File(testProjectDir,'build.gradle')
}

Using Ant from Gradle
Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant
builds in your Gradle builds. In fact, you will find that it’s far easier and more powerful using Ant
tasks in a Gradle build script, than it is to use Ant’s XML format. You could even use Gradle simply
as a powerful Ant task scripting tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the
build.xml file, the handling of the targets, special constructs like macrodefs, and so on. In other
words, everything except the Ant tasks and types. Gradle understands this language, and allows you
to import your Ant build.xml directly into a Gradle project. You can then use the targets of your Ant
build as if they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like javac, copy or jar. For this layer
Gradle provides integration simply by relying on Groovy, and the fantastic AntBuilder.

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external
process. Your build script may contain statements like: "ant clean compile".execute().[6]

You can use Gradle’s Ant integration as a path for migrating your build from Ant to Gradle. For
example, you could start by importing your existing Ant build. Then you could move your
dependency declarations from the Ant script to your build file. Finally, you could move your tasks
across to your build file, or replace them with some of Gradle’s plugins. This process can be done in
parts over time, and you can have a working Gradle build during the entire process.

Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. This is a reference to an AntBuilder
instance. This AntBuilder is used to access Ant tasks, types and properties from your build script.
There is a very simple mapping from Ant’s build.xml format to Groovy, which is explained below.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html

You execute an Ant task by calling a method on the AntBuilder instance. You use the task name as
the method name. For example, you execute the Ant echo task by calling the ant.echo() method. The
attributes of the Ant task are passed as Map parameters to the method. Below is an example of the
echo task. Notice that we can also mix Groovy code and the Ant task markup. This can be extremely
powerful.

Example 215. Using an Ant task

build.gradle

tasks.register('hello') {
 doLast {
 String greeting = 'hello from Ant'
 ant.echo(message: greeting)
 }
}

build.gradle.kts

tasks.register("hello") {
 doLast {
 val greeting = "hello from Ant"
 ant.withGroovyBuilder {
 "echo"("message" to greeting)
 }
 }
}

Output of gradle hello

> gradle hello

> Task :hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this
example, we pass the message for the echo task as nested text:

Example 216. Passing nested text to an Ant task

build.gradle

tasks.register('hello') {
 doLast {
 ant.echo('hello from Ant')
 }
}

build.gradle.kts

tasks.register("hello") {
 doLast {
 ant.withGroovyBuilder {
 "echo"("message" to "hello from Ant")
 }
 }
}

Output of gradle hello

> gradle hello

> Task :hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same
way as tasks, by calling a method with the same name as the element we want to define.

Example 217. Passing nested elements to an Ant task

build.gradle

tasks.register('zip') {
 doLast {
 ant.zip(destfile: 'archive.zip') {
 fileset(dir: 'src') {
 include(name: '**.xml')
 exclude(name: '**.java')
 }
 }
 }
}

build.gradle.kts

tasks.register("zip") {
 doLast {
 ant.withGroovyBuilder {
 "zip"("destfile" to "archive.zip") {
 "fileset"("dir" to "src") {
 "include"("name" to "**.xml")
 "exclude"("name" to "**.java")
 }
 }
 }
 }
}

You can access Ant types in the same way that you access tasks, using the name of the type as the
method name. The method call returns the Ant data type, which you can then use directly in your
build script. In the following example, we create an Ant path object, then iterate over the contents
of it.

Example 218. Using an Ant type

build.gradle

tasks.register('list') {
 doLast {
 def path = ant.path {
 fileset(dir: 'libs', includes: '*.jar')
 }
 path.list().each {
 println it
 }
 }
}

build.gradle.kts

import org.apache.tools.ant.types.Path

tasks.register("list") {
 doLast {
 val path = ant.withGroovyBuilder {
 "path" {
 "fileset"("dir" to "libs", "includes" to "*.jar")
 }
 } as Path
 path.list().forEach {
 println(it)
 }
 }
}

More information about AntBuilder can be found in 'Groovy in Action' 8.4 or at the Groovy Wiki.

Using custom Ant tasks in your build

To make custom tasks available in your build, you can use the taskdef (usually easier) or typedef
Ant task, just as you would in a build.xml file. You can then refer to the custom Ant task as you
would a built-in Ant task.

https://groovy-lang.org/scripting-ant.html

Example 219. Using a custom Ant task

build.gradle

tasks.register('check') {
 doLast {
 ant.taskdef(resource: 'checkstyletask.properties') {
 classpath {
 fileset(dir: 'libs', includes: '*.jar')
 }
 }
 ant.checkstyle(config: 'checkstyle.xml') {
 fileset(dir: 'src')
 }
 }
}

build.gradle.kts

tasks.register("check") {
 doLast {
 ant.withGroovyBuilder {
 "taskdef"("resource" to "checkstyletask.properties") {
 "classpath" {
 "fileset"("dir" to "libs", "includes" to "*.jar")
 }
 }
 "checkstyle"("config" to "checkstyle.xml") {
 "fileset"("dir" to "src")
 }
 }
 }
}

You can use Gradle’s dependency management to assemble the classpath to use for the custom
tasks. To do this, you need to define a custom configuration for the classpath, then add some
dependencies to the configuration. This is described in more detail in Declaring Dependencies.

declaring_dependencies.html

Example 220. Declaring the classpath for a custom Ant task

build.gradle

configurations {
 pmd
}

dependencies {
 pmd group: 'pmd', name: 'pmd', version: '4.2.5'
}

build.gradle.kts

val pmd = configurations.create("pmd")

dependencies {
 pmd(group = "pmd", name = "pmd", version = "4.2.5")
}

To use the classpath configuration, use the asPath property of the custom configuration.

Example 221. Using a custom Ant task and dependency management together

build.gradle

tasks.register('check') {
 doLast {
 ant.taskdef(name: 'pmd',
 classname: 'net.sourceforge.pmd.ant.PMDTask',
 classpath: configurations.pmd.asPath)
 ant.pmd(shortFilenames: 'true',
 failonruleviolation: 'true',
 rulesetfiles: file('pmd-rules.xml').toURI().toString()) {
 formatter(type: 'text', toConsole: 'true')
 fileset(dir: 'src')
 }
 }
}

build.gradle.kts

tasks.register("check") {
 doLast {
 ant.withGroovyBuilder {
 "taskdef"("name" to "pmd",
 "classname" to "net.sourceforge.pmd.ant.PMDTask",
 "classpath" to pmd.asPath)
 "pmd"("shortFilenames" to true,
 "failonruleviolation" to true,
 "rulesetfiles" to file("pmd-rules.xml").toURI().toString())
{
 "formatter"("type" to "text", "toConsole" to "true")
 "fileset"("dir" to "src")
 }
 }
 }
}

Importing an Ant build

You can use the ant.importBuild() method to import an Ant build into your Gradle project. When
you import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate
and execute the Ant targets in exactly the same way as Gradle tasks.

Example 222. Importing an Ant build

build.gradle

ant.importBuild 'build.xml'

build.gradle.kts

ant.importBuild("build.xml")

build.xml

<project>
 <target name="hello">
 <echo>Hello, from Ant</echo>
 </target>
</project>

Output of gradle hello

> gradle hello

> Task :hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

You can add a task which depends on an Ant target:

Example 223. Task that depends on Ant target

build.gradle

ant.importBuild 'build.xml'

tasks.register('intro') {
 dependsOn("hello")
 doLast {
 println 'Hello, from Gradle'
 }
}

build.gradle.kts

ant.importBuild("build.xml")

tasks.register("intro") {
 dependsOn("hello")
 doLast {
 println("Hello, from Gradle")
 }
}

Output of gradle intro

> gradle intro

> Task :hello
[ant:echo] Hello, from Ant

> Task :intro
Hello, from Gradle

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

Or, you can add behaviour to an Ant target:

Example 224. Adding behaviour to an Ant target

build.gradle

ant.importBuild 'build.xml'

hello {
 doLast {
 println 'Hello, from Gradle'
 }
}

build.gradle.kts

ant.importBuild("build.xml")

tasks.named("hello") {
 doLast {
 println("Hello, from Gradle")
 }
}

Output of gradle hello

> gradle hello

> Task :hello
[ant:echo] Hello, from Ant
Hello, from Gradle

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

It is also possible for an Ant target to depend on a Gradle task:

Example 225. Ant target that depends on Gradle task

build.gradle

ant.importBuild 'build.xml'

tasks.register('intro') {
 doLast {
 println 'Hello, from Gradle'
 }
}

build.gradle.kts

ant.importBuild("build.xml")

tasks.register("intro") {
 doLast {
 println("Hello, from Gradle")
 }
}

build.xml

<project>
 <target name="hello" depends="intro">
 <echo>Hello, from Ant</echo>
 </target>
</project>

Output of gradle hello

> gradle hello

> Task :intro
Hello, from Gradle

> Task :hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming
collision with existing Gradle tasks. To do this, use the AntBuilder.importBuild(java.lang.Object,
org.gradle.api.Transformer) method.

Example 226. Renaming imported Ant targets

build.gradle

ant.importBuild('build.xml') { antTargetName ->
 'a-' + antTargetName
}

build.gradle.kts

ant.importBuild("build.xml") { antTargetName ->
 "a-" + antTargetName
}

build.xml

<project>
 <target name="hello">
 <echo>Hello, from Ant</echo>
 </target>
</project>

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object-org.gradle.api.Transformer-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object-org.gradle.api.Transformer-

Output of gradle a-hello

> gradle a-hello

> Task :a-hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

Note that while the second argument to this method should be a Transformer, when programming
in Groovy we can simply use a closure instead of an anonymous inner class (or similar) due to
Groovy’s support for automatically coercing closures to single-abstract-method types.

Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. You
can set the property directly on the AntBuilder instance. The Ant properties are also available as a
Map which you can change. You can also use the Ant property task. Below are some examples of
how to do this.

Example 227. Setting an Ant property

build.gradle

ant.buildDir = buildDir
ant.properties.buildDir = buildDir
ant.properties['buildDir'] = buildDir
ant.property(name: 'buildDir', location: buildDir)

build.gradle.kts

ant.setProperty("buildDir", buildDir)
ant.properties.set("buildDir", buildDir)
ant.properties["buildDir"] = buildDir
ant.withGroovyBuilder {
 "property"("name" to "buildDir", "location" to "buildDir")
}

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the AntBuilder instance. The Ant properties are
also available as a Map. Below are some examples.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

Example 228. Getting an Ant property

build.xml

<property name="antProp" value="a property defined in an Ant build"/>

build.gradle

println ant.antProp
println ant.properties.antProp
println ant.properties['antProp']

build.gradle.kts

println(ant.getProperty("antProp"))
println(ant.properties.get("antProp"))
println(ant.properties["antProp"])

There are several ways to set an Ant reference:

Example 229. Setting an Ant reference

build.gradle

ant.path(id: 'classpath', location: 'libs')
ant.references.classpath = ant.path(location: 'libs')
ant.references['classpath'] = ant.path(location: 'libs')

build.gradle.kts

ant.withGroovyBuilder { "path"("id" to "classpath", "location" to "libs") }
ant.references.set("classpath", ant.withGroovyBuilder { "path"("location" to
"libs") })
ant.references["classpath"] = ant.withGroovyBuilder { "path"("location" to
"libs") }

build.xml

<path refid="classpath"/>

There are several ways to get an Ant reference:

Example 230. Getting an Ant reference

build.xml

<path id="antPath" location="libs"/>

build.gradle

println ant.references.antPath
println ant.references['antPath']

build.gradle.kts

println(ant.references.get("antPath"))
println(ant.references["antPath"])

Ant logging

Gradle maps Ant message priorities to Gradle log levels so that messages logged from Ant appear in
the Gradle output. By default, these are mapped as follows:

Table 8. Ant message priority mapping

Ant Message Priority Gradle Log Level

VERBOSE DEBUG

DEBUG DEBUG

INFO INFO

Ant Message Priority Gradle Log Level

WARN WARN

ERROR ERROR

Fine tuning Ant logging

The default mapping of Ant message priority to Gradle log level can sometimes be problematic. For
example, there is no message priority that maps directly to the LIFECYCLE log level, which is the
default for Gradle. Many Ant tasks log messages at the INFO priority, which means to expose those
messages from Gradle, a build would have to be run with the log level set to INFO, potentially
logging much more output than is desired.

Conversely, if an Ant task logs messages at too high of a level, to suppress those messages would
require the build to be run at a higher log level, such as QUIET. However, this could result in other,
desirable output being suppressed.

To help with this, Gradle allows the user to fine tune the Ant logging and control the mapping of
message priority to Gradle log level. This is done by setting the priority that should map to the
default Gradle LIFECYCLE log level using the AntBuilder.setLifecycleLogLevel(java.lang.String)
method. When this value is set, any Ant message logged at the configured priority or above will be
logged at least at LIFECYCLE. Any Ant message logged below this priority will be logged at most at
INFO.

For example, the following changes the mapping such that Ant INFO priority messages are exposed
at the LIFECYCLE log level.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html#setLifecycleLogLevel-java.lang.String-

Example 231. Fine tuning Ant logging

build.gradle

ant.lifecycleLogLevel = "INFO"

tasks.register('hello') {
 doLast {
 ant.echo(level: "info", message: "hello from info priority!")
 }
}

build.gradle.kts

ant.lifecycleLogLevel = AntBuilder.AntMessagePriority.INFO

tasks.register("hello") {
 doLast {
 ant.withGroovyBuilder {
 "echo"("level" to "info", "message" to "hello from info
priority!")
 }
 }
}

Output of gradle hello

> gradle hello

> Task :hello
[ant:echo] hello from info priority!

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

On the other hand, if the lifecycleLogLevel was set to ERROR, Ant messages logged at the WARN
priority would no longer be logged at the WARN log level. They would now be logged at the INFO level
and would be suppressed by default.

API

The Ant integration is provided by AntBuilder.

[1] There are command line switches to change this behavior. See Command-Line Interface

[2] There are command line switches to change this behavior. See Command-Line Interface

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/AntBuilder.html

[3] You might be wondering why there is neither an import for the StopExecutionException nor do we access it via its fully qualified
name. The reason is, that Gradle adds a set of default imports to your script (see Default imports).

[4] Any language element except for statement labels.

[5] Gradle supports partial multi-project builds (see Executing Multi-Project Builds).

[6] In Groovy you can execute Strings. To learn more about executing external processes with Groovy have a look in 'Groovy in
Action' 9.3.2 or at the Groovy wiki

Dependency Management

Learning the Basics

Dependency management in Gradle

What is dependency management?

Software projects rarely work in isolation. In most cases, a project relies on reusable functionality
in the form of libraries or is broken up into individual components to compose a modularized
system. Dependency management is a technique for declaring, resolving and using dependencies
required by the project in an automated fashion.

NOTE
For a general overview on the terms used throughout the user guide, refer to
Dependency Management Terminology.

Dependency management in Gradle

Gradle has built-in support for dependency management and lives up to the task of fulfilling typical
scenarios encountered in modern software projects. We’ll explore the main concepts with the help
of an example project. The illustration below should give you an rough overview on all the moving
parts.

Figure 12. Dependency management big picture

The example project builds Java source code. Some of the Java source files import classes from
Google Guava, a open-source library providing a wealth of utility functionality. In addition to
Guava, the project needs the JUnit libraries for compiling and executing test code.

Guava and JUnit represent the dependencies of this project. A build script developer can declare
dependencies for different scopes e.g. just for compilation of source code or for executing tests. In
Gradle, the scope of a dependency is called a configuration. For a full overview, see the reference
material on dependency types.

Often times dependencies come in the form of modules. You’ll need to tell Gradle where to find
those modules so they can be consumed by the build. The location for storing modules is called a
repository. By declaring repositories for a build, Gradle will know how to find and retrieve
modules. Repositories can come in different forms: as local directory or a remote repository. The
reference on repository types provides a broad coverage on this topic.

At runtime, Gradle will locate the declared dependencies if needed for operating a specific task. The
dependencies might need to be downloaded from a remote repository, retrieved from a local
directory or requires another project to be built in a multi-project setting. This process is called
dependency resolution. You can find a detailed discussion in How Gradle downloads dependencies.

Once resolved, the resolution mechanism stores the underlying files of a dependency in a local

https://github.com/google/guava
http://junit.org/junit5/

cache, also referred to as the dependency cache. Future builds reuse the files stored in the cache to
avoid unnecessary network calls.

Modules can provide additional metadata. Metadata is the data that describes the module in more
detail e.g. the coordinates for finding it in a repository, information about the project, or its authors.
As part of the metadata, a module can define that other modules are needed for it to work properly.
For example, the JUnit 5 platform module also requires the platform commons module. Gradle
automatically resolves those additional modules, so called transitive dependencies. If needed, you
can customize the behavior the handling of transitive dependencies to your project’s requirements.

Projects with tens or hundreds of declared dependencies can easily suffer from dependency hell.
Gradle provides sufficient tooling to visualize, navigate and analyze the dependency graph of a
project either with the help of a build scan or built-in tasks. Learn more in Viewing and debugging
dependencies.

Figure 13. Build scan dependencies report

Declaring repositories

Gradle can resolve dependencies from one or many repositories based on Maven, Ivy or flat
directory formats. Check out the full reference on all types of repositories for more information.

Declaring a publicly-available repository

Organizations building software may want to leverage public binary repositories to download and
consume open source dependencies. Popular public repositories include Maven Central and the
Google Android repository. Gradle provides built-in shorthand notations for these widely-used
repositories.

https://scans.gradle.com/get-started

Figure 14. Declaring a repository with the help of shorthand notations

Under the covers Gradle resolves dependencies from the respective URL of the public repository
defined by the shorthand notation. All shorthand notations are available via the RepositoryHandler
API. Alternatively, you can spell out the URL of the repository for more fine-grained control.

Maven Central repository

Maven Central is a popular repository hosting open source libraries for consumption by Java
projects.

To declare the Maven Central repository for your build add this to your script:

Example 232. Adding central Maven repository

build.gradle

repositories {
 mavenCentral()
}

build.gradle.kts

repositories {
 mavenCentral()
}

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
https://repo.maven.apache.org/maven2/

Google Maven repository

The Google repository hosts Android-specific artifacts including the Android SDK. For usage
examples, see the relevant Android documentation.

To declare the Google Maven repository add this to your build script:

Example 233. Adding Google Maven repository

build.gradle

repositories {
 google()
}

build.gradle.kts

repositories {
 google()
}

Declaring a custom repository by URL

Most enterprise projects set up a binary repository available only within an intranet. In-house
repositories enable teams to publish internal binaries, setup user management and security
measure and ensure uptime and availability. Specifying a custom URL is also helpful if you want to
declare a less popular, but publicly-available repository.

Repositories with custom URLs can be specified as Maven or Ivy repositories by calling the
corresponding methods available on the RepositoryHandler API. Gradle supports other protocols
than http or https as part of the custom URL e.g. file, sftp or s3. For a full coverage see the section
on supported repository types.

You can also define your own repository layout by using ivy { } repositories as they are very
flexible in terms of how modules are organised in a repository.

Declaring multiple repositories

You can define more than one repository for resolving dependencies. Declaring multiple
repositories is helpful if some dependencies are only available in one repository but not the other.
You can mix any type of repository described in the reference section.

This example demonstrates how to declare various named and custom URL repositories for a
project:

https://developer.android.com/studio/build/dependencies.html#google-maven
https://maven.google.com/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Example 234. Declaring multiple repositories

build.gradle

repositories {
 mavenCentral()
 maven {
 url "https://repo.spring.io/release"
 }
 maven {
 url "https://repository.jboss.org/maven2"
 }
}

build.gradle.kts

repositories {
 mavenCentral()
 maven {
 url = uri("https://repo.spring.io/release")
 }
 maven {
 url = uri("https://repository.jboss.org/maven2")
 }
}

NOTE

The order of declaration determines how Gradle will check for dependencies at
runtime. If Gradle finds a module descriptor in a particular repository, it will
attempt to download all of the artifacts for that module from the same repository.
You can learn more about the inner workings of dependency downloads.

Strict limitation to declared repositories

Maven POM metadata can reference additional repositories. These will be ignored by Gradle, which
will only use the repositories declared in the build itself.

NOTE
This is a reproducibility safe-guard but also a security protection. Without it, an
updated version of a dependency could pull artifacts from anywhere into your
build.

Supported repository types

Gradle supports a wide range of sources for dependencies, both in terms of format and in terms of
connectivity. You may resolve dependencies from:

• Different formats

◦ a Maven compatible artifact repository (e.g: Maven Central)

◦ an Ivy compatible artifact repository (including custom layouts)

◦ local (flat) directories

• with different connectivity

◦ authenticated repositories

◦ a wide variety of remote protocols such as HTTPS, SFTP, AWS S3 and Google Cloud Storage

Flat directory repository

Some projects might prefer to store dependencies on a shared drive or as part of the project source
code instead of a binary repository product. If you want to use a (flat) filesystem directory as a
repository, simply type:

Example 235. Flat repository resolver

build.gradle

repositories {
 flatDir {
 dirs 'lib'
 }
 flatDir {
 dirs 'lib1', 'lib2'
 }
}

build.gradle.kts

repositories {
 flatDir {
 dirs("lib")
 }
 flatDir {
 dirs("lib1", "lib2")
 }
}

This adds repositories which look into one or more directories for finding dependencies.

This type of repository does not support any meta-data formats like Ivy XML or Maven POM files.
Instead, Gradle will dynamically generate a module descriptor (without any dependency
information) based on the presence of artifacts.

NOTE

As Gradle prefers to use modules whose descriptor has been created from real
meta-data rather than being generated, flat directory repositories cannot be used to
override artifacts with real meta-data from other repositories declared in the build.

For example, if Gradle finds only jmxri-1.2.1.jar in a flat directory repository, but
jmxri-1.2.1.pom in another repository that supports meta-data, it will use the second
repository to provide the module.

For the use case of overriding remote artifacts with local ones consider using an Ivy
or Maven repository instead whose URL points to a local directory.

If you only work with flat directory repositories you don’t need to set all attributes of a dependency.

Local repositories

The following sections describe repositories format, Maven or Ivy. These can be declared as local
repositories, using a local filesystem path to access them.

The difference with the flat directory repository is that they do respect a format and contain
metadata.

When such a repository is configured, Gradle totally bypasses its dependency cache for it as there
can be no guarantee that content may not change between executions. Because of that limitation,
they can have a performance impact.

They also make build reproducibility much harder to achieve and their use should be limited to
tinkering or prototyping.

Maven repositories

Many organizations host dependencies in an in-house Maven repository only accessible within the
company’s network. Gradle can declare Maven repositories by URL.

For adding a custom Maven repository you can do:

Example 236. Adding custom Maven repository

build.gradle

repositories {
 maven {
 url "http://repo.mycompany.com/maven2"
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/maven2")
 }
}

Setting up composite Maven repositories

Sometimes a repository will have the POMs published to one location, and the JARs and other
artifacts published at another location. To define such a repository, you can do:

Example 237. Adding additional Maven repositories for JAR files

build.gradle

repositories {
 maven {
 // Look for POMs and artifacts, such as JARs, here
 url "http://repo2.mycompany.com/maven2"
 // Look for artifacts here if not found at the above location
 artifactUrls "http://repo.mycompany.com/jars"
 artifactUrls "http://repo.mycompany.com/jars2"
 }
}

build.gradle.kts

repositories {
 maven {
 // Look for POMs and artifacts, such as JARs, here
 url = uri("http://repo2.mycompany.com/maven2")
 // Look for artifacts here if not found at the above location
 artifactUrls("http://repo.mycompany.com/jars")
 artifactUrls("http://repo.mycompany.com/jars2")
 }
}

Gradle will look at the base url location for the POM and the JAR. If the JAR can’t be found there, the
extra artifactUrls are used to look for JARs.

Accessing authenticated Maven repositories

You can specify credentials for Maven repositories secured by different type of authentication.

See Supported repository transport protocols for authentication options.

Local Maven repository

Gradle can consume dependencies available in the local Maven repository. Declaring this
repository is beneficial for teams that publish to the local Maven repository with one project and
consume the artifacts by Gradle in another project.

NOTE
Gradle stores resolved dependencies in its own cache. A build does not need to
declare the local Maven repository even if you resolve dependencies from a Maven-
based, remote repository.

https://maven.apache.org/guides/introduction/introduction-to-repositories.html

WARNING
Before adding Maven local as a repository, you should make sure this is really
required.

To declare the local Maven cache as a repository add this to your build script:

Example 238. Adding the local Maven cache as a repository

build.gradle

repositories {
 mavenLocal()
}

build.gradle.kts

repositories {
 mavenLocal()
}

Gradle uses the same logic as Maven to identify the location of your local Maven cache. If a local
repository location is defined in a settings.xml, this location will be used. The settings.xml in
USER_HOME/.m2 takes precedence over the settings.xml in M2_HOME/conf. If no settings.xml is
available, Gradle uses the default location USER_HOME/.m2/repository.

The case for mavenLocal()

As a general advice, you should avoid adding mavenLocal() as a repository. There are different
issues with using mavenLocal() that you should be aware of:

• Maven uses it as a cache, not a repository, meaning it can contain partial modules.

◦ For example, if Maven never downloaded the source or javadoc files for a given module,
Gradle will not find them either since it searches for files in a single repository once a
module has been found.

• As a local repository, Gradle does not trust its content, because:

◦ Origin of artifacts cannot be tracked, which is a correctness and security problem

◦ Artifacts can be easily overwritten, which is a security, correctness and reproducibility
problem

• To mitigate the fact that metadata and/or artifacts can be changed, Gradle does not perform any
caching for local repositories

◦ As a consequence, your builds are slower

◦ Given that order of repositories is important, adding mavenLocal() first means that all your

builds are going to be slower

There are a few cases where you might have to use mavenLocal():

• For interoperability with Maven

◦ For example, project A is built with Maven, project B is built with Gradle, and you need to
share the artifacts during development

◦ It is always preferable to use an internal full featured repository instead

◦ In case this is not possible, you should limit this to local builds only

• For interoperability with Gradle itself

◦ In a multi-repository world, you want to check that changes to project A work with project B

◦ It is preferable to use composite builds for this use case

◦ If for some reason neither composite builds nor full featured repository are possible, then
mavenLocal() is a last resort option

After all these warnings, if you end up using mavenLocal(), consider combining it with a repository
filter. This will make sure it only provides what is expected and nothing else.

Ivy repositories

Organizations might decide to host dependencies in an in-house Ivy repository. Gradle can declare
Ivy repositories by URL.

Defining an Ivy repository with a standard layout

To declare an Ivy repository using the standard layout no additional customization is needed. You
just declare the URL.

Example 239. Ivy repository

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 }
}

build.gradle.kts

repositories {
 ivy {
 url = uri("http://repo.mycompany.com/repo")
 }
}

Defining a named layout for an Ivy repository

You can specify that your repository conforms to the Ivy or Maven default layout by using a named
layout.

Example 240. Ivy repository with named layout

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 layout "maven"
 }
}

build.gradle.kts

repositories {
 ivy {
 url = uri("http://repo.mycompany.com/repo")
 layout("maven")
 }
}

Valid named layout values are 'gradle' (the default), 'maven' and 'ivy'. See
IvyArtifactRepository.layout(java.lang.String) in the API documentation for details of these named
layouts.

Defining custom pattern layout for an Ivy repository

To define an Ivy repository with a non-standard layout, you can define a pattern layout for the
repository:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String)

Example 241. Ivy repository with pattern layout

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 patternLayout {
 artifact "[module]/[revision]/[type]/[artifact].[ext]"
 }
 }
}

build.gradle.kts

repositories {
 ivy {
 url = uri("http://repo.mycompany.com/repo")
 patternLayout {
 artifact("[module]/[revision]/[type]/[artifact].[ext]")
 }
 }
}

To define an Ivy repository which fetches Ivy files and artifacts from different locations, you can
define separate patterns to use to locate the Ivy files and artifacts:

Each artifact or ivy specified for a repository adds an additional pattern to use. The patterns are
used in the order that they are defined.

Example 242. Ivy repository with multiple custom patterns

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 patternLayout {
 artifact "3rd-party-
artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
 artifact "company-
artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
 ivy "ivy-files/[organisation]/[module]/[revision]/ivy.xml"
 }
 }
}

build.gradle.kts

repositories {
 ivy {
 url = uri("http://repo.mycompany.com/repo")
 patternLayout {
 artifact("3rd-party-
artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]")
 artifact("company-
artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]")
 ivy("ivy-files/[organisation]/[module]/[revision]/ivy.xml")
 }
 }
}

Optionally, a repository with pattern layout can have its 'organisation' part laid out in Maven style,
with forward slashes replacing dots as separators. For example, the organisation my.company would
then be represented as my/company.

Example 243. Ivy repository with Maven compatible layout

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 patternLayout {
 artifact "[organisation]/[module]/[revision]/[artifact]-
[revision].[ext]"
 m2compatible = true
 }
 }
}

build.gradle.kts

repositories {
 ivy {
 url = uri("http://repo.mycompany.com/repo")
 patternLayout {
 artifact("[organisation]/[module]/[revision]/[artifact]-
[revision].[ext]")
 setM2compatible(true)
 }
 }
}

Accessing authenticated Ivy repositories

You can specify credentials for Ivy repositories secured by basic authentication.

Example 244. Ivy repository with authentication

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com"
 credentials {
 username "user"
 password "password"
 }
 }
}

build.gradle.kts

repositories {
 ivy {
 url = uri("http://repo.mycompany.com")
 credentials {
 username = "user"
 password = "password"
 }
 }
}

See Supported repository transport protocols for authentication options.

Repository content filtering

Gradle exposes an API to declare what a repository may or may not contain. There are different use
cases for it:

• performance, when you know a dependency will never be found in a specific repository

• security, by avoiding leaking what dependencies are used in a private project

• reliability, when some repositories contain corrupted metadata or artifacts

It’s even more important when considering that the declared order of repositories matter.

Declaring a repository filter

Example 245. Declaring repository contents

build.gradle

repositories {
 maven {
 url "https://repo.mycompany.com/maven2"
 content {
 // this repository *only* contains artifacts with group
"my.company"
 includeGroup "my.company"
 }
 }
 mavenCentral {
 content {
 // this repository contains everything BUT artifacts with group
starting with "my.company"
 excludeGroupByRegex "my\\.company.*"
 }
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("https://repo.mycompany.com/maven2")
 content {
 // this repository *only* contains artifacts with group
"my.company"
 includeGroup("my.company")
 }
 }
 mavenCentral {
 content {
 // this repository contains everything BUT artifacts with group
starting with "my.company"
 excludeGroupByRegex("my\\.company.*")
 }
 }
}

By default, repositories include everything and exclude nothing:

• If you declare an include, then it excludes everything but what is included.

• If you declare an exclude, then it includes everything but what is excluded.

• If you declare both includes and excludes, then it includes only what is explicitly included and
not excluded.

It is possible to filter either by explicit group, module or version, either strictly or using regular
expressions. When using a strict version, it is possible to use a version range, using the format
supported by Gradle. In addition, there are filtering options by resolution context: configuration
name or even configuration attributes. See RepositoryContentDescriptor for details.

Declaring content exclusively found in one repository

Filters declared using the repository-level content filter are not exclusive. This means that declaring
that a repository includes an artifact doesn’t mean that the other repositories can’t have it either:
you must declare what every repository contains in extension.

Alternatively, Gradle provides an API which lets you declare that a repository exclusively includes
an artifact. If you do so:

• an artifact declared in a repository can’t be found in any other

• exclusive repository content must be declared in extension (just like for repository-level
content)

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/repositories/RepositoryContentDescriptor.html

Example 246. Declaring exclusive repository contents

build.gradle

repositories {
 // This repository will _not_ be searched for artifacts in my.company
 // despite being declared first
 mavenCentral()
 exclusiveContent {
 forRepository {
 maven {
 url "https://repo.mycompany.com/maven2"
 }
 }
 filter {
 // this repository *only* contains artifacts with group
"my.company"
 includeGroup "my.company"
 }
 }
}

build.gradle.kts

repositories {
 // This repository will _not_ be searched for artifacts in my.company
 // despite being declared first
 mavenCentral()
 exclusiveContent {
 forRepository {
 maven {
 url = uri("https://repo.mycompany.com/maven2")
 }
 }
 filter {
 // this repository *only* contains artifacts with group
"my.company"
 includeGroup("my.company")
 }
 }
}

It is possible to filter either by explicit group, module or version, either strictly or using regular
expressions. See InclusiveRepositoryContentDescriptor for details.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/repositories/InclusiveRepositoryContentDescriptor.html

NOTE

If you leverage exclusive content filtering in the pluginManagement section of the
settings.gradle(.kts), it becomes illegal to add more repositories through the
project buildscript.repositories. In that case, the build configuration will fail.

Your options are either to declare all repositories in settings or to use non-exclusive
content filtering.

Maven repository filtering

For Maven repositories, it’s often the case that a repository would either contain releases or
snapshots. Gradle lets you declare what kind of artifacts are found in a repository using this DSL:

Example 247. Splitting snapshots and releases

build.gradle

repositories {
 maven {
 url "https://repo.mycompany.com/releases"
 mavenContent {
 releasesOnly()
 }
 }
 maven {
 url "https://repo.mycompany.com/snapshots"
 mavenContent {
 snapshotsOnly()
 }
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("https://repo.mycompany.com/releases")
 mavenContent {
 releasesOnly()
 }
 }
 maven {
 url = uri("https://repo.mycompany.com/snapshots")
 mavenContent {
 snapshotsOnly()
 }
 }
}

Supported metadata sources

When searching for a module in a repository, Gradle, by default, checks for supported metadata file
formats in that repository. In a Maven repository, Gradle looks for a .pom file, in an ivy repository it
looks for an ivy.xml file and in a flat directory repository it looks directly for .jar files as it does not
expect any metadata. Starting with 5.0, Gradle also looks for .module (Gradle module metadata) files.

However, if you define a customized repository you might want to configure this behavior. For
example, you can define a Maven repository without .pom files but only jars. To do so, you can

configure metadata sources for any repository.

Example 248. Maven repository that supports artifacts without metadata

build.gradle

repositories {
 maven {
 url "http://repo.mycompany.com/repo"
 metadataSources {
 mavenPom()
 artifact()
 }
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/repo")
 metadataSources {
 mavenPom()
 artifact()
 }
 }
}

You can specify multiple sources to tell Gradle to keep looking if a file was not found. In that case,
the order of checking for sources is predefined.

The following metadata sources are supported:

Table 9. Supported metadata sources

Metadata
source

Description Orde
r

Mave
n

Ivy / flat
dir

gradleMetadata() Look for Gradle .module files 1st yes yes

mavenPom() Look for Maven .pom files 2nd yes yes

ivyDescriptor() Look for ivy.xml files 2nd no yes

artifact() Look directly for artifact 3rd yes yes

NOTE

The defaults for Ivy and Maven repositories change with Gradle 6.0. Before 6.0,
artifact() was included in the defaults. Leading to some inefficiency when modules
are missing completely. To restore this behavior, for example, for Maven central
you can use mavenCentral { metadataSources { mavenPom(); artifact() } }. In a
similar way, you can opt into the new behavior in older Gradle versions using
mavenCentral { metadataSources { mavenPom() } }

Since Gradle 5.3, when parsing a metadata file, be it Ivy or Maven, Gradle will look for a marker
indicating that a matching Gradle Module Metadata files exists. If it is found, it will be used instead
of the Ivy or Maven file.

Starting with Gradle 5.6, you can disable this behavior by adding ignoreGradleMetadataRedirection()
to the metadataSources declaration.

Example 249. Maven repository that does not use gradle metadata redirection

build.gradle

repositories {
 maven {
 url "http://repo.mycompany.com/repo"
 metadataSources {
 mavenPom()
 artifact()
 ignoreGradleMetadataRedirection()
 }
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/repo")
 metadataSources {
 mavenPom()
 artifact()
 ignoreGradleMetadataRedirection()
 }
 }
}

Plugin repositories vs. build repositories

Gradle will use repositories at two different phases during your build.

The first phase is when configuring your build and loading the plugins it applied. To do that Gradle
will use a special set of repositories.

The second phase is during dependency resolution. At this point Gradle will use the repositories
declared in your project, as shown in the previous sections.

Plugin repositories

By default Gradle will use the Gradle plugin portal to look for plugins.

However, for different reasons, there are plugins available in other, public or not, repositories.
When a build requires one of these plugins, additional repositories need to be specified so that
Gradle knows where to search.

As the way to declare the repositories and what they are expected to contain depends on the way
the plugin is applied, it is best to refer to Custom Plugin Repositories.

Centralizing repositories declaration

Instead of declaring repositories in every subproject of your build or via an allprojects block,
Gradle offers a way to declare them in a central place for all project.

NOTE Central declaration of repositories is an incubating feature

Repositories used by convention by every subproject can be declared in the settings.gradle(.kts)
file:

Example 250. Declaring a Maven repository in settings

settings.gradle

dependencyResolutionManagement {
 repositories {
 mavenCentral()
 }
}

settings.gradle.kts

dependencyResolutionManagement {
 repositories {
 mavenCentral()
 }
}

http://plugins.gradle.org

The dependencyResolutionManagement repositories block accepts the same notations as in a project,
which includes Maven or Ivy repositories, with or without credentials, etc.

By default, repositories declared by a project will override whatever is declared in settings. You
can change this behavior to make sure that you always use the settings repositories:

Example 251. Preferring settings repositories

settings.gradle

dependencyResolutionManagement {
 repositoriesMode.set(RepositoriesMode.PREFER_SETTINGS)
}

settings.gradle.kts

dependencyResolutionManagement {
 repositoriesMode.set(RepositoriesMode.PREFER_SETTINGS)
}

If, for some reason, a project or a plugin declares a repository in a project, Gradle would warn you.
You can however make it fail the build if you want to enforce that only settings repositories are
used:

Example 252. Enforcing settings repositories

settings.gradle

dependencyResolutionManagement {
 repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
}

settings.gradle.kts

dependencyResolutionManagement {
 repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
}

Eventually, the default is equivalent to setting PREFER_PROJECT:

Example 253. Preferring project repositories

settings.gradle

dependencyResolutionManagement {
 repositoriesMode.set(RepositoriesMode.PREFER_PROJECT)
}

settings.gradle.kts

dependencyResolutionManagement {
 repositoriesMode.set(RepositoriesMode.PREFER_PROJECT)
}

Supported repository transport protocols

Maven and Ivy repositories support the use of various transport protocols. At the moment the
following protocols are supported:

Table 10. Repository transport protocols

Typ
e

Credential types Link

file none

http username/password Documentati
on

http
s

username/password Documentati
on

sftp username/password Documentati
on

s3 access key/secret key/session token or Environment variables Documentati
on

gcs default application credentials sourced from well known files, Environment
variables etc.

Documentati
on

NOTE

Username and password should never be checked in plain text into version control
as part of your build file. You can store the credentials in a local gradle.properties
file and use one of the open source Gradle plugins for encrypting and consuming
credentials e.g. the credentials plugin.

The transport protocol is part of the URL definition for a repository. The following build script
demonstrates how to create HTTP-based Maven and Ivy repositories:

https://developers.google.com/identity/protocols/application-default-credentials
https://plugins.gradle.org/plugin/nu.studer.credentials

Example 254. Declaring a Maven and Ivy repository

build.gradle

repositories {
 maven {
 url "http://repo.mycompany.com/maven2"
 }

 ivy {
 url "http://repo.mycompany.com/repo"
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/maven2")
 }

 ivy {
 url = uri("http://repo.mycompany.com/repo")
 }
}

The following example shows how to declare SFTP repositories:

Example 255. Using the SFTP protocol for a repository

build.gradle

repositories {
 maven {
 url "sftp://repo.mycompany.com:22/maven2"
 credentials {
 username "user"
 password "password"
 }
 }

 ivy {
 url "sftp://repo.mycompany.com:22/repo"
 credentials {
 username "user"
 password "password"
 }
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("sftp://repo.mycompany.com:22/maven2")
 credentials {
 username = "user"
 password = "password"
 }
 }

 ivy {
 url = uri("sftp://repo.mycompany.com:22/repo")
 credentials {
 username = "user"
 password = "password"
 }
 }
}

For details on HTTP related authentication, see the section HTTP(S) authentication schemes
configuration.

When using an AWS S3 backed repository you need to authenticate using AwsCredentials,

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.credentials.AwsCredentials.html

providing access-key and a private-key. The following example shows how to declare a S3 backed
repository and providing AWS credentials:

Example 256. Declaring an S3 backed Maven and Ivy repository

build.gradle

repositories {
 maven {
 url "s3://myCompanyBucket/maven2"
 credentials(AwsCredentials) {
 accessKey "someKey"
 secretKey "someSecret"
 // optional
 sessionToken "someSTSToken"
 }
 }

 ivy {
 url "s3://myCompanyBucket/ivyrepo"
 credentials(AwsCredentials) {
 accessKey "someKey"
 secretKey "someSecret"
 // optional
 sessionToken "someSTSToken"
 }
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("s3://myCompanyBucket/maven2")
 credentials(AwsCredentials::class) {
 accessKey = "someKey"
 secretKey = "someSecret"
 // optional
 sessionToken = "someSTSToken"
 }
 }

 ivy {
 url = uri("s3://myCompanyBucket/ivyrepo")
 credentials(AwsCredentials::class) {
 accessKey = "someKey"
 secretKey = "someSecret"
 // optional
 sessionToken = "someSTSToken"
 }
 }
}

You can also delegate all credentials to the AWS sdk by using the AwsImAuthentication. The
following example shows how:

Example 257. Declaring an S3 backed Maven and Ivy repository using IAM

build.gradle

repositories {
 maven {
 url "s3://myCompanyBucket/maven2"
 authentication {
 awsIm(AwsImAuthentication) // load from EC2 role or env var
 }
 }

 ivy {
 url "s3://myCompanyBucket/ivyrepo"
 authentication {
 awsIm(AwsImAuthentication)
 }
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("s3://myCompanyBucket/maven2")
 authentication {
 create<AwsImAuthentication>("awsIm") // load from EC2 role or env
var
 }
 }

 ivy {
 url = uri("s3://myCompanyBucket/ivyrepo")
 authentication {
 create<AwsImAuthentication>("awsIm")
 }
 }
}

For details on AWS S3 related authentication, see the section AWS S3 repositories configuration.

When using a Google Cloud Storage backed repository default application credentials will be used
with no further configuration required:

Example 258. Declaring a Google Cloud Storage backed Maven and Ivy repository using default application
credentials

build.gradle

repositories {
 maven {
 url "gcs://myCompanyBucket/maven2"
 }

 ivy {
 url "gcs://myCompanyBucket/ivyrepo"
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("gcs://myCompanyBucket/maven2")
 }

 ivy {
 url = uri("gcs://myCompanyBucket/ivyrepo")
 }
}

For details on Google GCS related authentication, see the section Google Cloud Storage repositories
configuration.

HTTP(S) authentication schemes configuration

When configuring a repository using HTTP or HTTPS transport protocols, multiple authentication
schemes are available. By default, Gradle will attempt to use all schemes that are supported by the
Apache HttpClient library, documented here. In some cases, it may be preferable to explicitly
specify which authentication schemes should be used when exchanging credentials with a remote
server. When explicitly declared, only those schemes are used when authenticating to a remote
repository.

You can specify credentials for Maven repositories secured by basic authentication using
PasswordCredentials.

http://hc.apache.org/httpcomponents-client-ga/tutorial/html/authentication.html#d5e625
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/credentials/PasswordCredentials.html

Example 259. Accessing password-protected Maven repository

build.gradle

repositories {
 maven {
 url "http://repo.mycompany.com/maven2"
 credentials {
 username "user"
 password "password"
 }
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/maven2")
 credentials {
 username = "user"
 password = "password"
 }
 }
}

The following example show how to configure a repository to use only DigestAuthentication:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/authentication/http/DigestAuthentication.html

Example 260. Configure repository to use only digest authentication

build.gradle

repositories {
 maven {
 url 'https://repo.mycompany.com/maven2'
 credentials {
 username "user"
 password "password"
 }
 authentication {
 digest(DigestAuthentication)
 }
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("https://repo.mycompany.com/maven2")
 credentials {
 username = "user"
 password = "password"
 }
 authentication {
 create<DigestAuthentication>("digest")
 }
 }
}

Currently supported authentication schemes are:

BasicAuthentication

Basic access authentication over HTTP. When using this scheme, credentials are sent
preemptively.

DigestAuthentication

Digest access authentication over HTTP.

HttpHeaderAuthentication

Authentication based on any custom HTTP header, e.g. private tokens, OAuth tokens, etc.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/authentication/http/BasicAuthentication.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/authentication/http/DigestAuthentication.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/authentication/http/HttpHeaderAuthentication.html

Using preemptive authentication

Gradle’s default behavior is to only submit credentials when a server responds with an
authentication challenge in the form of an HTTP 401 response. In some cases, the server will
respond with a different code (ex. for repositories hosted on GitHub a 404 is returned) causing
dependency resolution to fail. To get around this behavior, credentials may be sent to the server
preemptively. To enable preemptive authentication simply configure your repository to explicitly
use the BasicAuthentication scheme:

Example 261. Configure repository to use preemptive authentication

build.gradle

repositories {
 maven {
 url 'https://repo.mycompany.com/maven2'
 credentials {
 username "user"
 password "password"
 }
 authentication {
 basic(BasicAuthentication)
 }
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("https://repo.mycompany.com/maven2")
 credentials {
 username = "user"
 password = "password"
 }
 authentication {
 create<BasicAuthentication>("basic")
 }
 }
}

Using HTTP header authentication

You can specify any HTTP header for secured Maven repositories requiring token, OAuth2 or other
HTTP header based authentication using HttpHeaderCredentials with HttpHeaderAuthentication.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/authentication/http/BasicAuthentication.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/credentials/HttpHeaderCredentials.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/authentication/http/HttpHeaderAuthentication.html

Example 262. Accessing header-protected Maven repository

build.gradle

repositories {
 maven {
 url "http://repo.mycompany.com/maven2"
 credentials(HttpHeaderCredentials) {
 name = "Private-Token"
 value = "TOKEN"
 }
 authentication {
 header(HttpHeaderAuthentication)
 }
 }
}

build.gradle.kts

repositories {
 maven {
 url = uri("http://repo.mycompany.com/maven2")
 credentials(HttpHeaderCredentials::class) {
 name = "Private-Token"
 value = "TOKEN"
 }
 authentication {
 create<HttpHeaderAuthentication>("header")
 }
 }
}

AWS S3 repositories configuration

S3 configuration properties

The following system properties can be used to configure the interactions with s3 repositories:

org.gradle.s3.endpoint

Used to override the AWS S3 endpoint when using a non AWS, S3 API compatible, storage
service.

org.gradle.s3.maxErrorRetry

Specifies the maximum number of times to retry a request in the event that the S3 server
responds with a HTTP 5xx status code. When not specified a default value of 3 is used.

S3 URL formats

S3 URL’s are 'virtual-hosted-style' and must be in the following format

s3://<bucketName>[.<regionSpecificEndpoint>]/<s3Key>

e.g. s3://myBucket.s3.eu-central-1.amazonaws.com/maven/release

• myBucket is the AWS S3 bucket name.

• s3.eu-central-1.amazonaws.com is the optional region specific endpoint.

• /maven/release is the AWS S3 key (unique identifier for an object within a bucket)

S3 proxy settings

A proxy for S3 can be configured using the following system properties:

• https.proxyHost

• https.proxyPort

• https.proxyUser

• https.proxyPassword

• http.nonProxyHosts

If the org.gradle.s3.endpoint property has been specified with a HTTP (not HTTPS) URI the
following system proxy settings can be used:

• http.proxyHost

• http.proxyPort

• http.proxyUser

• http.proxyPassword

• http.nonProxyHosts

AWS S3 V4 Signatures (AWS4-HMAC-SHA256)

Some of the AWS S3 regions (eu-central-1 - Frankfurt) require that all HTTP requests are signed in
accordance with AWS’s signature version 4. It is recommended to specify S3 URL’s containing the
region specific endpoint when using buckets that require V4 signatures. e.g.

s3://somebucket.s3.eu-central-1.amazonaws.com/maven/release

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

NOTE

When a region-specific endpoint is not specified for buckets requiring V4
Signatures, Gradle will use the default AWS region (us-east-1) and the following
warning will appear on the console:

Attempting to re-send the request to …. with AWS V4
authentication. To avoid this warning in the future, use region-
specific endpoint to access buckets located in regions that
require V4 signing.

Failing to specify the region-specific endpoint for buckets requiring V4 signatures
means:

• 3 round-trips to AWS, as opposed to one, for every file upload and download.

• Depending on location - increased network latencies and slower builds.

• Increased likelihood of transmission failures.

AWS S3 Cross Account Access

Some organizations may have multiple AWS accounts, e.g. one for each team. The AWS account of
the bucket owner is often different from the artifact publisher and consumers. The bucket owner
needs to be able to grant the consumers access otherwise the artifacts will only be usable by the
publisher’s account. This is done by adding the bucket-owner-full-control Canned ACL to the
uploaded objects. Gradle will do this in every upload. Make sure the publisher has the required IAM
permission, PutObjectAcl (and PutObjectVersionAcl if bucket versioning is enabled), either directly
or via an assumed IAM Role (depending on your case). You can read more at AWS S3 Access
Permissions.

Google Cloud Storage repositories configuration

GCS configuration properties

The following system properties can be used to configure the interactions with Google Cloud
Storage repositories:

org.gradle.gcs.endpoint

Used to override the Google Cloud Storage endpoint when using a non-Google Cloud Platform,
Google Cloud Storage API compatible, storage service.

org.gradle.gcs.servicePath

Used to override the Google Cloud Storage root service path which the Google Cloud Storage
client builds requests from, defaults to /.

GCS URL formats

Google Cloud Storage URL’s are 'virtual-hosted-style' and must be in the following format
gcs://<bucketName>/<objectKey>

e.g. gcs://myBucket/maven/release

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://cloud.google.com/storage/
https://cloud.google.com/storage/

• myBucket is the Google Cloud Storage bucket name.

• /maven/release is the Google Cloud Storage key (unique identifier for an object within a bucket)

Handling credentials

Repository credentials should never be part of your build script but rather be kept external. Gradle
provides an API in artifact repositories that allows you to declare only the type of required
credentials. Credential values are looked up from the Gradle Properties during the build that
requires them.

For example, given repository configuration:

Example 263. Externalized repository credentials

build.gradle

 repositories {
 maven {
 name = 'mySecureRepository'
 credentials(PasswordCredentials)
 // url = uri(<<some repository url>>)
 }
 }

build.gradle.kts

 repositories {
 maven {
 name = "mySecureRepository"
 credentials(PasswordCredentials::class)
 // url = uri(<<some repository url>>)
 }
 }

The username and password will be looked up from mySecureRepositoryUsername and
mySecureRepositoryPassword properties.

Note that the configuration property prefix - the identity - is determined from the repository name.
Credentials can then be provided in any of supported ways for Gradle Properties -
gradle.properties file, command line arguments, environment variables or a combination of those
options.

Also, note that credentials will only be required if the invoked build requires them. If for example a
project is configured to publish artifacts to a secured repository, but the build does not invoke
publishing task, Gradle will not require publishing credentials to be present. On the other hand, if

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/repositories/AuthenticationSupported.html#credentials-java.lang.Class-

the build needs to execute a task that requires credentials at some point, Gradle will check for
credential presence first thing and will not start running any of the tasks if it knows that the build
will fail at a later point because of missing credentials.

Here is a downloadable sample that demonstrates the concept in more detail.

Lookup is only supported for credentials listed in the Table 11.

Table 11. Credentials that support value lookup and their corresponding
properties

Type Argument Base property
name

Required
?

PasswordCredentials username Username required

password Password required

AwsCredentials accessKey AccessKey required

secretKey SecretKey required

sessionToken SessionToken optional

HttpHeaderCredentials name AuthHeaderName required

value AuthHeaderValue required

Declaring dependencies

Before looking at dependency declarations themselves, the concept of dependency configuration
needs to be defined.

What are dependency configurations

Every dependency declared for a Gradle project applies to a specific scope. For example some
dependencies should be used for compiling source code whereas others only need to be available at
runtime. Gradle represents the scope of a dependency with the help of a Configuration. Every
configuration can be identified by a unique name.

Many Gradle plugins add pre-defined configurations to your project. The Java plugin, for example,
adds configurations to represent the various classpaths it needs for source code compilation,
executing tests and the like. See the Java plugin chapter for an example.

../samples/sample_publishing_credentials.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/credentials/PasswordCredentials.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/credentials/AwsCredentials.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/credentials/HttpHeaderCredentials.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.Configuration.html

Figure 15. Configurations use declared dependencies for specific purposes

For more examples on the usage of configurations to navigate, inspect and post-process metadata
and artifacts of assigned dependencies, have a look at the resolution result APIs.

Configuration inheritance and composition

A configuration can extend other configurations to form an inheritance hierarchy. Child
configurations inherit the whole set of dependencies declared for any of its superconfigurations.

Configuration inheritance is heavily used by Gradle core plugins like the Java plugin. For example
the testImplementation configuration extends the implementation configuration. The configuration
hierarchy has a practical purpose: compiling tests requires the dependencies of the source code
under test on top of the dependencies needed write the test class. A Java project that uses JUnit to
write and execute test code also needs Guava if its classes are imported in the production source
code.

Figure 16. Configuration inheritance provided by the Java plugin

Under the covers the testImplementation and implementation configurations form an inheritance

hierarchy by calling the method
Configuration.extendsFrom(org.gradle.api.artifacts.Configuration[]). A configuration can extend
any other configuration irrespective of its definition in the build script or a plugin.

Let’s say you wanted to write a suite of smoke tests. Each smoke test makes a HTTP call to verify a
web service endpoint. As the underlying test framework the project already uses JUnit. You can
define a new configuration named smokeTest that extends from the testImplementation
configuration to reuse the existing test framework dependency.

Example 264. Extending a configuration from another configuration

build.gradle

configurations {
 smokeTest.extendsFrom testImplementation
}

dependencies {
 testImplementation 'junit:junit:4.13'
 smokeTest 'org.apache.httpcomponents:httpclient:4.5.5'
}

build.gradle.kts

val smokeTest by configurations.creating {
 extendsFrom(configurations.testImplementation.get())
}

dependencies {
 testImplementation("junit:junit:4.13")
 smokeTest("org.apache.httpcomponents:httpclient:4.5.5")
}

Resolvable and consumable configurations

Configurations are a fundamental part of dependency resolution in Gradle. In the context of
dependency resolution, it is useful to distinguish between a consumer and a producer. Along these
lines, configurations have at least 3 different roles:

1. to declare dependencies

2. as a consumer, to resolve a set of dependencies to files

3. as a producer, to expose artifacts and their dependencies for consumption by other projects
(such consumable configurations usually represent the variants the producer offers to its
consumers)

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:extendsFrom(org.gradle.api.artifacts.Configuration[])

For example, to express that an application app depends on library lib, at least one configuration is
required:

Example 265. Configurations are used to declare dependencies

build.gradle

configurations {
 // declare a "configuration" named "someConfiguration"
 someConfiguration
}
dependencies {
 // add a project dependency to the "someConfiguration" configuration
 someConfiguration project(":lib")
}

build.gradle.kts

// declare a "configuration" named "someConfiguration"
val someConfiguration by configurations.creating

dependencies {
 // add a project dependency to the "someConfiguration" configuration
 someConfiguration(project(":lib"))
}

Configurations can inherit dependencies from other configurations by extending from them. Now,
notice that the code above doesn’t tell us anything about the intended consumer of this
configuration. In particular, it doesn’t tell us how the configuration is meant to be used. Let’s say
that lib is a Java library: it might expose different things, such as its API, implementation, or test
fixtures. It might be necessary to change how we resolve the dependencies of app depending upon
the task we’re performing (compiling against the API of lib, executing the application, compiling
tests, etc.). To address this problem, you’ll often find companion configurations, which are meant to
unambiguously declare the usage:

Example 266. Configurations representing concrete dependency graphs

build.gradle

configurations {
 // declare a configuration that is going to resolve the compile classpath
of the application
 compileClasspath.extendsFrom(someConfiguration)

 // declare a configuration that is going to resolve the runtime classpath
of the application
 runtimeClasspath.extendsFrom(someConfiguration)
}

build.gradle.kts

configurations {
 // declare a configuration that is going to resolve the compile classpath
of the application
 compileClasspath.extendsFrom(someConfiguration)

 // declare a configuration that is going to resolve the runtime classpath
of the application
 runtimeClasspath.extendsFrom(someConfiguration)
}

At this point, we have 3 different configurations with different roles:

• someConfiguration declares the dependencies of my application. It’s just a bucket that can hold a
list of dependencies.

• compileClasspath and runtimeClasspath are configurations meant to be resolved: when resolved
they should contain the compile classpath, and the runtime classpath of the application
respectively.

This distinction is represented by the canBeResolved flag in the Configuration type. A configuration
that can be resolved is a configuration for which we can compute a dependency graph, because it
contains all the necessary information for resolution to happen. That is to say we’re going to
compute a dependency graph, resolve the components in the graph, and eventually get artifacts. A
configuration which has canBeResolved set to false is not meant to be resolved. Such a configuration
is there only to declare dependencies. The reason is that depending on the usage (compile classpath,
runtime classpath), it can resolve to different graphs. It is an error to try to resolve a configuration
which has canBeResolved set to false. To some extent, this is similar to an abstract class
(canBeResolved=false) which is not supposed to be instantiated, and a concrete class extending the
abstract class (canBeResolved=true). A resolvable configuration will extend at least one non-

resolvable configuration (and may extend more than one).

On the other end, at the library project side (the producer), we also use configurations to represent
what can be consumed. For example, the library may expose an API or a runtime, and we would
attach artifacts to either one, the other, or both. Typically, to compile against lib, we need the API of
lib, but we don’t need its runtime dependencies. So the lib project will expose an apiElements
configuration, which is aimed at consumers looking for its API. Such a configuration is consumable,
but is not meant to be resolved. This is expressed via the canBeConsumed flag of a Configuration:

Example 267. Setting up configurations

build.gradle

configurations {
 // A configuration meant for consumers that need the API of this
component
 exposedApi {
 // This configuration is an "outgoing" configuration, it's not meant
to be resolved
 canBeResolved = false
 // As an outgoing configuration, explain that consumers may want to
consume it
 canBeConsumed = true
 }
 // A configuration meant for consumers that need the implementation of
this component
 exposedRuntime {
 canBeResolved = false
 canBeConsumed = true
 }
}

build.gradle.kts

configurations {
 // A configuration meant for consumers that need the API of this
component
 create("exposedApi") {
 // This configuration is an "outgoing" configuration, it's not meant
to be resolved
 isCanBeResolved = false
 // As an outgoing configuration, explain that consumers may want to
consume it
 isCanBeConsumed = true
 }
 // A configuration meant for consumers that need the implementation of
this component
 create("exposedRuntime") {
 isCanBeResolved = false
 isCanBeConsumed = true
 }
}

In short, a configuration’s role is determined by the canBeResolved and canBeConsumed flag

combinations:

Table 12. Configuration roles

Configuration role can be resolved can be consumed

Bucket of dependencies false false

Resolve for certain usage true false

Exposed to consumers false true

Legacy, don’t use true true

For backwards compatibility, both flags have a default value of true, but as a plugin author, you
should always determine the right values for those flags, or you might accidentally introduce
resolution errors.

Choosing the right configuration for dependencies

The choice of the configuration where you declare a dependency is important. However there is no
fixed rule into which configuration a dependency must go. It mostly depends on the way the
configurations are organised, which is most often a property of the applied plugin(s).

For example, in the java plugin, the created configuration are documented and should serve as the
basis for determining where to declare a dependency, based on its role for your code.

As a recommendation, plugins should clearly document the way their configurations are linked
together and should strive as much as possible to isolate their roles.

Defining custom configurations

You can define configurations yourself, so-called custom configurations. A custom configuration is
useful for separating the scope of dependencies needed for a dedicated purpose.

Let’s say you wanted to declare a dependency on the Jasper Ant task for the purpose of pre-
compiling JSP files that should not end up in the classpath for compiling your source code. It’s fairly
simple to achieve that goal by introducing a custom configuration and using it in a task.

https://tomcat.apache.org/tomcat-9.0-doc/jasper-howto.html

Example 268. Declaring and using a custom configuration

build.gradle

configurations {
 jasper
}

repositories {
 mavenCentral()
}

dependencies {
 jasper 'org.apache.tomcat.embed:tomcat-embed-jasper:9.0.2'
}

tasks.register('preCompileJsps') {
 doLast {
 ant.taskdef(classname: 'org.apache.jasper.JspC',
 name: 'jasper',
 classpath: configurations.jasper.asPath)
 ant.jasper(validateXml: false,
 uriroot: file('src/main/webapp'),
 outputDir: file("$buildDir/compiled-jsps"))
 }
}

build.gradle.kts

val jasper by configurations.creating

repositories {
 mavenCentral()
}

dependencies {
 jasper("org.apache.tomcat.embed:tomcat-embed-jasper:9.0.2")
}

tasks.register("preCompileJsps") {
 doLast {
 ant.withGroovyBuilder {
 "taskdef"("classname" to "org.apache.jasper.JspC",
 "name" to "jasper",
 "classpath" to jasper.asPath)
 "jasper"("validateXml" to false,
 "uriroot" to file("src/main/webapp"),
 "outputDir" to file("$buildDir/compiled-jsps"))
 }
 }
}

A project’s configurations are managed by a configurations object. Configurations have a name and
can extend each other. To learn more about this API have a look at ConfigurationContainer.

Different kinds of dependencies

Module dependencies

Module dependencies are the most common dependencies. They refer to a module in a repository.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

Example 269. Module dependencies

build.gradle

dependencies {
 runtimeOnly group: 'org.springframework', name: 'spring-core', version:
'2.5'
 runtimeOnly 'org.springframework:spring-core:2.5',
 'org.springframework:spring-aop:2.5'
 runtimeOnly(
 [group: 'org.springframework', name: 'spring-core', version: '2.5'],
 [group: 'org.springframework', name: 'spring-aop', version: '2.5']
)
 runtimeOnly('org.hibernate:hibernate:3.0.5') {
 transitive = true
 }
 runtimeOnly group: 'org.hibernate', name: 'hibernate', version: '3.0.5',
transitive: true
 runtimeOnly(group: 'org.hibernate', name: 'hibernate', version: '3.0.5')
{
 transitive = true
 }
}

build.gradle.kts

dependencies {
 runtimeOnly(group = "org.springframework", name = "spring-core", version
= "2.5")
 runtimeOnly("org.springframework:spring-aop:2.5")
 runtimeOnly("org.hibernate:hibernate:3.0.5") {
 isTransitive = true
 }
 runtimeOnly(group = "org.hibernate", name = "hibernate", version =
"3.0.5") {
 isTransitive = true
 }
}

See the DependencyHandler class in the API documentation for more examples and a complete
reference.

Gradle provides different notations for module dependencies. There is a string notation and a map
notation. A module dependency has an API which allows further configuration. Have a look at
ExternalModuleDependency to learn all about the API. This API provides properties and

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html

configuration methods. Via the string notation you can define a subset of the properties. With the
map notation you can define all properties. To have access to the complete API, either with the map
or with the string notation, you can assign a single dependency to a configuration together with a
closure.

NOTE

If you declare a module dependency, Gradle looks for a module metadata file
(.module, .pom or ivy.xml) in the repositories. If such a module metadata file exists, it
is parsed and the artifacts of this module (e.g. hibernate-3.0.5.jar) as well as its
dependencies (e.g. cglib) are downloaded. If no such module metadata file exists, as
of Gradle 6.0, you need to configure metadata sources definitions to look for an
artifact file called hibernate-3.0.5.jar directly.

NOTE

In Maven, a module can have one and only one artifact.

In Gradle and Ivy, a module can have multiple artifacts. Each artifact can have a
different set of dependencies.

File dependencies

Projects sometimes do not rely on a binary repository product e.g. JFrog Artifactory or Sonatype
Nexus for hosting and resolving external dependencies. It’s common practice to host those
dependencies on a shared drive or check them into version control alongside the project source
code. Those dependencies are referred to as file dependencies, the reason being that they represent
a file without any metadata (like information about transitive dependencies, the origin or its
author) attached to them.

Figure 17. Resolving file dependencies from the local file system and a shared drive

The following example resolves file dependencies from the directories ant, libs and tools.

Example 270. Declaring multiple file dependencies

build.gradle

configurations {
 antContrib
 externalLibs
 deploymentTools
}

dependencies {
 antContrib files('ant/antcontrib.jar')
 externalLibs files('libs/commons-lang.jar', 'libs/log4j.jar')
 deploymentTools(fileTree('tools') { include '*.exe' })
}

build.gradle.kts

configurations {
 create("antContrib")
 create("externalLibs")
 create("deploymentTools")
}

dependencies {
 "antContrib"(files("ant/antcontrib.jar"))
 "externalLibs"(files("libs/commons-lang.jar", "libs/log4j.jar"))
 "deploymentTools"(fileTree("tools") { include("*.exe") })
}

As you can see in the code example, every dependency has to define its exact location in the file
system. The most prominent methods for creating a file reference are
Project.files(java.lang.Object…), ProjectLayout.files(java.lang.Object…) and
Project.fileTree(java.lang.Object) Alternatively, you can also define the source directory of one or
many file dependencies in the form of a flat directory repository.

NOTE

The order of the files in a FileTree is not stable, even on a single computer. It means
that dependency configuration seeded with such a construct may produce a
resolution result which has a different ordering, possibly impacting the cacheability
of tasks using the result as an input. Using the simpler files instead is
recommended where possible.

File dependencies allow you to directly add a set of files to a configuration, without first adding
them to a repository. This can be useful if you cannot, or do not want to, place certain files in a
repository. Or if you do not want to use any repositories at all for storing your dependencies.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

To add some files as a dependency for a configuration, you simply pass a file collection as a
dependency:

Example 271. File dependencies

build.gradle

dependencies {
 runtimeOnly files('libs/a.jar', 'libs/b.jar')
 runtimeOnly fileTree('libs') { include '*.jar' }
}

build.gradle.kts

dependencies {
 runtimeOnly(files("libs/a.jar", "libs/b.jar"))
 runtimeOnly(fileTree("libs") { include("*.jar") })
}

File dependencies are not included in the published dependency descriptor for your project.
However, file dependencies are included in transitive project dependencies within the same build.
This means they cannot be used outside the current build, but they can be used within the same
build.

NOTE

The order of the files in a FileTree is not stable, even on a single computer. It means
that dependency configuration seeded with such a construct may produce a
resolution result which has a different ordering, possibly impacting the cacheability
of tasks using the result as an input. Using the simpler files instead is
recommended where possible.

You can declare which tasks produce the files for a file dependency. You might do this when, for
example, the files are generated by the build.

Example 272. Generated file dependencies

build.gradle

dependencies {
 implementation files(layout.buildDirectory.dir('classes')) {
 builtBy 'compile'
 }
}

tasks.register('compile') {
 doLast {
 println 'compiling classes'
 }
}

tasks.register('list') {
 dependsOn configurations.compileClasspath
 doLast {
 println "classpath = ${configurations.compileClasspath.collect { File
file -> file.name }}"
 }
}

build.gradle.kts

dependencies {
 implementation(files(layout.buildDirectory.dir("classes")) {
 builtBy("compile")
 })
}

tasks.register("compile") {
 doLast {
 println("compiling classes")
 }
}

tasks.register("list") {
 dependsOn(configurations["compileClasspath"])
 doLast {
 println("classpath = ${configurations["compileClasspath"].map { file:
File -> file.name }}")
 }
}

$ gradle -q list
compiling classes
classpath = [classes]

Versioning of file dependencies

It is recommended to clearly express the intention and a concrete version for file dependencies.
File dependencies are not considered by Gradle’s version conflict resolution. Therefore, it is
extremely important to assign a version to the file name to indicate the distinct set of changes
shipped with it. For example commons-beanutils-1.3.jar lets you track the changes of the library by
the release notes.

As a result, the dependencies of the project are easier to maintain and organize. It is much easier to
uncover potential API incompatibilities by the assigned version.

Project dependencies

Software projects often break up software components into modules to improve maintainability
and prevent strong coupling. Modules can define dependencies between each other to reuse code
within the same project.

Figure 18. Dependencies between projects

Gradle can model dependencies between modules. Those dependencies are called project
dependencies because each module is represented by a Gradle project.

Example 273. Project dependencies

build.gradle

dependencies {
 implementation project(':shared')
}

build.gradle.kts

dependencies {
 implementation(project(":shared"))
}

At runtime, the build automatically ensures that project dependencies are built in the correct order
and added to the classpath for compilation. The chapter Authoring Multi-Project Builds discusses
how to set up and configure multi-project builds in more detail.

For more information see the API documentation for ProjectDependency.

The following example declares the dependencies on the utils and api project from the web-service
project. The method Project.project(java.lang.String) creates a reference to a specific subproject by
path.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ProjectDependency.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:project(java.lang.String)

Example 274. Declaring project dependencies

web-service/build.gradle

dependencies {
 implementation project(':utils')
 implementation project(':api')
}

web-service/build.gradle.kts

dependencies {
 implementation(project(":utils"))
 implementation(project(":api"))
}

Type-safe project dependencies

WARNING

Type-safe dependency accessors are an incubating feature which must be
enabled explicitly. Implementation may change at any time. To add support for
type-safe project accessors, add this to your settings.gradle(.kts) file:

enableFeaturePreview("TYPESAFE_PROJECT_ACCESSORS")

One issue with the project(":some:path") notation is that you have to remember the path to every
project you want to depend on. In addition, changing a project path requires you to change all
places where the project dependency is used, but it is easy to miss one or more occurrences
(because you have to rely on search and replace).

Since Gradle 7, Gradle offers an experimental type-safe API for project dependencies. The same
example as above can now be rewritten as:

Example 275. Declaring project dependencies using the type-safe API

web-service/build.gradle

dependencies {
 implementation projects.utils
 implementation projects.api
}

web-service/build.gradle.kts

dependencies {
 implementation(projects.utils)
 implementation(projects.api)
}

The type-safe API has the advantage of providing IDE completion so you don’t need to figure out the
actual names of the projects.

If you add or remove a project and that you use the Kotlin DSL, build script compilation would fail
in case you forget to update a dependency.

The project accessors are mapped from the project path. For example, if a project path is
:commons:utils:some:lib then the project accessor will be projects.commons.utils.some.lib (which is
the short-hand notation for projects.getCommons().getUtils().getSome().getLib()).

A project name with kebab case (some-lib) or snake case (some_lib) will be converted to camel case
in accessors: projects.someLib.

Local forks of module dependencies

A module dependency can be substituted by a dependency to a local fork of the sources of that
module, if the module itself is built with Gradle. This can be done by utilising composite builds. This
allows you, for example, to fix an issue in a library you use in an application by using, and building,
a locally patched version instead of the published binary version. The details of this are described
in the section on composite builds.

Gradle distribution-specific dependencies

Gradle API dependency

You can declare a dependency on the API of the current version of Gradle by using the
DependencyHandler.gradleApi() method. This is useful when you are developing custom Gradle
tasks or plugins.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()

Example 276. Gradle API dependencies

build.gradle

dependencies {
 implementation gradleApi()
}

build.gradle.kts

dependencies {
 implementation(gradleApi())
}

Gradle TestKit dependency

You can declare a dependency on the TestKit API of the current version of Gradle by using the
DependencyHandler.gradleTestKit() method. This is useful for writing and executing functional
tests for Gradle plugins and build scripts.

Example 277. Gradle TestKit dependencies

build.gradle

dependencies {
 testImplementation gradleTestKit()
}

build.gradle.kts

dependencies {
 testImplementation(gradleTestKit())
}

The TestKit chapter explains the use of TestKit by example.

Local Groovy dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the
DependencyHandler.localGroovy() method. This is useful when you are developing custom Gradle

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleTestKit()
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()

tasks or plugins in Groovy.

Example 278. Gradle’s Groovy dependencies

build.gradle

dependencies {
 implementation localGroovy()
}

build.gradle.kts

dependencies {
 implementation(localGroovy())
}

Documenting dependencies

When you declare a dependency or a dependency constraint, you can provide a custom reason for
the declaration. This makes the dependency declarations in your build script and the dependency
insight report easier to interpret.

Example 279. Giving a reason for choosing a certain module version in a dependency declaration

build.gradle

plugins {
 id 'java-library'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation('org.ow2.asm:asm:7.1') {
 because 'we require a JDK 9 compatible bytecode generator'
 }
}

build.gradle.kts

plugins {
 `java-library`
}

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.ow2.asm:asm:7.1") {
 because("we require a JDK 9 compatible bytecode generator")
 }
}

Example: Using the dependency insight report with custom reasons

Output of gradle -q dependencyInsight --dependency asm

> gradle -q dependencyInsight --dependency asm
org.ow2.asm:asm:7.1
 variant "compile" [
 org.gradle.status = release (not requested)
 org.gradle.usage = java-api
 org.gradle.libraryelements = jar (compatible with: classes)
 org.gradle.category = library

 Requested attributes not found in the selected variant:
 org.gradle.dependency.bundling = external
 org.gradle.jvm.environment = standard-jvm
 org.gradle.jvm.version = 11
]
 Selection reasons:
 - Was requested : we require a JDK 9 compatible bytecode generator

org.ow2.asm:asm:7.1
\--- compileClasspath

A web-based, searchable dependency report is available by adding the --scan option.

Resolving specific artifacts from a module dependency

Whenever Gradle tries to resolve a module from a Maven or Ivy repository, it looks for a metadata
file and the default artifact file, a JAR. The build fails if none of these artifact files can be resolved.
Under certain conditions, you might want to tweak the way Gradle resolves artifacts for a
dependency.

• The dependency only provides a non-standard artifact without any metadata e.g. a ZIP file.

• The module metadata declares more than one artifact e.g. as part of an Ivy dependency
descriptor.

• You only want to download a specific artifact without any of the transitive dependencies
declared in the metadata.

Gradle is a polyglot build tool and not limited to just resolving Java libraries. Let’s assume you
wanted to build a web application using JavaScript as the client technology. Most projects check in
external JavaScript libraries into version control. An external JavaScript library is no different than
a reusable Java library so why not download it from a repository instead?

Google Hosted Libraries is a distribution platform for popular, open-source JavaScript libraries.
With the help of the artifact-only notation you can download a JavaScript library file e.g. JQuery.
The @ character separates the dependency’s coordinates from the artifact’s file extension.

https://developers.google.com/speed/libraries/

Example 280. Resolving a JavaScript artifact for a declared dependency

build.gradle

repositories {
 ivy {
 url 'https://ajax.googleapis.com/ajax/libs'
 patternLayout {
 artifact '[organization]/[revision]/[module].[ext]'
 }
 metadataSources {
 artifact()
 }
 }
}

configurations {
 js
}

dependencies {
 js 'jquery:jquery:3.2.1@js'
}

build.gradle.kts

repositories {
 ivy {
 url = uri("https://ajax.googleapis.com/ajax/libs")
 patternLayout {
 artifact("[organization]/[revision]/[module].[ext]")
 }
 metadataSources {
 artifact()
 }
 }
}

configurations {
 create("js")
}

dependencies {
 "js"("jquery:jquery:3.2.1@js")
}

Some modules ship different "flavors" of the same artifact or they publish multiple artifacts that
belong to a specific module version but have a different purpose. It’s common for a Java library to
publish the artifact with the compiled class files, another one with just the source code in it and a
third one containing the Javadocs.

In JavaScript, a library may exist as uncompressed or minified artifact. In Gradle, a specific artifact
identifier is called classifier, a term generally used in Maven and Ivy dependency management.

Let’s say we wanted to download the minified artifact of the JQuery library instead of the
uncompressed file. You can provide the classifier min as part of the dependency declaration.

Example 281. Resolving a JavaScript artifact with classifier for a declared dependency

build.gradle

repositories {
 ivy {
 url 'https://ajax.googleapis.com/ajax/libs'
 patternLayout {
 artifact '
[organization]/[revision]/[module](.[classifier]).[ext]'
 }
 metadataSources {
 artifact()
 }
 }
}

configurations {
 js
}

dependencies {
 js 'jquery:jquery:3.2.1:min@js'
}

build.gradle.kts

repositories {
 ivy {
 url = uri("https://ajax.googleapis.com/ajax/libs")
 patternLayout {

artifact("[organization]/[revision]/[module](.[classifier]).[ext]")
 }
 metadataSources {
 artifact()
 }
 }
}

configurations {
 create("js")
}

dependencies {
 "js"("jquery:jquery:3.2.1:min@js")
}

Supported Metadata formats

External module dependencies require module metadata (so that, typically, Gradle can figure out
the transitive dependencies of a module). To do so, Gradle supports different metadata formats.

You can also tweak which format will be looked up in the repository definition.

Gradle Module Metadata files

Gradle Module Metadata has been specifically designed to support all features of Gradle’s
dependency management model and is hence the preferred format. You can find its specification
here.

POM files

Gradle natively supports Maven POM files. It’s worth noting that by default Gradle will first look for
a POM file, but if this file contains a special marker, Gradle will use Gradle Module Metadata
instead.

Ivy files

Similarly, Gradle supports Apache Ivy metadata files. Again, Gradle will first look for an ivy.xml file,
but if this file contains a special marker, Gradle will use Gradle Module Metadata instead.

https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md
https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md
https://maven.apache.org/pom.html
http://ant.apache.org/ivy/

Understanding the difference between libraries and applications

Producers vs consumers

A key concept in dependency management with Gradle is the difference between consumers and
producers.

When you build a library, you are effectively on the producer side: you are producing artifacts
which are going to be consumed by someone else, the consumer.

A lot of problems with traditional build systems is that they don’t make the difference between a
producer and a consumer.

A consumer needs to be understood in the large sense:

• a project that depends on another project is a consumer

• a task that depends on an artifact is a finer grained consumer

In dependency management, a lot of the decisions we make depend on the type of project we are
building, that is to say, what kind of consumer we are.

Producer variants

A producer may want to generate different artifacts for different kinds of consumers: for the same
source code, different binaries are produced. Or, a project may produce artifacts which are for
consumption by other projects (same repository) but not for external use.

A typical example in the Java world is the Guava library which is published in different versions:
one for Java projects, and one for Android projects.

However, it’s the consumer responsibility to tell what version to use, and it’s the dependency
management engine responsibility to ensure consistency of the graph (for example making sure that
you don’t end up with both Java and Android versions of Guava on your classpath). This is where
the variant model of Gradle comes into play.

In Gradle, producer variants are exposed via consumable configurations.

Strong encapsulation

In order for a producer to compile a library, it needs all its implementation dependencies on the
compile classpath. There are dependencies which are only required as an implementation detail of
the library and there are libraries which are effectively part of the API.

However, a library depending on this produced library only needs to "see" the public API of your
library and therefore the dependencies of this API. It’s a subset of the compile classpath of the
producer: this is strong encapsulation of dependencies.

The consequence is that a dependency which is assigned to the implementation configuration of a
library does not end up on the compile classpath of the consumer. On the other hand, a dependency
which is assigned to the api configuration of a library would end up on the compile classpath of the
consumer. At runtime, however, all dependencies are required. Gradle makes the difference

between different kinds of consumer even within a single project: the Java compile task, for
example, is a different consumer than the Java exec task.

More details on the segregation of API and runtime dependencies in the Java world can be found
here.

Being respectful of consumers

Whenever, as a developer, you decide to include a dependency, you must understand that there are
consequences for your consumers. For example, if you add a dependency to your project, it becomes
a transitive dependency of your consumers, and therefore may participate in conflict resolution if
the consumer needs a different version.

A lot of the problems Gradle handles are about fixing the mismatch between the expectations of a
consumer and a producer.

However, some projects are easier than others:

• if you are at the end of the consumption chain, that is to say you build an application, then there
are effectively no consumer of your project (apart from final customers): adding exclusions will
have no other consequence than fixing your problem.

• however if you are a library, adding exclusions may prevent consumers from working properly,
because they would exercise a path of the code that you don’t

Always keep in mind that the solution you choose to fix a problem can "leak" to your consumers.
This documentation aims at guiding you to find the right solution to the right problem, and more
importantly, make decisions which help the resolution engine to take the right decisions in case of
conflicts.

Viewing and debugging dependencies

Gradle provides sufficient tooling to navigate large dependency graphs and mitigate situations that
can lead to dependency hell. Users can choose to render the full graph of dependencies as well as
identify the selection reason and origin for a dependency. The origin of a dependency can be a
declared dependency in the build script or a transitive dependency in graph plus their
corresponding configuration. Gradle offers both capabilities through visual representation via
build scans and as command line tooling.

Build scans

NOTE If you do not know what build scans are, be sure to check them out!

A build scan can visualize dependencies as a navigable, searchable tree. Additional context
information can be rendered by clicking on a specific dependency in the graph.

https://en.wikipedia.org/wiki/Dependency_hell
https://scans.gradle.com/

Figure 19. Dependency tree in a build scan

Listing dependencies in a project

Gradle can visualize the whole dependency tree for every configuration available in the project.

Rendering the dependency tree is particularly useful if you’d like to identify which dependencies
have been resolved at runtime. It also provides you with information about any dependency
conflict resolution that occurred in the process and clearly indicates the selected version. The
dependency report always contains declared and transitive dependencies.

NOTE

The dependencies task selector will only execute the dependencies task on a single
project. If you run the task on the root project, it will show dependencies of the root
project and not of any subproject. Be sure to always target the right project when
running dependencies.

Let’s say you’d want to create tasks for your project that use the JGit library to execute SCM
operations e.g. to model a release process. You can declare dependencies for any external tooling
with the help of a custom configuration so that it doesn’t pollute other contexts like the compilation
classpath for your production source code.

Every Gradle project provides the task dependencies to render the so-called dependency report from
the command line. By default the dependency report renders dependencies for all configurations.
To focus on the information about one configuration, provide the optional parameter
--configuration.

For example, to show dependencies that would be on the test runtime classpath in a Java project,
run:

https://www.eclipse.org/jgit/

gradle -q dependencies --configuration testRuntimeClasspath

TIP
Just like with project and task names, you can use abbreviated names to select a
configuration. For example, you can specify tRC instead of testRuntimeClasspath if the
pattern matches to a single configuration.

TIP
To see a list of all the pre-defined configurations added by the java plugin, see the
documentation for the Java Plugin.

Example 282. Declaring the JGit dependency with a custom configuration

build.gradle

repositories {
 mavenCentral()
}

configurations {
 scm
}

dependencies {
 scm 'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r'
}

build.gradle.kts

repositories {
 mavenCentral()
}

configurations {
 create("scm")
}

dependencies {
 "scm"("org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r")
}

Example: Rendering the dependency report for a custom configuration

Output of gradle -q dependencies --configuration scm

> gradle -q dependencies --configuration scm

--
Root project 'dependencies-report'
--

scm
\--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
 +--- com.jcraft:jsch:0.1.54
 +--- com.googlecode.javaewah:JavaEWAH:1.1.6
 +--- org.apache.httpcomponents:httpclient:4.3.6
 | +--- org.apache.httpcomponents:httpcore:4.3.3
 | +--- commons-logging:commons-logging:1.1.3
 | \--- commons-codec:commons-codec:1.6
 \--- org.slf4j:slf4j-api:1.7.2

A web-based, searchable dependency report is available by adding the --scan option.

The dependencies report provides detailed information about the dependencies available in the
graph. Any dependency that could not be resolved is marked with FAILED in red color. Dependencies
with the same coordinates that can occur multiple times in the graph are omitted and indicated by
an asterisk. Dependencies that had to undergo conflict resolution render the requested and selected
version separated by a right arrow character.

Identifying which dependency version was selected and why

Large software projects inevitably deal with an increased number of dependencies either through
direct or transitive dependencies. The dependencies report provides you with the raw list of
dependencies but does not explain why they have been selected or which dependency is responsible
for pulling them into the graph.

Let’s have a look at a concrete example. A project may request two different versions of the same
dependency either as direct or transitive dependency. Gradle applies version conflict resolution to
ensure that only one version of the dependency exists in the dependency graph. In this example the
conflicting dependency is represented by commons-codec:commons-codec.

Example 283. Declaring the JGit dependency and a conflicting dependency

build.gradle

repositories {
 mavenCentral()
}

configurations {
 scm
}

dependencies {
 scm 'org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r'
 scm 'commons-codec:commons-codec:1.7'
}

build.gradle.kts

repositories {
 mavenCentral()
}

configurations {
 create("scm")
}

dependencies {
 "scm"("org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r")
 "scm"("commons-codec:commons-codec:1.7")
}

The dependency tree in a build scan renders the selection reason (conflict resolution) as well as the
origin of a dependency if you click on a dependency and select the "Required By" tab.

https://scans.gradle.com/

Figure 20. Dependency insight capabilities in a build scan

Every Gradle project provides the task dependencyInsight to render the so-called dependency insight
report from the command line. Given a dependency in the dependency graph you can identify the
selection reason and track down the origin of the dependency selection. You can think of the
dependency insight report as the inverse representation of the dependency report for a given
dependency.

The task takes the following parameters:

--dependency <dependency> (mandatory)

Indicates which dependency to focus on. It can be a complete group:name, or part of it. If multiple
dependencies match, they are all printed in the report.

--configuration <name> (mandatory)

Indicates which configuration to resolve for showing the dependency information (camelCase
also supported like in dependencies task). Note that the Java plugin wires a convention with the
value compileClasspath, making the parameter optional.

--singlepath (optional)

Indicates to render only a single path to the dependency. This might be useful to trim down the
output in large graphs.

NOTE

The dependencyInsight task selector will only execute the dependencyInsight task on
a single project. If you run the task on the root project, it will show the dependency
information of the root project and not of any subproject. Be sure to always target
the right project when running dependencyInsight.

Example: Using the dependency insight report for a given dependency

Output of gradle -q dependencyInsight --dependency commons-codec --configuration scm

> gradle -q dependencyInsight --dependency commons-codec --configuration scm
commons-codec:commons-codec:1.7
 variant "default" [
 org.gradle.status = release (not requested)
]
 Selection reasons:
 - By conflict resolution : between versions 1.7 and 1.6

commons-codec:commons-codec:1.7
\--- scm

commons-codec:commons-codec:1.6 -> 1.7
\--- org.apache.httpcomponents:httpclient:4.3.6
 \--- org.eclipse.jgit:org.eclipse.jgit:4.9.2.201712150930-r
 \--- scm

A web-based, searchable dependency report is available by adding the --scan option.

As indicated above, omitting the --configuration parameter in a project that is not a Java project
will lead to an error:

> Dependency insight report cannot be generated because the input configuration was
not specified.
 It can be specified from the command line, e.g: ':dependencyInsight --configuration
someConf --dependency someDep'

For more information about configurations, see the documentation on declaring dependencies,
which describes what dependency configurations are.

Understanding selection reasons

The "Selection reasons" part of the dependency insight report will list the different reasons as to
why a dependency was selected. Have a look at the table below to understand the meaning of the
different terms used:

Table 13. Selections reasons terminology

Reason Meaning

(Absent) This means that no other reason than having a reference,
direct or transitive, was present

Was requested : <text> The dependency appears in the graph, and the inclusion came
with a because text.

Was requested : didn’t match
versions <versions>

The dependency appears in the graph, with a dynamic version,
which did not include the listed versions. This can also be
followed by a because text.

Reason Meaning

Was requested : reject version
<versions>

The dependency appears in the graph, with a rich version
containing one or more reject. This can also be followed by a
because text.

By conflict resolution : between
versions <version>

The dependency appeared multiple times in the graph, with
different version requests. This resulted in conflict resolution
to select the most appropriate version.

By constraint A dependency constraint participated in the version selection.
This can also be followed by a because text.

By ancestor There is a rich version with a strictly in the graph which
enforces the version of this dependency.

Selected by rule A dependency resolution rule overruled the default selection
process. This can also be followed by a because text.

Rejection : <version> by rule
because <text>

A ComponentSelection.reject rejected the given version of the
dependency

Rejection: version <version>:
<attributes information>

The dependency has a dynamic version, and some versions did
not match the requested attributes.

Forced The build enforces the version of the dependency.

Note that if multiple selection reasons exist in the graph, they will all be listed.

Resolving version conflicts

If the selected version does not match your expectation, Gradle offers a series of tools to help you
control transitive dependencies.

Resolving variant selection errors

Sometimes a selection error will happen at the variant selection level. Have a look at the dedicated
section to understand these errors and how to resolve them.

Resolving unsafe configuration resolution errors

Resolving a configuration can have side effects on Gradle’s project model, so Gradle needs manage
access to each project’s configurations. There are a number of ways a configuration might be
resolved unsafely. Gradle will produce a deprecation warning for each unsafe access. Each of these
are bad practices and can cause strange and indeterminate errors.

If your build has an unsafe access deprecation warning, it needs to be fixed.

For example:

• A task from one project directly resolves a configuration in another project in the task’s action.

• A task specifies a configuration from another project as an input file collection.

• A build script for one project resolves a configuration in another project during evaluation.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

• Project configurations are resolved in the settings file.

In most cases, this issue can be resolved by creating a cross-project dependency on the other
project. See the documentation for sharing outputs between projects for more information.

If you find a use case that can’t be resolved using these techniques, please let us know by filing a
GitHub Issue adhering to our issue guidelines.

Understanding dependency resolution

This chapter covers the way dependency resolution works inside Gradle. After covering how you
can declare repositories and dependencies, it makes sense to explain how these declarations come
together during dependency resolution.

Dependency resolution is a process that consists of two phases, which are repeated until the
dependency graph is complete:

• When a new dependency is added to the graph, perform conflict resolution to determine which
version should be added to the graph.

• When a specific dependency, that is a module with a version, is identified as part of the graph,
retrieve its metadata so that its dependencies can be added in turn.

The following section will describe what Gradle identifies as conflicts and how it can resolve them
automatically. After that, the retrieval of metadata will be covered, explaining how Gradle can
follow dependency links.

How Gradle handles conflicts?

When doing dependency resolution, Gradle handles two types of conflicts:

Version conflicts

That is when two or more dependencies require a given dependency but with different versions.

Implementation conflicts

That is when the dependency graph contains multiple modules that provide the same
implementation, or capability in Gradle terminology.

The following sections will explain in detail how Gradle attempts to resolve these conflicts.

The dependency resolution process is highly customizable to meet enterprise requirements. For
more information, see the chapter on Controlling transitive dependencies.

Version conflict resolution

A version conflict occurs when two components:

• Depend on the same module, let’s say com.google.guava:guava

• But on different versions, let’s say 20.0 and 25.1-android

◦ Our project itself depends on com.google.guava:guava:20.0

https://github.com/gradle/gradle/issues

◦ Our project also depends on com.google.inject:guice:4.2.2 which itself depends on
com.google.guava:guava:25.1-android

Resolution strategy

Given the conflict above, there exist multiple ways to handle it, either by selecting a version or
failing the resolution. Different tools that handle dependency management have different ways of
handling these type of conflicts.

NOTE

Apache Maven uses a nearest first strategy.

Maven will take the shortest path to a dependency and use that version. In case
there are multiple paths of the same length, the first one wins.

This means that in the example above, the version of guava will be 20.0 because the
direct dependency is closer than the guice dependency.

The main drawback of this method is that it is ordering dependent. Keeping order
in a very large graph can be a challenge. For example, what if the new version of a
dependency ends up having its own dependency declarations in a different order
than the previous version?

With Maven, this could have unwanted impact on resolved versions.

NOTE

Apache Ivy is a very flexible dependency management tool. It offers the possibility
to customize dependency resolution, including conflict resolution.

This flexibility comes with the price of making it hard to reason about.

Gradle will consider all requested versions, wherever they appear in the dependency graph. Out of
these versions, it will select the highest one.

As you have seen, Gradle supports a concept of rich version declaration, so what is the highest
version depends on the way versions were declared:

• If no ranges are involved, then the highest version that is not rejected will be selected.

◦ If a version declared as strictly is lower than that version, selection will fail.

• If ranges are involved:

◦ If there is a non range version that falls within the specified ranges or is higher than their
upper bound, it will be selected.

◦ If there are only ranges, the highest existing version of the range with the highest upper
bound will be selected.

◦ If a version declared as strictly is lower than that version, selection will fail.

Note that in the case where ranges come into play, Gradle requires metadata to determine which
versions do exist for the considered range. This causes an intermediate lookup for metadata, as
described in How Gradle retrieves dependency metadata?.

https://maven.apache.org/
https://ant.apache.org/ivy/

Implementation conflict resolution

Gradle uses variants and capabilities to identify what a module provides.

This is a unique feature that deserves its own chapter to understand what it means and enables.

A conflict occurs the moment two modules either:

• Attempt to select incompatible variants,

• Declare the same capability

Learn more about handling these type of conflicts in Selecting between candidates.

How Gradle retrieves dependency metadata?

Gradle requires metadata about the modules included in your dependency graph. That information
is required for two main points:

• Determine the existing versions of a module when the declared version is dynamic.

• Determine the dependencies of the module for a given version.

Discovering versions

Faced with a dynamic version, Gradle needs to identify the concrete matching versions:

• Each repository is inspected, Gradle does not stop on the first one returning some metadata.
When multiple are defined, they are inspected in the order they were added.

• For Maven repositories, Gradle will use the maven-metadata.xml which provides information
about the available versions.

• For Ivy repositories, Gradle will resort to directory listing.

This process results in a list of candidate versions that are then matched to the dynamic version
expressed. At this point, version conflict resolution is resumed.

Note that Gradle caches the version information, more information can be found in the section
Controlling dynamic version caching.

Obtaining module metadata

Given a required dependency, with a version, Gradle attempts to resolve the dependency by
searching for the module the dependency points at.

• Each repository is inspected in order.

◦ Depending on the type of repository, Gradle looks for metadata files describing the module
(.module, .pom or ivy.xml file) or directly for artifact files.

◦ Modules that have a module metadata file (.module, .pom or ivy.xml file) are preferred over
modules that have an artifact file only.

◦ Once a repository returns a metadata result, following repositories are ignored.

• Metadata for the dependency is retrieved and parsed, if found

◦ If the module metadata is a POM file that has a parent POM declared, Gradle will recursively
attempt to resolve each of the parent modules for the POM.

• All of the artifacts for the module are then requested from the same repository that was chosen
in the process above.

• All of that data, including the repository source and potential misses are then stored in the The
Dependency Cache.

NOTE

The penultimate point above is what can make the integration with Maven Local
problematic. As it is a cache for Maven, it will sometimes miss some artifacts of a
given module. If Gradle is sourcing such a module from Maven Local, it will
consider the missing artifacts to be missing altogether.

Repository disabling

When Gradle fails to retrieve information from a repository, it will disable it for the duration of the
build and fail all dependency resolution.

That last point is important for reproducibility. If the build was allowed to continue, ignoring the
faulty repository, subsequent builds could have a different result once the repository is back online.

HTTP Retries

Gradle will make several attempts to connect to a given repository before disabling it. If connection
fails, Gradle will retry on certain errors which have a chance of being transient, increasing the
amount of time waiting between each retry.

Blacklisting happens when the repository cannot be contacted, either because of a permanent error
or because the maximum retries was reached.

The Dependency Cache

Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise
the number of remote requests made in dependency resolution, while striving to guarantee that the
results of dependency resolution are correct and reproducible.

The Gradle dependency cache consists of two storage types located under GRADLE_USER_HOME/caches:

• A file-based store of downloaded artifacts, including binaries like jars as well as raw
downloaded meta-data like POM files and Ivy files. The storage path for a downloaded artifact
includes the SHA1 checksum, meaning that 2 artifacts with the same name but different content
can easily be cached.

• A binary store of resolved module metadata, including the results of resolving dynamic
versions, module descriptors, and artifacts.

The Gradle cache does not allow the local cache to hide problems and create other mysterious and
difficult to debug behavior. Gradle enables reliable and reproducible enterprise builds with a focus
on bandwidth and storage efficiency.

Separate metadata cache

Gradle keeps a record of various aspects of dependency resolution in binary format in the metadata
cache. The information stored in the metadata cache includes:

• The result of resolving a dynamic version (e.g. 1.+) to a concrete version (e.g. 1.2).

• The resolved module metadata for a particular module, including module artifacts and module
dependencies.

• The resolved artifact metadata for a particular artifact, including a pointer to the downloaded
artifact file.

• The absence of a particular module or artifact in a particular repository, eliminating repeated
attempts to access a resource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the
information as well as a timestamp that can be used for cache expiry.

Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is
identified by its URL, type and layout. If a module or artifact has not been previously resolved from
this repository, Gradle will attempt to resolve the module against the repository. This will always
involve a remote lookup on the repository, however in many cases no download will be required.

Dependency resolution will fail if the required artifacts are not available in any repository specified
by the build, even if the local cache has a copy of this artifact which was retrieved from a different
repository. Repository independence allows builds to be isolated from each other in an advanced
way that no build tool has done before. This is a key feature to create builds that are reliable and
reproducible in any environment.

Artifact reuse

Before downloading an artifact, Gradle tries to determine the checksum of the required artifact by
downloading the sha file associated with that artifact. If the checksum can be retrieved, an artifact
is not downloaded if an artifact already exists with the same id and checksum. If the checksum
cannot be retrieved from the remote server, the artifact will be downloaded (and ignored if it
matches an existing artifact).

As well as considering artifacts downloaded from a different repository, Gradle will also attempt to
reuse artifacts found in the local Maven Repository. If a candidate artifact has been downloaded by
Maven, Gradle will use this artifact if it can be verified to match the checksum declared by the
remote server.

Checksum based storage

It is possible for different repositories to provide a different binary artifact in response to the same
artifact identifier. This is often the case with Maven SNAPSHOT artifacts, but can also be true for
any artifact which is republished without changing its identifier. By caching artifacts based on their
SHA1 checksum, Gradle is able to maintain multiple versions of the same artifact. This means that
when resolving against one repository Gradle will never overwrite the cached artifact file from a

different repository. This is done without requiring a separate artifact file store per repository.

Cache Locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by
multiple Gradle processes concurrently. The lock is held whenever the binary metadata store is
being read or written, but is released for slow operations such as downloading remote artifacts.

This concurrent access is only supported if the different Gradle processes can communicate
together. This is usually not the case for containerized builds.

Cache Cleanup

Gradle keeps track of which artifacts in the dependency cache are accessed. Using this information,
the cache is periodically (at most every 24 hours) scanned for artifacts that have not been used for
more than 30 days. Obsolete artifacts are then deleted to ensure the cache does not grow
indefinitely.

Dealing with ephemeral builds

It’s a common practice to run builds in ephemeral containers. A container is typically spawned to
only execute a single build before it is destroyed. This can become a practical problem when a build
depends on a lot of dependencies which each container has to re-download. To help with this
scenario, Gradle provides a couple of options:

• copying the dependency cache into each container

• sharing a read-only dependency cache between multiple containers

Copying and reusing the cache

The dependency cache, both the file and metadata parts, are fully encoded using relative paths.
This means that it is perfectly possible to copy a cache around and see Gradle benefit from it.

The path that can be copied is $GRADLE_HOME/caches/modules-<version>. The only constraint is placing
it using the same structure at the destination, where the value of GRADLE_HOME can be different.

Do not copy the *.lock or gc.properties files if they exist.

Note that creating the cache and consuming it should be done using compatible Gradle version, as
shown in the table below. Otherwise, the build might still require some interactions with remote
repositories to complete missing information, which might be available in a different version. If
multiple incompatible Gradle versions are in play, all should be used when seeding the cache.

Table 14. Dependency cache compatibility

Module cache
version

File cache
version

Metadata cache
version

Gradle version(s)

modules-2 files-2.1 metadata-2.95 Gradle 6.1 to Gradle 6.3

modules-2 files-2.1 metadata-2.96 Gradle 6.4 to Gradle 6.7

modules-2 files-2.1 metadata-2.97 Gradle 6.8 and above

Sharing the dependency cache with other Gradle instances

Instead of copying the dependency cache into each container, it’s possible to mount a shared, read-
only directory that will act as a dependency cache for all containers. This cache, unlike the classical
dependency cache, is accessed without locking, making it possible for multiple builds to read from
the cache concurrently. It’s important that the read-only cache is not written to when other builds
may be reading from it.

When using the shared read-only cache, Gradle looks for dependencies (artifacts or metadata) in
both the writable cache in the local Gradle user home directory and the shared read-only cache. If a
dependency is present in the read-only cache, it will not be downloaded. If a dependency is missing
from the read-only cache, it will be downloaded and added to the writable cache. In practice, this
means that the writable cache will only contain dependencies that are unavailable in the read-only
cache.

The read-only cache should be sourced from a Gradle dependency cache that already contains
some of the required dependencies. The cache can be incomplete; however, an empty shared cache
will only add overhead.

NOTE The shared read-only dependency cache is an incubating feature.

The first step in using a shared dependency cache is to create one by copying of an existing local
cache. For this you need to follow the instructions above.

Then set the GRADLE_RO_DEP_CACHE environment variable to point to the directory containing the
cache:

$GRADLE_RO_DEP_CACHE
 |-- modules-2 : the read-only dependency cache, should be mounted with read-only
privileges

$GRADLE_HOME
 |-- caches
 |-- modules-2 : the container specific dependency cache, should be writable
 |-- ...
 |-- ...

In a CI environment, it’s a good idea to have one build which "seeds" a Gradle dependency cache,
which is then copied to a different directory. This directory can then be used as the read-only cache
for other builds. You shouldn’t use an existing Gradle installation cache as the read-only cache,
because this directory may contain locks and may be modified by the seeding build.

Accessing the resolution result programmatically

While most users only need access to a "flat list" of files, there are cases where it can be interesting
to reason on a graph and get more information about the resolution result:

• for tooling integration, where a model of the dependency graph is required

• for tasks generating a visual representation (image, .dot file, …) of a dependency graph

• for tasks providing diagnostics (similar to the dependencyInsight task)

• for tasks which need to perform dependency resolution at execution time (e.g, download files
on demand)

For those use cases, Gradle provides lazy, thread-safe APIs, accessible by calling the
Configuration.getIncoming() method:

• the ResolutionResult API gives access to a resolved dependency graph, whether the resolution
was successful or not.

• the artifacts API provides a simple access to the resolved artifacts, untransformed, but with lazy
download of artifacts (they would only be downloaded on demand).

• the artifact view API provides an advanced, filtered view of artifacts, possibly transformed.

Verifying dependencies

Working with external dependencies and plugins published on third-party repositories puts your
build at risk. In particular, you need to be aware of what binaries are brought in transitively and if
they are legit. To mitigate the security risks and avoid integrating compromised dependencies in
your project, Gradle supports dependency verification.

IMPORTANT

Dependency verification is, by nature, an inconvenient feature to use. It
means that whenever you’re going to update a dependency, builds are likely
to fail. It means that merging branches are going to be harder because each
branch can have different dependencies. It means that you will be tempted
to switch it off.

So why should you bother?

Dependency verification is about trust in what you get and what you ship.

Without dependency verification it’s easy for an attacker to compromise
your supply chain. There are many real world examples of tools
compromised by adding a malicious dependency. Dependency verification is
meant to protect yourself from those attacks, by forcing you to ensure that
the artifacts you include in your build are the ones that you expect. It is not
meant, however, to prevent you from including vulnerable dependencies.

Finding the right balance between security and convenience is hard but
Gradle will try to let you choose the "right level" for you.

Dependency verification consists of two different and complementary operations:

• checksum verification, which allows asserting the integrity of a dependency

• signature verification, which allows asserting the provenance of a dependency

Gradle supports both checksum and signature verification out of the box but performs no
dependency verification by default. This section will guide you into configuring dependency
verification properly for your needs.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/Configuration.html#getIncoming--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#getResolutionResult--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#getArtifacts--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#artifactView-org.gradle.api.Action-

This feature can be used for:

• detecting compromised dependencies

• detecting compromised plugins

• detecting tampered dependencies in the local dependency caches

Enabling dependency verification

The verification metadata file

NOTE
Currently the only source of dependency verification metadata is this XML
configuration file. Future versions of Gradle may include other sources (for
example via external services).

Dependency verification is automatically enabled once the configuration file for dependency
verification is discovered. This configuration file is located at $PROJECT_ROOT/gradle/verification-
metadata.xml. This file minimally consists of the following:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>
 <configuration>
 <verify-metadata>true</verify-metadata>
 <verify-signatures>false</verify-signatures>
 </configuration>
</verification-metadata>

Doing so, Gradle will verify all artifacts using checksums, but will not verify signatures. Gradle will
verify any artifact downloaded using its dependency management engine, which includes, but is
not limited to:

• artifact files (e.g jar files, zips, …) used during a build

• metadata artifacts (POM files, Ivy descriptors, Gradle Module Metadata)

• plugins (both project and settings plugins)

• artifacts resolved using the advanced dependency resolution APIs

Gradle will not verify changing dependencies (in particular SNAPSHOT dependencies) nor locally
produced artifacts (typically jars produced during the build itself) as by nature their checksums
and signatures would always change.

With such a minimal configuration file, a project using any external dependency or plugin would
immediately start failing because it doesn’t contain any checksum to verify.

A dependency verification configuration is global: a single file is used to configure verification of
the whole build. In particular, the same file is used for both the (sub)projects and buildSrc.

An easy way to get started is therefore to generate the minimal configuration for an existing build.

Configuring the console output

By default, if dependency verification fails, Gradle will generate a small summary about the
verification failure as well as an HTML report containing the full information about the failures. If
your environment prevents you from reading this HTML report file (for example if you run a build
on CI and that it’s not easy to fetch the remote artifacts), Gradle provides a way to opt-in a verbose
console report. For this, you need to add this Gradle property to your gradle.properties file:

org.gradle.dependency.verification.console=verbose

Bootstrapping dependency verification

It’s worth mentioning that while Gradle can generate a dependency verification file for you, you
should always check whatever Gradle generated for you because your build may already contain
compromised dependencies without you knowing about it. Please refer to the appropriate
checksum verification or signature verification section for more information.

If you plan on using signature verification, please also read the corresponding section of the docs.

Bootstrapping can either be used to create a file from the beginning, or also to update an existing
file with new information. Therefore, it’s recommended to always use the same parameters once
you started bootstrapping.

The dependency verification file can be generated with the following CLI instructions:

gradle --write-verification-metadata sha256 help

The write-verification-metadata flag requires the list of checksums that you want to generate or
pgp for signatures.

Executing this command line will cause Gradle to:

• resolve all resolvable configurations, which includes:

◦ configurations from the root project

◦ configurations from all subprojects

◦ configurations from buildSrc

◦ included builds configurations

◦ configurations used by plugins

• download all artifacts discovered during resolution

• compute the requested checksums and possibly verify signatures depending on what you asked

• At the end of the build, generate the configuration file which will contain the inferred
verification metadata

As a consequence, the verification-metadata.xml file will be used in subsequent builds to verify
dependencies.

WARNING

There are dependencies that Gradle cannot discover this way. In particular,
you will notice that the CLI above uses the help task. If you don’t specify any
task, Gradle will automatically run the default task and generate a
configuration file at the end of the build too.

The difference is that Gradle may discover more dependencies and artifacts
depending on the tasks you execute. As a matter of fact, Gradle cannot
automatically discover detached configurations, which are basically
dependency graphs resolved as an internal implementation detail of the
execution of a task: they are not, in particular, declared as an input of the task
because they effectively depend on the configuration of the task at execution
time.

A good way to start is just to use the simplest task, help, which will discover as
much as possible, and if subsequent builds fail with a verification error, you
can re-execute generation with the appropriate tasks to "discover" more
dependencies.

Gradle won’t verify either checksums or signatures of plugins which use their
own HTTP clients. Only plugins which use the infrastructure provided by
Gradle for performing requests will see their requests verified.

If an included build is used:

• the configuration file of the current build is used for verification

• so if the included build itself uses verification, its configuration is ignored in favor of the
current one

• which means that including a build works similarly to upgrading a dependency: it may require
you to update your current verification metadata

Using dry mode

By default, bootstrapping is incremental, which means that if you run it multiple times, information
is added to the file and in particular you can rely on your VCS to check the diffs. There are
situations where you would just want to see what the generated verification metadata file would
look like without actually changing the existing one or overwriting it.

For this purpose, you can just add --dry-run:

gradle --write-verification-metadata sha256 help --dry-run

Then instead of generating the verification-metadata.xml file, a new file will be generated, called
verification-metadata.dryrun.xml.

NOTE
Because --dry-run doesn’t execute tasks, this would be much faster, but it will miss
any resolution happening at task execution time.

Disabling metadata verification

By default, Gradle will not only verify artifacts (jars, …) but also the metadata associated with those
artifacts (typically POM files). Verifying this ensures the maximum level of security: metadata files
typically tell what transitive dependencies will be included, so a compromised metadata file may
cause the introduction of undesired dependencies in the graph. However, because all artifacts are
verified, such artifacts would in general easily be discovered by you, because they would cause a
checksum verification failure (checksums would be missing from verification metadata). Because
metadata verification can significantly increase the size of your configuration file, you may
therefore want to disable verification of metadata. If you understand the risks of doing so, set the
<verify-metadata> flag to false in the configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>
 <configuration>
 <verify-metadata>false</verify-metadata>
 <verify-signatures>false</verify-signatures>
 </configuration>
 <!-- the rest of this file doesn't need to declare anything about metadata files
-->
</verification-metadata>

Verifying dependency checksums

Checksum verification allows you to ensure the integrity of an artifact. This is the simplest thing
that Gradle can do for you to make sure that the artifacts you use are un-tampered.

Gradle supports MD5, SHA1, SHA-256 and SHA-512 checksums. However, only SHA-256 and SHA-
512 checksums are considered secure nowadays.

Adding the checksum for an artifact

External components are identified by GAV coordinates, then each of the artifacts by their file
names. To declare the checksums of an artifact, you need to add the corresponding section in the
verification metadata file. For example, to declare the checksum for Apache PDFBox. The GAV
coordinates are:

• group org.apache.pdfbox

• name pdfbox

• version 2.0.17

Using this dependency will trigger the download of 2 different files:

• pdfbox-2.0.17.jar which is the main artifact

• pdfbox-2.0.17.pom which is the metadata file associated with this artifact

As as consequence, you need to declare the checksums for both of them (unless you disabled
metadata verification):

https://pdfbox.apache.org

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>
 <configuration>
 <verify-metadata>true</verify-metadata>
 <verify-signatures>false</verify-signatures>
 </configuration>
 <components>
 <component group="org.apache.pdfbox" name="pdfbox" version="2.0.17">
 <artifact name="pdfbox-2.0.17.jar">
 <sha512 value=
"7e11e54a21c395d461e59552e88b0de0ebaf1bf9d9bcacadf17b240d9bbc29bf6beb8e36896c186fe405d
287f5d517b02c89381aa0fcc5e0aa5814e44f0ab331" origin="PDFBox Official site
(https://pdfbox.apache.org/download.cgi)"/>
 </artifact>
 <artifact name="pdfbox-2.0.17.pom">
 <sha512 value=
"82de436b38faf6121d8d2e71dda06e79296fc0f7bc7aba0766728c8d306fd1b0684b5379c18808ca724bf
91707277eba81eb4fe19518e99e8f2a56459b79742f" origin="Generated by Gradle"/>
 </artifact>
 </component>
 </components>
</verification-metadata>

Where to get checksums from?

In general, checksums are published alongside artifacts on public repositories. However, if a
dependency is compromised in a repository, it’s likely its checksum will be too, so it’s a good
practice to get the checksum from a different place, usually the website of the library itself.

In fact, it’s a good security practice to publish the checksums of artifacts on a different server than
the server where the artifacts themselves are hosted: it’s harder to compromise a library both on
the repository and the official website.

In the example above, the checksum was published on the website for the JAR, but not the POM file.
This is why it’s usually easier to let Gradle generate the checksums and verify by reviewing the
generated file carefully.

In this example, not only could we check that the checksum was correct, but we could also find it
on the official website, which is why we changed the value of the of origin attribute on the sha512
element from Generated by Gradle to PDFBox Official site. Changing the origin gives users a sense
of how trustworthy your build it.

Interestingly, using pdfbox will require much more than those 2 artifacts, because it will also bring
in transitive dependencies. If the dependency verification file only included the checksums for the
main artifacts you used, the build would fail with an error like this one:

Execution failed for task ':compileJava'.
> Dependency verification failed for configuration ':compileClasspath':
 - On artifact commons-logging-1.2.jar (commons-logging:commons-logging:1.2) in
repository 'MavenRepo': checksum is missing from verification metadata.
 - On artifact commons-logging-1.2.pom (commons-logging:commons-logging:1.2) in
repository 'MavenRepo': checksum is missing from verification metadata.

What this indicates is that your build requires commons-logging when executing compileJava,
however the verification file doesn’t contain enough information for Gradle to verify the integrity
of the dependencies, meaning you need to add the required information to the verification
metadata file.

See troubleshooting dependency verification for more insights on what to do in this situation.

What checksums are verified?

If a dependency verification metadata file declares more than one checksum for a dependency,
Gradle will verify all of them and fail if any of them fails. For example, the following configuration
would check both the md5 and sha1 checksums:

<component group="org.apache.pdfbox" name="pdfbox" version="2.0.17">
 <artifact name="pdfbox-2.0.17.jar">
 <md5 value="c713a8e252d0add65e9282b151adf6b4" origin="official site"/>
 <sha1 value="b5c8dff799bd967c70ccae75e6972327ae640d35" origin="official site"/>
 </artifact>
</component>

There are multiple reasons why you’d like to do so:

1. an official site doesn’t publish secure checksums (SHA-256, SHA-512) but publishes multiple
insecure ones (MD5, SHA1). While it’s easy to fake a MD5 checksum and hard but possible to
fake a SHA1 checksum, it’s harder to fake both of them for the same artifact.

2. you might want to add generated checksums to the list above

3. when updating dependency verification file with more secure checksums, you don’t want to
accidentally erase checksums

Verifying dependency signatures

In addition to checksums, Gradle supports verification of signatures. Signatures are used to assess
the provenance of a dependency (it tells who signed the artifacts, which usually corresponds to who
produced it).

As enabling signature verification usually means a higher level of security, you might want to
replace checksum verification with signature verification.

WARNING

Signatures can also be used to assess the integrity of a dependency similarly to
checksums. Signatures are signatures of the hash of artifacts, not artifacts
themselves. This means that if the signature is done on an unsafe hash (even
SHA1), then you’re not correctly assessing the integrity of a file. For this reason,
if you care about both, you need to add both signatures and checksums to your
verification metadata.

However:

• Gradle only supports verification of signatures published on remote repositories as ASCII-
armored PGP files

• Not all artifacts are published with signatures

• A good signature doesn’t mean that the signatory was legit

As a consequence, signature verification will often be used alongside checksum verification.

NOTE

About expired keys

It’s very common to find artifacts which are signed with an expired key. This is not
a problem for verification: key expiry is mostly used to avoid signing with a stolen
key. If an artifact was signed before expiry, it’s still valid.

Enabling signature verification

Because verifying signatures is more expensive (both I/O and CPU wise) and harder to check
manually, it’s not enabled by default.

Enabling it requires you to change the configuration option in the verification-metadata.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>
 <configuration>
 <verify-signatures>true</verify-signatures>
 </configuration>
</verification-metadata>

Understanding signature verification

Once signature verification is enabled, for each artifact, Gradle will:

• try to download the corresponding .asc file

• if it’s present

◦ automatically download the keys required to perform verification of the signature

◦ verify the artifact using the downloaded public keys

◦ if signature verification passes, perform additional requested checksum verification

• if it’s absent, fallback to checksum verification

That is to say that Gradle’s verification mechanism is much stronger if signature verification is
enabled than just with checksum verification. In particular:

• if an artifact is signed with multiple keys, all of them must pass validation or the build will fail

• if an artifact passes verification, any additional checksum configured for the artifact will also be
checked

However, it’s not because an artifact passes signature verification that you can trust it: you need to
trust the keys.

In practice, it means you need to list the keys that you trust for each artifact, which is done by
adding a pgp entry instead of a sha1 for example:

<component group="com.github.javaparser" name="javaparser-core" version="3.6.11">
 <artifact name="javaparser-core-3.6.11.jar">
 <pgp value="8756c4f765c9ac3cb6b85d62379ce192d401ab61"/>
 </artifact>
</component>

TIP
Gradle supports both full fingerprint ids or long (64-bit) key ids in pgp, trusted-key and
ignore-key elements. For maximum security, you should use full fingerprints as it’s
possible to have collisions for long key ids.

This effectively means that you trust com.github.javaparser:javaparser-core:3.6.11 if it’s signed
with the key 8756c4f765c9ac3cb6b85d62379ce192d401ab61.

Without this, the build would fail with this error:

> Dependency verification failed for configuration ':compileClasspath':
 - On artifact javaparser-core-3.6.11.jar (com.github.javaparser:javaparser-
core:3.6.11) in repository 'MavenRepo': Artifact was signed with key
'8756c4f765c9ac3cb6b85d62379ce192d401ab61' (Bintray (by JFrog) <****>) and passed
verification but the key isn't in your trusted keys list.

NOTE

The key IDs that Gradle shows in error messages are the key IDs found in the
signature file it tries to verify. It doesn’t mean that it’s necessarily the keys that you
should trust. In particular, if the signature is correct but done by a malicious entity,
Gradle wouldn’t tell you.

Trusting keys globally

Signature verification has the advantage that it can make the configuration of dependency
verification easier by not having to explicitly list all artifacts like for checksum verification only. In
fact, it’s common that the same key can be used to sign several artifacts. If this is the case, you can
move the trusted key from the artifact level to the global configuration block:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>
 <configuration>
 <verify-metadata>true</verify-metadata>
 <verify-signatures>true</verify-signatures>
 <trusted-keys>
 <trusted-key id="379ce192d401ab61" group="com.github.javaparser"/>
 </trusted-keys>
 </configuration>
 <components/>
</verification-metadata>

The configuration above means that for any artifact belonging to the group com.github.javaparser,
we trust it if it’s signed with the 379ce192d401ab61.

The trusted-key element works similarly to the trusted-artifact element:

• group, the group of the artifact to trust

• name, the name of the artifact to trust

• version, the version of the artifact to trust

• file, the name of the artifact file to trust

• regex, a boolean saying if the group, name, version and file attributes need to be interpreted as
regular expressions (defaults to false)

WARNING

You should be careful when trusting a key globally: try to limit it to the
appropriate groups or artifacts:

• a valid key may have been used to sign artifact A which you trust

• later on, the key is stolen and used to sign artifact B

It means you can trust the key A for the first artifact, probably only up to the
released version before the key was stolen, but not for B.

Remember that anybody can put an arbitrary name when generating a PGP
key, so never trust the key solely based on the key name. Verify if the key is
listed at the official site. For example, Apache projects typically provide a
KEYS.txt file that you can trust.

Specifying key servers and ignoring keys

Gradle will automatically download the public keys required to verify a signature. For this it uses a
list of well known and trusted key servers (the list may change between Gradle versions, please
refer to the implementation to figure out what servers are used by default).

You can explicitly set the list of key servers that you want to use by adding them to the
configuration:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>
 <configuration>
 <verify-metadata>true</verify-metadata>
 <verify-signatures>true</verify-signatures>
 <key-servers>
 <key-server uri="hkp://my-key-server.org"/>
 <key-server uri="https://my-other-key-server.org"/>
 </key-servers>
 </configuration>
</verification-metadata>

Despite this, it’s possible that a key is not available:

• because it wasn’t published to a public key server

• because it was lost

In this case, you can ignore a key in the configuration block:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>
 <configuration>
 <verify-metadata>true</verify-metadata>
 <verify-signatures>true</verify-signatures>
 <ignored-keys>
 <ignored-key id="abcdef1234567890" reason="Key is not available in any key
server"/>
 </ignored-keys>
 </configuration>
</verification-metadata>

As soon as a key is ignored, it will not be used for verification, even if the signature file mentions it.
However, if the signature cannot be verified with at least one other key, Gradle will mandate that
you provide a checksum.

Exporting keys for faster verification

Gradle automatically downloads the required keys but this operation can be quite slow and
requires everyone to download the keys. To avoid this, Gradle offers the ability to use a local
keyring file containing the required public keys.

Gradle supports 2 different file formats for keyrings: a binary format (.gpg file) and a plain text
format (.keys).

There are pros and cons for each of the formats: the binary format is more compact and can be
updated directly via GPG commands, but is completely opaque (binary). On the opposite, the plain
text format is human readable, can be easily updated by hand and makes it easier to do code
reviews thanks to readable diffs.

If the gradle/verification-keyring.gpg or gradle/verification-keyring.keys file is present, Gradle
will search for keys there in priority.

Note that the plain text file will be ignored if there’s already a .gpg file (the binary version takes
precedence).

You can generate the binary version using GPG, for example issuing the following commands
(syntax may depend on the tool you use):

$ gpg --no-default-keyring --keyring gradle/verification-keyring.gpg --recv-keys
379ce192d401ab61

gpg: keybox 'gradle/verification-keyring.gpg' created
gpg: key 379CE192D401AB61: public key "Bintray (by JFrog) <****>" imported
gpg: Total number processed: 1
gpg: imported: 1

$ gpg --no-default-keyring --keyring gradle/verification-keyring.gpg --recv-keys
6a0975f8b1127b83

gpg: key 0729A0AFF8999A87: public key "Kotlin Release <****>" imported
gpg: Total number processed: 1
gpg: imported: 1

The plain text version, on the other hand, can be updated manually. The file must be formatted
with the US-ASCII encoding and consists of a list of keys in ASCII armored format.

In the example above, you could amend an existing KEYS file by issuing the following commands:

$ gpg --no-default-keyring --keyring /tmp/keyring.gpg --recv-keys 379ce192d401ab61

gpg: keybox '/tmp/keyring.gpg' created
gpg: key 379CE192D401AB61: public key "Bintray (by JFrog) <****>" imported
gpg: Total number processed: 1
gpg: imported: 1

First let's add a header so that we can recognize the added key
$ gpg --keyring /tmp/keyring.gpg --list-sigs 379CE192D401AB61 > gradle/verification-
keyring.keys

Then write its ASCII armored version
$ gpg --keyring /tmp/keyring.gpg --export --armor 379CE192D401AB61 >
gradle/verification-keyring.keys

Or, alternatively, you can ask Gradle to export all keys it used for verification of this build to the
keyring during bootstrapping:

./gradlew --write-verification-metadata pgp,sha256 --export-keys

NOTE

This command will generate both the binary version and the ASCII armored file.
You should only pick one for your project.

It’s a good idea to commit this file to VCS (as long as you trust your VCS). If you use
git and use the binary version, make sure to make it treat this file as binary, by
adding this to your .gitattributes file:

*.gpg binary

Bootstrapping and signature verification

WARNING

Signature verification bootstrapping takes an optimistic point of view that
signature verification is enough. Therefore, if you also care about integrity, you
must first bootstrap using checksum verification, then with signature
verification.

Similarly to bootstrapping for checksums, Gradle provides a convenience for bootstrapping a
configuration file with signature verification enabled. For this, just add the pgp option to the list of
verifications to generate. However, because there might be verification failures, missing keys or
missing signature files, you must provide a fallback checksum verification algorithm:

./gradlew --write-verification-metadata pgp,sha256

this means that Gradle will verify the signatures and fallback to SHA-256 checksums when there’s a
problem.

When bootstrapping, Gradle performs optimistic verification and therefore assumes a sane build
environment. It will therefore:

• automatically add the trusted keys as soon as verification passes

• automatically add ignored keys for keys which couldn’t be downloaded from public key servers

• automatically generate checksums for artifacts without signatures or ignored keys

If, for some reason, verification fails during the generation, Gradle will automatically generate an
ignored key entry but warn you that you must absolutely check what happens.

This situation is common as explained for this section: a typical case is when the POM file for a
dependency differs from one repository to the other (often in a non-meaningful way).

In addition, Gradle will try to group keys automatically and generate the trusted-keys block which
reduced the configuration file size as much as possible.

Forcing use of local keyrings only

The local keyring files (.gpg or .keys) can be used to avoid reaching out to key servers whenever a
key is required to verify an artifact. However, it may be that the local keyring doesn’t contain a key,
in which case Gradle would use the key servers to fetch the missing key. If the local keyring file isn’t
regularly updated, using key export, then it may be that your CI builds, for example, would reach
out to key servers too often (especially if you use disposable containers for builds).

To avoid this, Gradle offers the ability to disallow use of key servers altogether: only the local
keyring file would be used, and if a key is missing from this file, the build will fail.

To enable this mode, you need to disable key servers in the configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>
 <configuration>
 <key-servers enabled="false"/>
 ...
 </configuration>
 ...
</verification-metadata>

NOTE
If you are asking Gradle to generate a verification metadata file and that an existing
verification metadata file sets enabled to false, then this flag will be ignored, so that
potentially missing keys are downloaded.

Troubleshooting dependency verification

Dealing with a verification failure

Dependency verification can fail in different ways, this section explains how you should deal with
the various cases.

Missing verification metadata

The simplest failure you can have is when verification metadata is missing from the dependency
verification file. This is the case for example if you use checksum verification, then you update a
dependency and new versions of the dependency (and potentially its transitive dependencies) are
brought in.

Gradle will tell you what metadata is missing:

Execution failed for task ':compileJava'.
> Dependency verification failed for configuration ':compileClasspath':
 - On artifact commons-logging-1.2.jar (commons-logging:commons-logging:1.2) in
repository 'MavenRepo': checksum is missing from verification metadata.

• the missing module group is commons-logging, it’s artifact name is commons-logging and its

version is 1.2. The corresponding artifact is commons-logging-1.2.jar so you need to add the
following entry to the verification file:

<component group="commons-logging" name="commons-logging" version="1.2">
 <artifact name="commons-logging-1.2.jar">
 <sha256 value="daddea1ea0be0f56978ab3006b8ac92834afeefbd9b7e4e6316fca57df0fa636"
origin="official distribution"/>
 </artifact>
</component>

Alternatively, you can ask Gradle to generate the missing information by using the bootstrapping
mechanism: existing information in the metadata file will be preserved, Gradle will only add the
missing verification metadata.

Incorrect checksums

A more problematic issue is when the actual checksum verification fails:

Execution failed for task ':compileJava'.
> Dependency verification failed for configuration ':compileClasspath':
 - On artifact commons-logging-1.2.jar (commons-logging:commons-logging:1.2) in
repository 'MavenRepo': expected a 'sha256' checksum of
'91f7a33096ea69bac2cbaf6d01feb934cac002c48d8c8cfa9c240b40f1ec21df' but was
'daddea1ea0be0f56978ab3006b8ac92834afeefbd9b7e4e6316fca57df0fa636'

This time, Gradle tells you what dependency is at fault, what was the expected checksum (the one
you declared in the verification metadata file) and the one which was actually computed during
verification.

Such a failure indicates that a dependency may have been compromised. At this stage, you must
perform manual verification and check what happens. Several things can happen:

• a dependency was tampered in the local dependency cache of Gradle. This is usually harmless:
erase the file from the cache and Gradle would redownload the dependency.

• a dependency is available in multiple sources with slightly different binaries (additional
whitespace, …)

◦ please inform the maintainers of the library that they have such an issue

◦ you can use also-trust to accept the additional checksums

• the dependency was compromised

◦ immediately inform the maintainers of the library

◦ notify the repository maintainers of the compromised library

Note that a variation of a compromised library is often name squatting, when a hacker would use
GAV coordinates which look legit but are actually different by one character, or repository
shadowing, when a dependency with the official GAV coordinates is published in a malicious

repository which comes first in your build.

Untrusted signatures

If you have signature verification enabled, Gradle will perform verification of the signatures but
will not trust them automatically:

> Dependency verification failed for configuration ':compileClasspath':
 - On artifact javaparser-core-3.6.11.jar (com.github.javaparser:javaparser-
core:3.6.11) in repository 'MavenRepo': Artifact was signed with key
'379ce192d401ab61' (Bintray (by JFrog) <****>) and passed verification but the key
isn't in your trusted keys list.

In this case it means you need to check yourself if the key that was used for verification (and
therefore the signature) can be trusted, in which case refer to this section of the documentation to
figure out how to declare trusted keys.

Failed signature verification

If Gradle fails to verify a signature, you will need to take action and verify artifacts manually
because this may indicate a compromised dependency.

If such a thing happens, Gradle will fail with:

> Dependency verification failed for configuration ':compileClasspath':
 - On artifact javaparser-core-3.6.11.jar (com.github.javaparser:javaparser-
core:3.6.11) in repository 'MavenRepo': Artifact was signed with key
'379ce192d401ab61' (Bintray (by JFrog) <****>) but signature didn't match

There are several options:

1. signature was wrong in the first place, which happens frequently with dependencies published
on different repositories.

2. the signature is correct but the artifact has been compromised (either in the local dependency
cache or remotely)

The right approach here is to go to the official site of the dependency and see if they publish
signatures for their artifacts. If they do, verify that the signature that Gradle downloaded matches
the one published.

If you have checked that the dependency is not compromised and that it’s "only" the signature
which is wrong, you should declare an artifact level key exclusion:

 <components>
 <component group="com.github.javaparser" name="javaparser-core" version="
3.6.11">
 <artifact name="javaparser-core-3.6.11.pom">
 <ignored-keys>
 <ignored-key id="379ce192d401ab61" reason="internal repo has corrupted
POM"/>
 </ignored-keys>
 </artifact>
 </component>
 </components>

However, if you only do so, Gradle will still fail because all keys for this artifact will be ignored and
you didn’t provide a checksum:

 <components>
 <component group="com.github.javaparser" name="javaparser-core" version="
3.6.11">
 <artifact name="javaparser-core-3.6.11.pom">
 <ignored-keys>
 <ignored-key id="379ce192d401ab61" reason="internal repo has corrupted
POM"/>
 </ignored-keys>
 <sha256 value=
"a2023504cfd611332177f96358b6f6db26e43d96e8ef4cff59b0f5a2bee3c1e1"/>
 </artifact>
 </component>
 </components>

Manual verification of a dependency

You will likely face a dependency verification failure (either checksum verification or signature
verification) and will need to figure out if the dependency has been compromised or not.

In this section we give an example how you can manually check if a dependency was compromised.

For this we will take this example failure:

> Dependency verification failed for configuration ':compileClasspath':
- On artifact j2objc-annotations-1.1.jar (com.google.j2objc:j2objc-annotations:1.1) in
repository 'MyCompany Mirror': Artifact was signed with key '29579f18fa8fd93b' but
signature didn't match

This error message gives us the GAV coordinates of the problematic dependency, as well as an
indication of where the dependency was fetched from. Here, the dependency comes from MyCompany
Mirror, which is a repository declared in our build.

The first thing to do is therefore to download the artifact and its signature manually from the
mirror:

$ curl https://my-company-mirror.com/repo/com/google/j2objc/j2objc-
annotations/1.1/j2objc-annotations-1.1.jar --output j2objc-annotations-1.1.jar
$ curl https://my-company-mirror.com/repo/com/google/j2objc/j2objc-
annotations/1.1/j2objc-annotations-1.1.jar.asc --output j2objc-annotations-1.1.jar.asc

Then we can use the key information provided in the error message to import the key locally:

$ gpg --recv-keys 29579f18fa8fd93b

And perform verification:

$ gpg --verify j2objc-annotations-1.1.jar.asc
gpg: assuming signed data in 'j2objc-annotations-1.1.jar'
gpg: Signature made Thu 19 Jan 2017 12:06:51 AM CET
gpg: using RSA key 29579F18FA8FD93B
gpg: BAD signature from "Tom Ball <****>" [unknown]

What this tells us is that the problem is not on the local machine: the repository already contains a
bad signature.

The next step is to do the same by downloading what is actually on Maven Central:

$ curl https://my-company-mirror.com/repo/com/google/j2objc/j2objc-
annotations/1.1/j2objc-annotations-1.1.jar --output central-j2objc-annotations-
1.1.jar
$ curl https://my-company-mirror.com/repo/com/google/j2objc/j2objc-
annotations/1/1/j2objc-annotations-1.1.jar.asc --output central-j2objc-annotations-
1.1.jar.asc

And we can now check the signature again:

$ gpg --verify central-j2objc-annotations-1.1.jar.asc

gpg: assuming signed data in 'central-j2objc-annotations-1.1.jar'
gpg: Signature made Thu 19 Jan 2017 12:06:51 AM CET
gpg: using RSA key 29579F18FA8FD93B
gpg: Good signature from "Tom Ball <****>" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: B801 E2F8 EF03 5068 EC11 39CC 2957 9F18 FA8F D93B

This indicates that the dependency is valid on Maven Central. At this stage, we already know that

the problem lives in the mirror, it may have been compromised, but we need to verify.

A good idea is to compare the 2 artifacts, which you can do with a tool like diffoscope.

We then figure out that the intent wasn’t malicious but that somehow a build has been overwritten
with a newer version (the version in Central is newer than the one in our repository).

In this case, you can decide to:

• ignore the signature for this artifact and trust the different possible checksums (both for the old
artifact and the new version)

• or cleanup your mirror so that it contains the same version as in Maven Central

It’s worth noting that if you choose to delete the version from your repository, you will also need to
remove it from the local Gradle cache.

This is facilitated by the fact the error message tells you were the file is located:

> Dependency verification failed for configuration ':compileClasspath':
 - On artifact j2objc-annotations-1.1.jar (com.google.j2objc:j2objc-
annotations:1.1) in repository 'MyCompany Mirror': Artifact was signed with key
'29579f18fa8fd93b' but signature didn't match

 This can indicate that a dependency has been compromised. Please carefully verify
the signatures and checksums.

 For your information here are the path to the files which failed verification:
 - GRADLE_USER_HOME/caches/modules-2/files-2.1/com.google.j2objc/j2objc-
annotations/1.1/976d8d30bebc251db406f2bdb3eb01962b5685b3/j2objc-annotations-1.1.jar
(signature: GRADLE_USER_HOME/caches/modules-2/files-2.1/com.google.j2objc/j2objc-
annotations/1.1/82e922e14f57d522de465fd144ec26eb7da44501/j2objc-annotations-
1.1.jar.asc)

 GRADLE_USER_HOME = /home/jiraya/.gradle

You can safely delete the artifact file as Gradle would automatically re-download it:

rm -rf ~/.gradle/caches/modules-2/files-2.1/com.google.j2objc/j2objc-annotations/1.1

Disabling verification or making it lenient

Dependency verification can be expensive, or sometimes verification could get in the way of day to
day development (because of frequent dependency upgrades, for example).

Alternatively, you might want to enable verification on CI servers but not on local machines.

Gradle actually provides 3 different verification modes:

• strict, which is the default. Verification fails as early as possible, in order to avoid the use of

https://try.diffoscope.org/

compromised dependencies during the build.

• lenient, which will run the build even if there are verification failures. The verification errors
will be displayed during the build without causing a build failure.

• off when verification is totally ignored.

All those modes can be activated on the CLI using the --dependency-verification flag, for example:

./gradlew --dependency-verification lenient build

Alternatively, you can set the org.gradle.dependency.verification system property, either on the
CLI:

./gradlew -Dorg.gradle.dependency.verification=lenient build

or in a gradle.properties file:

org.gradle.dependency.verification=lenient

Trusting some particular artifacts

You might want to trust some artifacts more than others. For example, it’s legitimate to think that
artifacts produced in your company and found in your internal repository only are safe, but you
want to check every external component.

NOTE
This is a typical company policy. In practice, nothing prevents your internal
repository from being compromised, so it’s a good idea to check your internal
artifacts too!

For this purpose, Gradle offers a way to automatically trust some artifacts. You can trust all artifacts
in a group by adding this to your configuration:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>
 <configuration>
 <trusted-artifacts>
 <trust group="com.mycompany"/>
 </trusted-artifacts>
 </configuration>
</verification-metadata>

This means that all components which group is com.mycompany will automatically be trusted. Trusted
means that Gradle will not perform any verification whatsoever.

The trust element accepts those attributes:

• group, the group of the artifact to trust

• name, the name of the artifact to trust

• version, the version of the artifact to trust

• file, the name of the artifact file to trust

• regex, a boolean saying if the group, name, version and file attributes need to be interpreted as
regular expressions (defaults to false)

In the example above it means that the trusted artifacts would be artifacts in com.mycompany but not
com.mycompany.other. To trust all artifacts in com.mycompany and all subgroups, you can use:

<?xml version="1.0" encoding="UTF-8"?>
<verification-metadata>
 <configuration>
 <trusted-artifacts>
 <trust group="^com[.]mycompany($|([.].*))" regex="true"/>
 </trusted-artifacts>
 </configuration>
</verification-metadata>

Trusting multiple checksums for an artifact

It’s quite common to have different checksums for the same artifact in the wild. How is that
possible? Despite progress, it’s often the case that developers publish, for example, to Maven
Central and another repository separately, using different builds. In general, this is not a problem
but sometimes it means that the metadata files would be different (different timestamps, additional
whitespaces, …). Add to this that your build may use several repositories or repository mirrors and
it makes it quite likely that a single build can "see" different metadata files for the same component!
In general, it’s not malicious (but you must verify that the artifact is actually correct), so Gradle lets
you declare the additional artifact checksums. For example:

 <component group="org.apache" name="apache" version="13">
 <artifact name="apache-13.pom">
 <sha256 value=
"2fafa38abefe1b40283016f506ba9e844bfcf18713497284264166a5dbf4b95e">
 <also-trust value=
"ff513db0361fd41237bef4784968bc15aae478d4ec0a9496f811072ccaf3841d"/>
 </sha256>
 </artifact>
 </component>

You can have as many also-trust entries as needed, but in general you shouldn’t have more than 2.

Skipping Javadocs and sources

By default Gradle will verify all downloaded artifacts, which includes Javadocs and sources. In
general this is not a problem but you might face an issue with IDEs which automatically try to

download them during import: if you didn’t set the checksums for those too, importing would fail.

To avoid this, you can configure Gradle to trust automatically all javadocs/sources:

<trusted-artifacts>
 <trust file=".*-javadoc[.]jar" regex="true"/>
 <trust file=".*-sources[.]jar" regex="true"/>
</trusted-artifacts>

Cleaning up the verification file

If you do nothing, the dependency verification metadata will grow over time as you add new
dependencies or change versions: Gradle will not automatically remove unused entries from this
file. The reason is that there’s no way for Gradle to know upfront if a dependency will effectively be
used during the build or not.

As a consequence, adding dependencies or changing dependency version can easily lead to more
entries in the file, while leaving unnecessary entries out there.

One option to cleanup the file is to move the existing verification-metadata.xml file to a different
location and call Gradle with the --dry-run mode: while not perfect (it will not notice dependencies
only resolved at configuration time), it generates a new file that you can compare with the existing
one.

We need to move the existing file because both the bootstrapping mode and the dry-run mode are
incremental: they copy information from the existing metadata verification file (in particular,
trusted keys).

Refreshing missing keys

Gradle caches missing keys for 24 hours, meaning it will not attempt to re-download the missing
keys for 24 hours after failing.

If you want to retry immediately, you can run with the --refresh-keys CLI flag:

./gradlew build --refresh-keys

Disabling dependency verification for some configurations only

In order to provide the strongest security level possible, dependency verification is enabled
globally. This will ensure, for example, that you trust all the plugins you use. However, the plugins
themselves may need to resolve additional dependencies that it doesn’t make sense to ask the user
to accept. For this purpose, Gradle provides an API which allows disabling dependency verification
on some specific configurations.

WARNING

Disabling dependency verification, if you care about security, is not a good
idea. This API mostly exist for cases where it doesn’t make sense to check
dependencies. However, in order to be on the safe side, Gradle will
systematically print a warning whenever verification has been disabled for a
specific configuration.

As an example, a plugin may want to check if there are newer versions of a library available and list
those versions. It doesn’t make sense, in this context, to ask the user to put the checksums of the
POM files of the newer releases because by definition, they don’t know about them. So the plugin
might need to run its code independently of the dependency verification configuration.

To do this, you need to call the ResolutionStrategy#disableDependencyVerification method:

Example 284. Disabling dependency verification

build.gradle

configurations {
 myPluginClasspath {
 resolutionStrategy {
 disableDependencyVerification()
 }
 }
}

build.gradle.kts

configurations {
 "myPluginClasspath" {
 resolutionStrategy {
 disableDependencyVerification()
 }
 }
}

It’s also possible to disable verification on detached configurations like in the following example:

Example 285. Disabling dependency verification

build.gradle

tasks.register("checkDetachedDependencies") {
 doLast {
 def detachedConf = configurations.detachedConfiguration(dependencies
.create("org.apache.commons:commons-lang3:3.3.1"))
 detachedConf.resolutionStrategy.disableDependencyVerification()
 println(detachedConf.files)
 }
}

build.gradle.kts

tasks.register("checkDetachedDependencies") {
 doLast {
 val detachedConf =
configurations.detachedConfiguration(dependencies.create("org.apache.commons:
commons-lang3:3.3.1"))
 detachedConf.resolutionStrategy.disableDependencyVerification()
 println(detachedConf.files)
 }
}

Declaring Versions

Declaring Versions and Ranges

The simplest version declaration is a simple string representing the version to use. Gradle supports
different ways of declaring a version string:

• An exact version: e.g. 1.3, 1.3.0-beta3, 1.0-20150201.131010-1

• A Maven-style version range: e.g. [1.0,), [1.1, 2.0), (1.2, 1.5]

◦ The [and] symbols indicate an inclusive bound; (and) indicate an exclusive bound.

◦ When the upper or lower bound is missing, the range has no upper or lower bound.

◦ The symbol] can be used instead of (for an exclusive lower bound, and [instead of) for
exclusive upper bound. e.g]1.0, 2.0[

◦ An upper bound exclude acts as a prefix exclude. This means that [1.0, 2.0[will also
exclude all versions starting with 2.0 that are smaller than 2.0. For example versions like
2.0-dev1 or 2.0-SNAPSHOT are no longer included in the range.

• A prefix version range: e.g. 1.+, 1.3.+

◦ Only versions exactly matching the portion before the + are included.

◦ The range + on it’s own will include any version.

• A latest-status version: e.g. latest.integration, latest.release

◦ Will match the highest versioned module with the specified status. See
ComponentMetadata.getStatus().

• A Maven SNAPSHOT version identifier: e.g. 1.0-SNAPSHOT, 1.4.9-beta1-SNAPSHOT

Version ordering

Versions have an implicit ordering. Version ordering is used to:

• Determine if a particular version is included in a range.

• Determine which version is 'newest' when performing conflict resolution.

Versions are ordered based on the following rules:

• Each version is split into it’s constituent "parts":

◦ The characters [. - _ +] are used to separate the different "parts" of a version.

◦ Any part that contains both digits and letters is split into separate parts for each: 1a1 ==
1.a.1

◦ Only the parts of a version are compared. The actual separator characters are not
significant: 1.a.1 == 1-a+1 == 1.a-1 == 1a1

• The equivalent parts of 2 versions are compared using the following rules:

◦ If both parts are numeric, the highest numeric value is higher: 1.1 < 1.2

◦ If one part is numeric, it is considered higher than the non-numeric part: 1.a < 1.1

◦ If both are not numeric, the parts are compared alphabetically, case-sensitive: 1.A < 1.B <
1.a < 1.b

◦ A version with an extra numeric part is considered higher than a version without: 1.1 <
1.1.0

◦ A version with an extra non-numeric part is considered lower than a version without: 1.1.a
< 1.1

• Certain string values have special meaning for the purposes of ordering:

◦ The string dev is consider lower than any other string part: 1.0-dev < 1.0-alpha < 1.0-rc.

◦ The strings rc, final, ga and release are considered higher than any other string part (sorted
in that order): 1.0-zeta < 1.0-RC < 1.0-FINAL < 1.0-GA < 1.0-RELEASE < 1.0.

◦ The string SP will be ordered higher than release, it remains however lower than an
unqualified version, limiting its use to versioning schemes using either FINAL, GA or RELEASE:
1.0-RELEASE < 1.0-SP1 < 1.0

◦ The string snapshot will be ordered higher than rc: 1.0-RC < 1.0-SNAPSHOT < 1.0.

◦ Numeric snapshot versions have no special meaning, and are sorted like any other
numeric part: 1.0 < 1.0-20150201.121010-123 < 1.1.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ComponentMetadata.html#getStatus--

Simple version declaration semantics

When you declare a version using the short-hand notation, for example:

Example 286. A simple declaration

build.gradle

dependencies {
 implementation('org.slf4j:slf4j-api:1.7.15')
}

build.gradle.kts

dependencies {
 implementation("org.slf4j:slf4j-api:1.7.15")
}

Then the version is considered a required version which means that it should minimally be 1.7.15
but can be upgraded by the engine (optimistic upgrade).

There is, however, a shorthand notation for strict versions, using the !! notation:

Example 287. Shorthand notation for strict dependencies

build.gradle

dependencies {
 // short-hand notation with !!
 implementation('org.slf4j:slf4j-api:1.7.15!!')
 // is equivalent to
 implementation("org.slf4j:slf4j-api") {
 version {
 strictly '1.7.15'
 }
 }

 // or...
 implementation('org.slf4j:slf4j-api:[1.7, 1.8[!!1.7.25')
 // is equivalent to
 implementation('org.slf4j:slf4j-api') {
 version {
 strictly '[1.7, 1.8['
 prefer '1.7.25'
 }
 }
}

build.gradle.kts

dependencies {
 // short-hand notation with !!
 implementation("org.slf4j:slf4j-api:1.7.15!!")
 // is equivalent to
 implementation("org.slf4j:slf4j-api") {
 version {
 strictly("1.7.15")
 }
 }

 // or...
 implementation("org.slf4j:slf4j-api:[1.7, 1.8[!!1.7.25")
 // is equivalent to
 implementation("org.slf4j:slf4j-api") {
 version {
 strictly("[1.7, 1.8[")
 prefer("1.7.25")
 }
 }
}

A strict version cannot be upgraded and overrides whatever transitive dependencies originating
from this dependency provide. It is recommended to use ranges for strict versions.

The notation [1.7, 1.8[!!1.7.25 above is equivalent to:

• strictly [1.7, 1.8[

• prefer 1.7.25

which means that the engine must select a version between 1.7 (included) and 1.8 (excluded), and
that if no other component in the graph needs a different version, it should prefer 1.7.25.

Declaring a dependency without version

A recommended practice for larger projects is to declare dependencies without versions and use
dependency constraints for version declaration. The advantage is that dependency constraints
allow you to manage versions of all dependencies, including transitive ones, in one place.

Example 288. Declaring a dependency without version

build.gradle

dependencies {
 implementation 'org.springframework:spring-web'
}

dependencies {
 constraints {
 implementation 'org.springframework:spring-web:5.0.2.RELEASE'
 }
}

build.gradle.kts

dependencies {
 implementation("org.springframework:spring-web")
}

dependencies {
 constraints {
 implementation("org.springframework:spring-web:5.0.2.RELEASE")
 }
}

Declaring Rich Versions

Gradle supports a rich model for declaring versions, which allows to combine different level of
version information. The terms and their meaning are explained below, from the strongest to the
weakest:

strictly

Any version not matched by this version notation will be excluded. This is the strongest version
declaration. On a declared dependency, a strictly can downgrade a version. When on a
transitive dependency, it will cause dependency resolution to fail if no version acceptable by this
clause can be selected. See overriding dependency version for details. This term supports
dynamic versions.

When defined, this overrides any previous require declaration and clears previous reject.

require

Implies that the selected version cannot be lower than what require accepts but could be higher
through conflict resolution, even if higher has an exclusive higher bound. This is what a direct

dependency translates to. This term supports dynamic versions.

When defined, this overrides any previous strictly declaration and clears previous reject.

prefer

This is a very soft version declaration. It applies only if there is no stronger non dynamic opinion
on a version for the module. This term does not support dynamic versions.

Definition can complement strictly or require.

When defined, this overrides any previous prefer declaration and clears previous reject.

There is also an additional term outside of the level hierarchy:

reject

Declares that specific version(s) are not accepted for the module. This will cause dependency
resolution to fail if the only versions selectable are also rejected. This term supports dynamic
versions.

The following table illustrates a number of use cases and how to combine the different terms for
rich version declaration:

Table 15. Rich version use cases

Which version(s) of this
dependency are acceptable?

stri
ctly

requir
e

prefer reje
cts

Selection result

Tested with version 1.5,
believe all future versions
should work.

1.5 Any version starting from 1.5,
equivalent of org:foo:1.5. An upgrade
to 2.4 is accepted.

Tested with 1.5, soft
constraint upgrades according
to semantic versioning.

[1.0,
2.0[

1.5 Any version between 1.0 and 2.0, 1.5 if
nobody else cares. An upgrade to 2.4 is
accepted.
ὑ�

Tested with 1.5, but follows
semantic versioning.

[1.0,
2.0[

1.5 Any version between 1.0 and 2.0
(exclusive), 1.5 if nobody else cares.
Overwrites versions from transitive
dependencies.
ὑ�

Same as above, with 1.4
known broken.

[1.0,
2.0[

1.5 1.4 Any version between 1.0 and 2.0
(exclusive) except for 1.4, 1.5 if nobody
else cares.
Overwrites versions from transitive
dependencies.
ὑ�

No opinion, works with 1.5. 1.5 1.5 if no other opinion, any otherwise.

No opinion, prefer latest
release.

latest
.relea
se

The latest release at build time.
ὑ�

Which version(s) of this
dependency are acceptable?

stri
ctly

requir
e

prefer reje
cts

Selection result

On the edge, latest release, no
downgrade.

latest
.relea
se

The latest release at build time.
ὑ�

No other version than 1.5. 1.5 1.5, or failure if another strict or
higher require constraint disagrees.
Overwrites versions from transitive
dependencies.

1.5 or a patch version of it
exclusively.

[1.5,
1.6[

Latest 1.5.x patch release, or failure if
another strict or higher require
constraint disagrees.
Overwrites versions from transitive
dependencies.
ὑ�

Lines annotated with a lock (ὑ�) indicate that leveraging dependency locking makes sense in this
context. Another concept that relates with rich version declaration is the ability to publish resolved
versions instead of declared ones.

Using strictly, especially for a library, must be a well thought process as it has an impact on
downstream consumers. At the same time, used correctly, it will help consumers understand what
combination of libraries do not work together in their context. See overriding dependency version
for more information.

NOTE

Rich version information will be preserved in the Gradle Module Metadata format.
However conversion to Ivy or Maven metadata formats will be lossy. The highest
level will be published, that is strictly or require over prefer. In addition, any
reject will be ignored.

Rich version declaration is accessed through the version DSL method on a dependency or constraint
declaration which gives access to MutableVersionConstraint.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/MutableVersionConstraint.html

Example 289. Rich version declaration

build.gradle

dependencies {
 implementation('org.slf4j:slf4j-api') {
 version {
 strictly '[1.7, 1.8['
 prefer '1.7.25'
 }
 }

 constraints {
 implementation('org.springframework:spring-core') {
 version {
 require '4.2.9.RELEASE'
 reject '4.3.16.RELEASE'
 }
 }
 }
}

build.gradle.kts

dependencies {
 implementation("org.slf4j:slf4j-api") {
 version {
 strictly("[1.7, 1.8[")
 prefer("1.7.25")
 }
 }

 constraints {
 add("implementation", "org.springframework:spring-core") {
 version {
 require("4.2.9.RELEASE")
 reject("4.3.16.RELEASE")
 }
 }
 }
}

Handling versions which change over time

There are many situations when you want to use the latest version of a particular module

dependency, or the latest in a range of versions. This can be a requirement during development, or
you may be developing a library that is designed to work with a range of dependency versions. You
can easily depend on these constantly changing dependencies by using a dynamic version. A
dynamic version can be either a version range (e.g. 2.+) or it can be a placeholder for the latest
version available e.g. latest.integration.

Alternatively, the module you request can change over time even for the same version, a so-called
changing version. An example of this type of changing module is a Maven SNAPSHOT module, which
always points at the latest artifact published. In other words, a standard Maven snapshot is a
module that is continually evolving, it is a "changing module".

NOTE
Using dynamic versions and changing modules can lead to unreproducible builds.
As new versions of a particular module are published, its API may become
incompatible with your source code. Use this feature with caution!

Declaring a dynamic version

Projects might adopt a more aggressive approach for consuming dependencies to modules. For
example you might want to always integrate the latest version of a dependency to consume cutting
edge features at any given time. A dynamic version allows for resolving the latest version or the
latest version of a version range for a given module.

NOTE
Using dynamic versions in a build bears the risk of potentially breaking it. As soon
as a new version of the dependency is released that contains an incompatible API
change your source code might stop compiling.

Example 290. Declaring a dependency with a dynamic version

build.gradle

plugins {
 id 'java-library'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.springframework:spring-web:5.+'
}

build.gradle.kts

plugins {
 `java-library`
}

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.springframework:spring-web:5.+")
}

A build scan can effectively visualize dynamic dependency versions and their respective, selected
versions.

https://scans.gradle.com/

Figure 21. Dynamic dependencies in build scan

By default, Gradle caches dynamic versions of dependencies for 24 hours. Within this time frame,
Gradle does not try to resolve newer versions from the declared repositories. The threshold can be
configured as needed for example if you want to resolve new versions earlier.

Declaring a changing version

A team might decide to implement a series of features before releasing a new version of the
application or library. A common strategy to allow consumers to integrate an unfinished version of
their artifacts early and often is to release a module with a so-called changing version. A changing
version indicates that the feature set is still under active development and hasn’t released a stable
version for general availability yet.

In Maven repositories, changing versions are commonly referred to as snapshot versions. Snapshot
versions contain the suffix -SNAPSHOT. The following example demonstrates how to declare a
snapshot version on the Spring dependency.

https://maven.apache.org/guides/getting-started/index.html#What_is_a_SNAPSHOT_version

Example 291. Declaring a dependency with a changing version

build.gradle

plugins {
 id 'java-library'
}

repositories {
 mavenCentral()
 maven {
 url 'https://repo.spring.io/snapshot/'
 }
}

dependencies {
 implementation 'org.springframework:spring-web:5.0.3.BUILD-SNAPSHOT'
}

build.gradle.kts

plugins {
 `java-library`
}

repositories {
 mavenCentral()
 maven {
 url = uri("https://repo.spring.io/snapshot/")
 }
}

dependencies {
 implementation("org.springframework:spring-web:5.0.3.BUILD-SNAPSHOT")
}

By default, Gradle caches changing versions of dependencies for 24 hours. Within this time frame,
Gradle does not try to resolve newer versions from the declared repositories. The threshold can be
configured as needed for example if you want to resolve new snapshot versions earlier.

Gradle is flexible enough to treat any version as changing version e.g. if you wanted to model
snapshot behavior for an Ivy module. All you need to do is to set the property
ExternalModuleDependency.setChanging(boolean) to true.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html#setChanging-boolean-

Controlling dynamic version caching

By default, Gradle caches dynamic versions and changing modules for 24 hours. During that time
frame Gradle does not contact any of the declared, remote repositories for new versions. If you
want Gradle to check the remote repository more frequently or with every execution of your build,
then you will need to change the time to live (TTL) threshold.

NOTE
Using a short TTL threshold for dynamic or changing versions may result in longer
build times due to the increased number of HTTP(s) calls.

You can override the default cache modes using command line options. You can also change the
cache expiry times in your build programmatically using the resolution strategy.

Controlling dependency caching programmatically

You can fine-tune certain aspects of caching programmatically using the ResolutionStrategy for a
configuration. The programmatic approach is useful if you would like to change the settings
permanently.

By default, Gradle caches dynamic versions for 24 hours. To change how long Gradle will cache the
resolved version for a dynamic version, use:

Example 292. Dynamic version cache control

build.gradle

configurations.all {
 resolutionStrategy.cacheDynamicVersionsFor 10, 'minutes'
}

build.gradle.kts

configurations.all {
 resolutionStrategy.cacheDynamicVersionsFor(10, "minutes")
}

By default, Gradle caches changing modules for 24 hours. To change how long Gradle will cache the
meta-data and artifacts for a changing module, use:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ResolutionStrategy.html

Example 293. Changing module cache control

build.gradle

configurations.all {
 resolutionStrategy.cacheChangingModulesFor 4, 'hours'
}

build.gradle.kts

configurations.all {
 resolutionStrategy.cacheChangingModulesFor(4, "hours")
}

Controlling dependency caching from the command line

Avoiding network access with offline mode

The --offline command line switch tells Gradle to always use dependency modules from the cache,
regardless if they are due to be checked again. When running with offline, Gradle will never
attempt to access the network to perform dependency resolution. If required modules are not
present in the dependency cache, build execution will fail.

Refreshing dependencies

You can control the behavior of dependency caching for a distinct build invocation from the
command line. Command line options are helpful for making a selective, ad-hoc choice for a single
execution of the build.

At times, the Gradle Dependency Cache can become out of sync with the actual state of the
configured repositories. Perhaps a repository was initially misconfigured, or perhaps a "non-
changing" module was published incorrectly. To refresh all dependencies in the dependency cache,
use the --refresh-dependencies option on the command line.

The --refresh-dependencies option tells Gradle to ignore all cached entries for resolved modules
and artifacts. A fresh resolve will be performed against all configured repositories, with dynamic
versions recalculated, modules refreshed, and artifacts downloaded. However, where possible
Gradle will check if the previously downloaded artifacts are valid before downloading again. This is
done by comparing published SHA1 values in the repository with the SHA1 values for existing
downloaded artifacts.

• new versions of dynamic dependencies

• new versions of changing modules (modules which use the same version string but can have
different contents)

NOTE

Refreshing dependencies will cause Gradle to invalidate its listing caches. However:

• it will perform HTTP HEAD requests on metadata files but will not re-download
them if they are identical

• it will perform HTTP HEAD requests on artifact files but will not re-download
them if they are identical

In other words, refreshing dependencies only has an impact if you actually use
dynamic dependencies or that you have changing dependencies that you were not
aware of (in which case it is your responsibility to declare them correctly to Gradle
as changing dependencies).

It’s a common misconception to think that using --refresh-dependencies will force
download of dependencies. This is not the case: Gradle will only perform what is
strictly required to refresh the dynamic dependencies. This may involve
downloading new listing or metadata files, or even artifacts, but if nothing changed,
the impact is minimal.

Using component selection rules

Component selection rules may influence which component instance should be selected when
multiple versions are available that match a version selector. Rules are applied against every
available version and allow the version to be explicitly rejected by rule. This allows Gradle to
ignore any component instance that does not satisfy conditions set by the rule. Examples include:

• For a dynamic version like 1.+ certain versions may be explicitly rejected from selection.

• For a static version like 1.4 an instance may be rejected based on extra component metadata
such as the Ivy branch attribute, allowing an instance from a subsequent repository to be used.

Rules are configured via the ComponentSelectionRules object. Each rule configured will be called
with a ComponentSelection object as an argument which contains information about the candidate
version being considered. Calling ComponentSelection.reject(java.lang.String) causes the given
candidate version to be explicitly rejected, in which case the candidate will not be considered for
the selector.

The following example shows a rule that disallows a particular version of a module but allows the
dynamic version to choose the next best candidate.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ComponentSelectionRules.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ComponentSelection.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

Example 294. Component selection rule

build.gradle

configurations {
 rejectConfig {
 resolutionStrategy {
 componentSelection {
 // Accept the highest version matching the requested version
that isn't '1.5'
 all { ComponentSelection selection ->
 if (selection.candidate.group == 'org.sample' &&
selection.candidate.module == 'api' && selection.candidate.version == '1.5')
{
 selection.reject("version 1.5 is broken for
'org.sample:api'")
 }
 }
 }
 }
 }
}

dependencies {
 rejectConfig "org.sample:api:1.+"
}

build.gradle.kts

configurations {
 create("rejectConfig") {
 resolutionStrategy {
 componentSelection {
 // Accept the highest version matching the requested version
that isn't '1.5'
 all {
 if (candidate.group == "org.sample" && candidate.module
== "api" && candidate.version == "1.5") {
 reject("version 1.5 is broken for 'org.sample:api'")
 }
 }
 }
 }
 }
}

dependencies {
 "rejectConfig"("org.sample:api:1.+")
}

Note that version selection is applied starting with the highest version first. The version selected
will be the first version found that all component selection rules accept. A version is considered
accepted if no rule explicitly rejects it.

Similarly, rules can be targeted at specific modules. Modules must be specified in the form of
group:module.

Example 295. Component selection rule with module target

build.gradle

configurations {
 targetConfig {
 resolutionStrategy {
 componentSelection {
 withModule("org.sample:api") { ComponentSelection selection
->
 if (selection.candidate.version == "1.5") {
 selection.reject("version 1.5 is broken for
'org.sample:api'")
 }
 }
 }
 }
 }
}

build.gradle.kts

configurations {
 create("targetConfig") {
 resolutionStrategy {
 componentSelection {
 withModule("org.sample:api") {
 if (candidate.version == "1.5") {
 reject("version 1.5 is broken for 'org.sample:api'")
 }
 }
 }
 }
 }
}

Component selection rules can also consider component metadata when selecting a version.
Possible additional metadata that can be considered are ComponentMetadata and
IvyModuleDescriptor. Note that this extra information may not always be available and thus should
be checked for null values.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 296. Component selection rule with metadata

build.gradle

configurations {
 metadataRulesConfig {
 resolutionStrategy {
 componentSelection {
 // Reject any versions with a status of 'experimental'
 all { ComponentSelection selection ->
 if (selection.candidate.group == 'org.sample' &&
selection.metadata?.status == 'experimental') {
 selection.reject("don't use experimental candidates
from 'org.sample'")
 }
 }
 // Accept the highest version with either a "release" branch
or a status of 'milestone'
 withModule('org.sample:api') { ComponentSelection selection
->
 if (selection.getDescriptor(IvyModuleDescriptor)?.branch
!= "release" && selection.metadata?.status != 'milestone') {
 selection.reject("'org.sample:api' must be a release
branch or have milestone status")
 }
 }
 }
 }
 }
}

build.gradle.kts

configurations {
 create("metadataRulesConfig") {
 resolutionStrategy {
 componentSelection {
 // Reject any versions with a status of 'experimental'
 all {
 if (candidate.group == "org.sample" && metadata?.status
== "experimental") {
 reject("don't use experimental candidates from
'org.sample'")
 }
 }
 // Accept the highest version with either a "release" branch
or a status of 'milestone'
 withModule("org.sample:api") {
 if (getDescriptor(IvyModuleDescriptor::class)?.branch !=
"release" && metadata?.status != "milestone") {
 reject("'org.sample:api' must have testing branch or
milestone status")
 }
 }
 }
 }
 }
}

Note that a ComponentSelection argument is always required as parameter when declaring a
component selection rule.

Locking dependency versions

Use of dynamic dependency versions (e.g. 1.+ or [1.0,2.0)) makes builds non-deterministic. This
causes builds to break without any obvious change, and worse, can be caused by a transitive
dependency that the build author has no control over.

To achieve reproducible builds, it is necessary to lock versions of dependencies and transitive
dependencies such that a build with the same inputs will always resolve the same module versions.
This is called dependency locking.

It enables, amongst others, the following scenarios:

• Companies dealing with multi repositories no longer need to rely on -SNAPSHOT or changing
dependencies, which sometimes result in cascading failures when a dependency introduces a
bug or incompatibility. Now dependencies can be declared against major or minor version
range, enabling to test with the latest versions on CI while leveraging locking for stable

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ComponentSelection.html
https://reproducible-builds.org/

developer builds.

• Teams that want to always use the latest of their dependencies can use dynamic versions,
locking their dependencies only for releases. The release tag will contain the lock states,
allowing that build to be fully reproducible when bug fixes need to be developed.

Combined with publishing resolved versions, you can also replace the declared dynamic version
part at publication time. Consumers will instead see the versions that your release resolved.

Locking is enabled per dependency configuration. Once enabled, you must create an initial lock
state. It will cause Gradle to verify that resolution results do not change, resulting in the same
selected dependencies even if newer versions are produced. Modifications to your build that would
impact the resolved set of dependencies will cause it to fail. This makes sure that changes, either in
published dependencies or build definitions, do not alter resolution without adapting the lock state.

NOTE

Dependency locking makes sense only with dynamic versions. It will have no
impact on changing versions (like -SNAPSHOT) whose coordinates remain the same,
though the content may change. Gradle will even emit a warning when persisting
lock state and changing dependencies are present in the resolution result.

Enabling locking on configurations

Locking of a configuration happens through the ResolutionStrategy:

Example 297. Locking a specific configuration

build.gradle

configurations {
 compileClasspath {
 resolutionStrategy.activateDependencyLocking()
 }
}

build.gradle.kts

configurations {
 compileClasspath {
 resolutionStrategy.activateDependencyLocking()
 }
}

NOTE
Only configurations that can be resolved will have lock state attached to them.
Applying locking on non resolvable-configurations is simply a no-op.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Or the following, as a way to lock all configurations:

Example 298. Locking all configurations

build.gradle

dependencyLocking {
 lockAllConfigurations()
}

build.gradle.kts

dependencyLocking {
 lockAllConfigurations()
}

NOTE The above will lock all project configurations, but not the buildscript ones.

You can also disable locking on a specific configuration. This can be useful if a plugin configured
locking on all configurations but you happen to add one that should not be locked.

Example 299. Unlocking a specific configuration

build.gradle

configurations {
 compileClasspath {
 resolutionStrategy.deactivateDependencyLocking()
 }
}

build.gradle.kts

configurations.compileClasspath {
 resolutionStrategy.deactivateDependencyLocking()
}

Locking buildscript classpath configuration

If you apply plugins to your build, you may want to leverage dependency locking there as well. In

order to lock the classpath configuration used for script plugins, do the following:

Example 300. Locking buildscript classpath configuration

build.gradle

buildscript {
 configurations.classpath {
 resolutionStrategy.activateDependencyLocking()
 }
}

build.gradle.kts

buildscript {
 configurations.classpath {
 resolutionStrategy.activateDependencyLocking()
 }
}

Generating and updating dependency locks

In order to generate or update lock state, you specify the --write-locks command line argument in
addition to the normal tasks that would trigger configurations to be resolved. This will cause the
creation of lock state for each resolved configuration in that build execution. Note that if lock state
existed previously, it is overwritten.

NOTE
Gradle will not write lock state to disk if the build fails. This prevents persisting
possibly invalid state.

Lock all configurations in one build execution

When locking multiple configurations, you may want to lock them all at once, during a single build
execution.

For this, you have two options:

• Run gradle dependencies --write-locks. This will effectively lock all resolvable configurations
that have locking enabled. Note that in a multi project setup, dependencies only is executed on
one project, the root one in this case.

• Declare a custom task that will resolve all configurations

Example 301. Resolving all configurations

build.gradle

tasks.register('resolveAndLockAll') {
 doFirst {
 assert gradle.startParameter.writeDependencyLocks
 }
 doLast {
 configurations.findAll {
 // Add any custom filtering on the configurations to be resolved
 it.canBeResolved
 }.each { it.resolve() }
 }
}

build.gradle.kts

tasks.register("resolveAndLockAll") {
 doFirst {
 require(gradle.startParameter.isWriteDependencyLocks)
 }
 doLast {
 configurations.filter {
 // Add any custom filtering on the configurations to be resolved
 it.isCanBeResolved
 }.forEach { it.resolve() }
 }
}

That second option, with proper selection of configurations, can be the only option in the native
world, where not all configurations can be resolved on a single platform.

Lock state location and format

Lock state will be preserved in a file located at the root of the project or subproject directory. Each
file is named gradle.lockfile. The one exception to this rule is for the lock file for the buildscript
itself. In that case the file will be named buildscript-gradle.lockfile.

The lockfile will have the following content:

gradle.lockfile

This is a Gradle generated file for dependency locking.
Manual edits can break the build and are not advised.
This file is expected to be part of source control.
org.springframework:spring-beans:5.0.5.RELEASE=compileClasspath, runtimeClasspath
org.springframework:spring-core:5.0.5.RELEASE=compileClasspath, runtimeClasspath
org.springframework:spring-jcl:5.0.5.RELEASE=compileClasspath, runtimeClasspath
empty=annotationProcessor

• Each line still represents a single dependency in the group:artifact:version notation

• It then lists all configurations that contain the given dependency

• Module and configurations are ordered alphabetically, to ease diffs

• The last line of the file lists all empty configurations, that is configurations known to have no
dependencies

which matches the following dependency declaration:

Example 302. Dynamic dependency declaration

build.gradle

configurations {
 compileClasspath {
 resolutionStrategy.activateDependencyLocking()
 }
 runtimeClasspath {
 resolutionStrategy.activateDependencyLocking()
 }
 annotationProcessor {
 resolutionStrategy.activateDependencyLocking()
 }
}

dependencies {
 implementation 'org.springframework:spring-beans:[5.0,6.0)'
}

build.gradle.kts

configurations {
 compileClasspath {
 resolutionStrategy.activateDependencyLocking()
 }
 runtimeClasspath {
 resolutionStrategy.activateDependencyLocking()
 }
 annotationProcessor {
 resolutionStrategy.activateDependencyLocking()
 }
}

dependencies {
 implementation("org.springframework:spring-beans:[5.0,6.0)")
}

Migrating from the lockfile per configuration format

If your project uses the legacy lock file format of a file per locked configuration, follow these
instructions to migrate to the new format:

• Follow the documentation for writing or updating dependency lock state.

• Upon writing the single lock file per project, Gradle will also delete all lock files per

configuration for which the state was transferred.

NOTE
Migration can be done one configuration at a time. Gradle will keep sourcing the
lock state from the per configuration files as long as there is no information for that
configuration in the single lock file.

Configuring the per project lock file name and location

When using the single lock file per project, you can configure its name and location. The main
reason for providing this is to enable having a file name that is determined by some project
properties, effectively allowing a single project to store different lock state for different execution
contexts. One trivial example in the JVM ecosystem is the Scala version that is often found in
artifact coordinates.

Example 303. Changing the lock file name

build.gradle

def scalaVersion = "2.12"
dependencyLocking {
 lockFile = file("$projectDir/locking/gradle-${scalaVersion}.lockfile")
}

build.gradle.kts

val scalaVersion = "2.12"
dependencyLocking {
 lockFile.set(file("$projectDir/locking/gradle-${scalaVersion}.lockfile"))
}

Running a build with lock state present

The moment a build needs to resolve a configuration that has locking enabled and it finds a
matching lock state, it will use it to verify that the given configuration still resolves the same
versions.

A successful build indicates that the same dependencies are used as stored in the lock state,
regardless if new versions matching the dynamic selector have been produced.

The complete validation is as follows:

• Existing entries in the lock state must be matched in the build

◦ A version mismatch or missing resolved module causes a build failure

• Resolution result must not contain extra dependencies compared to the lock state

Fine tuning dependency locking behaviour with lock mode

While the default lock mode behaves as described above, two other modes are available:

Strict mode

In this mode, in addition to the validations above, dependency locking will fail if a configuration
marked as locked does not have lock state associated with it.

Lenient mode

In this mode, dependency locking will still pin dynamic versions but otherwise changes to the
dependency resolution are no longer errors.

The lock mode can be controlled from the dependencyLocking block as shown below:

Example 304. Setting the lock mode

build.gradle

dependencyLocking {
 lockMode = LockMode.STRICT
}

build.gradle.kts

dependencyLocking {
 lockMode.set(LockMode.STRICT)
}

Selectively updating lock state entries

In order to update only specific modules of a configuration, you can use the --update-locks
command line flag. It takes a comma (,) separated list of module notations. In this mode, the
existing lock state is still used as input to resolution, filtering out the modules targeted by the
update.

❯ gradle classes --update-locks org.apache.commons:commons-lang3,org.slf4j:slf4j-api

Wildcards, indicated with *, can be used in the group or module name. They can be the only
character or appear at the end of the group or module respectively. The following wildcard notation
examples are valid:

• org.apache.commons:*: will let all modules belonging to group org.apache.commons update

• *:guava: will let all modules named guava, whatever their group, update

• org.springframework.spring*:spring*: will let all modules having their group starting with
org.springframework.spring and name starting with spring update

NOTE
The resolution may cause other module versions to update, as dictated by the
Gradle resolution rules.

Disabling dependency locking

1. Make sure that the configuration for which you no longer want locking is not configured with
locking.

2. Next time you update the save lock state, Gradle will automatically clean up all stale lock state
from it.

Gradle needs to resolve a configuration, no longer marked as locked, to detect that associated lock
state can be dropped.

Ignoring specific dependencies from the lock state

Dependency locking can be used in cases where reproducibility is not the main goal. As a build
author, you may want to have different frequency of dependency version updates, based on their
origin for example. In that case, it might be convenient to ignore some dependencies because you
always want to use the latest version for those. An example is the internal dependencies in an
organization which should always use the latest version as opposed to third party dependencies
which have a different upgrade cycle.

WARNING
This feature can break reproducibility and should be used with caution. There
are scenarios that are better served with leveraging different lock modes or
using different names for lock files.

You can configure ignored dependencies in the dependencyLocking project extension:

Example 305. Ignoring dependencies for the lock state

build.gradle

dependencyLocking {
 ignoredDependencies.add('com.example:*')
}

build.gradle.kts

dependencyLocking {
 ignoredDependencies.add("com.example:*")
}

The notation is a <group>:<name> dependency notation, where * can be used as a trailing wildcard.
See the description on updating lock files for more details. Note that the value *:* is not accepted as
it is equivalent to disabling locking.

Ignoring dependencies will have the following effects:

• An ignored dependency applies to all locked configurations. The setting is project scoped.

• Ignoring a dependency does not mean lock state ignores its transitive dependencies.

• There is no validation that an ignored dependency is present in any configuration resolution.

• If the dependency is present in lock state, loading it will filter out the dependency.

• If the dependency is present in the resolution result, it will be ignored when validating that
resolution matches the lock state.

• Finally, if the dependency is present in the resolution result and the lock state is persisted, it will
be absent from the written lock state.

Locking limitations

• Locking cannot yet be applied to source dependencies.

Nebula locking plugin

This feature is inspired by the Nebula Gradle dependency lock plugin.

Controlling Transitive Dependencies

Upgrading versions of transitive dependencies

Direct dependencies vs dependency constraints

A component may have two different kinds of dependencies:

• direct dependencies are directly required by the component. A direct dependency is also referred
to as a first level dependency. For example, if your project source code requires Guava, Guava
should be declared as direct dependency.

• transitive dependencies are dependencies that your component needs, but only because
another dependency needs them.

It’s quite common that issues with dependency management are about transitive dependencies.
Often developers incorrectly fix transitive dependency issues by adding direct dependencies. To
avoid this, Gradle provides the concept of dependency constraints.

Adding constraints on transitive dependencies

Dependency constraints allow you to define the version or the version range of both dependencies
declared in the build script and transitive dependencies. It is the preferred method to express
constraints that should be applied to all dependencies of a configuration. When Gradle attempts to
resolve a dependency to a module version, all dependency declarations with version, all transitive

https://github.com/nebula-plugins/gradle-dependency-lock-plugin

dependencies and all dependency constraints for that module are taken into consideration. The
highest version that matches all conditions is selected. If no such version is found, Gradle fails with
an error showing the conflicting declarations. If this happens you can adjust your dependencies or
dependency constraints declarations, or make other adjustments to the transitive dependencies if
needed. Similar to dependency declarations, dependency constraint declarations are scoped by
configurations and can therefore be selectively defined for parts of a build. If a dependency
constraint influenced the resolution result, any type of dependency resolve rules may still be
applied afterwards.

Example 306. Define dependency constraints

build.gradle

dependencies {
 implementation 'org.apache.httpcomponents:httpclient'
 constraints {
 implementation('org.apache.httpcomponents:httpclient:4.5.3') {
 because 'previous versions have a bug impacting this application'
 }
 implementation('commons-codec:commons-codec:1.11') {
 because 'version 1.9 pulled from httpclient has bugs affecting
this application'
 }
 }
}

build.gradle.kts

dependencies {
 implementation("org.apache.httpcomponents:httpclient")
 constraints {
 implementation("org.apache.httpcomponents:httpclient:4.5.3") {
 because("previous versions have a bug impacting this
application")
 }
 implementation("commons-codec:commons-codec:1.11") {
 because("version 1.9 pulled from httpclient has bugs affecting
this application")
 }
 }
}

In the example, all versions are omitted from the dependency declaration. Instead, the versions are
defined in the constraints block. The version definition for commons-codec:1.11 is only taken into
account if commons-codec is brought in as transitive dependency, since commons-codec is not defined

as dependency in the project. Otherwise, the constraint has no effect. Dependency constraints can
also define a rich version constraint and support strict versions to enforce a version even if it
contradicts with the version defined by a transitive dependency (e.g. if the version needs to be
downgraded).

NOTE

Dependency constraints are only published when using Gradle Module Metadata.
This means that currently they are only fully supported if Gradle is used for
publishing and consuming (i.e. they are 'lost' when consuming modules with Maven
or Ivy).

Dependency constraints themselves can also be added transitively.

Downgrading versions and excluding dependencies

Overriding transitive dependency versions

Gradle resolves any dependency version conflicts by selecting the latest version found in the
dependency graph. Some projects might need to divert from the default behavior and enforce an
earlier version of a dependency e.g. if the source code of the project depends on an older API of a
dependency than some of the external libraries.

WARNING

Forcing a version of a dependency requires a conscious decision. Changing the
version of a transitive dependency might lead to runtime errors if external
libraries do not properly function without them. Consider upgrading your
source code to use a newer version of the library as an alternative approach.

In general, forcing dependencies is done to downgrade a dependency. There might be different use
cases for downgrading:

• a bug was discovered in the latest release

• your code depends on a lower version which is not binary compatible

• your code doesn’t depend on the code paths which need a higher version of a dependency

In all situations, this is best expressed saying that your code strictly depends on a version of a
transitive. Using strict versions, you will effectively depend on the version you declare, even if a
transitive dependency says otherwise.

NOTE

Strict dependencies are to some extent similar to Maven’s nearest first strategy, but
there are subtle differences:

• strict dependencies don’t suffer an ordering problem: they are applied
transitively to the subgraph, and it doesn’t matter in which order dependencies
are declared.

• conflicting strict dependencies will trigger a build failure that you have to
resolve

• strict dependencies can be used with rich versions, meaning that it’s better to
express the requirement in terms of a strict range combined with a single
preferred version.

Let’s say a project uses the HttpClient library for performing HTTP calls. HttpClient pulls in
Commons Codec as transitive dependency with version 1.10. However, the production source code
of the project requires an API from Commons Codec 1.9 which is not available in 1.10 anymore. A
dependency version can be enforced by declaring it as strict it in the build script:

Example 307. Setting a strict version

build.gradle

dependencies {
 implementation 'org.apache.httpcomponents:httpclient:4.5.4'
 implementation('commons-codec:commons-codec') {
 version {
 strictly '1.9'
 }
 }
}

build.gradle.kts

dependencies {
 implementation("org.apache.httpcomponents:httpclient:4.5.4")
 implementation("commons-codec:commons-codec") {
 version {
 strictly("1.9")
 }
 }
}

Consequences of using strict versions

Using a strict version must be carefully considered, in particular by library authors. As the

https://hc.apache.org/httpcomponents-client-ga/
https://commons.apache.org/proper/commons-codec/

producer, a strict version will effectively behave like a force: the version declaration takes
precedence over whatever is found in the transitive dependency graph. In particular, a strict
version will override any other strict version on the same module found transitively.

However, for consumers, strict versions are still considered globally during graph resolution and
may trigger an error if the consumer disagrees.

For example, imagine that your project B strictly depends on C:1.0. Now, a consumer, A, depends on
both B and C:1.1.

Then this would trigger a resolution error because A says it needs C:1.1 but B, within its subgraph,
strictly needs 1.0. This means that if you choose a single version in a strict constraint, then the
version can no longer be upgraded, unless the consumer also sets a strict version constraint on the
same module.

In the example above, A would have to say it strictly depends on 1.1.

For this reason, a good practice is that if you use strict versions, you should express them in terms
of ranges and a preferred version within this range. For example, B might say, instead of strictly
1.0, that it strictly depends on the [1.0, 2.0[range, but prefers 1.0. Then if a consumer chooses 1.1
(or any other version in the range), the build will no longer fail (constraints are resolved).

Forced dependencies vs strict dependencies

WARNING

Forcing dependencies via ExternalDependency.setForce(boolean) is deprecated
and no longer recommended: forced dependencies suffer an ordering issue
which can be hard to diagnose and will not work well together with other rich
version constraints. You should prefer strict versions instead. If you are
authoring and publishing a library, you also need to be aware that force is not
published.

If, for some reason, you can’t use strict versions, you can force a dependency doing this:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ExternalDependency.html#setForce-boolean-

Example 308. Enforcing a dependency version

build.gradle

dependencies {
 implementation 'org.apache.httpcomponents:httpclient:4.5.4'
 implementation('commons-codec:commons-codec:1.9') {
 force = true
 }
}

build.gradle.kts

dependencies {
 implementation("org.apache.httpcomponents:httpclient:4.5.4")
 implementation("commons-codec:commons-codec:1.9") {
 isForce = true
 }
}

If the project requires a specific version of a dependency on a configuration-level then it can be
achieved by calling the method ResolutionStrategy.force(java.lang.Object[]).

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ResolutionStrategy.html#org.gradle.api.artifacts.ResolutionStrategy:force(java.lang.Object[])

Example 309. Enforcing a dependency version on the configuration-level

build.gradle

configurations {
 compileClasspath {
 resolutionStrategy.force 'commons-codec:commons-codec:1.9'
 }
}

dependencies {
 implementation 'org.apache.httpcomponents:httpclient:4.5.4'
}

build.gradle.kts

configurations {
 "compileClasspath" {
 resolutionStrategy.force("commons-codec:commons-codec:1.9")
 }
}

dependencies {
 implementation("org.apache.httpcomponents:httpclient:4.5.4")
}

Excluding transitive dependencies

While the previous section showed how you can enforce a certain version of a transitive
dependency, this section covers excludes as a way to remove a transitive dependency completely.

WARNING

Similar as forcing a version of a dependency, excluding a dependency
completely requires a conscious decision. Excluding a transitive dependency
might lead to runtime errors if external libraries do not properly function
without them. If you use excludes, make sure that you do not utilise any code
path requiring the excluded dependency by sufficient test coverage.

Transitive dependencies can be excluded on the level of a declared dependency. Exclusions are
spelled out as a key/value pair via the attributes group and/or module as shown in the example
below. For more information, refer to ModuleDependency.exclude(java.util.Map).

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ModuleDependency.html#exclude-java.util.Map-

Example 310. Excluding a transitive dependency for a particular dependency declaration

build.gradle

dependencies {
 implementation('commons-beanutils:commons-beanutils:1.9.4') {
 exclude group: 'commons-collections', module: 'commons-collections'
 }
}

build.gradle.kts

dependencies {
 implementation("commons-beanutils:commons-beanutils:1.9.4") {
 exclude(group = "commons-collections", module = "commons-
collections")
 }
}

In this example, we add a dependency to commons-beanutils but exclude the transitive dependency
commons-collections. In our code, shown below, we only use one method from the beanutils library,
PropertyUtils.setSimpleProperty(). Using this method for existing setters does not require any
functionality from commons-collections as we verified through test coverage.

Example 311. Using a utility from the beanutils library

src/main/java/Main.java

import org.apache.commons.beanutils.PropertyUtils;

public class Main {
 public static void main(String[] args) throws Exception {
 Object person = new Person();
 PropertyUtils.setSimpleProperty(person, "name", "Bart Simpson");
 PropertyUtils.setSimpleProperty(person, "age", 38);
 }
}

Effectively, we are expressing that we only use a subset of the library, which does not require the
commons-collection library. This can be seen as implicitly defining a feature variant that has not
been explicitly declared by commons-beanutils itself. However, the risk of breaking an untested code
path increased by doing this.

For example, here we use the setSimpleProperty() method to modify properties defined by setters
in the Person class, which works fine. If we would attempt to set a property not existing on the class,
we should get an error like Unknown property on class Person. However, because the error handling
path uses a class from commons-collections, the error we now get is NoClassDefFoundError:
org/apache/commons/collections/FastHashMap. So if our code would be more dynamic, and we would
forget to cover the error case sufficiently, consumers of our library might be confronted with
unexpected errors.

This is only an example to illustrate potential pitfalls. In practice, larger libraries or frameworks
can bring in a huge set of dependencies. If those libraries fail to declare features separately and can
only be consumed in a "all or nothing" fashion, excludes can be a valid method to reduce the library
to the feature set actually required.

On the upside, Gradle’s exclude handling is, in contrast to Maven, taking the whole dependency
graph into account. So if there are multiple dependencies on a library, excludes are only exercised
if all dependencies agree on them. For example, if we add opencsv as another dependency to our
project above, which also depends on commons-beanutils, commons-collection is no longer excluded
as opencsv itself does not exclude it.

Example 312. Excludes only apply if all dependency declarations agree on an exclude

build.gradle

 dependencies {
 implementation('commons-beanutils:commons-beanutils:1.9.4') {
 exclude group: 'commons-collections', module: 'commons-
collections'
 }
 implementation 'com.opencsv:opencsv:4.6' // depends on 'commons-
beanutils' without exclude and brings back 'commons-collections'
 }

build.gradle.kts

dependencies {
 implementation("commons-beanutils:commons-beanutils:1.9.4") {
 exclude(group = "commons-collections", module = "commons-
collections")
 }
 implementation("com.opencsv:opencsv:4.6") // depends on 'commons-
beanutils' without exclude and brings back 'commons-collections'
}

If we still want to have commons-collections excluded, because our combined usage of commons-
beanutils and opencsv does not need it, we need to exclude it from the transitive dependencies of

opencsv as well.

Example 313. Excluding a transitive dependency for multiple dependency declaration

build.gradle

 dependencies {
 implementation('commons-beanutils:commons-beanutils:1.9.4') {
 exclude group: 'commons-collections', module: 'commons-
collections'
 }
 implementation('com.opencsv:opencsv:4.6') {
 exclude group: 'commons-collections', module: 'commons-
collections'
 }
 }

build.gradle.kts

 dependencies {
 implementation("commons-beanutils:commons-beanutils:1.9.4") {
 exclude(group = "commons-collections", module = "commons-
collections")
 }
 implementation("com.opencsv:opencsv:4.6") {
 exclude(group = "commons-collections", module = "commons-
collections")
 }
 }

Historically, excludes were also used as a band aid to fix other issues not supported by some
dependency management systems. Gradle however, offers a variety of features that might be better
suited to solve a certain use case. You may consider to look into the following features:

• Update or downgrade dependency versions: If versions of dependencies clash, it is usually
better to adjust the version through a dependency constraint, instead of attempting to exclude
the dependency with the undesired version.

• Component Metadata Rules: If a library’s metadata is clearly wrong, for example if it includes a
compile time dependency which is never needed at compile time, a possible solution is to
remove the dependency in a component metadata rule. By this, you tell Gradle that a
dependency between two modules is never needed — i.e. the metadata was wrong — and
therefore should never be considered. If you are developing a library, you have to be aware
that this information is not published, and so sometimes an exclude can be the better
alternative.

• Resolving mutually exclusive dependency conflicts: Another situation that you often see solved
by excludes is that two dependencies cannot be used together because they represent two
implementations of the same thing (the same capability). Some popular examples are clashing
logging API implementations (like log4j and log4j-over-slf4j) or modules that have different
coordinates in different versions (like com.google.collections and guava). In these cases, if this
information is not known to Gradle, it is recommended to add the missing capability
information via component metadata rules as described in the declaring component
capabilities section. Even if you are developing a library, and your consumers will have to deal
with resolving the conflict again, it is often the right solution to leave the decision to the final
consumers of libraries. I.e. you as a library author should not have to decide which logging
implementation your consumers use in the end.

Sharing dependency versions between projects

Central declaration of dependencies

WARNING
Central declaration of dependencies is an incubating feature. It requires the
activation of the VERSION_CATALOGS feature preview.

Using a version catalog

A version catalog is a list of dependencies, represented as dependency coordinates, that a user can
pick from when declaring dependencies in a build script.

For example, instead of declaring a dependency using a string notation, the dependency
coordinates can be picked from a version catalog:

Example 314. Using a library declared in a version catalog

build.gradle

dependencies {
 implementation(libs.groovy.core)
}

build.gradle.kts

dependencies {
 implementation(libs.groovy.core)
}

In this context, libs is a catalog and groovy represents a dependency available in this catalog. A
version catalog provides a number of advantages over declaring the dependencies directly in build
scripts:

feature_lifecycle.pdf#feature_preview

• For each catalog, Gradle generates type-safe accessors so that you can easily add dependencies
with autocompletion in the IDE.

• Each catalog is visible to all projects of a build. It is a central place to declare a version of a
dependency and to make sure that a change to that version applies to every subproject.

• Catalogs can declare dependency bundles, which are "groups of dependencies" that are
commonly used together.

• Catalogs can separate the group and name of a dependency from its actual version and use
version references instead, making it possible to share a version declaration between multiple
dependencies.

Adding a dependency using the libs.someLib notation works exactly like if you had hardcoded the
group, artifact and version directly in the build script.

WARNING

A dependency catalog doesn’t enforce the version of a dependency: like a
regular dependency notation, it declares the requested version or a rich
version. That version is not necessarily the version that is selected during
conflict resolution.

Declaring a version catalog

Version catalogs can be declared in the settings.gradle(.kts) file. In the example above, in order to
make groovy available via the libs catalog, we need to associate an alias with GAV (group, artifact,
version) coordinates:

Example 315. Declaring a version catalog

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 libs {
 alias('groovy-core').to('org.codehaus.groovy:groovy:3.0.5')
 alias('groovy-json').to('org.codehaus.groovy:groovy-json:3.0.5')
 alias('groovy-nio').to('org.codehaus.groovy:groovy-nio:3.0.5')
 alias('commons-lang3').to('org.apache.commons', 'commons-lang3')
.version {
 strictly '[3.8, 4.0['
 prefer '3.9'
 }
 }
 }
}

settings.gradle.kts

 dependencyResolutionManagement {
 versionCatalogs {
 create("libs") {
 alias("groovy-core").to("org.codehaus.groovy:groovy:3.0.5")
 alias("groovy-json").to("org.codehaus.groovy:groovy-
json:3.0.5")
 alias("groovy-nio").to("org.codehaus.groovy:groovy-
nio:3.0.5")
 alias("commons-lang3").to("org.apache.commons", "commons-
lang3").version {
 strictly("[3.8, 4.0[")
 prefer("3.9")
 }
 }
 }
 }

Aliases and their mapping to type safe accessors

Aliases must consist of a series of identifiers separated by a dash (-, recommended), an underscore
(_) or a dot (.). Identifiers themselves must consist of ascii characters, preferably lowercase,
eventually followed by numbers.

For example:

• guava is a valid alias

• groovy-core is a valid alias

• commons-lang3 is a valid alias

• androidx.awesome.lib is also a valid alias

• but this.#is.not!

Then type safe accessors are generated for each subgroup. For example, given the following aliases
in a version catalog named libs:

guava, groovy-core, groovy-xml, groovy-json, androidx.awesome.lib

We would generate the following type-safe accessors:

• libs.guava

• libs.groovy.core

• libs.groovy.xml

• libs.groovy.json

• libs.androidx.awesome.lib

Where the libs prefix comes from the version catalog name.

In case you want to avoid the generation of a subgroup accessor, we recommend relying on case to
differentiate. For example the aliases groovyCore, groovyJson and groovyXml would be mapped to the
libs.groovyCore, libs.groovyJson and libs.groovyXml accessors respectively.

When declaring aliases, it’s worth noting that any of the -, _ and . characters can be used as
separators, but the generated catalog will have all normalized to .: for example foo-bar as an alias
is converted to foo.bar automatically.

WARNING

Some keywords are reserved, so they cannot be used as an alias. Next words
cannot be used as an alias:

• extensions

• class

• convention

Additional to that next words cannot be used as a first subgroup of an alias for
dependencies (for bundles, versions and plugins this restriction doesn’t apply):

• bundles

• versions

• plugins

So for example for dependencies an alias versions-dependency is not valid, but
versionsDependency or dependency-versions are valid.

Dependencies with same version numbers

In the first example in declaring a version catalog, we can see that we declare 3 aliases for various
components of the groovy library and that all of them share the same version number.

Instead of repeating the same version number, we can declare a version and reference it:

Example 316. Declaring versions separately from libraries

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 libs {
 version('groovy', '3.0.5')
 version('checkstyle', '8.37')
 alias('groovy-core').to('org.codehaus.groovy', 'groovy')
.versionRef('groovy')
 alias('groovy-json').to('org.codehaus.groovy', 'groovy-json')
.versionRef('groovy')
 alias('groovy-nio').to('org.codehaus.groovy', 'groovy-nio')
.versionRef('groovy')
 alias('commons-lang3').to('org.apache.commons', 'commons-lang3')
.version {
 strictly '[3.8, 4.0['
 prefer '3.9'
 }
 }
 }
}

settings.gradle.kts

 dependencyResolutionManagement {
 versionCatalogs {
 create("libs") {
 version("groovy", "3.0.5")
 version("checkstyle", "8.37")
 alias("groovy-core").to("org.codehaus.groovy",
"groovy").versionRef("groovy")
 alias("groovy-json").to("org.codehaus.groovy", "groovy-
json").versionRef("groovy")
 alias("groovy-nio").to("org.codehaus.groovy", "groovy-
nio").versionRef("groovy")
 alias("commons-lang3").to("org.apache.commons", "commons-
lang3").version {
 strictly("[3.8, 4.0[")
 prefer("3.9")
 }
 }
 }
 }

Versions declared separately are also available via type-safe accessors, making them usable for
more use cases than dependency versions, in particular for tooling:

Example 317. Using a version declared in a version catalog

build.gradle

checkstyle {
 // will use the version declared in the catalog
 toolVersion = libs.versions.checkstyle.get()
}

build.gradle.kts

checkstyle {
 // will use the version declared in the catalog
 toolVersion = libs.versions.checkstyle.get()
}

Dependencies declared in a catalog are exposed to build scripts via an extension corresponding to
their name. In the example above, because the catalog declared in settings is named libs, the
extension is available via the name libs in all build scripts of the current build. Declaring
dependencies using the following notation…

Example 318. Dependency notation correspondance

build.gradle

dependencies {
 implementation libs.groovy.core
 implementation libs.groovy.json
 implementation libs.groovy.nio
}

build.gradle.kts

dependencies {
 implementation(libs.groovy.core)
 implementation(libs.groovy.json)
 implementation(libs.groovy.nio)
}

…has exactly the same effect as writing:

Example 319. Dependency notation correspondance

build.gradle

dependencies {
 implementation 'org.codehaus.groovy:groovy:3.0.5'
 implementation 'org.codehaus.groovy:groovy-json:3.0.5'
 implementation 'org.codehaus.groovy:groovy-nio:3.0.5'
}

build.gradle.kts

dependencies {
 implementation("org.codehaus.groovy:groovy:3.0.5")
 implementation("org.codehaus.groovy:groovy-json:3.0.5")
 implementation("org.codehaus.groovy:groovy-nio:3.0.5")
}

Versions declared in the catalog are rich versions. Please refer to the version catalog builder API for
the full version declaration support documentation.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/initialization/dsl/VersionCatalogBuilder.html

Dependency bundles

Because it’s frequent that some dependencies are systematically used together in different projects,
a version catalog offers the concept of a "dependency bundle". A bundle is basically an alias for
several dependencies. For example, instead of declaring 3 individual dependencies like above, you
could write:

Example 320. Using a dependency bundle

build.gradle

dependencies {
 implementation libs.bundles.groovy
}

build.gradle.kts

dependencies {
 implementation(libs.bundles.groovy)
}

The bundle named groovy needs to be declared in the catalog:

Example 321. Declaring a dependency bundle

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 libs {
 version('groovy', '3.0.5')
 version('checkstyle', '8.37')
 alias('groovy-core').to('org.codehaus.groovy', 'groovy')
.versionRef('groovy')
 alias('groovy-json').to('org.codehaus.groovy', 'groovy-json')
.versionRef('groovy')
 alias('groovy-nio').to('org.codehaus.groovy', 'groovy-nio')
.versionRef('groovy')
 alias('commons-lang3').to('org.apache.commons', 'commons-lang3')
.version {
 strictly '[3.8, 4.0['
 prefer '3.9'
 }
 bundle('groovy', ['groovy-core', 'groovy-json', 'groovy-nio'])
 }
 }
}

settings.gradle.kts

 dependencyResolutionManagement {
 versionCatalogs {
 create("libs") {
 version("groovy", "3.0.5")
 version("checkstyle", "8.37")
 alias("groovy-core").to("org.codehaus.groovy",
"groovy").versionRef("groovy")
 alias("groovy-json").to("org.codehaus.groovy", "groovy-
json").versionRef("groovy")
 alias("groovy-nio").to("org.codehaus.groovy", "groovy-
nio").versionRef("groovy")
 alias("commons-lang3").to("org.apache.commons", "commons-
lang3").version {
 strictly("[3.8, 4.0[")
 prefer("3.9")
 }
 bundle("groovy", listOf("groovy-core", "groovy-json",
"groovy-nio"))
 }
 }
 }

The semantics are again equivalent: adding a single bundle is equivalent to adding all
dependencies which are part of the bundle individually.

Plugins

In addition to libraries, version catalog supports declaring plugin versions. While libraries are
represented by their group, artifact and version coordinates, Gradle plugins are identified by their
id and version only. Therefore, they need to be declared separately:

Example 322. Declaring a plugin version

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 libs {
 alias('jmh').toPluginId('me.champeau.jmh').version('0.6.5')
 }
 }
}

settings.gradle.kts

 dependencyResolutionManagement {
 versionCatalogs {
 create("libs") {
 alias("jmh").toPluginId("me.champeau.jmh").version("0.6.5")
 }
 }
 }

Then the plugin is accessible in the plugins block and can be consumed in any project of the build
using:

Example 323. Using a plugin declared in a catalog

build.gradle

plugins {
 id 'java-library'
 id 'checkstyle'
 // Use the plugin `jmh` as declared in the `libs` version catalog
 alias(libs.plugins.jmh)
}

build.gradle.kts

plugins {
 `java-library`
 checkstyle
 alias(libs.plugins.jmh)
}

The libs.versions.toml file

In addition to the settings API above, Gradle offers a conventional file to declare a catalog. If a
libs.versions.toml file is found in the gradle subdirectory of the root build, then a catalog will be
automatically declared with the contents of this file.

WARNING

Declaring a libs.versions.toml file doesn’t make it the single source of truth
for dependencies: it’s a conventional location where dependencies can be
declared. As soon as you start using catalogs, it’s strongly recommended to
declare all your dependencies in a catalog and not hardcode
group/artifact/version strings in build scripts. Be aware that it may happen that
plugins add dependencies, which are dependencies defined outside of this file.

Just like src/main/java is a convention to find the Java sources, which doesn’t
prevent additional source directories to be declared (either in a build script or
a plugin), the presence of the libs.versions.toml file doesn’t prevent the
declaration of dependencies elsewhere.

The presence of this file does, however, suggest that most dependencies, if not
all, will be declared in this file. Therefore, updating a dependency version, for
most users, should only consists of changing a line in this file.

By default, the libs.versions.toml file will be an input to the libs catalog. It is possible to change
the name of the default catalog, for example if you already have an extension with the same name:

Example 324. Changing the default extension name

settings.gradle

dependencyResolutionManagement {
 defaultLibrariesExtensionName.set('deps')
}

settings.gradle.kts

dependencyResolutionManagement {
 defaultLibrariesExtensionName.set("deps")
}

The version catalog TOML file format

The TOML file consists of 4 major sections:

• the [versions] section is used to declare versions which can be referenced by dependencies

• the [libraries] section is used to declare the aliases to coordinates

• the [bundles] section is used to declare dependency bundles

• the [plugins] section is used to declare plugins

For example:

The libs.versions.toml file

[versions]
groovy = "3.0.5"
checkstyle = "8.37"

[libraries]
groovy-core = { module = "org.codehaus.groovy:groovy", version.ref = "groovy" }
groovy-json = { module = "org.codehaus.groovy:groovy-json", version.ref = "groovy" }
groovy-nio = { module = "org.codehaus.groovy:groovy-nio", version.ref = "groovy" }
commons-lang3 = { group = "org.apache.commons", name = "commons-lang3", version = {
strictly = "[3.8, 4.0[", prefer="3.9" } }

[bundles]
groovy = ["groovy-core", "groovy-json", "groovy-nio"]

[plugins]
jmh = { id = "me.champeau.jmh", version = "0.6.5" }

https://toml.io/

Versions can be declared either as a single string, in which case they are interpreted as a required
version, or as a rich versions:

[versions]
my-lib = { strictly = "[1.0, 2.0[", prefer = "1.2" }

Supported members of a version declaration are:

• require: the required version

• strictly: the strict version

• prefer: the preferred version

• reject: the list of rejected versions

• rejectAll: a boolean to reject all versions

Dependency declaration can either be declared as a simple string, in which case they are
interpreted as group:artifact:version coordinates, or separating the version declaration from the
group and name:

NOTE
For aliases, the rules described in the section aliases and their mapping to type safe
accessors apply as well.

Different dependency notations

[versions]
common = "1.4"

[libraries]
my-lib = "com.mycompany:mylib:1.4"
my-other-lib = { module = "com.mycompany:other", version = "1.4" }
my-other-lib2 = { group = "com.mycompany", name = "alternate", version = "1.4" }
mylib-full-format = { group = "com.mycompany", name = "alternate", version = { require
= "1.4" } }

[plugins]
short-notation = "some.plugin.id:1.4"
long-notation = { id = "some.plugin.id", version = "1.4" }
reference-notation = { id = "some.plugin.id", version.ref = "common" }

In case you want to reference a version declared in the [versions] section, you should use the
version.ref property:

[versions]
some = "1.4"

[libraries]
my-lib = { group = "com.mycompany", name="mylib", version.ref="some" }

NOTE

The TOML file format is very lenient and lets you write "dotted" properties as
shortcuts to full object declarations. For example, this:

a.b.c="d"

is equivalent to:

a.b = { c = "d" }

or

a = { b = { c = "d" } }

See the TOML specification for details.

Type unsafe API

Version catalogs can be accessed through a type unsafe API. This API is available in situations
where generated accessors are not. It is accessed through the version catalog extension:

https://toml.io

build.gradle

def versionCatalog = extensions.getByType(VersionCatalogsExtension).named(
"libs")
println "Dependency aliases: ${versionCatalog.dependencyAliases}"
dependencies {
 versionCatalog.findDependency("groovy-json").ifPresent {
 implementation(it)
 }
}

build.gradle.kts

val versionCatalog =
extensions.getByType<VersionCatalogsExtension>().named("libs")
println("Dependency aliases: ${versionCatalog.dependencyAliases}")
dependencies {
 versionCatalog.findDependency("groovy-json").ifPresent {
 implementation(it)
 }
}

Check the version catalog API for all supported methods.

Sharing catalogs

Version catalogs are used in a single build (possibly multi-project build) but may also be shared
between builds. For example, an organization may want to create a catalog of dependencies that
different projects, from different teams, may use.

Importing a catalog from a TOML file

The version catalog builder API supports including a model from an external file. This makes it
possible to reuse the catalog of the main build for buildSrc, if needed. For example, the
buildSrc/settings.gradle(.kts) file can include this file using:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/VersionCatalog.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/initialization/dsl/VersionCatalogBuilder.html

Example 325. Sharing the dependency catalog with buildSrc

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 libs {
 from(files("../gradle/libs.versions.toml"))
 }
 }
}

settings.gradle.kts

dependencyResolutionManagement {
 versionCatalogs {
 create("libs") {
 from(files("../gradle/libs.versions.toml"))
 }
 }
}

This technique can therefore be used to declare multiple catalogs from different files:

Example 326. Declaring additional catalogs

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 // declares an additional catalog, named 'testLibs', from the 'test-
libs.versions.toml' file
 testLibs {
 from(files('gradle/test-libs.versions.toml'))
 }
 }
}

settings.gradle.kts

dependencyResolutionManagement {
 versionCatalogs {
 // declares an additional catalog, named 'testLibs', from the 'test-
libs.versions.toml' file
 create("testLibs") {
 from(files("gradle/test-libs.versions.toml"))
 }
 }
}

The version catalog plugin

While importing catalogs from local files is convenient, it doesn’t solve the problem of sharing a
catalog in an organization or for external consumers. One option to share a catalog is to write a
settings plugin, publish it on the Gradle plugin portal or an internal repository, and let the
consumers apply the plugin on their settings file.

Alternatively, Gradle offers a version catalog plugin, which offers the ability to declare, then publish
a catalog.

To do this, you need to apply the version-catalog plugin:

Example 327. Applying the version catalog plugin

build.gradle

plugins {
 id 'version-catalog'
 id 'maven-publish'
}

build.gradle.kts

plugins {
 `version-catalog`
 `maven-publish`
}

This plugin will then expose the catalog extension that you can use to declare a catalog:

Example 328. Definition of a catalog

build.gradle

catalog {
 // declare the aliases, bundles and versions in this block
 versionCatalog {
 alias('my-lib').to('com.mycompany:mylib:1.2')
 }
}

build.gradle.kts

catalog {
 // declare the aliases, bundles and versions in this block
 versionCatalog {
 alias("my-lib").to("com.mycompany:mylib:1.2")
 }
}

Such a catalog can then be published by applying either the maven-publish or ivy-publish plugin and
configuring the publication to use the versionCatalog component:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/catalog/CatalogPluginExtension.html

Example 329. Publishing a catalog

build.gradle

publishing {
 publications {
 maven(MavenPublication) {
 from components.versionCatalog
 }
 }
}

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("maven") {
 from(components["versionCatalog"])
 }
 }
}

When publishing such a project, a libs.versions.toml file will automatically be generated (and
uploaded), which can then be consumed from other Gradle builds.

Importing a published catalog

A catalog produced by the version catalog plugin can be imported via the settings API:

Example 330. Using a published catalog

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 libs {
 from("com.mycompany:catalog:1.0")
 }
 }
}

settings.gradle.kts

 dependencyResolutionManagement {
 versionCatalogs {
 create("libs") {
 from("com.mycompany:catalog:1.0")
 }
 }
 }

Overwriting catalog versions

In case a catalog declares a version, you can overwrite the version when importing the catalog:

Example 331. Overwriting versions declared in a published catalog

settings.gradle

dependencyResolutionManagement {
 versionCatalogs {
 amendedLibs {
 from("com.mycompany:catalog:1.0")
 // overwrite the "groovy" version declared in the imported
catalog
 version("groovy", "3.0.6")
 }
 }
}

settings.gradle.kts

 dependencyResolutionManagement {
 versionCatalogs {
 create("amendedLibs") {
 from("com.mycompany:catalog:1.0")
 // overwrite the "groovy" version declared in the imported
catalog
 version("groovy", "3.0.6")
 }
 }
 }

In the example above, any dependency which was using the groovy version as reference will be
automatically updated to use 3.0.6.

NOTE

Again, overwriting a version doesn’t mean that the actual resolved dependency
version will be the same: this only changes what is imported, that is to say what is
used when declaring a dependency. The actual version will be subject to traditional
conflict resolution, if any.

Using a platform to control transitive versions

A platform is a special software component which can be used to control transitive dependency
versions. In most cases it’s exclusively composed of dependency constraints which will either
suggest dependency versions or enforce some versions. As such, this is a perfect tool whenever you
need to share dependency versions between projects. In this case, a project will typically be
organized this way:

• a platform project which defines constraints for the various dependencies found in the different

sub-projects

• a number of sub-projects which depend on the platform and declare dependencies without
version

In the Java ecosystem, Gradle provides a plugin for this purpose.

It’s also common to find platforms published as Maven BOMs which Gradle supports natively.

A dependency on a platform is created using the platform keyword:

Example 332. Getting versions declared in a platform

build.gradle

dependencies {
 // get recommended versions from the platform project
 api platform(project(':platform'))
 // no version required
 api 'commons-httpclient:commons-httpclient'
}

build.gradle.kts

dependencies {
 // get recommended versions from the platform project
 api(platform(project(":platform")))
 // no version required
 api("commons-httpclient:commons-httpclient")
}

NOTE

This platform notation is a short-hand notation which actually performs several
operations under the hood:

• it sets the org.gradle.category attribute to platform, which means that Gradle will
select the platform component of the dependency.

• it sets the endorseStrictVersions behavior by default, meaning that if the
platform declares strict dependencies, they will be enforced.

This means that by default, a dependency to a platform triggers the inheritance of
all strict versions defined in that platform, which can be useful for platform authors
to make sure that all consumers respect their decisions in terms of versions of
dependencies. This can be turned off by explicitly calling the
doNotEndorseStrictVersions method.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/Category.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ModuleDependency.html#endorseStrictVersions--

Importing Maven BOMs

Gradle provides support for importing bill of materials (BOM) files, which are effectively .pom files
that use <dependencyManagement> to control the dependency versions of direct and transitive
dependencies. The BOM support in Gradle works similar to using <scope>import</scope> when
depending on a BOM in Maven. In Gradle however, it is done via a regular dependency declaration
on the BOM:

Example 333. Depending on a BOM to import its dependency constraints

build.gradle

dependencies {
 // import a BOM
 implementation platform('org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE')

 // define dependencies without versions
 implementation 'com.google.code.gson:gson'
 implementation 'dom4j:dom4j'
}

build.gradle.kts

dependencies {
 // import a BOM
 implementation(platform("org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE"))

 // define dependencies without versions
 implementation("com.google.code.gson:gson")
 implementation("dom4j:dom4j")
}

In the example, the versions of gson and dom4j are provided by the Spring Boot BOM. This way, if
you are developing for a platform like Spring Boot, you do not have to declare any versions yourself
but can rely on the versions the platform provides.

Gradle treats all entries in the <dependencyManagement> block of a BOM similar to Gradle’s
dependency constraints. This means that any version defined in the <dependencyManagement> block
can impact the dependency resolution result. In order to qualify as a BOM, a .pom file needs to have
<packaging>pom</packaging> set.

However often BOMs are not only providing versions as recommendations, but also a way to
override any other version found in the graph. You can enable this behavior by using the

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Importing_Dependencies

enforcedPlatform keyword, instead of platform, when importing the BOM:

Example 334. Importing a BOM, making sure the versions it defines override any other version found

build.gradle

dependencies {
 // import a BOM. The versions used in this file will override any other
version found in the graph
 implementation enforcedPlatform('org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE')

 // define dependencies without versions
 implementation 'com.google.code.gson:gson'
 implementation 'dom4j:dom4j'

 // this version will be overridden by the one found in the BOM
 implementation 'org.codehaus.groovy:groovy:1.8.6'
}

build.gradle.kts

dependencies {
 // import a BOM. The versions used in this file will override any other
version found in the graph
 implementation(enforcedPlatform("org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE"))

 // define dependencies without versions
 implementation("com.google.code.gson:gson")
 implementation("dom4j:dom4j")

 // this version will be overridden by the one found in the BOM
 implementation("org.codehaus.groovy:groovy:1.8.6")
}

WARNING

Using enforcedPlatform needs to be considered with care if your software
component can be consumed by others. This declaration is effectively
transitive and so will apply to the dependency graph of your consumers.
Unfortunately they will have to use exclude if they happen to disagree with one
of the forced versions.

Instead, if your reusable software component has a strong opinion on some
third party dependency versions, consider using a rich version declaration
with a strictly.

Should I use a platform or a catalog?

Because platforms and catalogs both talk about dependency versions and can both be used to share
dependency versions in a project, there might be a confusion regarding what to use and if one is
preferable to the other.

In short, you should:

• use catalogs to only define dependencies and their versions for projects and to generate type-
safe accessors

• use platform to apply versions to dependency graph and to affect dependency resolution

A catalog helps with centralizing the dependency versions and is only, as it name implies, a catalog
of dependencies you can pick from. We recommend using it to declare the coordinates of your
dependencies, in all cases. It will be used by Gradle to generate type-safe accessors, present short-
hand notations for external dependencies and it allows sharing those coordinates between
different projects easily. Using a catalog will not have any kind of consequence on downstream
consumers: it’s transparent to them.

A platform is a more heavyweight construct: it’s a component of a dependency graph, like any other
library. If you depend on a platform, that platform is itself a component in the graph. It means, in
particular, that:

• Constraints defined in a platform can influence transitive dependencies, not only the direct
dependencies of your project.

• A platform is versioned, and a transitive dependency in the graph can depend on a different
version of the platform, causing various dependency upgrades.

• A platform can tie components together, and in particular can be used as a construct for
aligning versions.

• A dependency on a platform is "inherited" by the consumers of your dependency: it means that
a dependency on a platform can influence what versions of libraries would be used by your
consumers even if you don’t directly, or transitively, depend on components the platform
references.

In summary, using a catalog is always a good engineering practice as it centralizes common
definitions, allows sharing of dependency versions or plugin versions, but it is an "implementation
detail" of the build: it will not be visible to consumers and unused elements of a catalog are just
ignored.

A platform is meant to influence the dependency resolution graph, for example by adding
constraints on transitive dependencies: it’s a solution for structuring a dependency graph and
influencing the resolution result.

In practice, your project can both use a catalog and declare a platform which itself uses the catalog:

Example 335. Using a catalog within a platform definition

build.gradle

plugins {
 id 'java-platform'
}

dependencies {
 constraints {
 api(libs.mylib)
 }
}

build.gradle.kts

plugins {
 `java-platform`
}

dependencies {
 constraints {
 api(libs.mylib)
 }
}

Aligning dependency versions

Dependency version alignment allows different modules belonging to the same logical group (a
platform) to have identical versions in a dependency graph.

Handling inconsistent module versions

Gradle supports aligning versions of modules which belong to the same "platform". It is often
preferable, for example, that the API and implementation modules of a component are using the
same version. However, because of the game of transitive dependency resolution, it is possible that
different modules belonging to the same platform end up using different versions. For example,
your project may depend on the jackson-databind and vert.x libraries, as illustrated below:

Example 336. Declaring dependencies

build.gradle

dependencies {
 // a dependency on Jackson Databind
 implementation 'com.fasterxml.jackson.core:jackson-databind:2.8.9'

 // and a dependency on vert.x
 implementation 'io.vertx:vertx-core:3.5.3'
}

build.gradle.kts

dependencies {
 // a dependency on Jackson Databind
 implementation("com.fasterxml.jackson.core:jackson-databind:2.8.9")

 // and a dependency on vert.x
 implementation("io.vertx:vertx-core:3.5.3")
}

Because vert.x depends on jackson-core, we would actually resolve the following dependency
versions:

• jackson-core version 2.9.5 (brought by vertx-core)

• jackson-databind version 2.9.5 (by conflict resolution)

• jackson-annotation version 2.9.0 (dependency of jackson-databind:2.9.5)

It’s easy to end up with a set of versions which do not work well together. To fix this, Gradle
supports dependency version alignment, which is supported by the concept of platforms. A
platform represents a set of modules which "work well together". Either because they are actually
published as a whole (when one of the members of the platform is published, all other modules are
also published with the same version), or because someone tested the modules and indicates that
they work well together (typically, the Spring Platform).

Aligning versions natively with Gradle

Gradle natively supports alignment of modules produced by Gradle. This is a direct consequence of
the transitivity of dependency constraints. So if you have a multi-project build, and you wish that
consumers get the same version of all your modules, Gradle provides a simple way to do this using
the Java Platform Plugin.

For example, if you have a project that consists of 3 modules:

• lib

• utils

• core, depending on lib and utils

And a consumer that declares the following dependencies:

• core version 1.0

• lib version 1.1

Then by default resolution would select core:1.0 and lib:1.1, because lib has no dependency on
core. We can fix this by adding a new module in our project, a platform, that will add constraints on
all the modules of your project:

Example 337. The platform module

build.gradle

plugins {
 id 'java-platform'
}

dependencies {
 // The platform declares constraints on all components that
 // require alignment
 constraints {
 api(project(":core"))
 api(project(":lib"))
 api(project(":utils"))
 }
}

build.gradle.kts

plugins {
 `java-platform`
}

dependencies {
 // The platform declares constraints on all components that
 // require alignment
 constraints {
 api(project(":core"))
 api(project(":lib"))
 api(project(":utils"))
 }
}

Once this is done, we need to make sure that all modules now depend on the platform, like this:

Example 338. Declaring a dependency on the platform

build.gradle

dependencies {
 // Each project has a dependency on the platform
 api(platform(project(":platform")))

 // And any additional dependency required
 implementation(project(":lib"))
 implementation(project(":utils"))
}

build.gradle.kts

dependencies {
 // Each project has a dependency on the platform
 api(platform(project(":platform")))

 // And any additional dependency required
 implementation(project(":lib"))
 implementation(project(":utils"))
}

It is important that the platform contains a constraint on all the components, but also that each
component has a dependency on the platform. By doing this, whenever Gradle will add a
dependency to a module of the platform on the graph, it will also include constraints on the other
modules of the platform. This means that if we see another module belonging to the same platform,
we will automatically upgrade to the same version.

In our example, it means that we first see core:1.0, which brings a platform 1.0 with constraints on
lib:1.0 and lib:1.0. Then we add lib:1.1 which has a dependency on platform:1.1. By conflict
resolution, we select the 1.1 platform, which has a constraint on core:1.1. Then we conflict resolve
between core:1.0 and core:1.1, which means that core and lib are now aligned properly.

NOTE
This behavior is enforced for published components only if you use Gradle Module
Metadata.

Aligning versions of modules not published with Gradle

Whenever the publisher doesn’t use Gradle, like in our Jackson example, we can explain to Gradle
that all Jackson modules "belong to" the same platform and benefit from the same behavior as with
native alignment. There are two options to express that a set of modules belong to a platform:

1. A platform is published as a BOM and can be used: For example,

com.fasterxml.jackson:jackson-bom can be used as platform. The information missing to Gradle
in that case is that the platform should be added to the dependencies if one of its members is
used.

2. No existing platform can be used. Instead, a virtual platform should be created by Gradle: In
this case, Gradle builds up the platform itself based on all the members that are used.

To provide the missing information to Gradle, you can define component metadata rules as
explained in the following.

Align versions of modules using a published BOM

Example 339. A dependency version alignment rule

build.gradle

abstract class JacksonBomAlignmentRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext ctx) {
 ctx.details.with {
 if (id.group.startsWith("com.fasterxml.jackson")) {
 // declare that Jackson modules belong to the platform
defined by the Jackson BOM
 belongsTo("com.fasterxml.jackson:jackson-bom:${id.version}",
false)
 }
 }
 }
}

build.gradle.kts

abstract class JacksonBomAlignmentRule: ComponentMetadataRule {
 override fun execute(ctx: ComponentMetadataContext) {
 ctx.details.run {
 if (id.group.startsWith("com.fasterxml.jackson")) {
 // declare that Jackson modules belong to the platform
defined by the Jackson BOM
 belongsTo("com.fasterxml.jackson:jackson-bom:${id.version}",
false)
 }
 }
 }
}

By using the belongsTo with false (not virtual), we declare that all modules belong to the same
published platform. In this case, the platform is com.fasterxml.jackson:jackson-bom and Gradle will

look for it, as for any other module, in the declared repositories.

Example 340. Making use of a dependency version alignment rule

build.gradle

dependencies {
 components.all(JacksonBomAlignmentRule)
}

build.gradle.kts

dependencies {
 components.all<JacksonBomAlignmentRule>()
}

Using the rule, the versions in the example above align to whatever the selected version of
com.fasterxml.jackson:jackson-bom defines. In this case, com.fasterxml.jackson:jackson-bom:2.9.5
will be selected as 2.9.5 is the highest version of a module selected. In that BOM, the following
versions are defined and will be used: jackson-core:2.9.5, jackson-databind:2.9.5 and jackson-
annotation:2.9.0. The lower versions of jackson-annotation here might be the desired result as it is
what the BOM recommends.

NOTE
This behavior is working reliable since Gradle 6.1. Effectively, it is similar to a
component metadata rule that adds a platform dependency to all members of the
platform using withDependencies.

Align versions of modules without a published platform

Example 341. A dependency version alignment rule

build.gradle

abstract class JacksonAlignmentRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext ctx) {
 ctx.details.with {
 if (id.group.startsWith("com.fasterxml.jackson")) {
 // declare that Jackson modules all belong to the Jackson
virtual platform
 belongsTo("com.fasterxml.jackson:jackson-virtual-platform:
${id.version}")
 }
 }
 }
}

build.gradle.kts

abstract class JacksonAlignmentRule: ComponentMetadataRule {
 override fun execute(ctx: ComponentMetadataContext) {
 ctx.details.run {
 if (id.group.startsWith("com.fasterxml.jackson")) {
 // declare that Jackson modules all belong to the Jackson
virtual platform
 belongsTo("com.fasterxml.jackson:jackson-virtual-
platform:${id.version}")
 }
 }
 }
}

By using the belongsTo keyword without further parameter (platform is virtual), we declare that all
modules belong to the same virtual platform, which is treated specially by the engine. A virtual
platform will not be retrieved from a repository. The identifier, in this case
com.fasterxml.jackson:jackson-virtual-platform, is something you as the build author define
yourself. The "content" of the platform is then created by Gradle on the fly by collecting all
belongsTo statements pointing at the same virtual platform.

Example 342. Making use of a dependency version alignment rule

build.gradle

dependencies {
 components.all(JacksonAlignmentRule)
}

build.gradle.kts

dependencies {
 components.all<JacksonAlignmentRule>()
}

Using the rule, all versions in the example above would align to 2.9.5. In this case, also jackson-
annotation:2.9.5 will be taken, as that is how we defined our local virtual platform.

For both published and virtual platforms, Gradle lets you override the version choice of the
platform itself by specifying an enforced dependency on the platform:

Example 343. Forceful platform downgrade

build.gradle

dependencies {
 // Forcefully downgrade the virtual Jackson platform to 2.8.9
 implementation enforcedPlatform('com.fasterxml.jackson:jackson-virtual-
platform:2.8.9')
}

build.gradle.kts

dependencies {
 // Forcefully downgrade the virtual Jackson platform to 2.8.9
 implementation(enforcedPlatform("com.fasterxml.jackson:jackson-virtual-
platform:2.8.9"))
}

Handling mutually exclusive dependencies

Introduction to component capabilities

Often a dependency graph would accidentally contain multiple implementations of the same API.
This is particularly common with logging frameworks, where multiple bindings are available, and
that one library chooses a binding when another transitive dependency chooses another. Because
those implementations live at different GAV coordinates, the build tool has usually no way to find
out that there’s a conflict between those libraries. To solve this, Gradle provides the concept of
capability.

It’s illegal to find two components providing the same capability in a single dependency graph.
Intuitively, it means that if Gradle finds two components that provide the same thing on classpath,
it’s going to fail with an error indicating what modules are in conflict. In our example, it means that
different bindings of a logging framework provide the same capability.

Capability coordinates

A capability is defined by a (group, module, version) triplet. Each component defines an implicit
capability corresponding to its GAV coordinates (group, artifact, version). For example, the
org.apache.commons:commons-lang3:3.8 module has an implicit capability with group
org.apache.commons, name commons-lang3 and version 3.8. It is important to realize that capabilities
are versioned.

Declaring component capabilities

By default, Gradle will fail if two components in the dependency graph provide the same capability.
Because most modules are currently published without Gradle Module Metadata, capabilities are
not always automatically discovered by Gradle. It is however interesting to use rules to declare
component capabilities in order to discover conflicts as soon as possible, during the build instead of
runtime.

A typical example is whenever a component is relocated at different coordinates in a new release.
For example, the ASM library lived at asm:asm coordinates until version 3.3.1, then changed to
org.ow2.asm:asm since 4.0. It is illegal to have both ASM <= 3.3.1 and 4.0+ on the classpath, because
they provide the same feature, it’s just that the component has been relocated. Because each
component has an implicit capability corresponding to its GAV coordinates, we can "fix" this by
having a rule that will declare that the asm:asm module provides the org.ow2.asm:asm capability:

Example 344. Conflict resolution by capability

build.gradle

@CompileStatic
class AsmCapability implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 context.details.with {
 if (id.group == "asm" && id.name == "asm") {
 allVariants {
 it.withCapabilities {
 // Declare that ASM provides the org.ow2.asm:asm
capability, but with an older version
 it.addCapability("org.ow2.asm", "asm", id.version)
 }
 }
 }
 }
 }
}

build.gradle.kts

class AsmCapability : ComponentMetadataRule {
 override
 fun execute(context: ComponentMetadataContext) = context.details.run {
 if (id.group == "asm" && id.name == "asm") {
 allVariants {
 withCapabilities {
 // Declare that ASM provides the org.ow2.asm:asm
capability, but with an older version
 addCapability("org.ow2.asm", "asm", id.version)
 }
 }
 }
 }
}

Now the build is going to fail whenever the two components are found in the same dependency
graph.

NOTE

At this stage, Gradle will only make more builds fail. It will not automatically fix the
problem for you, but it helps you realize that you have a problem. It is
recommended to write such rules in plugins which are then applied to your builds.
Then, users have to express their preferences, if possible, or fix the problem of
having incompatible things on the classpath, as explained in the following section.

Selecting between candidates

At some point, a dependency graph is going to include either incompatible modules, or modules
which are mutually exclusive. For example, you may have different logger implementations and you
need to choose one binding. Capabilities help realizing that you have a conflict, but Gradle also
provides tools to express how to solve the conflicts.

Selecting between different capability candidates

In the relocation example above, Gradle was able to tell you that you have two versions of the same
API on classpath: an "old" module and a "relocated" one. Now we can solve the conflict by
automatically choosing the component which has the highest capability version:

Example 345. Conflict resolution by capability versioning

build.gradle

configurations.all {
 resolutionStrategy.capabilitiesResolution.withCapability('
org.ow2.asm:asm') {
 selectHighestVersion()
 }
}

build.gradle.kts

configurations.all {

resolutionStrategy.capabilitiesResolution.withCapability("org.ow2.asm:asm") {
 selectHighestVersion()
 }
}

However, fixing by choosing the highest capability version conflict resolution is not always suitable.
For a logging framework, for example, it doesn’t matter what version of the logging frameworks we
use, we should always select Slf4j.

In this case, we can fix it by explicitly selecting slf4j as the winner:

Example 346. Substitute log4j with slf4j

build.gradle

 configurations.all {
 resolutionStrategy.capabilitiesResolution.withCapability("
log4j:log4j") {
 def toBeSelected = candidates.find { it.id instanceof
ModuleComponentIdentifier && it.id.module == 'log4j-over-slf4j' }
 if (toBeSelected != null) {
 select(toBeSelected)
 }
 because 'use slf4j in place of log4j'
 }
 }

build.gradle.kts

 configurations.all {

resolutionStrategy.capabilitiesResolution.withCapability("log4j:log4j") {
 val toBeSelected = candidates.firstOrNull { it.id.let { id -> id
is ModuleComponentIdentifier && id.module == "log4j-over-slf4j" } }
 if (toBeSelected != null) {
 select(toBeSelected)
 }
 because("use slf4j in place of log4j")
 }
 }

Note that this approach works also well if you have multiple Slf4j bindings on the classpath:
bindings are basically different logger implementations and you need only one. However, the
selected implementation may depend on the configuration being resolved. For example, for tests,
slf4j-simple may be enough but for production, slf4-over-log4j may be better.

NOTE

Resolution can only be made in favor of a module found in the graph.

The select method only accepts a module found in the current candidates. If the
module you want to select is not part of the conflict, you can abstain from
performing a selection, effectively not resolving this conflict. It might be that
another conflict exists in the graph for the same capability and will have the
module you want to select.

If no resolution is given for all conflicts on a given capability, the build will fail
given the module chosen for resolution was not part of the graph at all.

In addition select(null) will result in an error and so should be avoided.

For more information, check out the the capabilities resolution API.

Fixing metadata with component metadata rules

Each module that is pulled from a repository has metadata associated with it, such as its group,
name, version as well as the different variants it provides with their artifacts and dependencies.
Sometimes, this metadata is incomplete or incorrect. To manipulate such incomplete metadata
from within the build script, Gradle offers an API to write component metadata rules. These rules
take effect after a module’s metadata has been downloaded, but before it is used in dependency
resolution.

Basics of writing a component metadata rule

Component metadata rules are applied in the components (ComponentMetadataHandler) section of
the dependencies block (DependencyHandler) of a build script or in the settings script. The rules
can be defined in two different ways:

1. As an action directly when they are applied in the components section

2. As an isolated class implementing the ComponentMetadataRule interface

While defining rules inline as action can be convenient for experimentation, it is generally
recommended to define rules as separate classes. Rules that are written as isolated classes can be
annotated with @CacheableRule to cache the results of their application such that they do not need to
be re-executed each time dependencies are resolved.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ResolutionStrategy.html#capabilitiesResolution
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ComponentMetadataRule.html

Example 347. Example of a configurable component metadata rule

build.gradle

@CacheableRule
abstract class TargetJvmVersionRule implements ComponentMetadataRule {
 final Integer jvmVersion
 @Inject TargetJvmVersionRule(Integer jvmVersion) {
 this.jvmVersion = jvmVersion
 }

 @Inject abstract ObjectFactory getObjects()

 void execute(ComponentMetadataContext context) {
 context.details.withVariant("compile") {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
jvmVersion)
 attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage, Usage
.JAVA_API))
 }
 }
 }
}
dependencies {
 components {
 withModule("commons-io:commons-io", TargetJvmVersionRule) {
 params(7)
 }
 withModule("commons-collections:commons-collections",
TargetJvmVersionRule) {
 params(8)
 }
 }
 implementation("commons-io:commons-io:2.6")
 implementation("commons-collections:commons-collections:3.2.2")
}

build.gradle.kts

@CacheableRule
abstract class TargetJvmVersionRule @Inject constructor(val jvmVersion: Int)
: ComponentMetadataRule {
 @get:Inject abstract val objects: ObjectFactory

 override fun execute(context: ComponentMetadataContext) {
 context.details.withVariant("compile") {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
jvmVersion)
 attribute(Usage.USAGE_ATTRIBUTE,
objects.named(Usage.JAVA_API))
 }
 }
 }
}
dependencies {
 components {
 withModule<TargetJvmVersionRule>("commons-io:commons-io") {
 params(7)
 }
 withModule<TargetJvmVersionRule>("commons-collections:commons-
collections") {
 params(8)
 }
 }
 implementation("commons-io:commons-io:2.6")
 implementation("commons-collections:commons-collections:3.2.2")
}

As can be seen in the examples above, component metadata rules are defined by implementing
ComponentMetadataRule which has a single execute method receiving an instance of
ComponentMetadataContext as parameter. In this example, the rule is also further configured
through an ActionConfiguration. This is supported by having a constructor in your implementation
of ComponentMetadataRule accepting the parameters that were configured and the services that need
injecting.

Gradle enforces isolation of instances of ComponentMetadataRule. This means that all parameters
must be Serializable or known Gradle types that can be isolated.

In addition, Gradle services can be injected into your ComponentMetadataRule. Because of this, the
moment you have a constructor, it must be annotated with @javax.inject.Inject. A commonly
required service is ObjectFactory to create instances of strongly typed value objects like a value for
setting an Attribute. A service which is helpful for advanced usage of component metadata rules
with custom metadata is the RepositoryResourceAccessor.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ComponentMetadataRule.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ComponentMetadataContext.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/ActionConfiguration.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/Attribute.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/repositories/RepositoryResourceAccessor.html

A component metadata rule can be applied to all modules — all(rule) — or to a selected module —
withModule(groupAndName, rule). Usually, a rule is specifically written to enrich metadata of one
specific module and hence the withModule API should be preferred.

Declaring rules in a central place

NOTE Declaring component metadata rules in settings is an incubating feature

Instead of declaring rules for each subproject individually, it is possible to declare rules in the
settings.gradle(.kts) file for the whole build. Rules declared in settings are the conventional rules
applied to each project: if the project doesn’t declare any rules, the rules from the settings script
will be used.

Example 348. Declaring a rule in settings

settings.gradle

dependencyResolutionManagement {
 components {
 withModule("com.google.guava:guava", GuavaRule)
 }
}

settings.gradle.kts

dependencyResolutionManagement {
 components {
 withModule<GuavaRule>("com.google.guava:guava")
 }
}

By default, rules declared in a project will override whatever is declared in settings. It is possible to
change this default, for example to always prefer the settings rules:

Example 349. Preferring rules declared in settings

settings.gradle

dependencyResolutionManagement {
 rulesMode.set(RulesMode.PREFER_SETTINGS)
}

settings.gradle.kts

dependencyResolutionManagement {
 rulesMode.set(RulesMode.PREFER_SETTINGS)
}

If this method is called and that a project or plugin declares rules, a warning will be issued. You can
make this a failure instead by using this alternative:

Example 350. Enforcing rules declared in settings

settings.gradle

dependencyResolutionManagement {
 rulesMode.set(RulesMode.FAIL_ON_PROJECT_RULES)
}

settings.gradle.kts

dependencyResolutionManagement {
 rulesMode.set(RulesMode.FAIL_ON_PROJECT_RULES)
}

The default behavior is equivalent to calling this method:

Example 351. Preferring rules declared in projects

settings.gradle

dependencyResolutionManagement {
 rulesMode.set(RulesMode.PREFER_PROJECT)
}

settings.gradle.kts

dependencyResolutionManagement {
 rulesMode.set(RulesMode.PREFER_PROJECT)
}

Which parts of metadata can be modified?

The component metadata rules API is oriented at the features supported by Gradle Module
Metadata and the dependencies API in build scripts. The main difference between writing rules and
defining dependencies and artifacts in the build script is that component metadata rules, following
the structure of Gradle Module Metadata, operate on variants directly. On the contrary, in build
scripts you often influence the shape of multiple variants at once (e.g. an api dependency is added
to the api and runtime variant of a Java library, the artifact produced by the jar task is also added to
these two variants).

Variants can be addressed for modification through the following methods:

• allVariants: modify all variants of a component

• withVariant(name): modify a single variant identified by its name

• addVariant(name) or addVariant(name, base): add a new variant to the component either from
scratch or by copying the details of an existing variant (base)

The following details of each variant can be adjusted:

• The attributes that identify the variant — attributes {} block

• The capabilities the variant provides — withCapabilities { } block

• The dependencies of the variant, including rich versions — withDependencies {} block

• The dependency constraints of the variant, including rich versions — withDependencyConstraints
{} block

• The location of the published files that make up the actual content of the variant — withFiles {
} block

There are also a few properties of the whole component that can be changed:

https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md
https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md

• The component level attributes, currently the only meaningful attribute there is
org.gradle.status

• The status scheme to influence interpretation of the org.gradle.status attribute during version
selection

• The belongsTo property for version alignment through virtual platforms

Depending on the format of the metadata of a module, it is mapped differently to the variant-
centric representation of the metadata:

• If the module has Gradle Module Metadata, the data structure the rule operates on is very
similar to what you find in the module’s .module file.

• If the module was published only with .pom metadata, a number of fixed variants is derived as
explained in the mapping of POM files to variants section.

• If the module was published only with an ivy.xml file, the Ivy configurations defined in the file
can be accessed instead of variants. Their dependencies, dependency constraints and files can
be modified. Additionally, the addVariant(name, baseVariantOrConfiguration) { } API can be
used to derive variants from Ivy configurations if desired (for example, compile and runtime
variants for the Java library plugin can be defined with this).

When to use Component Metadata Rules?

In general, if you consider using component metadata rules to adjust the metadata of a certain
module, you should check first if that module was published with Gradle Module Metadata (.module
file) or traditional metadata only (.pom or ivy.xml).

If a module was published with Gradle Module Metadata, the metadata is likely complete although
there can still be cases where something is just plainly wrong. For these modules you should only
use component metadata rules if you have clearly identified a problem with the metadata itself. If
you have an issue with the dependency resolution result, you should first check if you can solve the
issue by declaring dependency constraints with rich versions. In particular, if you are developing a
library that you publish, you should remember that dependency constraints, in contrast to
component metadata rules, are published as part of the metadata of your own library. So with
dependency constraints, you automatically share the solution of dependency resolution issues with
your consumers, while component metadata rules are only applied to your own build.

If a module was published with traditional metadata (.pom or ivy.xml only, no .module file) it is more
likely that the metadata is incomplete as features such as variants or dependency constraints are
not supported in these formats. Still, conceptually such modules can contain different variants or
might have dependency constraints they just omitted (or wrongly defined as dependencies). In the
next sections, we explore a number existing oss modules with such incomplete metadata and the
rules for adding the missing metadata information.

As a rule of thumb, you should contemplate if the rule you are writing also works out of context of
your build. That is, does the rule still produce a correct and useful result if applied in any other
build that uses the module(s) it affects?

Fixing wrong dependency details

Let’s consider as an example the publication of the Jaxen XPath Engine on Maven central. The pom
of version 1.1.3 declares a number of dependencies in the compile scope which are not actually
needed for compilation. These have been removed in the 1.1.4 pom. Assuming that we need to work
with 1.1.3 for some reason, we can fix the metadata with the following rule:

Example 352. Rule to remove unused dependencies of Jaxen metadata

build.gradle

@CacheableRule
abstract class JaxenDependenciesRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 context.details.allVariants {
 withDependencies {
 removeAll { it.group in ["dom4j", "jdom", "xerces", "maven-
plugins", "xml-apis", "xom"] }
 }
 }
 }
}

build.gradle.kts

@CacheableRule
abstract class JaxenDependenciesRule: ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 context.details.allVariants {
 withDependencies {
 removeAll { it.group in listOf("dom4j", "jdom", "xerces",
"maven-plugins", "xml-apis", "xom") }
 }
 }
 }
}

Within the withDependencies block you have access to the full list of dependencies and can use all
methods available on the Java collection interface to inspect and modify that list. In addition, there
are add(notation, configureAction) methods accepting the usual notations similar to declaring
dependencies in the build script. Dependency constraints can be inspected and modified the same
way in the withDependencyConstraints block.

If we take a closer look at the Jaxen 1.1.4 pom, we observe that the dom4j, jdom and xerces
dependencies are still there but marked as optional. Optional dependencies in poms are not

https://repo1.maven.org/maven2/jaxen/jaxen

automatically processed by Gradle nor Maven. The reason is that they indicate that there are
optional feature variants provided by the Jaxen library which require one or more of these
dependencies, but the information what these features are and which dependency belongs to
which is missing. Such information cannot be represented in pom files, but in Gradle Module
Metadata through variants and capabilities. Hence, we can add this information in a rule as well.

Example 353. Rule to add optional feature to Jaxen metadata

build.gradle

@CacheableRule
abstract class JaxenCapabilitiesRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 context.details.addVariant("runtime-dom4j", "runtime") {
 withCapabilities {
 removeCapability("jaxen", "jaxen")
 addCapability("jaxen", "jaxen-dom4j", context.details.id
.version)
 }
 withDependencies {
 add("dom4j:dom4j:1.6.1")
 }
 }
 }
}

build.gradle.kts

@CacheableRule
abstract class JaxenCapabilitiesRule: ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 context.details.addVariant("runtime-dom4j", "runtime") {
 withCapabilities {
 removeCapability("jaxen", "jaxen")
 addCapability("jaxen", "jaxen-dom4j",
context.details.id.version)
 }
 withDependencies {
 add("dom4j:dom4j:1.6.1")
 }
 }
 }
}

Here, we first use the addVariant(name, baseVariant) method to create an additional variant, which

we identify as feature variant by defining a new capability jaxen-dom4j to represent the optional
dom4j integration feature of Jaxen. This works similar to defining optional feature variants in build
scripts. We then use one of the add methods for adding dependencies to define which dependencies
this optional feature needs.

In the build script, we can then add a dependency to the optional feature and Gradle will use the
enriched metadata to discover the correct transitive dependencies.

Example 354. Applying and utilising rules for Jaxen metadata

build.gradle

dependencies {
 components {
 withModule("jaxen:jaxen", JaxenDependenciesRule)
 withModule("jaxen:jaxen", JaxenCapabilitiesRule)
 }
 implementation("jaxen:jaxen:1.1.3")
 runtimeOnly("jaxen:jaxen:1.1.3") {
 capabilities { requireCapability("jaxen:jaxen-dom4j") }
 }
}

build.gradle.kts

dependencies {
 components {
 withModule<JaxenDependenciesRule>("jaxen:jaxen")
 withModule<JaxenCapabilitiesRule>("jaxen:jaxen")
 }
 implementation("jaxen:jaxen:1.1.3")
 runtimeOnly("jaxen:jaxen:1.1.3") {
 capabilities { requireCapability("jaxen:jaxen-dom4j") }
 }
}

Making variants published as classified jars explicit

While in the previous example, all variants, "main variants" and optional features, were packaged
in one jar file, it is common to publish certain variants as separate files. In particular, when the
variants are mutual exclusive — i.e. they are not feature variants, but different variants offering
alternative choices. One example all pom-based libraries already have are the runtime and compile
variants, where Gradle can choose only one depending on the task at hand. Another of such
alternatives discovered often in the Java ecosystems are jars targeting different Java versions.

As example, we look at version 0.7.9 of the asynchronous programming library Quasar published
on Maven central. If we inspect the directory listing, we discover that a quasar-core-0.7.9-jdk8.jar
was published, in addition to quasar-core-0.7.9.jar. Publishing additional jars with a classifier
(here jdk8) is common practice in maven repositories. And while both Maven and Gradle allow you
to reference such jars by classifier, they are not mentioned at all in the metadata. Thus, there is no
information that these jars exist and if there are any other differences, like different dependencies,
between the variants represented by such jars.

In Gradle Module Metadata, this variant information would be present and for the already
published Quasar library, we can add it using the following rule:

https://repo1.maven.org/maven2/co/paralleluniverse/quasar-core/0.7.9

Example 355. Rule to add JDK 8 variants to Quasar metadata

build.gradle

@CacheableRule
abstract class QuasarRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 ["compile", "runtime"].each { base ->
 context.details.addVariant("jdk8${base.capitalize()}", base) {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
8)
 }
 withFiles {
 removeAllFiles()
 addFile("${context.details.id.name}-${context.details.id
.version}-jdk8.jar")
 }
 }
 context.details.withVariant(base) {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
7)
 }
 }
 }
 }
}

build.gradle.kts

@CacheableRule
abstract class QuasarRule: ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 listOf("compile", "runtime").forEach { base ->
 context.details.addVariant("jdk8${base.capitalize()}", base) {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
8)
 }
 withFiles {
 removeAllFiles()
 addFile("${context.details.id.name}-
${context.details.id.version}-jdk8.jar")
 }
 }
 context.details.withVariant(base) {
 attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
7)
 }
 }
 }
 }
}

In this case, it is pretty clear that the classifier stands for a target Java version, which is a known
Java ecosystem attribute. Because we also need both a compile and runtime for Java 8, we create
two new variants but use the existing compile and runtime variants as base. This way, all other Java
ecosystem attributes are already set correctly and all dependencies are carried over. Then we set
the TARGET_JVM_VERSION_ATTRIBUTE to 8 for both variants, remove any existing file from the new
variants with removeAllFiles(), and add the jdk8 jar file with addFile(). The removeAllFiles() is
needed, because the reference to the main jar quasar-core-0.7.5.jar is copied from the
corresponding base variant.

We also enrich the existing compile and runtime variants with the information that they target Java
7 — attribute(TARGET_JVM_VERSION_ATTRIBUTE, 7).

Now, we can request a Java 8 versions for all of our dependencies on the compile classpath in the
build script and Gradle will automatically select the best fitting variant for each library. In the case
of Quasar this will now be the jdk8Compile variant exposing the quasar-core-0.7.9-jdk8.jar.

Example 356. Applying and utilising rule for Quasar metadata

build.gradle

configurations.compileClasspath.attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE, 8)
}
dependencies {
 components {
 withModule("co.paralleluniverse:quasar-core", QuasarRule)
 }
 implementation("co.paralleluniverse:quasar-core:0.7.9")
}

build.gradle.kts

configurations["compileClasspath"].attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE, 8)
}
dependencies {
 components {
 withModule<QuasarRule>("co.paralleluniverse:quasar-core")
 }
 implementation("co.paralleluniverse:quasar-core:0.7.9")
}

Making variants encoded in versions explicit

Another solution to publish multiple alternatives for the same library is the usage of a a versioning
pattern as done by the popular Guava library. Here, each new version is published twice by
appending the classifier to the version instead of the jar artifact. In the case of Guava 28 for
example, we can find a 28.0-jre (Java 8) and 28.0-android (Java 6) version on Maven central. The
advantage of using this pattern when working only with pom metadata is that both variants are
discoverable through the version. The disadvantage is that there is no information what the
different version suffixes mean semantically. So in the case of conflict, Gradle would just pick the
highest version when comparing the version strings.

Turning this into proper variants is a bit more tricky, as Gradle first selects a version of a module
and then selects the best fitting variant. So the concept that variants are encoded as versions is not
supported directly. However, since both variants are always published together we can assume that
the files are physically located in the same repository. And since they are published with Maven
repository conventions, we know the location of each file if we know module name and version. We
can write the following rule:

https://repo1.maven.org/maven2/com/google/guava/guava

Example 357. Rule to add JDK 6 and JDK 8 variants to Guava metadata

build.gradle

@CacheableRule
abstract class GuavaRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 def variantVersion = context.details.id.version
 def version = variantVersion.substring(0, variantVersion.indexOf("-"
))
 ["compile", "runtime"].each { base ->
 [6: "android", 8: "jre"].each { targetJvmVersion, jarName ->
 context.details.addVariant("jdk$targetJvmVersion${base
.capitalize()}", base) {
 attributes {
 attributes.attribute(TargetJvmVersion
.TARGET_JVM_VERSION_ATTRIBUTE, targetJvmVersion)
 }
 withFiles {
 removeAllFiles()
 addFile("guava-$version-${jarName}.jar", "../$version
-$jarName/guava-$version-${jarName}.jar")
 }
 }
 }
 }
 }
}

build.gradle.kts

@CacheableRule
abstract class GuavaRule: ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 val variantVersion = context.details.id.version
 val version = variantVersion.substring(0, variantVersion.indexOf("-
"))
 listOf("compile", "runtime").forEach { base ->
 mapOf(6 to "android", 8 to "jre").forEach { (targetJvmVersion,
jarName) ->

context.details.addVariant("jdk$targetJvmVersion${base.capitalize()}", base)
{
 attributes {

attributes.attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
targetJvmVersion)
 }
 withFiles {
 removeAllFiles()
 addFile("guava-$version-$jarName.jar", "../$version-
$jarName/guava-$version-$jarName.jar")
 }
 }
 }
 }
 }
}

Similar to the previous example, we add runtime and compile variants for both Java versions. In
the withFiles block however, we now also specify a relative path for the corresponding jar file
which allows Gradle to find the file no matter if it has selected a -jre or -android version. The path is
always relative to the location of the metadata (in this case pom) file of the selection module version.
So with this rules, both Guava 28 "versions" carry both the jdk6 and jdk8 variants. So it does not
matter to which one Gradle resolves. The variant, and with it the correct jar file, is determined
based on the requested TARGET_JVM_VERSION_ATTRIBUTE value.

Example 358. Applying and utilising rule for Guava metadata

build.gradle

configurations.compileClasspath.attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE, 6)
}
dependencies {
 components {
 withModule("com.google.guava:guava", GuavaRule)
 }
 // '23.3-android' and '23.3-jre' are now the same as both offer both
variants
 implementation("com.google.guava:guava:23.3+")
}

build.gradle.kts

configurations["compileClasspath"].attributes {
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE, 6)
}
dependencies {
 components {
 withModule<GuavaRule>("com.google.guava:guava")
 }
 // '23.3-android' and '23.3-jre' are now the same as both offer both
variants
 implementation("com.google.guava:guava:23.3+")
}

Adding variants for native jars

Jars with classifiers are also used to separate parts of a library for which multiple alternatives
exists, for example native code, from the main artifact. This is for example done by the Lightweight
Java Game Library (LWGJ), which publishes several platform specific jars to Maven central from
which always one is needed, in addition to the main jar, at runtime. It is not possible to convey this
information in pom metadata as there is no concept of putting multiple artifacts in relation through
the metadata. In Gradle Module Metadata, each variant can have arbitrary many files and we can
leverage that by writing the following rule:

https://repo1.maven.org/maven2/org/lwjgl/lwjgl/3.2.3

Example 359. Rule to add native runtime variants to LWGJ metadata

build.gradle

@CacheableRule
abstract class LwjglRule implements ComponentMetadataRule { //val os: String,
val arch: String, val classifier: String)
 private def nativeVariants = [
 [os: OperatingSystemFamily.LINUX, arch: "arm32", classifier:
"natives-linux-arm32"],
 [os: OperatingSystemFamily.LINUX, arch: "arm64", classifier:
"natives-linux-arm64"],
 [os: OperatingSystemFamily.WINDOWS, arch: "x86", classifier:
"natives-windows-x86"],
 [os: OperatingSystemFamily.WINDOWS, arch: "x86-64", classifier:
"natives-windows"],
 [os: OperatingSystemFamily.MACOS, arch: "x86-64", classifier:
"natives-macos"]
]

 @Inject abstract ObjectFactory getObjects()

 void execute(ComponentMetadataContext context) {
 context.details.withVariant("runtime") {
 attributes {
 attributes.attribute(OperatingSystemFamily
.OPERATING_SYSTEM_ATTRIBUTE, objects.named(OperatingSystemFamily, "none"))
 attributes.attribute(MachineArchitecture
.ARCHITECTURE_ATTRIBUTE, objects.named(MachineArchitecture, "none"))
 }
 }
 nativeVariants.each { variantDefinition ->
 context.details.addVariant("${variantDefinition.classifier}
-runtime", "runtime") {
 attributes {
 attributes.attribute(OperatingSystemFamily
.OPERATING_SYSTEM_ATTRIBUTE, objects.named(OperatingSystemFamily,
variantDefinition.os))
 attributes.attribute(MachineArchitecture
.ARCHITECTURE_ATTRIBUTE, objects.named(MachineArchitecture,
variantDefinition.arch))
 }
 withFiles {
 addFile("${context.details.id.name}-${context.details.id
.version}-${variantDefinition.classifier}.jar")
 }
 }
 }
 }
}

build.gradle.kts

@CacheableRule
abstract class LwjglRule: ComponentMetadataRule {
 data class NativeVariant(val os: String, val arch: String, val
classifier: String)

 private val nativeVariants = listOf(
 NativeVariant(OperatingSystemFamily.LINUX, "arm32", "natives-
linux-arm32"),
 NativeVariant(OperatingSystemFamily.LINUX, "arm64", "natives-
linux-arm64"),
 NativeVariant(OperatingSystemFamily.WINDOWS, "x86", "natives-
windows-x86"),
 NativeVariant(OperatingSystemFamily.WINDOWS, "x86-64", "natives-
windows"),
 NativeVariant(OperatingSystemFamily.MACOS, "x86-64", "natives-
macos")
)

 @get:Inject abstract val objects: ObjectFactory

 override fun execute(context: ComponentMetadataContext) {
 context.details.withVariant("runtime") {
 attributes {

attributes.attribute(OperatingSystemFamily.OPERATING_SYSTEM_ATTRIBUTE,
objects.named("none"))

attributes.attribute(MachineArchitecture.ARCHITECTURE_ATTRIBUTE,
objects.named("none"))
 }
 }
 nativeVariants.forEach { variantDefinition ->
 context.details.addVariant("${variantDefinition.classifier}-
runtime", "runtime") {
 attributes {

attributes.attribute(OperatingSystemFamily.OPERATING_SYSTEM_ATTRIBUTE,
objects.named(variantDefinition.os))

attributes.attribute(MachineArchitecture.ARCHITECTURE_ATTRIBUTE,
objects.named(variantDefinition.arch))
 }
 withFiles {
 addFile("${context.details.id.name}-
${context.details.id.version}-${variantDefinition.classifier}.jar")
 }
 }
 }

 }
}

This rule is quite similar to the Quasar library example above. Only this time we have five different
runtime variants we add and nothing we need to change for the compile variant. The runtime
variants are all based on the existing runtime variant and we do not change any existing
information. All Java ecosystem attributes, the dependencies and the main jar file stay part of each
of the runtime variants. We only set the additional attributes OPERATING_SYSTEM_ATTRIBUTE and
ARCHITECTURE_ATTRIBUTE which are defined as part of Gradle’s native support. And we add the
corresponding native jar file so that each runtime variant now carries two files: the main jar and
the native jar.

In the build script, we can now request a specific variant and Gradle will fail with a selection error
if more information is needed to make a decision.

Example 360. Applying and utilising rule for LWGJ metadata

build.gradle

configurations["runtimeClasspath"].attributes {
 attribute(OperatingSystemFamily.OPERATING_SYSTEM_ATTRIBUTE, objects.
named(OperatingSystemFamily, "windows"))
}
dependencies {
 components {
 withModule("org.lwjgl:lwjgl", LwjglRule)
 }
 implementation("org.lwjgl:lwjgl:3.2.3")
}

build.gradle.kts

configurations["runtimeClasspath"].attributes {
 attribute(OperatingSystemFamily.OPERATING_SYSTEM_ATTRIBUTE,
objects.named("windows"))
}
dependencies {
 components {
 withModule<LwjglRule>("org.lwjgl:lwjgl")
 }
 implementation("org.lwjgl:lwjgl:3.2.3")
}

Gradle fails to select a variant because a machine architecture needs to be chosen

> Could not resolve all files for configuration ':runtimeClasspath'.
 > Could not resolve org.lwjgl:lwjgl:3.2.3.
 Required by:
 project :
 > Cannot choose between the following variants of org.lwjgl:lwjgl:3.2.3:
 - natives-windows-runtime
 - natives-windows-x86-runtime

Making different flavors of a library available through capabilities

Because it is difficult to model optional feature variants as separate jars with pom metadata,
libraries sometimes compose different jars with a different feature set. That is, instead of
composing your flavor of the library from different feature variants, you select one of the pre-
composed variants (offering everything in one jar). One such library is the well-known dependency
injection framework Guice, published on Maven central, which offers a complete flavor (the main
jar) and a reduced variant without aspect-oriented programming support (guice-4.2.2-no_aop.jar).
That second variant with a classifier is not mentioned in the pom metadata. With the following
rule, we create compile and runtime variants based on that file and make it selectable through a
capability named com.google.inject:guice-no_aop.

https://repo1.maven.org/maven2/com/google/inject/guice/4.2.2

Example 361. Rule to add no_aop feature variant to Guice metadata

build.gradle

@CacheableRule
abstract class GuiceRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 ["compile", "runtime"].each { base ->
 context.details.addVariant("noAop${base.capitalize()}", base) {
 withCapabilities {
 addCapability("com.google.inject", "guice-no_aop",
context.details.id.version)
 }
 withFiles {
 removeAllFiles()
 addFile("guice-${context.details.id.version}-no_aop.jar")
 }
 withDependencies {
 removeAll { it.group == "aopalliance" }
 }
 }
 }
 }
}

build.gradle.kts

@CacheableRule
abstract class GuiceRule: ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 listOf("compile", "runtime").forEach { base ->
 context.details.addVariant("noAop${base.capitalize()}", base) {
 withCapabilities {
 addCapability("com.google.inject", "guice-no_aop",
context.details.id.version)
 }
 withFiles {
 removeAllFiles()
 addFile("guice-${context.details.id.version}-no_aop.jar")
 }
 withDependencies {
 removeAll { it.group == "aopalliance" }
 }
 }
 }
 }
}

The new variants also have the dependency on the standardized aop interfaces library
aopalliance:aopalliance removed, as this is clearly not needed by these variants. Again, this is
information that cannot be expressed in pom metadata. We can now select a guice-no_aop variant
and will get the correct jar file and the correct dependencies.

Example 362. Applying and utilising rule for Guice metadata

build.gradle

dependencies {
 components {
 withModule("com.google.inject:guice", GuiceRule)
 }
 implementation("com.google.inject:guice:4.2.2") {
 capabilities { requireCapability("com.google.inject:guice-no_aop") }
 }
}

build.gradle.kts

dependencies {
 components {
 withModule<GuiceRule>("com.google.inject:guice")
 }
 implementation("com.google.inject:guice:4.2.2") {
 capabilities { requireCapability("com.google.inject:guice-no_aop") }
 }
}

Adding missing capabilities to detect conflicts

Another usage of capabilities is to express that two different modules, for example log4j and log4j-
over-slf4j, provide alternative implementations of the same thing. By declaring that both provide
the same capability, Gradle only accepts one of them in a dependency graph. This example, and
how it can be tackled with a component metadata rule, is described in detail in the feature
modelling section.

Making Ivy modules variant-aware

Modules with Ivy metadata, do not have variants by default. However, Ivy configurations can be
mapped to variants as the addVariant(name, baseVariantOrConfiguration) accepts any Ivy
configuration that was published as base. This can be used, for example, to define runtime and
compile variants. An example of a corresponding rule can be found here. Ivy details of Ivy
configurations (e.g. dependencies and files) can also be modified using the
withVariant(configurationName) API. However, modifying attributes or capabilities on Ivy
configurations has no effect.

For very Ivy specific use cases, the component metadata rules API also offers access to other details
only found in Ivy metadata. These are available through the IvyModuleDescriptor interface and can
be accessed using getDescriptor(IvyModuleDescriptor) on the ComponentMetadataContext.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ComponentMetadataContext.html

Example 363. Ivy component metadata rule

build.gradle

@CacheableRule
abstract class IvyComponentRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 def descriptor = context.getDescriptor(IvyModuleDescriptor)
 if (descriptor != null && descriptor.branch == "testing") {
 context.details.status = "rc"
 }
 }
}

build.gradle.kts

@CacheableRule
abstract class IvyComponentRule : ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 val descriptor = context.getDescriptor(IvyModuleDescriptor::class)
 if (descriptor != null && descriptor.branch == "testing") {
 context.details.status = "rc"
 }
 }
}

Filter using Maven metadata

For Maven specific use cases, the component metadata rules API also offers access to other details
only found in POM metadata. These are available through the PomModuleDescriptor interface and
can be accessed using getDescriptor(PomModuleDescriptor) on the ComponentMetadataContext.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/maven/PomModuleDescriptor.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ComponentMetadataContext.html

Example 364. Access pom packaging type in component metadata rule

build.gradle

@CacheableRule
abstract class MavenComponentRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 def descriptor = context.getDescriptor(PomModuleDescriptor)
 if (descriptor != null && descriptor.packaging == "war") {
 // ...
 }
 }
}

build.gradle.kts

@CacheableRule
abstract class MavenComponentRule : ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 val descriptor = context.getDescriptor(PomModuleDescriptor::class)
 if (descriptor != null && descriptor.packaging == "war") {
 // ...
 }
 }
}

Modifying metadata on the component level for alignment

While all the examples above made modifications to variants of a component, there is also a limited
set of modifications that can be done to the metadata of the component itself. This information can
influence the version selection process for a module during dependency resolution, which is
performed before one or multiple variants of a component are selected.

The first API available on the component is belongsTo() to create virtual platforms for aligning
versions of multiple modules without Gradle Module Metadata. It is explained in detail in the
section on aligning versions of modules not published with Gradle.

Modifying metadata on the component level for version selection based on status

Gradle and Gradle Module Metadata also allow attributes to be set on the whole component instead
of a single variant. Each of these attributes carries special semantics as they influence version
selection which is done before variant selection. While variant selection can handle any custom
attribute, version selection only considers attributes for which specific semantics are implemented.
At the moment, the only attribute with meaning here is org.gradle.status. It is therefore
recommended to only modify this attribute, if any, on the component level. A dedicated API

setStatus(value) is available for this. To modify another attribute for all variants of a component
withAllVariants { attributes {} } should be utilised instead.

A module’s status is taken into consideration when a latest version selector is resolved. Specifically,
latest.someStatus will resolve to the highest module version that has status someStatus or a more
mature status. For example, latest.integration will select the highest module version regardless of
its status (because integration is the least mature status as explained below), whereas
latest.release will select the highest module version with status release.

The interpretation of the status can be influenced by changing a module’s status scheme through
the setStatusScheme(valueList) API. This concept models the different levels of maturity that a
module transitions through over time with different publications. The default status scheme,
ordered from least to most mature status, is integration, milestone, release. The org.gradle.status
attribute must be set, to one of the values in the components status scheme. Thus each component
always has a status which is determined from the metadata as follows:

• Gradle Module Metadata: the value that was published for the org.gradle.status attribute on
the component

• Ivy metadata: status defined in the ivy.xml, defaults to integration if missing

• Pom metadata: integration for modules with a SNAPSHOT version, release for all others

The following example demonstrates latest selectors based on a custom status scheme declared in
a component metadata rule that applies to all modules:

Example 365. Custom status scheme

build.gradle

@CacheableRule
abstract class CustomStatusRule implements ComponentMetadataRule {
 void execute(ComponentMetadataContext context) {
 context.details.statusScheme = ["nightly", "milestone", "rc",
"release"]
 if (context.details.status == "integration") {
 context.details.status = "nightly"
 }
 }
}

dependencies {
 components {
 all(CustomStatusRule)
 }
 implementation("org.apache.commons:commons-lang3:latest.rc")
}

build.gradle.kts

@CacheableRule
abstract class CustomStatusRule : ComponentMetadataRule {
 override fun execute(context: ComponentMetadataContext) {
 context.details.statusScheme = listOf("nightly", "milestone", "rc",
"release")
 if (context.details.status == "integration") {
 context.details.status = "nightly"
 }
 }
}

dependencies {
 components {
 all<CustomStatusRule>()
 }
 implementation("org.apache.commons:commons-lang3:latest.rc")
}

Compared to the default scheme, the rule inserts a new status rc and replaces integration with
nightly. Existing modules with the state integration are mapped to nightly.

Customizing resolution of a dependency directly

WARNING

This section covers mechanisms Gradle offers to directly influence the
behavior of the dependency resolution engine. In contrast to the other
concepts covered in this chapter, like dependency constraints or component
metadata rules, which are all inputs to resolution, the following mechanisms
allow you to write rules which are directly injected into the resolution engine.
Because of this, they can be seen as brute force solutions, that may hide future
problems (e.g. if new dependencies are added). Therefore, the general advice is
to only use the following mechanisms if other means are not sufficient. If you
are authoring a library, you should always prefer dependency constraints as
they are published for your consumers.

Using dependency resolve rules

A dependency resolve rule is executed for each resolved dependency, and offers a powerful api for
manipulating a requested dependency prior to that dependency being resolved. The feature
currently offers the ability to change the group, name and/or version of a requested dependency,
allowing a dependency to be substituted with a completely different module during resolution.

Dependency resolve rules provide a very powerful way to control the dependency resolution
process, and can be used to implement all sorts of advanced patterns in dependency management.
Some of these patterns are outlined below. For more information and code samples see the
ResolutionStrategy class in the API documentation.

Implementing a custom versioning scheme

In some corporate environments, the list of module versions that can be declared in Gradle builds
is maintained and audited externally. Dependency resolve rules provide a neat implementation of
this pattern:

• In the build script, the developer declares dependencies with the module group and name, but
uses a placeholder version, for example: default.

• The default version is resolved to a specific version via a dependency resolve rule, which looks
up the version in a corporate catalog of approved modules.

This rule implementation can be neatly encapsulated in a corporate plugin, and shared across all
builds within the organisation.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Example 366. Using a custom versioning scheme

build.gradle

configurations.all {
 resolutionStrategy.eachDependency { DependencyResolveDetails details ->
 if (details.requested.version == 'default') {
 def version = findDefaultVersionInCatalog(details.requested.
group, details.requested.name)
 details.useVersion version.version
 details.because version.because
 }
 }
}

def findDefaultVersionInCatalog(String group, String name) {
 //some custom logic that resolves the default version into a specific
version
 [version: "1.0", because: 'tested by QA']
}

build.gradle.kts

configurations.all {
 resolutionStrategy.eachDependency {
 if (requested.version == "default") {
 val version = findDefaultVersionInCatalog(requested.group,
requested.name)
 useVersion(version.version)
 because(version.because)
 }
 }
}

data class DefaultVersion(val version: String, val because: String)

fun findDefaultVersionInCatalog(group: String, name: String): DefaultVersion
{
 //some custom logic that resolves the default version into a specific
version
 return DefaultVersion(version = "1.0", because = "tested by QA")
}

Denying a particular version with a replacement

Dependency resolve rules provide a mechanism for denying a particular version of a dependency
and providing a replacement version. This can be useful if a certain dependency version is broken
and should not be used, where a dependency resolve rule causes this version to be replaced with a
known good version. One example of a broken module is one that declares a dependency on a
library that cannot be found in any of the public repositories, but there are many other reasons
why a particular module version is unwanted and a different version is preferred.

In example below, imagine that version 1.2.1 contains important fixes and should always be used
in preference to 1.2. The rule provided will enforce just this: any time version 1.2 is encountered it
will be replaced with 1.2.1. Note that this is different from a forced version as described above, in
that any other versions of this module would not be affected. This means that the 'newest' conflict
resolution strategy would still select version 1.3 if this version was also pulled transitively.

Example 367. Example: Blacklisting a version with a replacement

build.gradle

configurations.all {
 resolutionStrategy.eachDependency { DependencyResolveDetails details ->
 if (details.requested.group == 'org.software' && details.requested
.name == 'some-library' && details.requested.version == '1.2') {
 details.useVersion '1.2.1'
 details.because 'fixes critical bug in 1.2'
 }
 }
}

build.gradle.kts

configurations.all {
 resolutionStrategy.eachDependency {
 if (requested.group == "org.software" && requested.name == "some-
library" && requested.version == "1.2") {
 useVersion("1.2.1")
 because("fixes critical bug in 1.2")
 }
 }
}

NOTE

There’s a difference with using the reject directive of rich version constraints: rich
versions will cause the build to fail if a rejected version is found in the graph, or
select a non rejected version when using dynamic dependencies. Here, we
manipulate the requested versions in order to select a different version when we
find a rejected one. In other words, this is a solution to rejected versions, while rich
version constraints allow declaring the intent (you should not use this version).

Using module replacement rules

It is preferable to express module conflicts in terms of capabilities conflicts. However, if there’s no
such rule declared or that you are working on versions of Gradle which do not support capabilities,
Gradle provides tooling to work around those issues.

Module replacement rules allow a build to declare that a legacy library has been replaced by a new
one. A good example when a new library replaced a legacy one is the google-collections -> guava
migration. The team that created google-collections decided to change the module name from
com.google.collections:google-collections into com.google.guava:guava. This is a legal scenario in
the industry: teams need to be able to change the names of products they maintain, including the
module coordinates. Renaming of the module coordinates has impact on conflict resolution.

To explain the impact on conflict resolution, let’s consider the google-collections -> guava scenario.
It may happen that both libraries are pulled into the same dependency graph. For example, our
project depends on guava but some of our dependencies pull in a legacy version of google-
collections. This can cause runtime errors, for example during test or application execution.
Gradle does not automatically resolve the google-collections -> guava conflict because it is not
considered as a version conflict. It’s because the module coordinates for both libraries are
completely different and conflict resolution is activated when group and module coordinates are the
same but there are different versions available in the dependency graph (for more info, refer to the
section on conflict resolution). Traditional remedies to this problem are:

• Declare exclusion rule to avoid pulling in google-collections to graph. It is probably the most
popular approach.

• Avoid dependencies that pull in legacy libraries.

• Upgrade the dependency version if the new version no longer pulls in a legacy library.

• Downgrade to google-collections. It’s not recommended, just mentioned for completeness.

Traditional approaches work but they are not general enough. For example, an organisation wants
to resolve the google-collections -> guava conflict resolution problem in all projects. It is possible to
declare that certain module was replaced by other. This enables organisations to include the
information about module replacement in the corporate plugin suite and resolve the problem
holistically for all Gradle-powered projects in the enterprise.

Example 368. Declaring a module replacement

build.gradle

dependencies {
 modules {
 module("com.google.collections:google-collections") {
 replacedBy("com.google.guava:guava", "google-collections is now
part of Guava")
 }
 }
}

build.gradle.kts

dependencies {
 modules {
 module("com.google.collections:google-collections") {
 replacedBy("com.google.guava:guava", "google-collections is now
part of Guava")
 }
 }
}

For more examples and detailed API, refer to the DSL reference for ComponentMetadataHandler.

What happens when we declare that google-collections is replaced by guava? Gradle can use this
information for conflict resolution. Gradle will consider every version of guava newer/better than
any version of google-collections. Also, Gradle will ensure that only guava jar is present in the
classpath / resolved file list. Note that if only google-collections appears in the dependency graph
(e.g. no guava) Gradle will not eagerly replace it with guava. Module replacement is an information
that Gradle uses for resolving conflicts. If there is no conflict (e.g. only google-collections or only
guava in the graph) the replacement information is not used.

Currently it is not possible to declare that a given module is replaced by a set of modules. However,
it is possible to declare that multiple modules are replaced by a single module.

Using dependency substitution rules

Dependency substitution rules work similarly to dependency resolve rules. In fact, many
capabilities of dependency resolve rules can be implemented with dependency substitution rules.
They allow project and module dependencies to be transparently substituted with specified
replacements. Unlike dependency resolve rules, dependency substitution rules allow project and
module dependencies to be substituted interchangeably.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/dsl/ComponentMetadataHandler.html

Adding a dependency substitution rule to a configuration changes the timing of when that
configuration is resolved. Instead of being resolved on first use, the configuration is instead resolved
when the task graph is being constructed. This can have unexpected consequences if the
configuration is being further modified during task execution, or if the configuration relies on
modules that are published during execution of another task.

To explain:

• A Configuration can be declared as an input to any Task, and that configuration can include
project dependencies when it is resolved.

• If a project dependency is an input to a Task (via a configuration), then tasks to build the project
artifacts must be added to the task dependencies.

• In order to determine the project dependencies that are inputs to a task, Gradle needs to resolve
the Configuration inputs.

• Because the Gradle task graph is fixed once task execution has commenced, Gradle needs to
perform this resolution prior to executing any tasks.

In the absence of dependency substitution rules, Gradle knows that an external module
dependency will never transitively reference a project dependency. This makes it easy to determine
the full set of project dependencies for a configuration through simple graph traversal. With this
functionality, Gradle can no longer make this assumption, and must perform a full resolve in order
to determine the project dependencies.

Substituting an external module dependency with a project dependency

One use case for dependency substitution is to use a locally developed version of a module in place
of one that is downloaded from an external repository. This could be useful for testing a local,
patched version of a dependency.

The module to be replaced can be declared with or without a version specified.

Example 369. Substituting a module with a project

build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute module("org.utils:api") using project(":api") because "we
work with the unreleased development version"
 substitute module("org.utils:util:2.5") using project(":util")
 }
}

build.gradle.kts

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute(module("org.utils:api"))
 .using(project(":api")).because("we work with the unreleased
development version")
 substitute(module("org.utils:util:2.5")).using(project(":util"))
 }
}

Note that a project that is substituted must be included in the multi-project build (via
settings.gradle). Dependency substitution rules take care of replacing the module dependency
with the project dependency and wiring up any task dependencies, but do not implicitly include the
project in the build.

Substituting a project dependency with a module replacement

Another way to use substitution rules is to replace a project dependency with a module in a multi-
project build. This can be useful to speed up development with a large multi-project build, by
allowing a subset of the project dependencies to be downloaded from a repository rather than
being built.

The module to be used as a replacement must be declared with a version specified.

Example 370. Substituting a project with a module

build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute project(":api") using module("org.utils:api:1.3") because
"we use a stable version of org.utils:api"
 }
}

build.gradle.kts

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute(project(":api"))
 .using(module("org.utils:api:1.3")).because("we use a stable
version of org.utils:api")
 }
}

When a project dependency has been replaced with a module dependency, that project is still
included in the overall multi-project build. However, tasks to build the replaced dependency will
not be executed in order to resolve the depending Configuration.

Conditionally substituting a dependency

A common use case for dependency substitution is to allow more flexible assembly of sub-projects
within a multi-project build. This can be useful for developing a local, patched version of an
external dependency or for building a subset of the modules within a large multi-project build.

The following example uses a dependency substitution rule to replace any module dependency
with the group org.example, but only if a local project matching the dependency name can be
located.

Example 371. Conditionally substituting a dependency

build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution.all { DependencySubstitution
dependency ->
 if (dependency.requested instanceof ModuleComponentSelector &&
dependency.requested.group == "org.example") {
 def targetProject = findProject(":${dependency.requested.module}
")
 if (targetProject != null) {
 dependency.useTarget targetProject
 }
 }
 }
}

build.gradle.kts

configurations.all {
 resolutionStrategy.dependencySubstitution.all {
 requested.let {
 if (it is ModuleComponentSelector && it.group == "org.example") {
 val targetProject = findProject(":${it.module}")
 if (targetProject != null) {
 useTarget(targetProject)
 }
 }
 }
 }
}

Note that a project that is substituted must be included in the multi-project build (via
settings.gradle). Dependency substitution rules take care of replacing the module dependency
with the project dependency, but do not implicitly include the project in the build.

Substituting a dependency with another variant

Gradle’s dependency management engine is variant-aware meaning that for a single component,
the engine may select different artifacts and transitive dependencies.

What to select is determined by the attributes of the consumer configuration and the attributes of
the variants found on the producer side. It is, however, possible that some specific dependencies
override attributes from the configuration itself. This is typically the case when using the Java

Platform plugin: this plugin builds a special kind of component which is called a "platform" and can
be addressed by setting the component category attribute to platform, in opposition to typical
dependencies which are targetting libraries.

Therefore, you may face situations where you want to substitute a platform dependency with a
regular dependency, or the other way around.

Substituting a dependency with attributes

Let’s imagine that you want to substitute a platform dependency with a regular dependency. This
means that the library you are consuming declared something like this:

Example 372. An incorrect dependency on a platform

lib/build.gradle

dependencies {
 // This is a platform dependency but you want the library
 implementation platform('com.google.guava:guava:28.2-jre')
}

lib/build.gradle.kts

dependencies {
 // This is a platform dependency but you want the library
 implementation(platform("com.google.guava:guava:28.2-jre"))
}

The platform keyword is actually a short-hand notation for a dependency with attributes. If we want
to substitute this dependency with a regular dependency, then we need to select precisely the
dependencies which have the platform attribute.

This can be done by using a substitution rule:

Example 373. Substitute a platform dependency with a regular dependency

consumer/build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute(platform(module('com.google.guava:guava:28.2-jre'))).
 using module('com.google.guava:guava:28.2-jre')
 }
}

consumer/build.gradle.kts

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute(platform(module("com.google.guava:guava:28.2-jre")))
 .using(module("com.google.guava:guava:28.2-jre"))
 }
}

The same rule without the platform keyword would try to substitute regular dependencies with a
regular dependency, which is not what you want, so it’s important to understand that the
substitution rules apply on a dependency specification: it matches the requested dependency
(substitute XXX) with a substitute (using YYY).

You can have attributes on both the requested dependency or the substitute and the substitution is
not limited to platform: you can actually specify the whole set of dependency attributes using the
variant notation. The following rule is strictly equivalent to the rule above:

Example 374. Substitute a platform dependency with a regular dependency using the variant notation

consumer/build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute variant(module('com.google.guava:guava:28.2-jre')) {
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE, objects.named(
Category, Category.REGULAR_PLATFORM))
 }
 } using module('com.google.guava:guava:28.2-jre')
 }
}

consumer/build.gradle.kts

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute(variant(module("com.google.guava:guava:28.2-jre")) {
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE,
objects.named(Category.REGULAR_PLATFORM))
 }
 }).using(module("com.google.guava:guava:28.2-jre"))
 }
}

Please refer to the Substitution DSL API docs for a complete reference of the variant substitution
API.

WARNING

In composite builds, the rule that you have to match the exact requested
dependency attributes is not applied: when using composites, Gradle will
automatically match the requested attributes. In other words, it is implicit that
if you include another build, you are substituting all variants of the substituted
module with an equivalent variant in the included build.

Substituting a dependency with a dependency with capabilities

Similarly to attributes substitution, Gradle lets you substitute a dependency with or without
capabilities with another dependency with or without capabilities.

For example, let’s imagine that you need to substitute a regular dependency with its test fixtures
instead. You can achieve this by using the following dependency substitution rule:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/DependencySubstitutions.html#variant-org.gradle.api.artifacts.component.ComponentSelector-org.gradle.api.Action-

Example 375. Substitute a dependency with its test fixtures

build.gradle

configurations.testCompileClasspath {
 resolutionStrategy.dependencySubstitution {
 substitute(module('com.acme:lib:1.0'))
 .using variant(module('com.acme:lib:1.0')) {
 capabilities {
 requireCapability('com.acme:lib-test-fixtures')
 }
 }
 }
}

build.gradle.kts

configurations.testCompileClasspath {
 resolutionStrategy.dependencySubstitution {

substitute(module("com.acme:lib:1.0")).using(variant(module("com.acme:lib:1.0
")) {
 capabilities {
 requireCapability("com.acme:lib-test-fixtures")
 }
 })
 }
}

Capabilities which are declared in a substitution rule on the requested dependency constitute part
of the dependency match specification, and therefore dependencies which do not require the
capabilities will not be matched.

Please refer to the Substitution DSL API docs for a complete reference of the variant substitution
API.

WARNING

In composite builds, the rule that you have to match the exact requested
dependency capabilities is not applied: when using composites, Gradle will
automatically match the requested capabilities. In other words, it is implicit
that if you include another build, you are substituting all variants of the
substituted module with an equivalent variant in the included build.

Substituting a dependency with a classifier or artifact

While external modules are in general addressed via their group/artifact/version coordinates, it is

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/DependencySubstitutions.html#variant-org.gradle.api.artifacts.component.ComponentSelector-org.gradle.api.Action-

common that such modules are published with additional artifacts that you may want to use in
place of the main artifact. This is typically the case for classified artifacts, but you may also need to
select an artifact with a different file type or extension. Gradle discourages use of classifiers in
dependencies and prefers to model such artifacts as additional variants of a module. There are lots
of advantages of using variants instead of classified artifacts, including, but not only, a different set
of dependencies for those artifacts.

However, in order to help bridging the two models, Gradle provides means to change or remove a
classifier in a substitution rule.

Example 376. Dependencies which will lead to a resolution error

consumer/build.gradle

dependencies {
 implementation 'com.google.guava:guava:28.2-jre'
 implementation 'co.paralleluniverse:quasar-core:0.8.0'
 implementation project(':lib')
}

consumer/build.gradle.kts

dependencies {
 implementation("com.google.guava:guava:28.2-jre")
 implementation("co.paralleluniverse:quasar-core:0.8.0")
 implementation(project(":lib"))
}

In the example above, the first level dependency on quasar makes us think that Gradle would
resolve quasar-core-0.8.0.jar but it’s not the case: the build would fail with this message:

Execution failed for task ':resolve'.
> Could not resolve all files for configuration ':runtimeClasspath'.
 > Could not find quasar-core-0.8.0-jdk8.jar (co.paralleluniverse:quasar-
core:0.8.0).
 Searched in the following locations:
 https://repo1.maven.org/maven2/co/paralleluniverse/quasar-core/0.8.0/quasar-
core-0.8.0-jdk8.jar

That’s because there’s a dependency on another project, lib, which itself depends on a different
version of quasar-core:

Example 377. A "classified" dependency

lib/build.gradle

dependencies {
 implementation "co.paralleluniverse:quasar-core:0.7.12_r3:jdk8"
}

lib/build.gradle.kts

dependencies {
 implementation("co.paralleluniverse:quasar-core:0.7.12_r3:jdk8")
}

What happens is that Gradle would perform conflict resolution between quasar-core 0.8.0 and
quasar-core 0.7.12_r3. Because 0.8.0 is higher, we select this version, but the dependency in lib has
a classifier, jdk8 and this classifier doesn’t exist anymore in release 0.8.0.

To fix this problem, you can ask Gradle to resolve both dependencies without classifier:

Example 378. A resolution rule to disable selection of a classifier

consumer/build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute module('co.paralleluniverse:quasar-core') using module(
'co.paralleluniverse:quasar-core:0.8.0') withoutClassifier()
 }
}

consumer/build.gradle.kts

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute(module("co.paralleluniverse:quasar-core"))
 .using(module("co.paralleluniverse:quasar-core:0.8.0"))
 .withoutClassifier()
 }
}

This rule effectively replaces any dependency on quasar-core found in the graph with a dependency
without classifier.

Alternatively, it’s possible to select a dependency with a specific classifier or, for more specific use
cases, substitute with a very specific artifact (type, extension and classifier).

For more information, please refer to the following API documentation:

• artifact selection via the Substitution DSL

• artifact selection via the DependencySubstitution API

• artifact selection via the ResolutionStrategy API

Disabling transitive resolution

By default Gradle resolves all transitive dependencies specified by the dependency metadata.
Sometimes this behavior may not be desirable e.g. if the metadata is incorrect or defines a large
graph of transitive dependencies. You can tell Gradle to disable transitive dependency management
for a dependency by setting ModuleDependency.setTransitive(boolean) to false. As a result only the
main artifact will be resolved for the declared dependency.

Example 379. Disabling transitive dependency resolution for a declared dependency

build.gradle

dependencies {
 implementation('com.google.guava:guava:23.0') {
 transitive = false
 }
}

build.gradle.kts

dependencies {
 implementation("com.google.guava:guava:23.0") {
 isTransitive = false
 }
}

NOTE
Disabling transitive dependency resolution will likely require you to declare the
necessary runtime dependencies in your build script which otherwise would have
been resolved automatically. Not doing so might lead to runtime classpath issues.

A project can decide to disable transitive dependency resolution completely. You either don’t want
to rely on the metadata published to the consumed repositories or you want to gain full control

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/DependencySubstitutions.Substitution.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/DependencySubstitution.html#artifactSelection-org.gradle.api.Action-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ResolutionStrategy.html#dependencySubstitution-org.gradle.api.Action-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ModuleDependency.html#setTransitive-boolean-

over the dependencies in your graph. For more information, see
Configuration.setTransitive(boolean).

Example 380. Disabling transitive dependency resolution on the configuration-level

build.gradle

configurations.all {
 transitive = false
}

dependencies {
 implementation 'com.google.guava:guava:23.0'
}

build.gradle.kts

configurations.all {
 isTransitive = false
}

dependencies {
 implementation("com.google.guava:guava:23.0")
}

Changing configuration dependencies prior to resolution

At times, a plugin may want to modify the dependencies of a configuration before it is resolved. The
withDependencies method permits dependencies to be added, removed or modified
programmatically.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/Configuration.html#setTransitive-boolean-

Example 381. Modifying dependencies on a configuration

build.gradle

configurations {
 implementation {
 withDependencies { DependencySet dependencies ->
 ExternalModuleDependency dep = dependencies.find { it.name ==
'to-modify' } as ExternalModuleDependency
 dep.version {
 strictly "1.2"
 }
 }
 }
}

build.gradle.kts

configurations {
 create("implementation") {
 withDependencies {
 val dep = this.find { it.name == "to-modify" } as
ExternalModuleDependency
 dep.version {
 strictly("1.2")
 }
 }
 }
}

Setting default configuration dependencies

A configuration can be configured with default dependencies to be used if no dependencies are
explicitly set for the configuration. A primary use case of this functionality is for developing plugins
that make use of versioned tools that the user might override. By specifying default dependencies,
the plugin can use a default version of the tool only if the user has not specified a particular version
to use.

Example 382. Specifying default dependencies on a configuration

build.gradle

configurations {
 pluginTool {
 defaultDependencies { dependencies ->
 dependencies.add(project.dependencies.create("org.gradle:my-
util:1.0"))
 }
 }
}

build.gradle.kts

configurations {
 create("pluginTool") {
 defaultDependencies {
 add(project.dependencies.create("org.gradle:my-util:1.0"))
 }
 }
}

Excluding a dependency from a configuration completely

Similar to excluding a dependency in a dependency declaration, you can exclude a transitive
dependency for a particular configuration completely by using
Configuration.exclude(java.util.Map). This will automatically exclude the transitive dependency for
all dependencies declared on the configuration.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.Configuration.html#org.gradle.api.artifacts.Configuration:exclude(java.util.Map)

Example 383. Excluding transitive dependency for a particular configuration

build.gradle

configurations {
 implementation {
 exclude group: 'commons-collections', module: 'commons-collections'
 }
}

dependencies {
 implementation 'commons-beanutils:commons-beanutils:1.9.4'
 implementation 'com.opencsv:opencsv:4.6'
}

build.gradle.kts

configurations {
 "implementation" {
 exclude(group = "commons-collections", module = "commons-
collections")
 }
}

dependencies {
 implementation("commons-beanutils:commons-beanutils:1.9.4")
 implementation("com.opencsv:opencsv:4.6")
}

Matching dependencies to repositories

Gradle exposes an API to declare what a repository may or may not contain. This feature offers a
fine grained control on which repository serve which artifacts, which can be one way of controlling
the source of dependencies.

Head over to the section on repository content filtering to know more about this feature.

Enabling Ivy dynamic resolve mode

Gradle’s Ivy repository implementations support the equivalent to Ivy’s dynamic resolve mode.
Normally, Gradle will use the rev attribute for each dependency definition included in an ivy.xml
file. In dynamic resolve mode, Gradle will instead prefer the revConstraint attribute over the rev
attribute for a given dependency definition. If the revConstraint attribute is not present, the rev
attribute is used instead.

To enable dynamic resolve mode, you need to set the appropriate option on the repository
definition. A couple of examples are shown below. Note that dynamic resolve mode is only
available for Gradle’s Ivy repositories. It is not available for Maven repositories, or custom Ivy
DependencyResolver implementations.

Example 384. Enabling dynamic resolve mode

build.gradle

// Can enable dynamic resolve mode when you define the repository
repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 resolve.dynamicMode = true
 }
}

// Can use a rule instead to enable (or disable) dynamic resolve mode for all
repositories
repositories.withType(IvyArtifactRepository) {
 resolve.dynamicMode = true
}

build.gradle.kts

// Can enable dynamic resolve mode when you define the repository
repositories {
 ivy {
 url = uri("http://repo.mycompany.com/repo")
 resolve.isDynamicMode = true
 }
}

// Can use a rule instead to enable (or disable) dynamic resolve mode for all
repositories
repositories.withType<IvyArtifactRepository> {
 resolve.isDynamicMode = true
}

Producing and Consuming Variants of Libraries

Declaring Capabilities of a Library

Capabilities as first-level concept

Components provide a number of features which are often orthogonal to the software architecture
used to provide those features. For example, a library may include several features in a single
artifact. However, such a library would be published at single GAV (group, artifact and version)
coordinates. This means that, at single coordinates, potentially co-exist different "features" of a
component.

With Gradle it becomes interesting to explicitly declare what features a component provides. For
this, Gradle provides the concept of capability.

A feature is often built by combining different capabilities.

In an ideal world, components shouldn’t declare dependencies on explicit GAVs, but rather express
their requirements in terms of capabilities:

• "give me a component which provides logging"

• "give me a scripting engine"

• "give me a scripting engine that supports Groovy"

By modeling capabilities, the dependency management engine can be smarter and tell you
whenever you have incompatible capabilities in a dependency graph, or ask you to choose
whenever different modules in a graph provide the same capability.

Declaring capabilities for external modules

It’s worth noting that Gradle supports declaring capabilities for components you build, but also for
external components in case they didn’t.

For example, if your build file contains the following dependencies:

Example 385. A build file with an implicit conflict of logging frameworks

build.gradle

dependencies {
 // This dependency will bring log4:log4j transitively
 implementation 'org.apache.zookeeper:zookeeper:3.4.9'

 // We use log4j over slf4j
 implementation 'org.slf4j:log4j-over-slf4j:1.7.10'
}

build.gradle.kts

dependencies {
 // This dependency will bring log4:log4j transitively
 implementation("org.apache.zookeeper:zookeeper:3.4.9")

 // We use log4j over slf4j
 implementation("org.slf4j:log4j-over-slf4j:1.7.10")
}

As is, it’s pretty hard to figure out that you will end up with two logging frameworks on the
classpath. In fact, zookeeper will bring in log4j, where what we want to use is log4j-over-slf4j. We
can preemptively detect the conflict by adding a rule which will declare that both logging
frameworks provide the same capability:

Example 386. A build file with an implicit conflict of logging frameworks

build.gradle

dependencies {
 // Activate the "LoggingCapability" rule
 components.all(LoggingCapability)
}

@CompileStatic
class LoggingCapability implements ComponentMetadataRule {
 final static Set<String> LOGGING_MODULES = ["log4j", "log4j-over-slf4j"]
as Set<String>

 void execute(ComponentMetadataContext context) {
 context.details.with {
 if (LOGGING_MODULES.contains(id.name)) {
 allVariants {
 it.withCapabilities {
 // Declare that both log4j and log4j-over-slf4j
provide the same capability
 it.addCapability("log4j", "log4j", id.version)
 }
 }
 }
 }
 }
}

build.gradle.kts

dependencies {
 // Activate the "LoggingCapability" rule
 components.all(LoggingCapability::class.java)
}

class LoggingCapability : ComponentMetadataRule {
 val loggingModules = setOf("log4j", "log4j-over-slf4j")

 override
 fun execute(context: ComponentMetadataContext) = context.details.run {
 if (loggingModules.contains(id.name)) {
 allVariants {
 withCapabilities {
 // Declare that both log4j and log4j-over-slf4j provide
the same capability
 addCapability("log4j", "log4j", id.version)
 }
 }
 }
 }
}

By adding this rule, we will make sure that Gradle will detect conflicts and properly fail:

> Could not resolve all files for configuration ':compileClasspath'.
 > Could not resolve org.slf4j:log4j-over-slf4j:1.7.10.
 Required by:
 project :
 > Module 'org.slf4j:log4j-over-slf4j' has been rejected:
 Cannot select module with conflict on capability 'log4j:log4j:1.7.10' also
provided by [log4j:log4j:1.2.16(compile)]
 > Could not resolve log4j:log4j:1.2.16.
 Required by:
 project : > org.apache.zookeeper:zookeeper:3.4.9
 > Module 'log4j:log4j' has been rejected:
 Cannot select module with conflict on capability 'log4j:log4j:1.2.16' also
provided by [org.slf4j:log4j-over-slf4j:1.7.10(compile)]

See the capabilities section of the documentation to figure out how to fix capability conflicts.

Declaring additional capabilities for a local component

All components have an implicit capability corresponding to the same GAV coordinates as the
component. However, it is also possible to declare additional explicit capabilities for a component.
This is convenient whenever a library published at different GAV coordinates is an alternate

implementation of the same API:

Example 387. Declaring capabilities of a component

build.gradle

configurations {
 apiElements {
 outgoing {
 capability("com.acme:my-library:1.0")
 capability("com.other:module:1.1")
 }
 }
 runtimeElements {
 outgoing {
 capability("com.acme:my-library:1.0")
 capability("com.other:module:1.1")
 }
 }
}

build.gradle.kts

configurations {
 apiElements {
 outgoing {
 capability("com.acme:my-library:1.0")
 capability("com.other:module:1.1")
 }
 }
 runtimeElements {
 outgoing {
 capability("com.acme:my-library:1.0")
 capability("com.other:module:1.1")
 }
 }
}

Capabilities must be attached to outgoing configurations, which are consumable configurations of a
component.

This example shows that we declare two capabilities:

1. com.acme:my-library:1.0, which corresponds to the implicit capability of the library

2. com.other:module:1.1, which corresponds to another capability of this library

It’s worth noting we need to do 1. because as soon as you start declaring explicit capabilities, then
all capabilities need to be declared, including the implicit one.

The second capability can be specific to this library, or it can correspond to a capability provided by
an external component. In that case, if com.other:module appears in the same dependency graph, the
build will fail and consumers will have to choose what module to use.

Capabilities are published to Gradle Module Metadata. However, they have no equivalent in POM or
Ivy metadata files. As a consequence, when publishing such a component, Gradle will warn you
that this feature is only for Gradle consumers:

Maven publication 'maven' contains dependencies that cannot be represented in a
published pom file.
 - Declares capability com.acme:my-library:1.0
 - Declares capability com.other:module:1.1

Modeling feature variants and optional dependencies

Gradle supports the concept of feature variants: when building a library, it’s often the case that
some features should only be available when some dependencies are present, or when special
artifacts are used.

Feature variants let consumers choose what features of a library they need: the dependency
management engine will select the right artifacts and dependencies.

This allows for a number of different scenarios (list is non-exhaustive):

• a (better) substitute for Maven optional dependencies

• a main library is built with support for different mutually-exclusive implementations of
runtime features; the user must choose one, and only one, implementation of each such feature

• a main library is built with support for optional runtime features, each of which requires a
different set of dependencies

• a main library comes with secondary variants like test fixtures

• a main library comes with a main artifact, and enabling an additional feature requires
additional artifacts

Selection of feature variants and capabilities

Declaring a dependency on a component is usually done by providing a set of coordinates (group,
artifact, version also known as GAV coordinates). This allows the engine to determine the
component we’re looking for, but such a component may provide different variants. A variant is
typically chosen based on the usage. For example, we might choose a different variant for
compiling against a component (in which case we need the API of the component) or when
executing code (in which case we need the runtime of the component). All variants of a component
provide a number of capabilities, which are denoted similarly using GAV coordinates.

https://maven.apache.org/guides/introduction/introduction-to-optional-and-excludes-dependencies.html

NOTE

A capability is denoted by GAV coordinates, but you must think of it as feature
description:

• "I provide an SLF4J binding"

• "I provide runtime support for MySQL"

• "I provide a Groovy runtime"

And in general, having two components that provide the same thing in the graph is
a problem (they conflict).

This is an important concept because:

• by default a variant provides a capability corresponding to the GAV coordinates of its
component

• it is not allowed to have different components or different variants of a component in a
dependency graph if they provide the same capability

• it is allowed to select two variants of the same component, as long as they provide different
capabilities

A typical component will only provide variants with the default capability. A Java library, for
example, exposes two variants (API and runtime) which provide the same capability. As a
consequence, it is an error to have both the API and runtime of a single component in a dependency
graph.

However, imagine that you need the runtime and the test fixtures of a component. Then it is allowed
as long as the runtime and test fixtures variant of the library declare different capabilities.

If we do so, a consumer would then have to declare two dependencies:

• one on the "main" variant, the library

• one on the "test fixtures" variant, by requiring its capability

NOTE
While the engine supports feature variants independently of the ecosystem, this
feature is currently only available using the Java plugins.

Declaring feature variants

Feature variants can be declared by applying the java or java-library plugins. The following code
illustrates how to declare a feature named mongodbSupport:

Example 388. Declaring a feature variant

build.gradle

group = 'org.gradle.demo'
version = '1.0'

java {
 registerFeature('mongodbSupport') {
 usingSourceSet(sourceSets.main)
 }
}

build.gradle.kts

group = "org.gradle.demo"
version = "1.0"

java {
 registerFeature("mongodbSupport") {
 usingSourceSet(sourceSets["main"])
 }
}

Gradle will automatically setup a number of things for you, in a very similar way to how the Java
Library Plugin sets up configurations:

• the configuration mongodbSupportApi, used to declare API dependencies for this feature

• the configuration mongodbSupportImplementation, used to declare implementation dependencies
for this feature

• the configuration mongodbSupportApiElements, used by consumers to fetch the artifacts and API
dependencies of this feature

• the configuration mongodbSupportRuntimeElements, used by consumers to fetch the artifacts and
runtime dependencies of this feature

Most users will only need to care about the first two configurations, to declare the specific
dependencies of this feature:

Example 389. Declaring dependencies of a feature

build.gradle

dependencies {
 mongodbSupportImplementation 'org.mongodb:mongodb-driver-sync:3.9.1'
}

build.gradle.kts

dependencies {
 "mongodbSupportImplementation"("org.mongodb:mongodb-driver-sync:3.9.1")
}

NOTE

By convention, Gradle maps the feature name to a capability whose group and
version are the same as the group and version of the main component, respectively,
but whose name is the main component name followed by a - followed by the
kebab-cased feature name.

For example, if the group is org.gradle.demo, the name of the component is provider,
its version is 1.0 and the feature is named mongodbSupport, the feature variant will
be org.gradle.demo:provider-mongodb-support:1.0.

If you choose the capability name yourself or add more capabilities to a variant, it is
recommended to follow the same convention.

Feature variant source set

In the previous example, we’re declaring a feature variant which uses the main source set. This is a
typical use case in the Java ecosystem, where it’s, for whatever reason, not possible to split the
sources of a project into different subprojects or different source sets. Gradle will therefore declare
the configurations as described, but will also setup the compile classpath and runtime classpath of
the main source set so that it extends from the feature configuration. Said differently, this allows
you to declare the dependencies specific to a feature in their own "bucket", but everything is still
compiled as a single source set. There will also be a single artifact (the component Jar) including
support for all features.

However, it is often preferred to have a separate source set for a feature. Gradle will then perform a
similar mapping, but will not make the compile and runtime classpath of the main component
extend from the dependencies of the registered features. It will also, by convention, create a Jar
task to bundle the classes built from this feature source set, using a classifier corresponding to the
kebab-case name of the feature:

Example 390. Declaring a feature variant using a separate source set

build.gradle

sourceSets {
 mongodbSupport {
 java {
 srcDir 'src/mongodb/java'
 }
 }
}

java {
 registerFeature('mongodbSupport') {
 usingSourceSet(sourceSets.mongodbSupport)
 }
}

build.gradle.kts

sourceSets {
 create("mongodbSupport") {
 java {
 srcDir("src/mongodb/java")
 }
 }
}

java {
 registerFeature("mongodbSupport") {
 usingSourceSet(sourceSets["mongodbSupport"])
 }
}

Publishing feature variants

WARNING

Depending on the metadata file format, publishing feature variants may be
lossy:

• using Gradle Module Metadata, everything is published and consumers will
get the full benefit of feature variants

• using POM metadata (Maven), feature variants are published as optional
dependencies and artifacts of feature variants are published with different
classifiers

• using Ivy metadata, feature variants are published as extra configurations,
which are not extended by the default configuration

Publishing feature variants is supported using the maven-publish and ivy-publish plugins only. The
Java Plugin (or Java Library Plugin) will take care of registering the additional variants for you, so
there’s no additional configuration required, only the regular publications:

https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md

Example 391. Publishing a component with feature variants

build.gradle

plugins {
 id 'java-library'
 id 'maven-publish'
}
// ...
publishing {
 publications {
 myLibrary(MavenPublication) {
 from components.java
 }
 }
}

build.gradle.kts

plugins {
 `java-library`
 `maven-publish`
}
// ...
publishing {
 publications {
 create("myLibrary", MavenPublication::class.java) {
 from(components["java"])
 }
 }
}

Adding javadoc and sources JARs

Similar to the main Javadoc and sources JARs, you can configure the added feature variant so that it
produces JARs for the Javadoc and sources. This however only makes sense when using a source set
other than the main one.

Example 392. Producing javadoc and sources JARs for feature variants

build.gradle

java {
 registerFeature('mongodbSupport') {
 usingSourceSet(sourceSets.mongodbSupport)
 withJavadocJar()
 withSourcesJar()
 }
}

build.gradle.kts

java {
 registerFeature("mongodbSupport") {
 usingSourceSet(sourceSets["mongodbSupport"])
 withJavadocJar()
 withSourcesJar()
 }
}

Dependencies on feature variants

WARNING

As mentioned earlier, feature variants can be lossy when published. As a
consequence, a consumer can depend on a feature variant only in these cases:

• with a project dependency (in a multi-project build)

• with Gradle Module Metadata available, that is the publisher MUST have
published it

• within the Ivy world, by declaring a dependency on the configuration
matching the feature

A consumer can specify that it needs a specific feature of a producer by declaring required
capabilities. For example, if a producer declares a "MySQL support" feature like this:

Example 393. A library declaring a feature to support MySQL

build.gradle

group = 'org.gradle.demo'

java {
 registerFeature('mysqlSupport') {
 usingSourceSet(sourceSets.main)
 }
}

dependencies {
 mysqlSupportImplementation 'mysql:mysql-connector-java:8.0.14'
}

build.gradle.kts

group = "org.gradle.demo"

java {
 registerFeature("mysqlSupport") {
 usingSourceSet(sourceSets["main"])
 }
}

dependencies {
 "mysqlSupportImplementation"("mysql:mysql-connector-java:8.0.14")
}

Then the consumer can declare a dependency on the MySQL support feature by doing this:

Example 394. Consuming specific features in a multi-project build

build.gradle

dependencies {
 // This project requires the main producer component
 implementation(project(":producer"))

 // But we also want to use its MySQL support
 runtimeOnly(project(":producer")) {
 capabilities {
 requireCapability("org.gradle.demo:producer-mysql-support")
 }
 }
}

build.gradle.kts

dependencies {
 // This project requires the main producer component
 implementation(project(":producer"))

 // But we also want to use its MySQL support
 runtimeOnly(project(":producer")) {
 capabilities {
 requireCapability("org.gradle.demo:producer-mysql-support")
 }
 }
}

This will automatically bring the mysql-connector-java dependency on the runtime classpath. If
there were more than one dependency, all of them would be brought, meaning that a feature can
be used to group dependencies which contribute to a feature together.

Similarly, if an external library with feature variants was published with Gradle Module Metadata,
it is possible to depend on a feature provided by that library:

https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md

Example 395. Consuming specific features from an external repository

build.gradle

dependencies {
 // This project requires the main producer component
 implementation('org.gradle.demo:producer:1.0')

 // But we also want to use its MongoDB support
 runtimeOnly('org.gradle.demo:producer:1.0') {
 capabilities {
 requireCapability("org.gradle.demo:producer-mongodb-support")
 }
 }
}

build.gradle.kts

dependencies {
 // This project requires the main producer component
 implementation("org.gradle.demo:producer:1.0")

 // But we also want to use its MongoDB support
 runtimeOnly("org.gradle.demo:producer:1.0") {
 capabilities {
 requireCapability("org.gradle.demo:producer-mongodb-support")
 }
 }
}

Handling mutually exclusive variants

The main advantage of using capabilities as a way to handle features is that you can precisely
handle compatibility of variants. The rule is simple:

It’s not allowed to have two variants of components that provide the same
capability in a single dependency graph.

We can leverage that to ask Gradle to fail whenever the user mis-configures dependencies. Imagine,
for example, that your library supports MySQL, Postgres and MongoDB, but that it’s only allowed to
choose one of those at the same time. Not allowed should directly translate to "provide the same
capability", so there must be a capability provided by all three features:

Example 396. A producer of multiple features that are mutually exclusive

build.gradle

java {
 registerFeature('mysqlSupport') {
 usingSourceSet(sourceSets.main)
 capability('org.gradle.demo', 'producer-db-support', '1.0')
 capability('org.gradle.demo', 'producer-mysql-support', '1.0')
 }
 registerFeature('postgresSupport') {
 usingSourceSet(sourceSets.main)
 capability('org.gradle.demo', 'producer-db-support', '1.0')
 capability('org.gradle.demo', 'producer-postgres-support', '1.0')
 }
 registerFeature('mongoSupport') {
 usingSourceSet(sourceSets.main)
 capability('org.gradle.demo', 'producer-db-support', '1.0')
 capability('org.gradle.demo', 'producer-mongo-support', '1.0')
 }
}

dependencies {
 mysqlSupportImplementation 'mysql:mysql-connector-java:8.0.14'
 postgresSupportImplementation 'org.postgresql:postgresql:42.2.5'
 mongoSupportImplementation 'org.mongodb:mongodb-driver-sync:3.9.1'
}

build.gradle.kts

java {
 registerFeature("mysqlSupport") {
 usingSourceSet(sourceSets["main"])
 capability("org.gradle.demo", "producer-db-support", "1.0")
 capability("org.gradle.demo", "producer-mysql-support", "1.0")
 }
 registerFeature("postgresSupport") {
 usingSourceSet(sourceSets["main"])
 capability("org.gradle.demo", "producer-db-support", "1.0")
 capability("org.gradle.demo", "producer-postgres-support", "1.0")
 }
 registerFeature("mongoSupport") {
 usingSourceSet(sourceSets["main"])
 capability("org.gradle.demo", "producer-db-support", "1.0")
 capability("org.gradle.demo", "producer-mongo-support", "1.0")
 }
}

dependencies {
 "mysqlSupportImplementation"("mysql:mysql-connector-java:8.0.14")
 "postgresSupportImplementation"("org.postgresql:postgresql:42.2.5")
 "mongoSupportImplementation"("org.mongodb:mongodb-driver-sync:3.9.1")
}

Here, the producer declares 3 variants, one for each database runtime support:

• mysql-support provides both the db-support and mysql-support capabilities

• postgres-support provides both the db-support and postgres-support capabilities

• mongo-support provides both the db-support and mongo-support capabilities

Then if the consumer tries to get both the postgres-support and mysql-support like this (this also
works transitively):

Example 397. A consumer trying to use 2 incompatible variants at the same time

build.gradle

dependencies {
 implementation(project(":producer"))

 // Let's try to ask for both MySQL and Postgres support
 runtimeOnly(project(":producer")) {
 capabilities {
 requireCapability("org.gradle.demo:producer-mysql-support")
 }
 }
 runtimeOnly(project(":producer")) {
 capabilities {
 requireCapability("org.gradle.demo:producer-postgres-support")
 }
 }
}

build.gradle.kts

dependencies {
 // This project requires the main producer component
 implementation(project(":producer"))

 // Let's try to ask for both MySQL and Postgres support
 runtimeOnly(project(":producer")) {
 capabilities {
 requireCapability("org.gradle.demo:producer-mysql-support")
 }
 }
 runtimeOnly(project(":producer")) {
 capabilities {
 requireCapability("org.gradle.demo:producer-postgres-support")
 }
 }
}

Dependency resolution would fail with the following error:

Cannot choose between
 org.gradle.demo:producer:1.0 variant mysqlSupportRuntimeElements and
 org.gradle.demo:producer:1.0 variant postgresSupportRuntimeElements
 because they provide the same capability: org.gradle.demo:producer-db-support:1.0

Understanding variant selection

Gradle’s dependency management engine is known as variant aware. In a traditional dependency
management engine like Apache Maven™, dependencies are bound to components published at
GAV coordinates. This means that the set of transitive dependencies for a component is solely
determined by the GAV coordinates of this component. It doesn’t matter what artifact is actually
resolved, the set of dependencies is always the same. In addition, selecting a different artifact for a
component (for example, using the jdk7 artifact) is cumbersome as it requires the use of classifiers.
One issue with this model is that it cannot guarantee global graph consistency because there are no
common semantics associated with classifiers. What this means is that there’s nothing which
prevents from having both the jdk7 and jdk8 versions of a single module on classpath, because the
engine has no idea what semantics are associated with the classifier name.

Figure 22. The Maven component model

Gradle, in addition to the concept of a module published at GAV coordinates, introduces the concept
of variants of this module. Variants correspond to the different "views" of a component that is
published at the same GAV coordinates. In the Gradle model, artifacts are attached to variants, not
modules. This means, in practice, that different artifacts can have a different set of dependencies:

Figure 23. The Gradle component model

This intermediate level, which associates artifacts and dependencies to variants instead of directly
to the component, allows Gradle to model properly what each artifact is used for.

However, this raises the question about how variants are selected: how does Gradle know which
variant to choose when there’s more than one? In practice, variants are selected thanks to the use
of attributes, which provide semantics to the variants and help the engine in achieving a consistent
resolution result.

For historical reasons, Gradle differentiates between two kind of components:

• local components, built from sources, for which variants are mapped to outgoing configurations

• external components, published on repositories, in which case either the module was published
with Gradle Module Metadata and variants are natively supported, or the module is using
Ivy/Maven metadata and variants are derived from metadata.

In both cases, Gradle performs variant aware selection.

Configuration and variant attributes

Local components expose variants as outgoing configurations, which are consumable

configurations. When dependency resolution happens, the engine will select one variant of an
outgoing component by selecting one of its consumable configurations.

NOTE

There are 2 noticeable exception to this rule:

• whenever a producer does not expose any consumable configuration

• whenever the consumer explicitly selects a target configuration

In this case, variant aware resolution is bypassed.

Attributes are used on both resolvable configurations (also known as a consumer) and consumable
configurations (on the producer). Adding attributes to other kinds of configurations simply has no
effect, as attributes are not inherited between configurations.

The role of the dependency resolution engine is to find a suitable variant of a producer given the
constraints expressed by a consumer.

This is where attributes come into play: their role is to perform the selection of the right variant of a
component.

NOTE

Variants vs configurations

For external components, the terminology is to use the word variants, not
configurations. Configurations are a super-set of variants.

This means that an external component provides variants, which also have
attributes. However, sometimes the term configuration may leak into the DSL for
historical reasons, or because you use Ivy which also has this concept of
configuration.

Visualizing variant information

Gradle offers a report task called outgoingVariants that displays the variants of a project, with their
capabilities, attributes and artifacts. It is conceptually similar to the dependencyInsight reporting
task.

By default, outgoingVariants prints information about all variants. It offers the optional parameter
--variant <variantName> to select a single variant to display. It also accepts the --all flag to include
information about legacy and deprecated configurations.

Here is the output of the outgoingVariants task on a freshly generated java-library project:

> Task :outgoingVariants
--
Variant apiElements
--
Description = API elements for main.

Capabilities
 - [default capability]

Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.version = 8
 - org.gradle.libraryelements = jar
 - org.gradle.usage = java-api

Artifacts
 - build/libs/variant-report.jar (artifactType = jar)

Secondary variants (*)
 - Variant : classes
 - Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.version = 8
 - org.gradle.libraryelements = classes
 - org.gradle.usage = java-api
 - Artifacts
 - build/classes/java/main (artifactType = java-classes-directory)

--
Variant runtimeElements
--
Description = Elements of runtime for main.

Capabilities
 - [default capability]
Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.version = 8
 - org.gradle.libraryelements = jar
 - org.gradle.usage = java-runtime

Artifacts
 - build/libs/variant-report.jar (artifactType = jar)

Secondary variants (*)
 - Variant : classes
 - Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.version = 8
 - org.gradle.libraryelements = classes
 - org.gradle.usage = java-runtime
 - Artifacts
 - build/classes/java/main (artifactType = java-classes-directory)
 - Variant : resources
 - Attributes
 - org.gradle.category = library

 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.version = 8
 - org.gradle.libraryelements = resources
 - org.gradle.usage = java-runtime
 - Artifacts
 - build/resources/main (artifactType = java-resources-directory)

(*) Secondary variants are variants created via the Configuration#getOutgoing():
ConfigurationPublications API which also participate in selection, in addition to the
configuration itself.

From this you can see the two main variants that are exposed by a java library, apiElements and
runtimeElements. Notice that the main difference is on the org.gradle.usage attribute, with values
java-api and java-runtime. As they indicate, this is where the difference is made between what
needs to be on the compile classpath of consumers, versus what’s needed on the runtime classpath.

It also shows secondary variants, which are exclusive to Gradle projects and not published. For
example, the secondary variant classes from apiElements is what allows Gradle to skip the JAR
creation when compiling against a java-library project.

Variant aware matching

Let’s take the example of a lib library which exposes 2 variants: its API (via a variant named
exposedApi) and its runtime (via a variant named exposedRuntime).

NOTE

About producer variants

The variant name is there mostly for debugging purposes and to get a nicer display
in error messages. The name, in particular, doesn’t participate in the id of a variant:
only its attributes do. That is to say that to search for a particular variant, one must
rely on its attributes, not its name.

There are no restrictions on the number of variants a component can expose.
Traditionally, a component would expose an API and an implementation, but we
may, for example, want to expose the test fixtures of a component too. It is also
possible to expose different APIs for different consumers (think about different
environments, like Linux vs Windows).

A consumer needs to explain what variant it needs and this is done by setting attributes on the
consumer.

Attributes consist of a name and a value pair. For example, Gradle comes with a standard attribute
named org.gradle.usage specifically to deal with the concept of selecting the right variant of a
component based on the usage of the consumer (compile, runtime …). It is however possible to
define an arbitrary number of attributes. As a producer, we can express that a consumable
configuration represents the API of a component by attaching the (org.gradle.usage,JAVA_API)
attribute to the variant. As a consumer, we can express that we need the API of the dependencies of
a resolvable configuration by attaching the (org.gradle.usage,JAVA_API) attribute to it. Doing this,
Gradle has a way to automatically select the appropriate variant by looking at the configuration

attributes:

• the consumer wants org.gradle.usage=JAVA_API

• the producer, lib exposes 2 different variants. One with org.gradle.usage=JAVA_API, the other
with org.gradle.usage=JAVA_RUNTIME.

• Gradle chooses the org.gradle.usage=JAVA_API variant of the producer because it matches the
consumer attributes

In other words: attributes are used to perform the selection based on the values of the attributes.

A more elaborate example involves more than one attribute. Typically, a Java Library project in
Gradle will involve 4 different attributes, found both on the producer and consumer sides:

• org.gradle.usage, explaining if the variant is the API of a component, or its implementation

• org.gradle.dependency.bundling, which declares how the dependencies of the component are
bundled (for example, if the artifact is a fat jar, then the bundling is EMBEDDED)

• org.gradle.libraryelements, which is used to explain what parts of the library the variant
contains (classes, resources or everything)

• org.gradle.jvm.version, which is used to explain what minimal version of Java this variant is
targeted at

Now imagine that our library comes in two different flavors:

• one for JDK 8

• one for JDK 9+

This is typically achieved, in Maven, by producing 2 different artifacts, a "main" artifact and a
"classified" one. However, in Maven a consumer cannot express the fact it needs the most
appropriate version of the library based on the runtime.

With Gradle, this is elegantly solved by having the producer declare 2 variants:

• one with org.gradle.jvm.version=8, for consumers at least running on JDK 8

• one with org.gradle.jvm.version=9, for consumers starting from JDK 9

Note that the artifacts for both variants will be different, but their dependencies may be different
too. Typically, the JDK 8 variant may need a "backport" library of JDK 9+ to work, that only
consumers running on JDK 8 should get.

On the consumer side, the resolvable configuration will set all four attributes above, and, depending
on the runtime, will set its org.gradle.jvm.version to 8 or more.

NOTE

A note about compatibility of variants

What if the consumer sets org.gradle.jvm.version to 7?

Then resolution would fail with an error message explaining that there’s no
matching variant of the producer. This is because Gradle recognizes that the
consumer wants a Java 7 compatible library, but the minimal version of Java
available on the producer is 8. If, on the other hand, the consumer needs 11, then
Gradle knows both the 8 and 9 variant would work, but it will select 9 because it’s
the highest compatible version.

Variant selection errors

In the process of identifying the right variant of a component, two situations will result in a
resolution error:

• More than one variant from the producer match the consumer attributes, there is variant
ambiguity

• No variant from the producer match the consumer attributes

Dealing with ambiguous variant selection errors

An ambiguous variant selection looks somewhat like the following:

> Could not resolve all files for configuration ':compileClasspath'.
 > Could not resolve project :lib.
 Required by:
 project :ui
 > Cannot choose between the following variants of project :lib:
 - feature1ApiElements
 - feature2ApiElements
 All of them match the consumer attributes:
 - Variant 'feature1ApiElements' capability org.test:test-capability:1.0:
 - Unmatched attribute:
 - Found org.gradle.category 'library' but wasn't required.
 - Compatible attributes:
 - Provides org.gradle.dependency.bundling 'external'
 - Provides org.gradle.jvm.version '11'
 - Required org.gradle.libraryelements 'classes' and found value
'jar'.
 - Provides org.gradle.usage 'java-api'
 - Variant 'feature2ApiElements' capability org.test:test-capability:1.0:
 - Unmatched attribute:
 - Found org.gradle.category 'library' but wasn't required.
 - Compatible attributes:
 - Provides org.gradle.dependency.bundling 'external'
 - Provides org.gradle.jvm.version '11'
 - Required org.gradle.libraryelements 'classes' and found value
'jar'.
 - Provides org.gradle.usage 'java-api'

As can be seen, all compatible candidate variants are displayed, with their attributes. These are
then grouped into two sections:

• Unmatched attributes are presented first, as they might be the missing piece in selecting the
proper variant.

• Compatible attributes are presented second as they indicate what the consumer wanted and
how these variants do match that request.

There cannot be any mismatched attributes as the variant would not be a candidate then. Similarly,
the set of displayed variants also excludes the ones that have been disambiguated.

In the example above, the fix does not lie in attribute matching but in capability matching, which
are shown next to the variant name. Because these two variants effectively provide the same
attributes and capabilities, they cannot be disambiguated. So in this case, the fix is most likely to
provide different capabilities on the producer side (project :lib) and express a capability choice on
the consumer side (project :ui).

Dealing with no matching variant errors

A no matching variant error looks somewhat like the following:

> No variants of project :lib match the consumer attributes:
 - Configuration ':lib:compile':
 - Incompatible attribute:
 - Required artifactType 'dll' and found incompatible value 'jar'.
 - Other compatible attribute:
 - Provides usage 'api'
 - Configuration ':lib:compile' variant debug:
 - Incompatible attribute:
 - Required artifactType 'dll' and found incompatible value 'jar'.
 - Other compatible attributes:
 - Found buildType 'debug' but wasn't required.
 - Provides usage 'api'
 - Configuration ':lib:compile' variant release:
 - Incompatible attribute:
 - Required artifactType 'dll' and found incompatible value 'jar'.
 - Other compatible attributes:
 - Found buildType 'release' but wasn't required.
 - Provides usage 'api'

As can be seen, all candidate variants are displayed, with their attributes. These are then grouped
into two sections:

• Incompatible attributes are presented first, as they usually are the key in understanding why a
variant could not be selected.

• Other attributes are presented second, this includes required and compatible ones as well as all
extra producer attributes that are not requested by the consumer.

Similarly with the ambiguous variant error, the goal is then to understand which variant is to be
selected and see which attribute or capability can be tweaked on the consumer for this to happen.

Mapping from Maven/Ivy to variants

Neither Maven nor Ivy have the concept of variants, which are only natively supported by Gradle
Module Metadata. However, it doesn’t prevent Gradle from working with them thanks to different
strategies.

NOTE

Relationship with Gradle Module Metadata

Gradle Module Metadata is a metadata format for modules published on Maven, Ivy
or other kind of repositories. It is similar to pom.xml or ivy.xml files, but this format
is aware of variants. This means that if your project produces additional variants,
those are available and published as part of the module metadata, which greatly
improves the user experience.

See the Gradle Module Metadata specification for more information.

Mapping of POM files to variants

Modules published on a Maven repository are converted into variant-aware modules. A

https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md

particularity of Maven modules is that there is no way to know what kind of component is
published. In particular, there’s no way to make the difference between a BOM representing a
platform, and a BOM used as a super-POM. Sometimes, it is even possible for a POM file to act both
as a platform and a library.

As a consequence, Maven modules are derived into 6 distinct variants, which allows Gradle users to
explain precisely what they depend on:

• 2 "library" variants (attribute org.gradle.category = library)

◦ the compile variant maps the <scope>compile</scope> dependencies. This variant is
equivalent to the apiElements variant of the Java Library plugin. All dependencies of this
scope are considered API dependencies.

◦ the runtime variant maps both the <scope>compile</scope> and <scope>runtime</scope>
dependencies. This variant is equivalent to the runtimeElements variant of the Java Library
plugin. All dependencies of those scopes are considered runtime dependencies.

▪ in both cases, the <dependencyManagement> dependencies are not converted to constraints

• 4 "platform" variants derived from the <dependencyManagement> block (attribute
org.gradle.category = platform):

◦ the platform-compile variant maps the <scope>compile</scope> dependency management
dependencies as dependency constraints.

◦ the platform-runtime variant maps both the <scope>compile</scope> and
<scope>runtime</scope> dependency management dependencies as dependency constraints.

◦ the enforced-platform-compile is similar to platform-compile but all the constraints are forced

◦ the enforced-platform-runtime is similar to platform-runtime but all the constraints are forced

You can understand more about the use of platform and enforced platforms variants by looking at
the importing BOMs section of the manual. By default, whenever you declare a dependency on a
Maven module, Gradle is going to look for the library variants. However, using the platform or
enforcedPlatform keyword, Gradle is now looking for one of the "platform" variants, which allows
you to import the constraints from the POM files, instead of the dependencies.

Mapping of Ivy files to variants

Contrary to Maven, there is no derivation strategy implemented for Ivy files by default. The reason
fo this is that, contrary to pom, Ivy is a flexible format that allows you to publish arbitrary many
and customized configurations. So there is no notion of compile/runtime scope or compile/runtime
variants in Ivy in general. Only if you use the ivy-publish plugin to publish ivy files with Gradle, you
get a structure that follows a similar pattern as pom files. But since there is not guarantee that all
ivy metadata files consumed by a build follow this pattern, Gradle cannot enforce a derivation
strategy based on it.

However, if you want to implement a derivation strategy for compile and runtime variants for Ivy,
you can do so with component metadata rule. The component metadata rules API allows you to
access ivy configurations and create variants based on them. If you know that all the ivy modules
your are consuming have been published with Gradle without further customizations of the ivy.xml
file, you can add the following rule to your build:

Example 398. Deriving compile and runtime variants for Ivy metadata

build.gradle

abstract class IvyVariantDerivationRule implements ComponentMetadataRule {
 @Inject abstract ObjectFactory getObjects()

 void execute(ComponentMetadataContext context) {
 // This filters out any non Ivy module
 if(context.getDescriptor(IvyModuleDescriptor) == null) {
 return
 }

 context.details.addVariant("runtimeElements", "default") {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
getObjects().named(LibraryElements, LibraryElements.JAR))
 attribute(Category.CATEGORY_ATTRIBUTE, getObjects().named
(Category, Category.LIBRARY))
 attribute(Usage.USAGE_ATTRIBUTE, getObjects().named(Usage,
Usage.JAVA_RUNTIME))
 }
 }
 context.details.addVariant("apiElements", "compile") {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
getObjects().named(LibraryElements, LibraryElements.JAR))
 attribute(Category.CATEGORY_ATTRIBUTE, getObjects().named
(Category, Category.LIBRARY))
 attribute(Usage.USAGE_ATTRIBUTE, getObjects().named(Usage,
Usage.JAVA_API))
 }
 }
 }
}

dependencies {
 components { all(IvyVariantDerivationRule) }
}

build.gradle.kts

abstract class IvyVariantDerivationRule : ComponentMetadataRule {
 @Inject abstract fun getObjects(): ObjectFactory

 override fun execute(context: ComponentMetadataContext) {
 // This filters out any non Ivy module
 if(context.getDescriptor(IvyModuleDescriptor::class) == null) {
 return
 }

 context.details.addVariant("runtimeElements", "default") {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
getObjects().named(LibraryElements.JAR))
 attribute(Category.CATEGORY_ATTRIBUTE,
getObjects().named(Category.LIBRARY))
 attribute(Usage.USAGE_ATTRIBUTE,
getObjects().named(Usage.JAVA_RUNTIME))
 }
 }
 context.details.addVariant("apiElements", "compile") {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
getObjects().named(LibraryElements.JAR))
 attribute(Category.CATEGORY_ATTRIBUTE,
getObjects().named(Category.LIBRARY))
 attribute(Usage.USAGE_ATTRIBUTE,
getObjects().named(Usage.JAVA_API))
 }
 }
 }
}

dependencies {
 components { all<IvyVariantDerivationRule>() }
}

The rule creates an apiElements variant based on the compile configuration and a runtimeElements
variant based on the default configuration of each ivy module. For each variant, it sets the
corresponding Java ecosystem attributes. Dependencies and artifacts of the variants are taken from
the underlying configurations. If not all consumed ivy modules follow this pattern, the rule can be
adjusted or only applied to a selected set of modules.

For all ivy modules without variants, Gradle falls back to legacy configuration selection (i.e. Gradle
does not perform variant aware resolution for these modules). This means either the default
configuration or the configuration explicitly defined in the dependency to the corresponding

module is selected. (Note that explicit configuration selection is only possible from build scripts or
ivy metadata, and should be avoided in favor of variant selection.)

Working with Variant Attributes

As explained in the section on variant aware matching, attributes give semantics to variants and
are used to perform the selection between them.

As a user of Gradle, attributes are often hidden as implementation details. But it might be useful to
understand the standard attributes defined by Gradle and its core plugins.

As a plugin author, these attributes, and the way they are defined, can serve as a basis for building
your own set of attributes in your eco system plugin.

Standard attributes defined by Gradle

Gradle defines a list of standard attributes used by Gradle’s core plugins.

Ecosystem-independent standard attributes

Table 16. Ecosystem-independent standard variant attributes

Attribute
name

Description Values compatibility and
disambiguation rules

org.gradle.
usage

Indicates main purpose
of variant

Usage values built from
constants defined in
Usage

Following ecosystem semantics
(e.g. java-runtime can be used in
place of java-api but not the
opposite)

org.gradle.
category

Indicates the category
of this software
component

Category values built
from constants defined
in Category

Following ecosystem semantics
(e.g. library is default on the JVM,
no compatibility otherwise)

org.gradle.
libraryelem
ents

Indicates the contents
of a
org.gradle.category=lib
rary variant

LibraryElements values
built from constants
defined in
LibraryElements

Following ecosystem
semantics(e.g. in the JVM world,
jar is the default and is
compatible with classes)

org.gradle.
docstype

Indicates the contents
of a
org.gradle.category=doc
umentation variant

DocsType values built
from constants defined
in DocsType

No default, no compatibility

org.gradle.
dependency.
bundling

Indicates how
dependencies of a
variant are accessed.

Bundling values built
from constants defined
in Bundling

Following ecosystem semantics
(e.g. in the JVM world, embedded is
compatible with external)

Table 17. Ecosystem-independent standard component attributes

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/Usage.html#USAGE_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/Usage.html#USAGE_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/Usage.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/Category.html#CATEGORY_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/Category.html#CATEGORY_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/Category.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/LibraryElements.html#LIBRARY_ELEMENTS_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/LibraryElements.html#LIBRARY_ELEMENTS_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/LibraryElements.html#LIBRARY_ELEMENTS_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/LibraryElements.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/DocsType.html#DOCS_TYPE_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/DocsType.html#DOCS_TYPE_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/DocsType.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/Bundling.html#BUNDLING_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/Bundling.html#BUNDLING_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/Bundling.html#BUNDLING_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/Bundling.html

Attribute
name

Description Values compatibility and
disambiguation
rules

org.gradl
e.status

Component level
attribute, derived

Based on a status scheme, with a default one
existing based on the source repository.

Based on the scheme
in use

JVM ecosystem specific attributes

In addition to the ecosystem independent attributes defined above, the JVM ecosystem adds the
following attribute:

Table 18. JVM ecosystem standard component attributes

Attribut
e name

Description Values compatibility and
disambiguation rules

org.gradl
e.jvm.ver
sion

Indicates the JVM
version compatibility.

Integer using the version after
the 1. for Java 1.4 and before,
the major version for Java 5
and beyond.

Defaults to the JVM version
used by Gradle, lower is
compatible with higher, prefers
highest compatible.

org.gradl
e.jvm.env
ironment

Indicates that a
variant is optimized
for a certain JVM
environment.

Common values are standard-
jvm and android. Other values
are allowed.

The attribute is used to prefer
one variant over another if
multiple are available, but in
general all values are
compatible. The default is
standard-jvm.

The JVM ecosystem also contains a number of compatibility and disambiguation rules over the
different attributes. The reader willing to know more can take a look at the code for
org.gradle.api.internal.artifacts.JavaEcosystemSupport.

Native ecosystem specific attributes

In addition to the ecosystem independent attributes defined above, the native ecosystem adds the
following attributes:

Table 19. Native ecosystem standard component attributes

Attribute
name

Description Values compatibility
and
disambiguation
rules

org.gradle.nati
ve.debuggable

Indicates if the binary
was built with
debugging symbols

Boolean N/A

org.gradle.nati
ve.optimized

Indicates if the binary
was built with
optimization flags

Boolean N/A

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/java/TargetJvmVersion.html#TARGET_JVM_VERSION_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/java/TargetJvmVersion.html#TARGET_JVM_VERSION_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/java/TargetJvmVersion.html#TARGET_JVM_VERSION_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/java/TargetJvmEnvironment.html#TARGET_JVM_ENVIRONMENT_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/java/TargetJvmEnvironment.html#TARGET_JVM_ENVIRONMENT_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/java/TargetJvmEnvironment.html#TARGET_JVM_ENVIRONMENT_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/cpp/CppBinary.html#DEBUGGABLE_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/cpp/CppBinary.html#DEBUGGABLE_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/cpp/CppBinary.html#OPTIMIZED_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/cpp/CppBinary.html#OPTIMIZED_ATTRIBUTE

Attribute
name

Description Values compatibility
and
disambiguation
rules

org.gradle.nati
ve.architecture

Indicates the target
architecture of the
binary

MachineArchitecture values built
from constants defined in
MachineArchitecture

None

org.gradle.nati
ve.operatingSys
tem

Indicates the target
operating system of the
binary

OperatingSystemFamily values built
from constants defined in
OperatingSystemFamily

None

Gradle plugin ecosystem specific attributes

For Gradle plugin development, the following attribute is supported since Gradle 7.0. A Gradle
plugin variant can specify compatibility with a Gradle API version through this attribute.

Table 20. Gradle plugin ecosystem standard component attributes

Attribute
name

Description Values compatibility and disambiguation rules

org.gradle.pl
ugin.api‑versi
on

Indicates the Gradle
API version
compatibility.

Valid Gradle
version
strings.

Defaults to the currently running Gradle,
lower is compatible with higher, prefers
highest compatible.

Declaring custom attributes

If you are extending Gradle, e.g. by writing a plugin for another ecosystem, declaring custom
attributes could be an option if you want to support variant-aware dependency management
features in your plugin. However, you should be cautious if you also attempt to publish libraries.
Semantics of new attributes are usually defined through a plugin, which can carry compatibility
and disambiguation rules. Consequently, builds that consume libraries published for a certain
ecosystem, also need to apply the corresponding plugin to interpret attributes correctly. If your
plugin is intended for a larger audience, i.e. if it is openly available and libraries are published to
public repositories, defining new attributes effectively extends the semantics of Gradle Module
Metadata and comes with responsibilities. E.g., support for attributes that are already published
should not be removed again, or should be handled in some kind of compatibility layer in future
versions of the plugin.

Creating attributes in a build script or plugin

Attributes are typed. An attribute can be created via the Attribute<T>.of method:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/MachineArchitecture.html#ARCHITECTURE_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/MachineArchitecture.html#ARCHITECTURE_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/MachineArchitecture.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/OperatingSystemFamily.html#OPERATING_SYSTEM_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/OperatingSystemFamily.html#OPERATING_SYSTEM_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/OperatingSystemFamily.html#OPERATING_SYSTEM_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/OperatingSystemFamily.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/plugin/GradlePluginApiVersion.html#GRADLE_PLUGIN_API_VERSION_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/plugin/GradlePluginApiVersion.html#GRADLE_PLUGIN_API_VERSION_ATTRIBUTE
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/plugin/GradlePluginApiVersion.html#GRADLE_PLUGIN_API_VERSION_ATTRIBUTE

Example 399. Define attributes

build.gradle

// An attribute of type `String`
def myAttribute = Attribute.of("my.attribute.name", String)
// An attribute of type `Usage`
def myUsage = Attribute.of("my.usage.attribute", Usage)

build.gradle.kts

// An attribute of type `String`
val myAttribute = Attribute.of("my.attribute.name", String::class.java)
// An attribute of type `Usage`
val myUsage = Attribute.of("my.usage.attribute", Usage::class.java)

Currently, only attribute types of String, or anything extending Named is supported. Attributes must
be declared in the attribute schema found on the dependencies handler:

Example 400. Registering attributes on the attributes schema

build.gradle

dependencies.attributesSchema {
 // registers this attribute to the attributes schema
 attribute(myAttribute)
 attribute(myUsage)
}

build.gradle.kts

dependencies.attributesSchema {
 // registers this attribute to the attributes schema
 attribute(myAttribute)
 attribute(myUsage)
}

Then configurations can be configured to set values for attributes:

Example 401. Setting attributes on configurations

build.gradle

configurations {
 myConfiguration {
 attributes {
 attribute(myAttribute, 'my-value')
 }
 }
}

build.gradle.kts

configurations {
 create("myConfiguration") {
 attributes {
 attribute(myAttribute, "my-value")
 }
 }
}

For attributes which type extends Named, the value of the attribute must be created via the object
factory:

Example 402. Named attributes

build.gradle

configurations {
 myConfiguration {
 attributes {
 attribute(myUsage, project.objects.named(Usage, 'my-value'))
 }
 }
}

build.gradle.kts

configurations {
 "myConfiguration" {
 attributes {
 attribute(myUsage, project.objects.named(Usage::class.java, "my-
value"))
 }
 }
}

Attribute compatibility rules

Attributes let the engine select compatible variants. However, there are cases where a provider may
not have exactly what the consumer wants, but still something that it can use. For example, if the
consumer is asking for the API of a library, there’s a possibility that the producer doesn’t have such
a variant, but only a runtime variant. This is typical of libraries published on external repositories.
In this case, we know that even if we don’t have an exact match (API), we can still compile against
the runtime variant (it contains more than what we need to compile but it’s still ok to use). To deal
with this, Gradle provides attribute compatibility rules. The role of a compatibility rule is to explain
what variants are compatible with what the consumer asked for.

Attribute compatibility rules have to be registered via the attribute matching strategy that you can
obtain from the attributes schema.

Attribute disambiguation rules

Because multiple values for an attribute can be compatible with the requested attribute, Gradle
needs to choose between the candidates. This is done by implementing an attribute disambiguation
rule.

Attribute disambiguation rules have to be registered via the attribute matching strategy that you
can obtain from the attributes schema.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/AttributeCompatibilityRule.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/AttributeMatchingStrategy.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/AttributesSchema.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/AttributeDisambiguationRule.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/AttributeDisambiguationRule.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/AttributeMatchingStrategy.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/attributes/AttributesSchema.html

Sharing outputs between projects

A common pattern, in multi-project builds, is that one project consumes the artifacts of another
project. In general, the simplest consumption form in the Java ecosystem is that when A depends on
B, then A would depend on the jar produced by project B. As previously described in this chapter,
this is modeled by A depending on a variant of B, where the variant is selected based on the needs of
A. For compilation, we need the API dependencies of B, provided by the apiElements variant. For
runtime, we need the runtime dependencies of B, provided by the runtimeElements variant.

However, what if you need a different artifact than the main one? Gradle provides, for example,
built-in support for depending on the test fixtures of another project, but sometimes the artifact
you need to depend on simply isn’t exposed as a variant.

In order to be safe to share between projects and allow maximum performance (parallelism), such
artifacts must be exposed via outgoing configurations.

WARNING

Don’t reference other project tasks directly

A frequent anti-pattern to declare cross-project dependencies is:

dependencies {
 // this is unsafe!
 implementation project(":other").tasks.someOtherJar
}

This publication model is unsafe and can lead to non-reproducible and hard to
parallelize builds. This section explains how to properly create cross-project
boundaries by defining "exchanges" between projects by using variants.

There are two, complementary, options to share artifacts between projects. The simplified version
is only suitable if what you need to share is a simple artifact that doesn’t depend on the consumer.
The simple solution is also limited to cases where this artifact is not published to a repository. This
also implies that the consumer does not publish a dependency to this artifact. In cases where the
consumer resolves to different artifacts in different contexts (e.g., different target platforms) or that
publication is required, you need to use the advanced version.

Simple sharing of artifacts between projects

First, a producer needs to declare a configuration which is going to be exposed to consumers. As
explained in the configurations chapter, this corresponds to a consumable configuration.

Let’s imagine that the consumer requires instrumented classes from the producer, but that this
artifact is not the main one. The producer can expose its instrumented classes by creating a
configuration that will "carry" this artifact:

Example 403. Declaring an outgoing variant

producer/build.gradle

configurations {
 instrumentedJars {
 canBeConsumed = true
 canBeResolved = false
 // If you want this configuration to share the same dependencies,
otherwise omit this line
 extendsFrom implementation, runtimeOnly
 }
}

producer/build.gradle.kts

val instrumentedJars by configurations.creating {
 isCanBeConsumed = true
 isCanBeResolved = false
 // If you want this configuration to share the same dependencies,
otherwise omit this line
 extendsFrom(configurations["implementation"],
configurations["runtimeOnly"])
}

This configuration is consumable, which means it’s an "exchange" meant for consumers. We’re now
going to add artifacts to this configuration, that consumers would get when they consume it:

Example 404. Attaching an artifact to an outgoing configuration

producer/build.gradle

artifacts {
 instrumentedJars(instrumentedJar)
}

producer/build.gradle.kts

artifacts {
 add("instrumentedJars", instrumentedJar)
}

Here the "artifact" we’re attaching is a task that actually generates a Jar. Doing so, Gradle can
automatically track dependencies of this task and build them as needed. This is possible because
the Jar task extends AbstractArchiveTask. If it’s not the case, you will need to explicitly declare how
the artifact is generated.

Example 405. Explicitly declaring the task dependency of an artifact

producer/build.gradle

artifacts {
 instrumentedJars(someTask.outputFile) {
 builtBy(someTask)
 }
}

producer/build.gradle.kts

artifacts {
 add("instrumentedJars", someTask.outputFile) {
 builtBy(someTask)
 }
}

Now the consumer needs to depend on this configuration in order to get the right artifact:

Example 406. An explicit configuration dependency

consumer/build.gradle

dependencies {
 instrumentedClasspath(project(path: ":producer", configuration:
'instrumentedJars'))
}

consumer/build.gradle.kts

dependencies {
 instrumentedClasspath(project(mapOf(
 "path" to ":producer",
 "configuration" to "instrumentedJars")))
}

WARNING

Declaring a dependency on an explicit target configuration is not recommended
if you plan to publish the component which has this dependency: this would
likely lead to broken metadata. If you need to publish the component on a
remote repository, follow the instructions of the variant-aware cross
publication documentation.

In this case, we’re adding the dependency to the instrumentedClasspath configuration, which is a
consumer specific configuration. In Gradle terminology, this is called a resolvable configuration,
which is defined this way:

Example 407. Declaring a resolvable configuration on the consumer

consumer/build.gradle

configurations {
 instrumentedClasspath {
 canBeConsumed = false
 canBeResolved = true
 }
}

consumer/build.gradle.kts

val instrumentedClasspath by configurations.creating {
 isCanBeConsumed = false
 isCanBeResolved = true
}

Variant-aware sharing of artifacts between projects

In the simple sharing solution, we defined a configuration on the producer side which serves as an
exchange of artifacts between the producer and the consumer. However, the consumer has to
explicitly tell which configuration it depends on, which is something we want to avoid in variant
aware resolution. In fact, we also have explained that it is possible for a consumer to express
requirements using attributes and that the producer should provide the appropriate outgoing
variants using attributes too. This allows for smarter selection, because using a single dependency
declaration, without any explicit target configuration, the consumer may resolve different things.
The typical example is that using a single dependency declaration project(":myLib"), we would
either choose the arm64 or i386 version of myLib depending on the architecture.

To do this, we will add attributes to both the consumer and the producer.

WARNING

It is important to understand that once configurations have attributes, they
participate in variant aware resolution, which means that they are candidates
considered whenever any notation like project(":myLib") is used. In other
words, the attributes set on the producer must be consistent with the other
variants produced on the same project. They must not, in particular, introduce
ambiguity for the existing selection.

In practice, it means that the attribute set used on the configuration you create
are likely to be dependent on the ecosystem in use (Java, C++, …) because the
relevant plugins for those ecosystems often use different attributes.

Let’s enhance our previous example which happens to be a Java Library project. Java libraries

expose a couple of variants to their consumers, apiElements and runtimeElements. Now, we’re adding
a 3rd one, instrumentedJars.

Therefore, we need to understand what our new variant is used for in order to set the proper
attributes on it. Let’s look at the attributes we find on the runtimeElements configuration:

gradle outgoingVariants --variant runtimeElements

Attributes
 - org.gradle.category = library
 - org.gradle.dependency.bundling = external
 - org.gradle.jvm.version = 11
 - org.gradle.libraryelements = jar
 - org.gradle.usage = java-runtime

What it tells us is that the Java Library plugin produces variants with 5 attributes:

• org.gradle.category tells us that this variant represents a library

• org.gradle.dependency.bundling tells us that the dependencies of this variant are found as jars
(they are not, for example, repackaged inside the jar)

• org.gradle.jvm.version tells us that the minimum Java version this library supports is Java 11

• org.gradle.libraryelements tells us this variant contains all elements found in a jar (classes and
resources)

• org.gradle.usage says that this variant is a Java runtime, therefore suitable for a Java compiler
but also at runtime

As a consequence, if we want our instrumented classes to be used in place of this variant when
executing tests, we need to attach similar attributes to our variant. In fact, the attribute we care
about is org.gradle.libraryelements which explains what the variant contains, so we can setup the
variant this way:

Example 408. Declaring the variant attributes

producer/build.gradle

configurations {
 instrumentedJars {
 canBeConsumed = true
 canBeResolved = false
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE, objects.named(Category,
Category.LIBRARY))
 attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage, Usage
.JAVA_RUNTIME))
 attribute(Bundling.BUNDLING_ATTRIBUTE, objects.named(Bundling,
Bundling.EXTERNAL))
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
JavaVersion.current().majorVersion.toInteger())
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE, objects
.named(LibraryElements, 'instrumented-jar'))
 }
 }
}

producer/build.gradle.kts

val instrumentedJars by configurations.creating {
 isCanBeConsumed = true
 isCanBeResolved = false
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE,
namedAttribute(Category.LIBRARY))
 attribute(Usage.USAGE_ATTRIBUTE, namedAttribute(Usage.JAVA_RUNTIME))
 attribute(Bundling.BUNDLING_ATTRIBUTE,
namedAttribute(Bundling.EXTERNAL))
 attribute(TargetJvmVersion.TARGET_JVM_VERSION_ATTRIBUTE,
JavaVersion.current().majorVersion.toInt())
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
namedAttribute("instrumented-jar"))
 }
}

inline fun <reified T: Named> Project.namedAttribute(value: String) =
objects.named(T::class.java, value)

NOTE

Choosing the right attributes to set is the hardest thing in this process, because they
carry the semantics of the variant. Therefore, before adding new attributes, you
should always ask yourself if there isn’t an attribute which carries the semantics
you need. If there isn’t, then you may add a new attribute. When adding new
attributes, you must also be careful because it’s possible that it creates ambiguity
during selection. Often adding an attribute means adding it to all existing variants.

What we have done here is that we have added a new variant, which can be used at runtime, but
contains instrumented classes instead of the normal classes. However, it now means that for
runtime, the consumer has to choose between two variants:

• runtimeElements, the regular variant offered by the java-library plugin

• instrumentedJars, the variant we have created

In particular, say we want the instrumented classes on the test runtime classpath. We can now, on
the consumer, declare our dependency as a regular project dependency:

Example 409. Declaring the project dependency

consumer/build.gradle

dependencies {
 testImplementation 'junit:junit:4.13'
 testImplementation project(':producer')
}

consumer/build.gradle.kts

dependencies {
 testImplementation("junit:junit:4.13")
 testImplementation(project(":producer"))
}

If we stop here, Gradle will still select the runtimeElements variant in place of our instrumentedJars
variant. This is because the testRuntimeClasspath configuration asks for a configuration which
libraryelements attribute is jar, and our new instrumented-jars value is not compatible.

So we need to change the requested attributes so that we now look for instrumented jars:

Example 410. Changing the consumer attributes

consumer/build.gradle

configurations {
 testRuntimeClasspath {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE, objects
.named(LibraryElements, 'instrumented-jar'))
 }
 }
}

consumer/build.gradle.kts

configurations {
 testRuntimeClasspath {
 attributes {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
objects.named(LibraryElements::class.java, "instrumented-jar"))
 }
 }
}

Now, we’re telling that whenever we’re going to resolve the test runtime classpath, what we are
looking for is instrumented classes. There is a problem though: in our dependencies list, we have
JUnit, which, obviously, is not instrumented. So if we stop here, Gradle is going to fail, explaining
that there’s no variant of JUnit which provide instrumented classes. This is because we didn’t
explain that it’s fine to use the regular jar, if no instrumented version is available. To do this, we
need to write a compatibility rule:

Example 411. A compatibility rule

consumer/build.gradle

abstract class InstrumentedJarsRule implements AttributeCompatibilityRule
<LibraryElements> {

 @Override
 void execute(CompatibilityCheckDetails<LibraryElements> details) {
 if (details.consumerValue.name == 'instrumented-jar' && details
.producerValue.name == 'jar') {
 details.compatible()
 }
 }
}

consumer/build.gradle.kts

abstract class InstrumentedJarsRule:
AttributeCompatibilityRule<LibraryElements> {

 override fun execute(details: CompatibilityCheckDetails<LibraryElements>)
= details.run {
 if (consumerValue?.name == "instrumented-jar" && producerValue?.name
== "jar") {
 compatible()
 }
 }
}

which we need to declare on the attributes schema:

Example 412. Making use of the compatibility rule

consumer/build.gradle

dependencies {
 attributesSchema {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE) {
 compatibilityRules.add(InstrumentedJarsRule)
 }
 }
}

consumer/build.gradle.kts

dependencies {
 attributesSchema {
 attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE) {
 compatibilityRules.add(InstrumentedJarsRule::class.java)
 }
 }
}

And that’s it! Now we have:

• added a variant which provides instrumented jars

• explained that this variant is a substitute for the runtime

• explained that the consumer needs this variant only for test runtime

Gradle therefore offers a powerful mechanism to select the right variants based on preferences and
compatibility. More details can be found in the variant aware plugins section of the documentation.

WARNING

By adding a value to an existing attribute like we have done, or by defining
new attributes, we are extending the model. This means that all consumers
have to know about this extended model. For local consumers, this is usually
not a problem because all projects understand and share the same schema, but
if you had to publish this new variant to an external repository, it means that
external consumers would have to add the same rules to their builds for them
to pass. This is in general not a problem for ecosystem plugins (e.g: the Kotlin
plugin) where consumption is in any case not possible without applying the
plugin, but it is a problem if you add custom values or attributes.

So, avoid publishing custom variants if they are for internal use only.

Targeting different platforms

It is common for a library to target different platforms. In the Java ecosystem, we often see
different artifacts for the same library, distinguished by a different classifier. A typical example is
Guava, which is published as this:

• guava-jre for JDK 8 and above

• guava-android for JDK 7

The problem with this approach is that there’s no semantics associated with the classifier. The
dependency resolution engine, in particular, cannot determine automatically which version to use
based on the consumer requirements. For example, it would be better to express that you have a
dependency on Guava, and let the engine choose between jre and android based on what is
compatible.

Gradle provides an improved model for this, which doesn’t have the weakness of classifiers:
attributes.

In particular, in the Java ecosystem, Gradle provides a built-in attribute that library authors can use
to express compatibility with the Java ecosystem: org.gradle.jvm.version. This attribute expresses
the minimal version that a consumer must have in order to work properly.

When you apply the java or java-library plugins, Gradle will automatically associate this attribute
to the outgoing variants. This means that all libraries published with Gradle automatically tell
which target platform they use.

By default, the org.gradle.jvm.version is set to the value of the release property (or as fallback to
the targetCompatibility value) of the main compilation task of the source set.

While this attribute is automatically set, Gradle will not, by default, let you build a project for
different JVMs. If you need to do this, then you will need to create additional variants following the
instructions on variant-aware matching.

NOTE
Future versions of Gradle will provide ways to automatically build for different Java
platforms.

Transforming dependency artifacts on resolution

As described in different kinds of configurations, there may be different variants for the same
dependency. For example, an external Maven dependency has a variant which should be used
when compiling against the dependency (java-api), and a variant for running an application which
uses the dependency (java-runtime). A project dependency has even more variants, for example the
classes of the project which are used for compilation are available as classes directories
(org.gradle.usage=java-api, org.gradle.libraryelements=classes) or as JARs
(org.gradle.usage=java-api, org.gradle.libraryelements=jar).

The variants of a dependency may differ in its transitive dependencies or in the artifact itself. For
example, the java-api and java-runtime variants of a Maven dependency only differ in the
transitive dependencies and both use the same artifact — the JAR file. For a project dependency, the

java-api,classes and the java-api,jars variants have the same transitive dependencies and
different artifacts — the classes directories and the JAR files respectively.

Gradle identifies a variant of a dependency uniquely by its set of attributes. The java-api variant of
a dependency is the variant identified by the org.gradle.usage attribute with value java-api.

When Gradle resolves a configuration, the attributes on the resolved configuration determine the
requested attributes. For all dependencies in the configuration, the variant with the requested
attributes is selected when resolving the configuration. For example, when the configuration
requests org.gradle.usage=java-api, org.gradle.libraryelements=classes on a project dependency,
then the classes directory is selected as the artifact.

When the dependency does not have a variant with the requested attributes, resolving the
configuration fails. Sometimes it is possible to transform the artifact of the dependency into the
requested variant without changing the transitive dependencies. For example, unzipping a JAR
transforms the artifact of the java-api,jars variant into the java-api,classes variant. Such a
transformation is called Artifact Transform. Gradle allows registering artifact transforms, and when
the dependency does not have the requested variant, then Gradle will try to find a chain of artifact
transforms for creating the variant.

Artifact transform selection and execution

As described above, when Gradle resolves a configuration and a dependency in the configuration
does not have a variant with the requested attributes, Gradle tries to find a chain of artifact
transforms to create the variant. The process of finding a matching chain of artifact transforms is
called artifact transform selection. Each registered transform converts from a set of attributes to a
set of attributes. For example, the unzip transform can convert from org.gradle.usage=java-api,
org.gradle.libraryelements=jars to org.gradle.usage=java-api,
org.gradle.libraryelements=classes.

In order to find a chain, Gradle starts with the requested attributes and then considers all
transforms which modify some of the requested attributes as possible paths leading there. Going
backwards, Gradle tries to obtain a path to some existing variant using transforms.

For example, consider a minified attribute with two values: true and false. The minified attribute
represents a variant of a dependency with unnecessary class files removed. There is an artifact
transform registered, which can transform minified from false to true. When minified=true is
requested for a dependency, and there are only variants with minified=false, then Gradle selects
the registered minify transform. The minify transform is able to transform the artifact of the
dependency with minified=false to the artifact with minified=true.

Of all the found transform chains, Gradle tries to select the best one:

• If there is only one transform chain, it is selected.

• If there are two transform chains, and one is a suffix of the other one, it is selected.

• If there is a shortest transform chain, then it is selected.

• In all other cases, the selection fails and an error is reported.

NOTE
Gradle does not try to select artifact transforms when there is already a variant of
the dependency matching the requested attributes.

NOTE

The artifactType attribute is special, since it is only present on resolved artifacts
and not on dependencies. As a consequence, any transform which is only mutating
artifactType will never be selected when resolving a configuration with only the
artifactType as requested attribute. It will only be considered when using an
ArtifactView.

After selecting the required artifact transforms, Gradle resolves the variants of the dependencies
which are necessary for the initial transform in the chain. As soon as Gradle finishes resolving the
artifacts for the variant, either by downloading an external dependency or executing a task
producing the artifact, Gradle starts transforming the artifacts of the variant with the selected chain
of artifact transforms. Gradle executes the transform chains in parallel when possible.

Picking up the minify example above, consider a configuration with two dependencies, the external
guava dependency and a project dependency on the producer project. The configuration has the
attributes org.gradle.usage=java-runtime,org.gradle.libraryelements=jar,minified=true. The
external guava dependency has two variants:

• org.gradle.usage=java-runtime,org.gradle.libraryelements=jar,minified=false and

• org.gradle.usage=java-api,org.gradle.libraryelements=jar,minified=false.

Using the minify transform, Gradle can convert the variant org.gradle.usage=java-
runtime,org.gradle.libraryelements=jar,minified=false of guava to org.gradle.usage=java-
runtime,org.gradle.libraryelements=jar,minified=true, which are the requested attributes. The
project dependency also has variants:

• org.gradle.usage=java-runtime,org.gradle.libraryelements=jar,minified=false,

• org.gradle.usage=java-runtime,org.gradle.libraryelements=classes,minified=false,

• org.gradle.usage=java-api,org.gradle.libraryelements=jar,minified=false,

• org.gradle.usage=java-api,org.gradle.libraryelements=classes,minified=false

• and a few more.

Again, using the minify transform, Gradle can convert the variant org.gradle.usage=java-
runtime,org.gradle.libraryelements=jar,minified=false of the project producer to
org.gradle.usage=java-runtime,org.gradle.libraryelements=jar,minified=true, which are the
requested attributes.

When the configuration is resolved, Gradle needs to download the guava JAR and minify it. Gradle
also needs to execute the producer:jar task to generate the JAR artifact of the project and then
minify it. The downloading and the minification of the guava.jar happens in parallel to the
execution of the producer:jar task and the minification of the resulting JAR.

Here is how to setup the minified attribute so that the above works. You need to register the new
attribute in the schema, add it to all JAR artifacts and request it on all resolvable configurations.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ArtifactView.html

Example 413. Artifact transform attribute setup

build.gradle

def artifactType = Attribute.of('artifactType', String)
def minified = Attribute.of('minified', Boolean)
dependencies {
 attributesSchema {
 attribute(minified) ①
 }
 artifactTypes.getByName("jar") {
 attributes.attribute(minified, false) ②
 }
}

configurations.all {
 afterEvaluate {
 if (canBeResolved) {
 attributes.attribute(minified, true) ③
 }
 }
}

dependencies {
 registerTransform(Minify) {
 from.attribute(minified, false).attribute(artifactType, "jar")
 to.attribute(minified, true).attribute(artifactType, "jar")
 }
}

dependencies { ④
 implementation('com.google.guava:guava:27.1-jre')
 implementation(project(':producer'))
}

build.gradle.kts

val artifactType = Attribute.of("artifactType", String::class.java)
val minified = Attribute.of("minified", Boolean::class.javaObjectType)
dependencies {
 attributesSchema {
 attribute(minified) ①
 }
 artifactTypes.getByName("jar") {
 attributes.attribute(minified, false) ②
 }
}

configurations.all {
 afterEvaluate {
 if (isCanBeResolved) {
 attributes.attribute(minified, true) ③
 }
 }
}

dependencies {
 registerTransform(Minify::class) {
 from.attribute(minified, false).attribute(artifactType, "jar")
 to.attribute(minified, true).attribute(artifactType, "jar")
 }
}

dependencies { ④
 implementation("com.google.guava:guava:27.1-jre")
 implementation(project(":producer"))
}

① Add the attribute to the schema

② All JAR files are not minified

③ Request minified=true on all resolvable configurations

④ Add the dependencies which will be transformed

You can now see what happens when we run the resolveRuntimeClasspath task which resolves the
runtimeClasspath configuration. Observe that Gradle transforms the project dependency before the
resolveRuntimeClasspath task starts. Gradle transforms the binary dependencies when it executes
the resolveRuntimeClasspath task.

Output when resolving the runtimeClasspath configuration

> gradle resolveRuntimeClasspath

> Task :producer:compileJava
> Task :producer:processResources NO-SOURCE
> Task :producer:classes
> Task :producer:jar

> Transform producer.jar (project :producer) with Minify
Nothing to minify - using producer.jar unchanged

> Task :resolveRuntimeClasspath
Minifying guava-27.1-jre.jar
Nothing to minify - using listenablefuture-9999.0-empty-to-avoid-conflict-with-
guava.jar unchanged
Nothing to minify - using jsr305-3.0.2.jar unchanged
Nothing to minify - using checker-qual-2.5.2.jar unchanged
Nothing to minify - using error_prone_annotations-2.2.0.jar unchanged
Nothing to minify - using j2objc-annotations-1.1.jar unchanged
Nothing to minify - using animal-sniffer-annotations-1.17.jar unchanged
Nothing to minify - using failureaccess-1.0.1.jar unchanged

BUILD SUCCESSFUL in 0s
3 actionable tasks: 3 executed

Implementing artifact transforms

Similar to task types, an artifact transform consists of an action and some parameters. The major
difference to custom task types is that the action and the parameters are implemented as two
separate classes.

The implementation of the artifact transform action is a class implementing TransformAction. You
need to implement the transform() method on the action, which converts an input artifact into zero,
one or multiple of output artifacts. Most artifact transforms will be one-to-one, so the transform
method will transform the input artifact to exactly one output artifact.

The implementation of the artifact transform action needs to register each output artifact by calling
TransformOutputs.dir() or TransformOutputs.file().

You can only supply two types of paths to the dir or file methods:

• An absolute path to the input artifact or in the input artifact (for an input directory).

• A relative path.

Gradle uses the absolute path as the location of the output artifact. For example, if the input artifact
is an exploded WAR, then the transform action can call TransformOutputs.file() for all jar files in
the WEB-INF/lib directory. The output of the transform would then be the library JARs of the web
application.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.transform.TransformAction.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.transform.TransformOutputs.html#org.gradle.api.artifacts.transform.TransformOutputs:dir(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.transform.TransformOutputs.html#org.gradle.api.artifacts.transform.TransformOutputs:file(java.lang.Object)

For a relative path, the dir() or file() method returns a workspace to the transform action. The
implementation of the transform action needs to create the transformed artifact at the location of
the provided workspace.

The output artifacts replace the input artifact in the transformed variant in the order they were
registered. For example, if the configuration consists of the artifacts lib1.jar, lib2.jar, lib3.jar,
and the transform action registers a minified output artifact <artifact-name>-min.jar for the input
artifact, then the transformed configuration consists of the artifacts lib1-min.jar, lib2-min.jar and
lib3-min.jar.

Here is the implementation of an Unzip transform which transforms a JAR file into a classes
directory by unzipping it. The Unzip transform does not require any parameters. Note how the
implementation uses @InputArtifact to inject the artifact to transform into the action. It requests a
directory for the unzipped classes by using TransformOutputs.dir() and then unzips the JAR file into
this directory.

Example 414. Artifact transform without parameters

build.gradle

abstract class Unzip implements TransformAction<TransformParameters.None> {
①
 @InputArtifact
②
 abstract Provider<FileSystemLocation> getInputArtifact()

 @Override
 void transform(TransformOutputs outputs) {
 def input = inputArtifact.get().asFile
 def unzipDir = outputs.dir(input.name)
③
 unzipTo(input, unzipDir)
④
 }

 private static void unzipTo(File zipFile, File unzipDir) {
 // implementation...
 }
}

build.gradle.kts

abstract class Unzip : TransformAction<TransformParameters.None> {
①
 @get:InputArtifact
②
 abstract val inputArtifact: Provider<FileSystemLocation>

 override
 fun transform(outputs: TransformOutputs) {
 val input = inputArtifact.get().asFile
 val unzipDir = outputs.dir(input.name)
③
 unzipTo(input, unzipDir)
④
 }

 private fun unzipTo(zipFile: File, unzipDir: File) {
 // implementation...
 }
}

① Use TransformParameters.None if the transform does not use parameters

② Inject the input artifact

③ Request an output location for the unzipped files

④ Do the actual work of the transform

An artifact transform may require parameters, like a String determining some filter, or some file
collection which is used for supporting the transformation of the input artifact. In order to pass
those parameters to the transform action, you need to define a new type with the desired
parameters. The type needs to implement the marker interface TransformParameters. The
parameters must be represented using managed properties and the parameters type must be a
managed type. You can use an interface or abstract class declaring the getters and Gradle will
generate the implementation. All getters need to have proper input annotations, see the table in the
section on incremental build.

You can find out more about implementing artifact transform parameters in Developing Custom
Gradle Types.

Here is the implementation of a Minify transform that makes JARs smaller by only keeping certain
classes in them. The Minify transform requires the classes to keep as parameters. Observe how you
can obtain the parameters by TransformAction.getParameters() in the transform() method. The
implementation of the transform() method requests a location for the minified JAR by using
TransformOutputs.file() and then creates the minified JAR at this location.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/transform/TransformParameters.html

Example 415. Minify transform implementation

build.gradle

abstract class Minify implements TransformAction<Parameters> { ①
 interface Parameters extends TransformParameters { ②
 @Input
 Map<String, Set<String>> getKeepClassesByArtifact()
 void setKeepClassesByArtifact(Map<String, Set<String>> keepClasses)
 }

 @PathSensitive(PathSensitivity.NAME_ONLY)
 @InputArtifact
 abstract Provider<FileSystemLocation> getInputArtifact()

 @Override
 void transform(TransformOutputs outputs) {
 def fileName = inputArtifact.get().asFile.name
 for (entry in parameters.keepClassesByArtifact) { ③
 if (fileName.startsWith(entry.key)) {
 def nameWithoutExtension = fileName.substring(0, fileName
.length() - 4)
 minify(inputArtifact.get().asFile, entry.value, outputs.file
("${nameWithoutExtension}-min.jar"))
 return
 }
 }
 println "Nothing to minify - using ${fileName} unchanged"
 outputs.file(inputArtifact) ④
 }

 private void minify(File artifact, Set<String> keepClasses, File jarFile)
{
 println "Minifying ${artifact.name}"
 // Implementation ...
 }
}

build.gradle.kts

abstract class Minify : TransformAction<Minify.Parameters> { ①
 interface Parameters : TransformParameters { ②
 @get:Input
 var keepClassesByArtifact: Map<String, Set<String>>

 }

 @get:PathSensitive(PathSensitivity.NAME_ONLY)
 @get:InputArtifact
 abstract val inputArtifact: Provider<FileSystemLocation>

 override
 fun transform(outputs: TransformOutputs) {
 val fileName = inputArtifact.get().asFile.name
 for (entry in parameters.keepClassesByArtifact) { ③
 if (fileName.startsWith(entry.key)) {
 val nameWithoutExtension = fileName.substring(0,
fileName.length - 4)
 minify(inputArtifact.get().asFile, entry.value,
outputs.file("${nameWithoutExtension}-min.jar"))
 return
 }
 }
 println("Nothing to minify - using ${fileName} unchanged")
 outputs.file(inputArtifact) ④
 }

 private fun minify(artifact: File, keepClasses: Set<String>, jarFile:
File) {
 println("Minifying ${artifact.name}")
 // Implementation ...
 }
}

① Declare the parameter type

② Interface for the transform parameters

③ Use the parameters

④ Use the unchanged input artifact when no minification is required

Remember that the input artifact is a dependency, which may have its own dependencies. If your
artifact transform needs access to those transitive dependencies, it can declare an abstract getter
returning a FileCollection and annotate it with @InputArtifactDependencies. When your
transform runs, Gradle will inject the transitive dependencies into that FileCollection property by
implementing the getter. Note that using input artifact dependencies in a transform has

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/transform/InputArtifactDependencies.html

performance implications, only inject them when you really need them.

Moreover, artifact transforms can make use of the build cache for their outputs. To enable the build
cache for an artifact transform, add the @CacheableTransform annotation on the action class. For
cacheable transforms, you must annotate its @InputArtifact property — and any property marked
with @InputArtifactDependencies — with normalization annotations such as @PathSensitive.

The following example shows a more complicated transform. It moves some selected classes of a
JAR to a different package, rewriting the byte code of the moved classes and all classes using the
moved classes (class relocation). In order to determine the classes to relocate, it looks at the
packages of the input artifact and the dependencies of the input artifact. It also does not relocate
packages contained in JAR files in an external classpath.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/transform/CacheableTransform.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/transform/InputArtifact.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/transform/InputArtifactDependencies.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/PathSensitive.html

Example 416. Artifact transform for class relocation

build.gradle

@CacheableTransform
①
abstract class ClassRelocator implements TransformAction<Parameters> {
 interface Parameters extends TransformParameters {
②
 @CompileClasspath
③
 ConfigurableFileCollection getExternalClasspath()
 @Input
 Property<String> getExcludedPackage()
 }

 @Classpath
④
 @InputArtifact
 abstract Provider<FileSystemLocation> getPrimaryInput()

 @CompileClasspath
 @InputArtifactDependencies
⑤
 abstract FileCollection getDependencies()

 @Override
 void transform(TransformOutputs outputs) {
 def primaryInputFile = primaryInput.get().asFile
 if (parameters.externalClasspath.contains(primaryInput)) {
⑥
 outputs.file(primaryInput)
 } else {
 def baseName = primaryInputFile.name.substring(0,
primaryInputFile.name.length - 4)
 relocateJar(outputs.file("$baseName-relocated.jar"))
 }
 }

 private relocateJar(File output) {
 // implementation...
 def relocatedPackages = (dependencies.collectMany { readPackages(it)
} + readPackages(primaryInput.get().asFile)) as Set
 def nonRelocatedPackages = parameters.externalClasspath.collectMany {
readPackages(it) }
 def relocations = (relocatedPackages - nonRelocatedPackages).collect
{ packageName ->
 def toPackage = "relocated.$packageName"
 println("$packageName -> $toPackage")
 new Relocation(packageName, toPackage)

 }
 new JarRelocator(primaryInput.get().asFile, output, relocations).run
()
 }
}

build.gradle.kts

@CacheableTransform
①
abstract class ClassRelocator : TransformAction<ClassRelocator.Parameters> {
 interface Parameters : TransformParameters {
②
 @get:CompileClasspath
③
 val externalClasspath: ConfigurableFileCollection
 @get:Input
 val excludedPackage: Property<String>
 }

 @get:Classpath
④
 @get:InputArtifact
 abstract val primaryInput: Provider<FileSystemLocation>

 @get:CompileClasspath
 @get:InputArtifactDependencies
⑤
 abstract val dependencies: FileCollection

 override
 fun transform(outputs: TransformOutputs) {
 val primaryInputFile = primaryInput.get().asFile
 if (parameters.externalClasspath.contains(primaryInputFile)) {
⑥
 outputs.file(primaryInput)
 } else {
 val baseName = primaryInputFile.name.substring(0,
primaryInputFile.name.length - 4)
 relocateJar(outputs.file("$baseName-relocated.jar"))
 }
 }

 private fun relocateJar(output: File) {
 // implementation...
 val relocatedPackages = (dependencies.flatMap { it.readPackages() } +
primaryInput.get().asFile.readPackages()).toSet()
 val nonRelocatedPackages = parameters.externalClasspath.flatMap {
it.readPackages() }
 val relocations = (relocatedPackages - nonRelocatedPackages).map {
packageName ->
 val toPackage = "relocated.$packageName"
 println("$packageName -> $toPackage")
 Relocation(packageName, toPackage)
 }
 JarRelocator(primaryInput.get().asFile, output, relocations).run()

 }
}

① Declare the transform cacheable

② Interface for the transform parameters

③ Declare input type for each parameter

④ Declare a normalization for the input artifact

⑤ Inject the input artifact dependencies

⑥ Use the parameters

Registering artifact transforms

You need to register the artifact transform actions, providing parameters if necessary, so that they
can be selected when resolving dependencies.

In order to register an artifact transform, you must use registerTransform() within the dependencies
{} block.

There are a few points to consider when using registerTransform():

• The from and to attributes are required.

• The transform action itself can have configuration options. You can configure them with the
parameters {} block.

• You must register the transform on the project that has the configuration that will be resolved.

• You can supply any type implementing TransformAction to the registerTransform() method.

For example, imagine you want to unpack some dependencies and put the unpacked directories
and files on the classpath. You can do so by registering an artifact transform action of type Unzip, as
shown here:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:registerTransform(java.lang.Class,%20org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.transform.TransformAction.html

Example 417. Artifact transform registration without parameters

build.gradle

def artifactType = Attribute.of('artifactType', String)

dependencies {
 registerTransform(Unzip) {
 from.attribute(artifactType, 'jar')
 to.attribute(artifactType, 'java-classes-directory')
 }
}

build.gradle.kts

val artifactType = Attribute.of("artifactType", String::class.java)

dependencies {
 registerTransform(Unzip::class) {
 from.attribute(artifactType, "jar")
 to.attribute(artifactType, "java-classes-directory")
 }
}

Another example is that you want to minify JARs by only keeping some class files from them. Note
the use of the parameters {} block to provide the classes to keep in the minified JARs to the Minify
transform.

Example 418. Artifact transform registration with parameters

build.gradle

def artifactType = Attribute.of('artifactType', String)
def minified = Attribute.of('minified', Boolean)
def keepPatterns = [
 "guava": [
 "com.google.common.base.Optional",
 "com.google.common.base.AbstractIterator"
] as Set
]

dependencies {
 registerTransform(Minify) {
 from.attribute(minified, false).attribute(artifactType, "jar")
 to.attribute(minified, true).attribute(artifactType, "jar")

 parameters {
 keepClassesByArtifact = keepPatterns
 }
 }
}

build.gradle.kts

val artifactType = Attribute.of("artifactType", String::class.java)
val minified = Attribute.of("minified", Boolean::class.javaObjectType)
val keepPatterns = mapOf(
 "guava" to setOf(
 "com.google.common.base.Optional",
 "com.google.common.base.AbstractIterator"
)
)

dependencies {
 registerTransform(Minify::class) {
 from.attribute(minified, false).attribute(artifactType, "jar")
 to.attribute(minified, true).attribute(artifactType, "jar")

 parameters {
 keepClassesByArtifact = keepPatterns
 }
 }
}

Implementing incremental artifact transforms

Similar to incremental tasks, artifact transforms can avoid work by only processing changed files
from the last execution. This is done by using the InputChanges interface. For artifact transforms,
only the input artifact is an incremental input, and therefore the transform can only query for
changes there. In order to use InputChanges in the transform action, inject it into the action. For
more information on how to use InputChanges, see the corresponding documentation for
incremental tasks.

Here is an example of an incremental transform that counts the lines of code in Java source files:

https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html

Example 419. Artifact transform for lines of code counting

build.gradle

abstract class CountLoc implements TransformAction<TransformParameters.None>
{

 @Inject ①
 abstract InputChanges getInputChanges()

 @PathSensitive(PathSensitivity.RELATIVE)
 @InputArtifact
 abstract Provider<FileSystemLocation> getInput()

 @Override
 void transform(TransformOutputs outputs) {
 def outputDir = outputs.dir("${input.get().asFile.name}.loc")
 println("Running transform on ${input.get().asFile.name},
incremental: ${inputChanges.incremental}")
 inputChanges.getFileChanges(input).forEach { change -> ②
 def changedFile = change.file
 if (change.fileType != FileType.FILE) {
 return
 }
 def outputLocation = new File(outputDir, "${change.
normalizedPath}.loc")
 switch (change.changeType) {
 case ADDED:
 case MODIFIED:
 println("Processing file ${changedFile.name}")
 outputLocation.parentFile.mkdirs()

 outputLocation.text = changedFile.readLines().size()

 case REMOVED:
 println("Removing leftover output file ${outputLocation
.name}")
 outputLocation.delete()

 }
 }
 }
}

build.gradle.kts

abstract class CountLoc : TransformAction<TransformParameters.None> {

 @get:Inject ①
 abstract val inputChanges: InputChanges

 @get:PathSensitive(PathSensitivity.RELATIVE)
 @get:InputArtifact
 abstract val input: Provider<FileSystemLocation>

 override
 fun transform(outputs: TransformOutputs) {
 val outputDir = outputs.dir("${input.get().asFile.name}.loc")
 println("Running transform on ${input.get().asFile.name},
incremental: ${inputChanges.isIncremental}")
 inputChanges.getFileChanges(input).forEach { change -> ②
 val changedFile = change.file
 if (change.fileType != FileType.FILE) {
 return@forEach
 }
 val outputLocation =
outputDir.resolve("${change.normalizedPath}.loc")
 when (change.changeType) {
 ChangeType.ADDED, ChangeType.MODIFIED -> {

 println("Processing file ${changedFile.name}")
 outputLocation.parentFile.mkdirs()

outputLocation.writeText(changedFile.readLines().size.toString())
 }
 ChangeType.REMOVED -> {
 println("Removing leftover output file
${outputLocation.name}")
 outputLocation.delete()
 }
 }
 }
 }
}

① Inject InputChanges

② Query for changes in the input artifact

Working in a Multi-repo Environment

Composing builds

What is a composite build?

A composite build is simply a build that includes other builds. In many ways a composite build is
similar to a Gradle multi-project build, except that instead of including single projects, complete
builds are included.

Composite builds allow you to:

• combine builds that are usually developed independently, for instance when trying out a bug fix
in a library that your application uses

• decompose a large multi-project build into smaller, more isolated chunks that can be worked in
independently or together as needed

A build that is included in a composite build is referred to, naturally enough, as an "included build".
Included builds do not share any configuration with the composite build, or the other included
builds. Each included build is configured and executed in isolation.

Included builds interact with other builds via dependency substitution. If any build in the composite
has a dependency that can be satisfied by the included build, then that dependency will be replaced
by a project dependency on the included build. Because of the reliance on dependency substitution,
composite builds may force configurations to be resolved earlier, when composing the task execution
graph. This can have a negative impact on overall build performance, because these configurations
are not resolved in parallel.

By default, Gradle will attempt to determine the dependencies that can be substituted by an
included build. However for more flexibility, it is possible to explicitly declare these substitutions if
the default ones determined by Gradle are not correct for the composite. See Declaring
substitutions.

As well as consuming outputs via project dependencies, a composite build can directly declare task
dependencies on included builds. Included builds are isolated, and are not able to declare task
dependencies on the composite build or on other included builds. See Depending on tasks in an
included build.

Defining a composite build

The following examples demonstrate the various ways that 2 Gradle builds that are normally
developed separately can be combined into a composite build. For these examples, the my-utils
multi-project build produces 2 different java libraries (number-utils and string-utils), and the my-
app build produces an executable using functions from those libraries.

The my-app build does not have direct dependencies on my-utils. Instead, it declares binary
dependencies on the libraries produced by my-utils.

Example 420. Dependencies of my-app

my-app/app/build.gradle

plugins {
 id 'application'
}

application {
 mainClass = 'org.sample.myapp.Main'
}

dependencies {
 implementation 'org.sample:number-utils:1.0'
 implementation 'org.sample:string-utils:1.0'
}

my-app/app/build.gradle.kts

plugins {
 id("application")
}

application {
 mainClass.set("org.sample.myapp.Main")
}

dependencies {
 implementation("org.sample:number-utils:1.0")
 implementation("org.sample:string-utils:1.0")
}

Defining a composite build via --include-build

The --include-build command-line argument turns the executed build into a composite,
substituting dependencies from the included build into the executed build.

Output of gradle --include-build ../my-utils run

> gradle --include-build ../my-utils run
link:https://docs.gradle.org/7.3.2/samples/build-organization/composite-
builds/basic/tests/basicCli.out[]

Defining a composite build via the settings file

It’s possible to make the above arrangement persistent, by using
Settings.includeBuild(java.lang.Object) to declare the included build in the settings.gradle (or
settings.gradle.kts in Kotlin) file. The settings file can be used to add subprojects and included
builds at the same time. Included builds are added by location. See the examples below for more
details.

Defining a separate composite build

One downside of the above approach is that it requires you to modify an existing build, rendering it
less useful as a standalone build. One way to avoid this is to define a separate composite build,
whose only purpose is to combine otherwise separate builds.

Example 421. Declaring a separate composite

settings.gradle

rootProject.name = 'my-composite'

includeBuild 'my-app'
includeBuild 'my-utils'

settings.gradle.kts

rootProject.name = "my-composite"

includeBuild("my-app")
includeBuild("my-utils")

In this scenario, the 'main' build that is executed is the composite, and it doesn’t define any useful
tasks to execute itself. In order to execute the 'run' task in the 'my-app' build, the composite build
must define a delegating task.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)

Example 422. Depending on task from included build

build.gradle

tasks.register('run') {
 dependsOn gradle.includedBuild('my-app').task(':app:run')
}

build.gradle.kts

tasks.register("run") {
 dependsOn(gradle.includedBuild("my-app").task(":app:run"))
}

More details about tasks that depend on included build tasks are below.

Including builds that define Gradle plugins

A special case of included builds are builds that define Gradle plugins. These builds should be
included using the includeBuild statement inside the pluginManagement {} block of the settings file.
Using this mechanism, the included build may also contribute a settings plugin that can be applied
in the settings file itself.

Example 423. Including a plugin build

settings.gradle

pluginManagement {
 includeBuild '../url-verifier-plugin'
}

settings.gradle.kts

pluginManagement {
 includeBuild("../url-verifier-plugin")
}

NOTE

Including plugin builds via the plugin management block is an incubating feature.
You may also use the stable includeBuild mechanism outside pluginManagement to
include plugin builds. However, this does not support all use cases and including
plugin builds like that will be deprecated once the new mechanism is stable.

Restrictions on included builds

Most builds can be included into a composite, including other composite builds. However there are
some limitations.

Every included build:

• must not have a rootProject.name the same as another included build.

• must not have a rootProject.name the same as a top-level project of the composite build.

• must not have a rootProject.name the same as the composite build rootProject.name.

Interacting with a composite build

In general, interacting with a composite build is much the same as a regular multi-project build.
Tasks can be executed, tests can be run, and builds can be imported into the IDE.

Executing tasks

Tasks from the composite build can be executed from the command-line or from your IDE.
Executing a task will result in direct task dependencies being executed, as well as those tasks
required to build dependency artifacts from included builds.

You call a task in an included build using a fully qualified path, which usually is :included-build-
name:subproject-name:taskName. Subproject and task names can be abbreviated. This is not
supported for included build names.

$./gradlew :included-build:subproject-a:compileJava
> Task :included-build:subproject-a:compileJava

$./gradlew :included-build:sA:cJ
> Task :included-build:subproject-a:compileJava

To exclude a task from the command line, you also need to provide the fully qualified path to the
task.

NOTE
Included build tasks are automatically executed in order to generate required
dependency artifacts, or the including build can declare a dependency on a task
from an included build.

Importing into the IDE

One of the most useful features of composite builds is IDE integration. By applying the idea or
eclipse plugin to your build, it is possible to generate a single IDEA or Eclipse project that permits

all builds in the composite to be developed together.

In addition to these Gradle plugins, recent versions of IntelliJ IDEA and Eclipse Buildship support
direct import of a composite build.

Importing a composite build permits sources from separate Gradle builds to be easily developed
together. For every included build, each sub-project is included as an IDEA Module or Eclipse
Project. Source dependencies are configured, providing cross-build navigation and refactoring.

Declaring the dependencies substituted by an included build

By default, Gradle will configure each included build in order to determine the dependencies it can
provide. The algorithm for doing this is very simple: Gradle will inspect the group and name for the
projects in the included build, and substitute project dependencies for any external dependency
matching ${project.group}:${project.name}.

NOTE

By default, substitutions are not registered for the main build. To make the
(sub)projects of the main build addressable by ${project.group}:${project.name},
you can tell Gradle to treat the main build like an included build by self-including it:
includeBuild(".").

There are cases when the default substitutions determined by Gradle are not sufficient, or they are
not correct for a particular composite. For these cases it is possible to explicitly declare the
substitutions for an included build. Take for example a single-project build 'anonymous-library',
that produces a java utility library but does not declare a value for the group attribute:

Example 424. Build that does not declare group attribute

build.gradle

plugins {
 id 'java'
}

build.gradle.kts

plugins {
 java
}

When this build is included in a composite, it will attempt to substitute for the dependency module
"undefined:anonymous-library" ("undefined" being the default value for project.group, and
"anonymous-library" being the root project name). Clearly this isn’t going to be very useful in a
composite build. To use the unpublished library unmodified in a composite build, the composing
build can explicitly declare the substitutions that it provides:

https://www.jetbrains.com/idea/
https://projects.eclipse.org/projects/tools.buildship

Example 425. Declaring the substitutions for an included build

settings.gradle

rootProject.name = 'declared-substitution'

include 'app'

// tag::composite_substitution[]
includeBuild('anonymous-library') {
 dependencySubstitution {
 substitute module('org.sample:number-utils') using project(':')
 }
}
// end::composite_substitution[]

settings.gradle.kts

rootProject.name = "declared-substitution"

include("app")

// tag::composite_substitution[]
includeBuild("anonymous-library") {
 dependencySubstitution {
 substitute(module("org.sample:number-utils")).using(project(":"))
 }
}
// end::composite_substitution[]

With this configuration, the "my-app" composite build will substitute any dependency on
org.sample:number-utils with a dependency on the root project of "anonymous-library".

Cases where included build substitutions must be declared

Many builds will function automatically as an included build, without declared substitutions. Here
are some common cases where declared substitutions are required:

• When the archivesBaseName property is used to set the name of the published artifact.

• When a configuration other than default is published.

• When the MavenPom.addFilter() is used to publish artifacts that don’t match the project name.

• When the maven-publish or ivy-publish plugins are used for publishing, and the publication
coordinates don’t match ${project.group}:${project.name}.

Cases where composite build substitutions won’t work

Some builds won’t function correctly when included in a composite, even when dependency
substitutions are explicitly declared. This limitation is due to the fact that a project dependency that
is substituted will always point to the default configuration of the target project. Any time that the
artifacts and dependencies specified for the default configuration of a project don’t match what is
actually published to a repository, then the composite build may exhibit different behaviour.

Here are some cases where the publish module metadata may be different from the project default
configuration:

• When a configuration other than default is published.

• When the maven-publish or ivy-publish plugins are used.

• When the POM or ivy.xml file is tweaked as part of publication.

Builds using these features function incorrectly when included in a composite build. We plan to
improve this in the future.

Depending on tasks in an included build

While included builds are isolated from one another and cannot declare direct dependencies, a
composite build is able to declare task dependencies on its included builds. The included builds are
accessed using Gradle.getIncludedBuilds() or Gradle.includedBuild(java.lang.String), and a task
reference is obtained via the IncludedBuild.task(java.lang.String) method.

Using these APIs, it is possible to declare a dependency on a task in a particular included build, or
tasks with a certain path in all or some of the included builds.

Example 426. Depending on a single task from an included build

build.gradle

tasks.register('run') {
 dependsOn gradle.includedBuild('my-app').task(':app:run')
}

build.gradle.kts

tasks.register("run") {
 dependsOn(gradle.includedBuild("my-app").task(":app:run"))
}

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuild(java.lang.String)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.IncludedBuild.html#org.gradle.api.initialization.IncludedBuild:task(java.lang.String)

Example 427. Depending on a task with path in all included builds

build.gradle

tasks.register('publishDeps') {
 dependsOn gradle.includedBuilds*.task(
':publishIvyPublicationToIvyRepository')
}

build.gradle.kts

tasks.register("publishDeps") {
 dependsOn(gradle.includedBuilds.map {
it.task(":publishMavenPublicationToMavenRepository") })
}

Current limitations and future plans for composite builds

Limitations of the current implementation include:

• No support for included builds that have publications that don’t mirror the project default
configuration. See Cases where composite builds won’t work.

• Software model based native builds are not supported. (Binary dependencies are not yet
supported for native builds).

• Multiple composite builds may conflict when run in parallel, if more than one includes the same
build. Gradle does not share the project lock of a shared composite build to between Gradle
invocation to prevent concurrent execution.

Improvements we have planned for upcoming releases include:

• Making the implicit buildSrc project an included build.

Publishing Libraries

Publishing a project as module

The vast majority of software projects build something that aims to be consumed in some way. It
could be a library that other software projects use or it could be an application for end users.
Publishing is the process by which the thing being built is made available to consumers.

In Gradle, that process looks like this:

1. Define what to publish

2. Define where to publish it to

3. Do the publishing

Each of the these steps is dependent on the type of repository to which you want to publish
artifacts. The two most common types are Maven-compatible and Ivy-compatible repositories, or
Maven and Ivy repositories for short.

As of Gradle 6.0, the Gradle Module Metadata will always be published alongside the Ivy XML or
Maven POM metadata file.

Gradle makes it easy to publish to these types of repository by providing some prepackaged
infrastructure in the form of the Maven Publish Plugin and the Ivy Publish Plugin. These plugins
allow you to configure what to publish and perform the publishing with a minimum of effort.

Figure 24. The publishing process

Let’s take a look at those steps in more detail:

What to publish

Gradle needs to know what files and information to publish so that consumers can use your
project. This is typically a combination of artifacts and metadata that Gradle calls a publication.
Exactly what a publication contains depends on the type of repository it’s being published to.

For example, a publication destined for a Maven repository includes:

• One or more artifacts — typically built by the project,

• The Gradle Module Metadata file which will describe the variants of the published
component,

• The Maven POM file will identify the primary artifact and its dependencies. The primary
artifact is typically the project’s production JAR and secondary artifacts might consist of "-
sources" and "-javadoc" JARs.

In addition, Gradle will publish checksums for all of the above, and signatures when configured
to do so. From Gradle 6.0 onwards, this includes SHA256 and SHA512 checksums.

Where to publish

Gradle needs to know where to publish artifacts so that consumers can get hold of them. This is
done via repositories, which store and make available all sorts of artifact. Gradle also needs to

interact with the repository, which is why you must provide the type of the repository and its
location.

How to publish

Gradle automatically generates publishing tasks for all possible combinations of publication and
repository, allowing you to publish any artifact to any repository. If you’re publishing to a Maven
repository, the tasks are of type PublishToMavenRepository, while for Ivy repositories the tasks
are of type PublishToIvyRepository.

What follows is a practical example that demonstrates the entire publishing process.

Setting up basic publishing

The first step in publishing, irrespective of your project type, is to apply the appropriate publishing
plugin. As mentioned in the introduction, Gradle supports both Maven and Ivy repositories via the
following plugins:

• Maven Publish Plugin

• Ivy Publish Plugin

These provide the specific publication and repository classes needed to configure publishing for the
corresponding repository type. Since Maven repositories are the most commonly used ones, they
will be the basis for this example and for the other samples in the chapter. Don’t worry, we will
explain how to adjust individual samples for Ivy repositories.

Let’s assume we’re working with a simple Java library project, so only the following plugins are
applied:

Example 428. Applying the necessary plugins

build.gradle

plugins {
 id 'java-library'
 id 'maven-publish'
}

build.gradle.kts

plugins {
 `java-library`
 `maven-publish`
}

Once the appropriate plugin has been applied, you can configure the publications and repositories.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

For this example, we want to publish the project’s production JAR file — the one produced by the
jar task — to a custom, Maven repository. We do that with the following publishing {} block, which
is backed by PublishingExtension:

Example 429. Configuring a Java library for publishing

build.gradle

group = 'org.example'
version = '1.0'

publishing {
 publications {
 myLibrary(MavenPublication) {
 from components.java
 }
 }

 repositories {
 maven {
 name = 'myRepo'
 url = layout.buildDirectory.dir("repo")
 }
 }
}

build.gradle.kts

group = "org.example"
version = "1.0"

publishing {
 publications {
 create<MavenPublication>("myLibrary") {
 from(components["java"])
 }
 }

 repositories {
 maven {
 name = "myRepo"
 url = uri(layout.buildDirectory.dir("repo"))
 }
 }
}

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.PublishingExtension.html

This defines a publication called "myLibrary" that can be published to a Maven repository by virtue
of its type: MavenPublication. This publication consists of just the production JAR artifact and its
metadata, which combined are represented by the java component of the project.

NOTE

Components are the standard way of defining a publication. They are provided by
plugins, usually of the language or platform variety. For example, the Java Plugin
defines the components.java SoftwareComponent, while the War Plugin defines
components.web.

The example also defines a file-based Maven repository with the name "myRepo". Such a file-based
repository is convenient for a sample, but real-world builds typically work with HTTPS-based
repository servers, such as Maven Central or an internal company server.

NOTE
You may define one, and only one, repository without a name. This translates to an
implicit name of "Maven" for Maven repositories and "Ivy" for Ivy repositories. All
other repository definitions must be given an explicit name.

In combination with the project’s group and version, the publication and repository definitions
provide everything that Gradle needs to publish the project’s production JAR. Gradle will then
create a dedicated publishMyLibraryPublicationToMyRepoRepository task that does just that. Its name
is based on the template publishPubNamePublicationToRepoNameRepository. See the appropriate
publishing plugin’s documentation for more details on the nature of this task and any other tasks
that may be available to you.

You can either execute the individual publishing tasks directly, or you can execute publish, which
will run all the available publishing tasks. In this example, publish will just run
publishMyLibraryPublicationToMavenRepository.

NOTE

Basic publishing to an Ivy repository is very similar: you simply use the Ivy Publish
Plugin, replace MavenPublication with IvyPublication, and use ivy instead of maven in
the repository definition.

There are differences between the two types of repository, particularly around the
extra metadata that each support — for example, Maven repositories require a POM
file while Ivy ones have their own metadata format — so see the plugin chapters for
comprehensive information on how to configure both publications and repositories
for whichever repository type you’re working with.

That’s everything for the basic use case. However, many projects need more control over what gets
published, so we look at several common scenarios in the following sections.

Suppressing validation errors

Gradle performs validation of generated module metadata. In some cases, validation can fail,
indicating that you most likely have an error to fix, but you may have done something intentionally.
If this is the case, Gradle will indicate the name of the validation error you can disable on the
GenerateModuleMetadata tasks:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.MavenPublication.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/component/SoftwareComponent.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyPublication.html

Example 430. Disabling some validation errors

build.gradle

tasks.withType(GenerateModuleMetadata).configureEach {
 // The value 'enforced-platform' is provided in the validation
 // error message you got
 suppressedValidationErrors.add('enforced-platform')
}

build.gradle.kts

tasks.withType<GenerateModuleMetadata> {
 // The value 'enforced-platform' is provided in the validation
 // error message you got
 suppressedValidationErrors.add("enforced-platform")
}

Understanding Gradle Module Metadata

Gradle Module Metadata is a format used to serialize the Gradle component model. It is similar to
Apache Maven™'s POM file or Apache Ivy™ ivy.xml files. The goal of metadata files is to provide to
consumers a reasonable model of what is published on a repository.

Gradle Module Metadata is a unique format aimed at improving dependency resolution by making
it multi-platform and variant-aware.

In particular, Gradle Module Metadata supports:

• rich version constraints

• dependency constraints

• component capabilities

• variant-aware resolution

Publication of Gradle Module Metadata will enable better dependency management for your
consumers:

• early discovery of problems by detecting incompatible modules

• consistent selection of platform-specific dependencies

• native dependency version alignment

• automatically getting dependencies for specific features of your library

Gradle Module Metadata is automatically published when using the Maven Publish plugin or the

https://maven.apache.org/pom.html
https://ant.apache.org/ivy/

Ivy Publish plugin.

The specification for Gradle Module Metadata can be found here.

Mapping with other formats

Gradle Module Metadata is automatically published on Maven or Ivy repositories. However, it
doesn’t replace the pom.xml or ivy.xml files: it is published alongside those files. This is done to
maximize compatibility with third-party build tools.

Gradle does its best to map Gradle-specific concepts to Maven or Ivy. When a build file uses features
that can only be represented in Gradle Module Metadata, Gradle will warn you at publication time.
The table below summarizes how some Gradle specific features are mapped to Maven and Ivy:

Table 21. Mapping of Gradle specific concepts to Maven and Ivy

Gradle Maven Ivy Description

dependency constraints <dependencyManagement>
dependencies

Not published Gradle dependency
constraints are
transitive, while
Maven’s dependency
management block isn’t

rich version constraints Publishes the requires
version

Published the requires
version

component capabilities Not published Not published Component capabilities
are unique to Gradle

Feature variants Variant artifacts are
uploaded,
dependencies are
published as optional
dependencies

Variant artifacts are
uploaded,
dependencies are not
published

Feature variants are a
good replacement for
optional dependencies

Custom component
types

Artifacts are uploaded,
dependencies are those
described by the
mapping

Artifacts are uploaded,
dependencies are
ignored

Custom component
types are probably not
consumable from
Maven or Ivy in any
case. They usually exist
in the context of a
custom ecosystem.

Disabling metadata compatibility publication warnings

If you want to suppress warnings, you can use the following APIs to do so:

• For Maven, see the suppress* methods in MavenPublication

• For Ivy, see the suppress* methods in IvyPublication

https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:suppressAllPomMetadataWarnings()
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:suppressAllIvyMetadataWarnings()

Example 431. Disabling publication warnings

build.gradle

 publications {
 maven(MavenPublication) {
 from components.java
 suppressPomMetadataWarningsFor('runtimeElements')
 }
 }

build.gradle.kts

 publications {
 register<MavenPublication>("maven") {
 from(components["java"])
 suppressPomMetadataWarningsFor("runtimeElements")
 }
 }

Interactions with other build tools

Because Gradle Module Metadata is not widely spread and because it aims at maximizing
compatibility with other tools, Gradle does a couple of things:

• Gradle Module Metadata is systematically published alongside the normal descriptor for a given
repository (Maven or Ivy)

• the pom.xml or ivy.xml file will contain a marker comment which tells Gradle that Gradle Module
Metadata exists for this module

The goal of the marker is not for other tools to parse module metadata: it’s for Gradle users only. It
explains to Gradle that a better module metadata file exists and that it should use it instead. It
doesn’t mean that consumption from Maven or Ivy would be broken either, only that it works in
degraded mode.

NOTE

This must be seen as a performance optimization: instead of having to do 2 network
requests, one to get Gradle Module Metadata, then one to get the POM/Ivy file in
case of a miss, Gradle will first look at the file which is most likely to be present,
then only perform a 2nd request if the module was actually published with Gradle
Module Metadata.

If you know that the modules you depend on are always published with Gradle Module Metadata,
you can optimize the network calls by configuring the metadata sources for a repository:

Example 432. Resolving Gradle Module Metadata only

build.gradle

 repositories {
 maven {
 url "http://repo.mycompany.com/repo"
 metadataSources {
 gradleMetadata()
 }
 }
 }

build.gradle.kts

 repositories {
 maven {
 setUrl("http://repo.mycompany.com/repo")
 metadataSources {
 gradleMetadata()
 }
 }
 }

Gradle Module Metadata validation

Gradle Module Metadata is validated before being published.

The following rules are enforced:

• Variant names must be unique,

• Each variant must have at least one attribute,

• Two variants cannot have the exact same attributes and capabilities,

• If there are dependencies, at least one, across all variants, must carry version information.

These rules ensure the quality of the metadata produced, and help confirm that consumption will
not be problematic.

Gradle Module Metadata reproducibility

The task generating the module metadata files is currently never marked UP-TO-DATE by Gradle due
to the way it is implemented. However, if neither build inputs nor build scripts changed, the task
result is effectively up-to-date: it always produces the same output.

If users desire to have a unique module file per build invocation, it is possible to link an identifier in
the produced metadata to the build that created it. Users can choose to enable this unique identifier
in their publication:

Example 433. Configuring the build identifier of a publication

build.gradle

publishing {
 publications {
 myLibrary(MavenPublication) {
 from components.java
 withBuildIdentifier()
 }
 }
}

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("myLibrary") {
 from(components["java"])
 withBuildIdentifier()
 }
 }
}

With the changes above, the generated Gradle Module Metadata file will always be different,
forcing downstream tasks to consider it out-of-date.

Disabling Gradle Module Metadata publication

There are situations where you might want to disable publication of Gradle Module Metadata:

• the repository you are uploading to rejects the metadata file (unknown format)

• you are using Maven or Ivy specific concepts which are not properly mapped to Gradle Module
Metadata

In this case, disabling the publication of Gradle Module Metadata is done simply by disabling the
task which generates the metadata file:

Example 434. Disabling publication of Gradle Module Metadata

build.gradle

 tasks.withType(GenerateModuleMetadata) {
 enabled = false
 }

build.gradle.kts

 tasks.withType<GenerateModuleMetadata> {
 enabled = false
 }

Signing artifacts

The Signing Plugin can be used to sign all artifacts and metadata files that make up a publication,
including Maven POM files and Ivy module descriptors. In order to use it:

1. Apply the Signing Plugin

2. Configure the signatory credentials — follow the link to see how

3. Specify the publications you want signed

Here’s an example that configures the plugin to sign the mavenJava publication:

Example 435. Signing a publication

build.gradle

signing {
 sign publishing.publications.mavenJava
}

build.gradle.kts

signing {
 sign(publishing.publications["mavenJava"])
}

This will create a Sign task for each publication you specify and wire all publish
PubNamePublicationToRepoNameRepository tasks to depend on it. Thus, publishing any publication will
automatically create and publish the signatures for its artifacts and metadata, as you can see from
this output:

Example: Sign and publish a project

Output of gradle publish

> gradle publish
> Task :compileJava
> Task :processResources
> Task :classes
> Task :jar
> Task :javadoc
> Task :javadocJar
> Task :sourcesJar
> Task :generateMetadataFileForMavenJavaPublication
> Task :generatePomFileForMavenJavaPublication
> Task :signMavenJavaPublication
> Task :publishMavenJavaPublicationToMavenRepository
> Task :publish

BUILD SUCCESSFUL in 0s
10 actionable tasks: 10 executed

Customizing publishing

Modifying and adding variants to existing components for publishing

Gradle’s publication model is based on the notion of components, which are defined by plugins. For
example, the Java Library plugin defines a java component which corresponds to a library, but the
Java Platform plugin defines another kind of component, named javaPlatform, which is effectively a
different kind of software component (a platform).

Sometimes we want to add more variants to or modify existing variants of an existing component.
For example, if you added a variant of a Java library for a different platform, you may just want to
declare this additional variant on the java component itself. In general, declaring additional
variants is often the best solution to publish additional artifacts.

To perform such additions or modifications, the AdhocComponentWithVariants interface declares two
methods called addVariantsFromConfiguration and withVariantsFromConfiguration which accept two
parameters:

• the outgoing configuration that is used as a variant source

• a customization action which allows you to filter which variants are going to be published

To utilise these methods, you must make sure that the SoftwareComponent you work with is itself an
AdhocComponentWithVariants, which is the case for the components created by the Java plugins (Java,

Java Library, Java Platform). Adding a variant is then very simple:

Example 436. Adding a variant to an existing software component

InstrumentedJarsPlugin.groovy

 AdhocComponentWithVariants javaComponent =
(AdhocComponentWithVariants) project.components.findByName("java")
 javaComponent.addVariantsFromConfiguration(outgoing) {
 // dependencies for this variant are considered runtime
dependencies
 it.mapToMavenScope("runtime")
 // and also optional dependencies, because we don't want them to
leak
 it.mapToOptional()
 }

InstrumentedJarsPlugin.kt

 val javaComponent = components.findByName("java") as
AdhocComponentWithVariants
 javaComponent.addVariantsFromConfiguration(outgoing) {
 // dependencies for this variant are considered runtime
dependencies
 mapToMavenScope("runtime")
 // and also optional dependencies, because we don't want them to
leak
 mapToOptional()
 }

In other cases, you might want to modify a variant that was added by one of the Java plugins
already. For example, if you activate publishing of Javadoc and sources, these become additional
variants of the java component. If you only want to publish one of them, e.g. only Javadoc but no
sources, you can modify the sources variant to not being published:

Example 437. Publish a java library with Javadoc but without sources

build.gradle

java {
 withJavadocJar()
 withSourcesJar()
}

components.java.withVariantsFromConfiguration(configurations.sourcesElements)
{
 skip()
}

publishing {
 publications {
 mavenJava(MavenPublication) {
 from components.java
 }
 }
}

build.gradle.kts

java {
 withJavadocJar()
 withSourcesJar()
}

val javaComponent = components["java"] as AdhocComponentWithVariants
javaComponent.withVariantsFromConfiguration(configurations["sourcesElements"]
) {
 skip()
}

publishing {
 publications {
 create<MavenPublication>("mavenJava") {
 from(components["java"])
 }
 }
}

Creating and publishing custom components

In the previous example, we have demonstrated how to extend or modify an existing component,
like the components provided by the Java plugins. But Gradle also allows you to build a custom
component (not a Java Library, not a Java Platform, not something supported natively by Gradle).

To create a custom component, you first need to create an empty adhoc component. At the moment,
this is only possible via a plugin because you need to get a handle on the
SoftwareComponentFactory :

Example 438. Injecting the software component factory

InstrumentedJarsPlugin.groovy

 private final SoftwareComponentFactory softwareComponentFactory

 @Inject
 InstrumentedJarsPlugin(SoftwareComponentFactory softwareComponentFactory)
{
 this.softwareComponentFactory = softwareComponentFactory
 }

InstrumentedJarsPlugin.kt

class InstrumentedJarsPlugin @Inject constructor(
 private val softwareComponentFactory: SoftwareComponentFactory) :
Plugin<Project> {

Declaring what a custom component publishes is still done via the AdhocComponentWithVariants
API. For a custom component, the first step is to create custom outgoing variants, following the
instructions in this chapter. At this stage, what you should have is variants which can be used in
cross-project dependencies, but that we are now going to publish to external repositories.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/component/SoftwareComponentFactory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/component/AdhocComponentWithVariants.html

Example 439. Creating a custom, adhoc component

InstrumentedJarsPlugin.groovy

 // create an adhoc component
 def adhocComponent = softwareComponentFactory.adhoc("
myAdhocComponent")
 // add it to the list of components that this project declares
 project.components.add(adhocComponent)
 // and register a variant for publication
 adhocComponent.addVariantsFromConfiguration(outgoing) {
 it.mapToMavenScope("runtime")
 }

InstrumentedJarsPlugin.kt

 // create an adhoc component
 val adhocComponent =
softwareComponentFactory.adhoc("myAdhocComponent")
 // add it to the list of components that this project declares
 components.add(adhocComponent)
 // and register a variant for publication
 adhocComponent.addVariantsFromConfiguration(outgoing) {
 mapToMavenScope("runtime")
 }

First we use the factory to create a new adhoc component. Then we add a variant through the
addVariantsFromConfiguration method, which is described in more detail in the previous section.

In simple cases, there’s a one-to-one mapping between a Configuration and a variant, in which case
you can publish all variants issued from a single Configuration because they are effectively the
same thing. However, there are cases where a Configuration is associated with additional
configuration publications that we also call secondary variants. Such configurations make sense in
the cross-project publications use case, but not when publishing externally. This is for example the
case when between projects you share a directory of files, but there’s no way you can publish a
directory directly on a Maven repository (only packaged things like jars or zips). Look at the
ConfigurationVariantDetails class for details about how to skip publication of a particular variant. If
addVariantsFromConfiguration has already been called for a configuration, further modification of
the resulting variants can be performed using withVariantsFromConfiguration.

When publishing an adhoc component like this:

• Gradle Module Metadata will exactly represent the published variants. In particular, all
outgoing variants will inherit dependencies, artifacts and attributes of the published
configuration.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/ConfigurationPublications.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/component/ConfigurationVariantDetails.html

• Maven and Ivy metadata files will be generated, but you need to declare how the dependencies
are mapped to Maven scopes via the ConfigurationVariantDetails class.

In practice, it means that components created this way can be consumed by Gradle the same way as
if they were "local components".

Adding custom artifacts to a publication

WARNING

Instead of thinking in terms of artifacts, you should embrace the variant aware
model of Gradle. It is expected that a single module may need multiple
artifacts. However this rarely stops there, if the additional artifacts represent
an optional feature, they might also have different dependencies and more.

Gradle, via Gradle Module Metadata, supports the publication of additional
variants which make those artifacts known to the dependency resolution
engine. Please refer to the variant-aware sharing section of the documentation
to see how to declare such variants and check out how to publish custom
components.

If you attach extra artifacts to a publication directly, they are published "out of
context". That means, they are not referenced in the metadata at all and can
then only be addressed directly through a classifier on a dependency. In
contrast to Gradle Module Metadata, Maven pom metadata will not contain
information on additional artifacts regardless of whether they are added
through a variant or directly, as variants cannot be represented in the pom
format.

The following section describes how you publish artifacts directly if you are sure that metadata, for
example Gradle or POM metadata, is irrelevant for your use case. For example, if your project
doesn’t need to be consumed by other projects and the only thing required as result of the
publishing are the artifacts themselves.

In general, there are two options:

• Create a publication only with artifacts

• Add artifacts to a publication based on a component with metadata (not recommended, instead
adjust a component or use a adhoc component publication which will both also produce
metadata fitting your artifacts)

To create a publication based on artifacts, start by defining a custom artifact and attaching it to a
Gradle configuration of your choice. The following sample defines an RPM artifact that is produced
by an rpm task (not shown) and attaches that artifact to the archives configuration:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/component/ConfigurationVariantDetails.html

Example 440. Defining a custom artifact for a configuration

build.gradle

def rpmFile = layout.buildDirectory.file('rpms/my-package.rpm')
def rpmArtifact = artifacts.add('archives', rpmFile.get().asFile) {
 type 'rpm'
 builtBy 'rpm'
}

build.gradle.kts

val rpmFile = layout.buildDirectory.file("rpms/my-package.rpm")
val rpmArtifact = artifacts.add("archives", rpmFile.get().asFile) {
 type = "rpm"
 builtBy("rpm")
}

The artifacts.add() method — from ArtifactHandler — returns an artifact object of type
PublishArtifact that can then be used in defining a publication, as shown in the following sample:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.dsl.ArtifactHandler.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/artifacts/PublishArtifact.html

Example 441. Attaching a custom PublishArtifact to a publication

build.gradle

publishing {
 publications {
 maven(MavenPublication) {
 artifact rpmArtifact
 }
 }
}

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("maven") {
 artifact(rpmArtifact)
 }
 }
}

• The artifact() method accepts publish artifacts as argument — like rpmArtifact in the sample —
as well as any type of argument accepted by Project.file(java.lang.Object), such as a File
instance, a string file path or a archive task.

• Publishing plugins support different artifact configuration properties, so always check the
plugin documentation for more details. The classifier and extension properties are supported
by both the Maven Publish Plugin and the Ivy Publish Plugin.

• Custom artifacts need to be distinct within a publication, typically via a unique combination of
classifier and extension. See the documentation for the plugin you’re using for the precise
requirements.

• If you use artifact() with an archive task, Gradle automatically populates the artifact’s
metadata with the classifier and extension properties from that task.

Now you can publish the RPM.

If you really want to add an artifact to a publication based on a component, instead of adjusting the
component itself, you can combine the from components.someComponent and artifact someArtifact
notations.

Restricting publications to specific repositories

When you have defined multiple publications or repositories, you often want to control which
publications are published to which repositories. For instance, consider the following sample that

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

defines two publications — one that consists of just a binary and another that contains the binary
and associated sources — and two repositories — one for internal use and one for external
consumers:

Example 442. Adding multiple publications and repositories

build.gradle

publishing {
 publications {
 binary(MavenPublication) {
 from components.java
 }
 binaryAndSources(MavenPublication) {
 from components.java
 artifact sourcesJar
 }
 }
 repositories {
 // change URLs to point to your repos, e.g. http://my.org/repo
 maven {
 name = 'external'
 url = layout.buildDirectory.dir('repos/external')
 }
 maven {
 name = 'internal'
 url = layout.buildDirectory.dir('repos/internal')
 }
 }
}

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("binary") {
 from(components["java"])
 }
 create<MavenPublication>("binaryAndSources") {
 from(components["java"])
 artifact(tasks["sourcesJar"])
 }
 }
 repositories {
 // change URLs to point to your repos, e.g. http://my.org/repo
 maven {
 name = "external"
 url = uri(layout.buildDirectory.dir("repos/external"))
 }
 maven {
 name = "internal"
 url = uri(layout.buildDirectory.dir("repos/internal"))
 }
 }
}

The publishing plugins will create tasks that allow you to publish either of the publications to either
repository. They also attach those tasks to the publish aggregate task. But let’s say you want to
restrict the binary-only publication to the external repository and the binary-with-sources
publication to the internal one. To do that, you need to make the publishing conditional.

Gradle allows you to skip any task you want based on a condition via the
Task.onlyIf(org.gradle.api.specs.Spec) method. The following sample demonstrates how to
implement the constraints we just mentioned:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:onlyIf(org.gradle.api.specs.Spec)

Example 443. Configuring which artifacts should be published to which repositories

build.gradle

tasks.withType(PublishToMavenRepository) {
 onlyIf {
 (repository == publishing.repositories.external &&
 publication == publishing.publications.binary) ||
 (repository == publishing.repositories.internal &&
 publication == publishing.publications.binaryAndSources)
 }
}
tasks.withType(PublishToMavenLocal) {
 onlyIf {
 publication == publishing.publications.binaryAndSources
 }
}

build.gradle.kts

tasks.withType<PublishToMavenRepository>().configureEach {
 onlyIf {
 (repository == publishing.repositories["external"] &&
 publication == publishing.publications["binary"]) ||
 (repository == publishing.repositories["internal"] &&
 publication == publishing.publications["binaryAndSources"])
 }
}
tasks.withType<PublishToMavenLocal>().configureEach {
 onlyIf {
 publication == publishing.publications["binaryAndSources"]
 }
}

Output of gradle publish

> gradle publish
> Task :compileJava
> Task :processResources
> Task :classes
> Task :jar
> Task :generateMetadataFileForBinaryAndSourcesPublication
> Task :generatePomFileForBinaryAndSourcesPublication
> Task :sourcesJar
> Task :publishBinaryAndSourcesPublicationToExternalRepository SKIPPED
> Task :publishBinaryAndSourcesPublicationToInternalRepository
> Task :generateMetadataFileForBinaryPublication
> Task :generatePomFileForBinaryPublication
> Task :publishBinaryPublicationToExternalRepository
> Task :publishBinaryPublicationToInternalRepository SKIPPED
> Task :publish

BUILD SUCCESSFUL in 0s
10 actionable tasks: 10 executed

You may also want to define your own aggregate tasks to help with your workflow. For example,
imagine that you have several publications that should be published to the external repository. It
could be very useful to publish all of them in one go without publishing the internal ones.

The following sample demonstrates how you can do this by defining an aggregate task
— publishToExternalRepository — that depends on all the relevant publish tasks:

Example 444. Defining your own shorthand tasks for publishing

build.gradle

tasks.register('publishToExternalRepository') {
 group = 'publishing'
 description = 'Publishes all Maven publications to the external Maven
repository.'
 dependsOn tasks.withType(PublishToMavenRepository).matching {
 it.repository == publishing.repositories.external
 }
}

build.gradle.kts

tasks.register("publishToExternalRepository") {
 group = "publishing"
 description = "Publishes all Maven publications to the external Maven
repository."
 dependsOn(tasks.withType<PublishToMavenRepository>().matching {
 it.repository == publishing.repositories["external"]
 })
}

This particular sample automatically handles the introduction or removal of the relevant
publishing tasks by using TaskCollection.withType(java.lang.Class) with the
PublishToMavenRepository task type. You can do the same with PublishToIvyRepository if you’re
publishing to Ivy-compatible repositories.

Configuring publishing tasks

The publishing plugins create their non-aggregate tasks after the project has been evaluated, which
means you cannot directly reference them from your build script. If you would like to configure
any of these tasks, you should use deferred task configuration. This can be done in a number of
ways via the project’s tasks collection.

For example, imagine you want to change where the generatePomFileForPubNamePublication tasks
write their POM files. You can do this by using the TaskCollection.withType(java.lang.Class) method,
as demonstrated by this sample:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskCollection.html#withType-java.lang.Class-
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskCollection.html#withType-java.lang.Class-

Example 445. Configuring a dynamically named task created by the publishing plugins

build.gradle

tasks.withType(GenerateMavenPom).all {
 def matcher = name =~ /generatePomFileFor(\w+)Publication/
 def publicationName = matcher[0][1]
 destination = layout.buildDirectory.file("poms/${publicationName}-
pom.xml").get().asFile
}

build.gradle.kts

tasks.withType<GenerateMavenPom>().configureEach {
 val matcher =
Regex("""generatePomFileFor(\w+)Publication""").matchEntire(name)
 val publicationName = matcher?.let { it.groupValues[1] }
 destination = layout.buildDirectory.file("poms/${publicationName}-
pom.xml").get().asFile
}

The above sample uses a regular expression to extract the name of the publication from the name
of the task. This is so that there is no conflict between the file paths of all the POM files that might
be generated. If you only have one publication, then you don’t have to worry about such conflicts
since there will only be one POM file.

Dependency Management Terminology

Dependency management comes with a wealth of terminology. Here you can find the most
commonly-used terms including references to the user guide to learn about their practical
application.

Artifact

A file or directory produced by a build, such as a JAR, a ZIP distribution, or a native executable.

Artifacts are typically designed to be used or consumed by users or other projects, or deployed to
hosting systems. In such cases, the artifact is a single file. Directories are common in the case of
inter-project dependencies to avoid the cost of producing the publishable artifact.

Capability

A capability identifies a feature offered by one or multiple components. A capability is identified by
coordinates similar to the coordinates used for module versions. By default, each module version
offers a capability that matches its coordinates, for example com.google:guava:18.0. Capabilities can

be used to express that a component provides multiple feature variants or that two different
components implement the same feature (and thus cannot be used together). For more details, see
the section on capabilities.

Component

Any single version of a module.

For external libraries, the term component refers to one published version of the library.

In a build, components are defined by plugins (e.g. the Java Library plugin) and provide a simple
way to define a publication for publishing. They comprise artifacts as well as the appropriate
metadata that describes a component’s variants in detail. For example, the java component in its
default setup consists of a JAR — produced by the jar task — and the dependency information of
the Java api and runtime variants. It may also define additional variants, for example sources and
Javadoc, with the corresponding artifacts.

Configuration

A configuration is a named set of dependencies grouped together for a specific goal. Configurations
provide access to the underlying, resolved modules and their artifacts. For more information, see
the sections on dependency configurations as well as resolvable and consumable configurations.

NOTE
The word "configuration" is an overloaded term and has a different meaning
outside of the context of dependency management.

Dependency

A dependency is a pointer to another piece of software required to build, test or run a module. For
more information, see the section on declaring dependencies.

Dependency constraint

A dependency constraint defines requirements that need to be met by a module to make it a valid
resolution result for the dependency. For example, a dependency constraint can narrow down the
set of supported module versions. Dependency constraints can be used to express such
requirements for transitive dependencies. For more information, see the sections on upgrading and
downgrading transitive dependencies.

Feature Variant

A feature variant is a variant representing a feature of a component that can be individually
selected or not. A feature variant is identified by one or more capabilities. For more information,
see the sections on modeling feature variants and optional dependencies.

Module

A piece of software that evolves over time e.g. Google Guava. Every module has a name. Each
release of a module is optimally represented by a module version. For convenient consumption,
modules can be hosted in a repository.

https://github.com/google/guava

Module metadata

Releases of a module provide metadata. Metadata is the data that describes the module in more
detail e.g. information about the location of artifacts or required transitive dependencies. Gradle
offers its own metadata format called Gradle Module Metadata (.module file) but also supports
Maven (.pom) and Ivy (ivy.xml) metadata. See the section on understanding Gradle Module
Metadata for more information on the supported metadata formats.

Component metadata rule

A component metadata rule is a rule that modifies a component’s metadata after it was fetched
from a repository, e.g. to add missing information or to correct wrong information. In contrast to
resolution rules, component metadata rules are applied before resolution starts. Component
metadata rules are defined as part of the build logic and can be shared through plugins. For more
information, see the section on fixing metadata with component metadata rules.

Module version

A module version represents a distinct set of changes of a released module. For example 18.0
represents the version of the module with the coordinates com.google:guava:18.0. In practice there’s
no limitation to the scheme of the module version. Timestamps, numbers, special suffixes like -GA
are all allowed identifiers. The most widely-used versioning strategy is semantic versioning.

Platform

A platform is a set of modules aimed to be used together. There are different categories of
platforms, corresponding to different use cases:

• module set: often a set of modules published together as a whole. Using one module of the set
often means we want to use the same version for all modules of the set. For example, if using
groovy 1.2, also use groovy-json 1.2.

• runtime environment: a set of libraries known to work well together. e.g., the Spring Platform,
recommending versions for both Spring and components that work well with Spring.

• deployment environment: Java runtime, application server, …

In addition Gradle defines virtual platforms.

NOTE Maven’s BOM (bill-of-material) is a popular kind of platform that Gradle supports.

Publication

A description of the files and metadata that should be published to a repository as a single entity for
use by consumers.

A publication has a name and consists of one or more artifacts plus information about those
artifacts (the metadata).

https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md
https://semver.org/

Repository

A repository hosts a set of modules, each of which may provide one or many releases (components)
indicated by a module version. The repository can be based on a binary repository product (e.g.
Artifactory or Nexus) or a directory structure in the filesystem. For more information, see Declaring
Repositories.

Resolution rule

A resolution rule influences the behavior of how a dependency is resolved directly. Resolution rules
are defined as part of the build logic. For more information, see the section on customizing
resolution of a dependency directly.

Transitive dependency

A variant of a component can have dependencies on other modules to work properly, so-called
transitive dependencies. Releases of a module hosted on a repository can provide metadata to
declare those transitive dependencies. By default, Gradle resolves transitive dependencies
automatically. The version selection for transitive dependencies can be influenced by declaring
dependency constraints.

Variant (of a component)

Each component consists of one or more variants. A variant consists of a set of artifacts and defines
a set of dependencies. It is identified by a set of attributes and capabilities.

Gradle’s dependency resolution is variant-aware and selects one or more variants of each
component after a component (i.e. one version of a module) has been selected. It may also fail if the
variant selection result is ambiguous, meaning that Gradle does not have enough information to
select one of multiple mutual exclusive variants. In that case, more information can be provided
through variant attributes. Examples of variants each Java components typically offers are api and
runtime variants. Others examples are JDK8 and JDK11 variants. For more information, see the
section on variant selection.

Variant Attribute

Attributes are used to identify and select variants. A variant has one or more attributes defined, for
example org.gradle.usage=java-api, org.gradle.jvm.version=11. When dependencies are resolved, a
set of attributes are requested and Gradle finds the best fitting variant(s) for each component in the
dependency graph. Compatibility and disambiguation rules can be implemented for an attribute to
express compatibility between values (e.g. Java 8 is compatible with Java 11, but Java 11 should be
preferred if the requested version is 11 or higher). Such rules are typically provided by plugins. For
more information, see the sections on variant selection and declaring attributes.

Java & Other JVM Projects

Building Java & JVM projects
Gradle uses a convention-over-configuration approach to building JVM-based projects that borrows
several conventions from Apache Maven. In particular, it uses the same default directory structure
for source files and resources, and it works with Maven-compatible repositories.

We will look at Java projects in detail in this chapter, but most of the topics apply to other
supported JVM languages as well, such as Kotlin, Groovy and Scala. If you don’t have much
experience with building JVM-based projects with Gradle, take a look at the Java samples for step-
by-step instructions on how to build various types of basic Java projects.

NOTE
The example in this section use the Java Library Plugin. However the described
features are shared by all JVM plugins. Specifics of the different plugins are
available in their dedicated documentation.

NOTE
There are a number of hands-on samples that you can explore for Java, Groovy,
Scala and Kotlin

Introduction

The simplest build script for a Java project applies the Java Library Plugin and optionally sets the
project version and selects the Java toolchain to use:

https://kotlinlang.org/docs/reference/using-gradle.html#targeting-the-jvm
../samples/index.html#java
../samples/index.html#java
../samples/index.html#groovy
../samples/index.html#scala
../samples/index.html#kotlin
toolchains.pdf#toolchains

Example 446. Applying the Java Library Plugin

build.gradle

plugins {
 id 'java-library'
}

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(11)
 }
}

version = '1.2.1'

build.gradle.kts

plugins {
 `java-library`
}

java {
 toolchain {
 languageVersion.set(JavaLanguageVersion.of(11))
 }
}

version = "1.2.1"

By applying the Java Library Plugin, you get a whole host of features:

• A compileJava task that compiles all the Java source files under src/main/java

• A compileTestJava task for source files under src/test/java

• A test task that runs the tests from src/test/java

• A jar task that packages the main compiled classes and resources from src/main/resources into a
single JAR named <project>-<version>.jar

• A javadoc task that generates Javadoc for the main classes

This isn’t sufficient to build any non-trivial Java project — at the very least, you’ll probably have
some file dependencies. But it means that your build script only needs the information that is
specific to your project.

NOTE

Although the properties in the example are optional, we recommend that you
specify them in your projects. The toolchain options protects against problems with
the project being built with different Java versions. The version string is important
for tracking the progression of the project. The project version is also used in
archive names by default.

The Java Library Plugin also integrates the above tasks into the standard Base Plugin lifecycle tasks:

• jar is attached to assemble [7]

• test is attached to check

The rest of the chapter explains the different avenues for customizing the build to your
requirements. You will also see later how to adjust the build for libraries, applications, web apps
and enterprise apps.

Declaring your source files via source sets

Gradle’s Java support was the first to introduce a new concept for building source-based projects:
source sets. The main idea is that source files and resources are often logically grouped by type,
such as application code, unit tests and integration tests. Each logical group typically has its own
sets of file dependencies, classpaths, and more. Significantly, the files that form a source set don’t
have to be located in the same directory!

Source sets are a powerful concept that tie together several aspects of compilation:

• the source files and where they’re located

• the compilation classpath, including any required dependencies (via Gradle configurations)

• where the compiled class files are placed

You can see how these relate to one another in this diagram:

Figure 25. Source sets and Java compilation

The shaded boxes represent properties of the source set itself. On top of that, the Java Library
Plugin automatically creates a compilation task for every source set you or a plugin defines —
named compileSourceSetJava — and several dependency configurations.

NOTE

The main source set

Most language plugins, Java included, automatically create a source set called main,
which is used for the project’s production code. This source set is special in that its
name is not included in the names of the configurations and tasks, hence why you
have just a compileJava task and compileOnly and implementation configurations
rather than compileMainJava, mainCompileOnly and mainImplementation respectively.

Java projects typically include resources other than source files, such as properties files, that may
need processing — for example by replacing tokens within the files — and packaging within the
final JAR. The Java Library Plugin handles this by automatically creating a dedicated task for each
defined source set called processSourceSetResources (or processResources for the main source set).
The following diagram shows how the source set fits in with this task:

Figure 26. Processing non-source files for a source set

As before, the shaded boxes represent properties of the source set, which in this case comprises the
locations of the resource files and where they are copied to.

In addition to the main source set, the Java Library Plugin defines a test source set that represents
the project’s tests. This source set is used by the test task, which runs the tests. You can learn more
about this task and related topics in the Java testing chapter.

Projects typically use this source set for unit tests, but you can also use it for integration, acceptance
and other types of test if you wish. The alternative approach is to define a new source set for each
of your other test types, which is typically done for one or both of the following reasons:

• You want to keep the tests separate from one another for aesthetics and manageability

• The different test types require different compilation or runtime classpaths or some other
difference in setup

You can see an example of this approach in the Java testing chapter, which shows you how to set up
integration tests in a project.

You’ll learn more about source sets and the features they provide in:

• Customizing file and directory locations

• Configuring Java integration tests

Managing your dependencies

The vast majority of Java projects rely on libraries, so managing a project’s dependencies is an
important part of building a Java project. Dependency management is a big topic, so we will focus
on the basics for Java projects here. If you’d like to dive into the detail, check out the introduction to
dependency management.

Specifying the dependencies for your Java project requires just three pieces of information:

• Which dependency you need, such as a name and version

• What it’s needed for, e.g. compilation or running

• Where to look for it

The first two are specified in a dependencies {} block and the third in a repositories {} block. For
example, to tell Gradle that your project requires version 3.6.7 of Hibernate Core to compile and
run your production code, and that you want to download the library from the Maven Central
repository, you can use the following fragment:

http://hibernate.org/

Example 447. Declaring dependencies

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.hibernate:hibernate-core:3.6.7.Final'
}

build.gradle.kts

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.hibernate:hibernate-core:3.6.7.Final")
}

The Gradle terminology for the three elements is as follows:

• Repository (ex: mavenCentral()) — where to look for the modules you declare as dependencies

• Configuration (ex: implementation) — a named collection of dependencies, grouped together for
a specific goal such as compiling or running a module — a more flexible form of Maven scopes

• Module coordinate (ex: org.hibernate:hibernate-core-3.6.7.Final) — the ID of the dependency,
usually in the form '<group>:<module>:<version>' (or '<groupId>:<artifactId>:<version>' in
Maven terminology)

You can find a more comprehensive glossary of dependency management terms here.

As far as configurations go, the main ones of interest are:

• compileOnly — for dependencies that are necessary to compile your production code but
shouldn’t be part of the runtime classpath

• implementation (supersedes compile) — used for compilation and runtime

• runtimeOnly (supersedes runtime) — only used at runtime, not for compilation

• testCompileOnly — same as compileOnly except it’s for the tests

• testImplementation — test equivalent of implementation

• testRuntimeOnly — test equivalent of runtimeOnly

You can learn more about these and how they relate to one another in the plugin reference chapter.

Be aware that the Java Library Plugin offers two additional configurations — api and
compileOnlyApi — for dependencies that are required for compiling both the module and any
modules that depend on it.

NOTE

Why no compile configuration?

The Java Library Plugin has historically used the compile configuration for
dependencies that are required to both compile and run a project’s production
code. It is now deprecated, and will issue warnings when used, because it doesn’t
distinguish between dependencies that impact the public API of a Java library
project and those that don’t. You can learn more about the importance of this
distinction in Building Java libraries.

We have only scratched the surface here, so we recommend that you read the dedicated
dependency management chapters once you’re comfortable with the basics of building Java
projects with Gradle. Some common scenarios that require further reading include:

• Defining a custom Maven- or Ivy-compatible repository

• Using dependencies from a local filesystem directory

• Declaring dependencies with changing (e.g. SNAPSHOT) and dynamic (range) versions

• Declaring a sibling project as a dependency

• Controlling transitive dependencies and their versions

• Testing your fixes to a 3rd-party dependency via composite builds (a better alternative to
publishing to and consuming from Maven Local)

You’ll discover that Gradle has a rich API for working with dependencies — one that takes time to
master, but is straightforward to use for common scenarios.

Compiling your code

Compiling both your production and test code can be trivially easy if you follow the conventions:

1. Put your production source code under the src/main/java directory

2. Put your test source code under src/test/java

3. Declare your production compile dependencies in the compileOnly or implementation
configurations (see previous section)

4. Declare your test compile dependencies in the testCompileOnly or testImplementation
configurations

5. Run the compileJava task for the production code and compileTestJava for the tests

Other JVM language plugins, such as the one for Groovy, follow the same pattern of conventions.
We recommend that you follow these conventions wherever possible, but you don’t have to. There
are several options for customization, as you’ll see next.

Customizing file and directory locations

Imagine you have a legacy project that uses an src directory for the production code and test for the
test code. The conventional directory structure won’t work, so you need to tell Gradle where to find
the source files. You do that via source set configuration.

Each source set defines where its source code resides, along with the resources and the output
directory for the class files. You can override the convention values by using the following syntax:

Example 448. Declaring custom source directories

build.gradle

sourceSets {
 main {
 java {
 srcDirs = ['src']
 }
 }

 test {
 java {
 srcDirs = ['test']
 }
 }
}

build.gradle.kts

sourceSets {
 main {
 java {
 setSrcDirs(listOf("src"))
 }
 }

 test {
 java {
 setSrcDirs(listOf("test"))
 }
 }
}

Now Gradle will only search directly in src and test for the respective source code. What if you
don’t want to override the convention, but simply want to add an extra source directory, perhaps
one that contains some third-party source code you want to keep separate? The syntax is similar:

Example 449. Declaring custom source directories additively

build.gradle

sourceSets {
 main {
 java {
 srcDir 'thirdParty/src/main/java'
 }
 }
}

build.gradle.kts

sourceSets {
 main {
 java {
 srcDir("thirdParty/src/main/java")
 }
 }
}

Crucially, we’re using the method srcDir() here to append a directory path, whereas setting the
srcDirs property replaces any existing values. This is a common convention in Gradle: setting a
property replaces values, while the corresponding method appends values.

You can see all the properties and methods available on source sets in the DSL reference for
SourceSet and SourceDirectorySet. Note that srcDirs and srcDir() are both on SourceDirectorySet.

Changing compiler options

Most of the compiler options are accessible through the corresponding task, such as compileJava
and compileTestJava. These tasks are of type JavaCompile, so read the task reference for an up-to-
date and comprehensive list of the options.

For example, if you want to use a separate JVM process for the compiler and prevent compilation
failures from failing the build, you can use this configuration:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.SourceSet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.file.SourceDirectorySet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 450. Setting Java compiler options

build.gradle

compileJava {
 options.incremental = true
 options.fork = true
 options.failOnError = false
}

build.gradle.kts

tasks.compileJava {
 options.isIncremental = true
 options.isFork = true
 options.isFailOnError = false
}

That’s also how you can change the verbosity of the compiler, disable debug output in the byte code
and configure where the compiler can find annotation processors.

Targeting a specific Java version

By default, Gradle will compile Java code to the language level of the JVM running Gradle. With the
usage of Java toolchains, you can break that link by making sure a given Java version, defined by
the build, is used for compilation, execution and documentation. It is however possible to override
some compiler and execution options at the task level.

Since version 9, the Java compiler can be configured to produce bytecode for an older Java version
while making sure the code does not use any APIs from a more recent version. Gradle now supports
this release flag on CompileOptions directly for Java compilation. This option takes precedence over
the properties described below.

WARNING
Due to a bug in Java 9 that was fixed in Java 10, Gradle cannot leverage the
release flag when compiling with Java 9.

toolchains.pdf#toolchains
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:release
https://bugs.openjdk.java.net/browse/JDK-8139607

Example 451. Setting Java release flag

build.gradle

compileJava {
 options.release = 7
}

build.gradle.kts

tasks.compileJava {
 options.release.set(7)
}

Historical options for the Java compiler remain available:

sourceCompatibility

Defines which language version of Java your source files should be treated as.

targetCompatibility

Defines the minimum JVM version your code should run on, i.e. it determines the version of byte
code the compiler generates.

These options can be set per JavaCompile task, or on the java { } extension for all compile tasks,
using properties with the same names.

NOTE
Using a toolchain makes it illegal to configure the sourceCompatibility or
targetCompatibility at the java { } extension level.

However, these options do not protect against the use of APIs introduced in later Java versions.

Compiling and testing Java 6/7

Gradle can only run on Java version 8 or higher. Gradle still supports compiling, testing, generating
Javadoc and executing applications for Java 6 and Java 7. Java 5 and below are not supported.

NOTE If using Java 10+, leveraging the release flag might be an easier solution, see above.

To use Java 6 or Java 7, the following tasks need to be configured:

• JavaCompile task to fork and use the correct Java home

• Javadoc task to use the correct javadoc executable

• Test and the JavaExec task to use the correct java executable.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html

With the usage of Java toolchains, this can be done as follows:

Example: Configure Java 7 build

build.gradle

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(7)
 }
}

build.gradle.kts

java {
 toolchain {
 languageVersion.set(JavaLanguageVersion.of(7))
 }
}

The only requirement is that Java 7 is installed and has to be either in a location Gradle can detect
automatically or explicitly configured.

Compiling independent sources separately

Most projects have at least two independent sets of sources: the production code and the test code.
Gradle already makes this scenario part of its Java convention, but what if you have other sets of
sources? One of the most common scenarios is when you have separate integration tests of some
form or other. In that case, a custom source set may be just what you need.

You can see a complete example for setting up integration tests in the Java testing chapter. You can
set up other source sets that fulfil different roles in the same way. The question then becomes:
when should you define a custom source set?

To answer that question, consider whether the sources:

1. Need to be compiled with a unique classpath

2. Generate classes that are handled differently from the main and test ones

3. Form a natural part of the project

If your answer to both 3 and either one of the others is yes, then a custom source set is probably the
right approach. For example, integration tests are typically part of the project because they test the
code in main. In addition, they often have either their own dependencies independent of the test
source set or they need to be run with a custom Test task.

toolchains.pdf#sec:auto_detection
toolchains.pdf#sec:auto_detection
toolchains.pdf#sec:custom_loc

Other common scenarios are less clear cut and may have better solutions. For example:

• Separate API and implementation JARs — it may make sense to have these as separate projects,
particularly if you already have a multi-project build

• Generated sources — if the resulting sources should be compiled with the production code, add
their path(s) to the main source set and make sure that the compileJava task depends on the task
that generates the sources

If you’re unsure whether to create a custom source set or not, then go ahead and do so. It should be
straightforward and if it’s not, then it’s probably not the right tool for the job.

Managing resources

Many Java projects make use of resources beyond source files, such as images, configuration files
and localization data. Sometimes these files simply need to be packaged unchanged and sometimes
they need to be processed as template files or in some other way. Either way, the Java Library
Plugin adds a specific Copy task for each source set that handles the processing of its associated
resources.

The task’s name follows the convention of processSourceSetResources — or processResources for the
main source set — and it will automatically copy any files in src/[sourceSet]/resources to a directory
that will be included in the production JAR. This target directory will also be included in the
runtime classpath of the tests.

Since processResources is an instance of the Copy task, you can perform any of the processing
described in the Working With Files chapter.

Java properties files and reproducible builds

You can easily create Java properties files via the WriteProperties task, which fixes a well-known
problem with Properties.store() that can reduce the usefulness of incremental builds.

The standard Java API for writing properties files produces a unique file every time, even when the
same properties and values are used, because it includes a timestamp in the comments. Gradle’s
WriteProperties task generates exactly the same output byte-for-byte if none of the properties have
changed. This is achieved by a few tweaks to how a properties file is generated:

• no timestamp comment is added to the output

• the line separator is system independent, but can be configured explicitly (it defaults to '\n')

• the properties are sorted alphabetically

Sometimes it can be desirable to recreate archives in a byte for byte way on different machines. You
want to be sure that building an artifact from source code produces the same result, byte for byte,
no matter when and where it is built. This is necessary for projects like reproducible-builds.org.

These tweaks not only lead to better incremental build integration, but they also help with
reproducible builds. In essence, reproducible builds guarantee that you will see the same results
from a build execution — including test results and production binaries — no matter when or on
what system you run it.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.WriteProperties.html
https://reproducible-builds.org

Running tests

Alongside providing automatic compilation of unit tests in src/test/java, the Java Library Plugin has
native support for running tests that use JUnit 3, 4 & 5 (JUnit 5 support came in Gradle 4.6) and
TestNG. You get:

• An automatic test task of type Test, using the test source set

• An HTML test report that includes the results from all Test tasks that run

• Easy filtering of which tests to run

• Fine-grained control over how the tests are run

• The opportunity to create your own test execution and test reporting tasks

You do not get a Test task for every source set you declare, since not every source set represents
tests! That’s why you typically need to create your own Test tasks for things like integration and
acceptance tests if they can’t be included with the test source set.

As there is a lot to cover when it comes to testing, the topic has its own chapter in which we look at:

• How tests are run

• How to run a subset of tests via filtering

• How Gradle discovers tests

• How to configure test reporting and add your own reporting tasks

• How to make use of specific JUnit and TestNG features

You can also learn more about configuring tests in the DSL reference for Test.

Packaging and publishing

How you package and potentially publish your Java project depends on what type of project it is.
Libraries, applications, web applications and enterprise applications all have differing
requirements. In this section, we will focus on the bare bones provided by the Java Library Plugin.

By default, the Java Library Plugin provides the jar task that packages all the compiled production
classes and resources into a single JAR. This JAR is also automatically built by the assemble task.
Furthermore, the plugin can be configured to provide the javadocJar and sourcesJar tasks to
package Javadoc and source code if so desired. If a publishing plugin is used, these tasks will
automatically run during publishing or can be called directly.

https://docs.gradle.org/4.6/release-notes.html#junit-5-support
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html

Example 452. Configure a project to publish Javadoc and sources

build.gradle

java {
 withJavadocJar()
 withSourcesJar()
}

build.gradle.kts

java {
 withJavadocJar()
 withSourcesJar()
}

If you want to create an 'uber' (AKA 'fat') JAR, then you can use a task definition like this:

Example 453. Creating a Java uber or fat JAR

build.gradle

plugins {
 id 'java'
}

version = '1.0.0'

repositories {
 mavenCentral()
}

dependencies {
 implementation 'commons-io:commons-io:2.6'
}

tasks.register('uberJar', Jar) {
 archiveClassifier = 'uber'

 from sourceSets.main.output

 dependsOn configurations.runtimeClasspath
 from {
 configurations.runtimeClasspath.findAll { it.name.endsWith('jar') }
.collect { zipTree(it) }
 }
}

build.gradle.kts

plugins {
 java
}

version = "1.0.0"

repositories {
 mavenCentral()
}

dependencies {
 implementation("commons-io:commons-io:2.6")
}

tasks.register<Jar>("uberJar") {
 archiveClassifier.set("uber")

 from(sourceSets.main.get().output)

 dependsOn(configurations.runtimeClasspath)
 from({
 configurations.runtimeClasspath.get().filter {
it.name.endsWith("jar") }.map { zipTree(it) }
 })
}

See Jar for more details on the configuration options available to you. And note that you need to use
archiveClassifier rather than archiveAppendix here for correct publication of the JAR.

You can use one of the publishing plugins to publish the JARs created by a Java project:

• Maven Publish Plugin

• Ivy Publish Plugin

Modifying the JAR manifest

Each instance of the Jar, War and Ear tasks has a manifest property that allows you to customize the
MANIFEST.MF file that goes into the corresponding archive. The following example demonstrates
how to set attributes in the JAR’s manifest:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Jar.html

Example 454. Customization of MANIFEST.MF

build.gradle

jar {
 manifest {
 attributes("Implementation-Title": "Gradle",
 "Implementation-Version": archiveVersion)
 }
}

build.gradle.kts

tasks.jar {
 manifest {
 attributes(
 "Implementation-Title" to "Gradle",
 "Implementation-Version" to archiveVersion
)
 }
}

See Manifest for the configuration options it provides.

You can also create standalone instances of Manifest. One reason for doing so is to share manifest
information between JARs. The following example demonstrates how to share common attributes
between JARs:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/java/archives/Manifest.html

Example 455. Creating a manifest object.

build.gradle

ext.sharedManifest = manifest {
 attributes("Implementation-Title": "Gradle",
 "Implementation-Version": version)
}
tasks.register('fooJar', Jar) {
 manifest = project.manifest {
 from sharedManifest
 }
}

build.gradle.kts

val sharedManifest = the<JavaPluginConvention>().manifest {
 attributes (
 "Implementation-Title" to "Gradle",
 "Implementation-Version" to version
)
}

tasks.register<Jar>("fooJar") {
 manifest = project.the<JavaPluginConvention>().manifest {
 from(sharedManifest)
 }
}

Another option available to you is to merge manifests into a single Manifest object. Those source
manifests can take the form of a text for or another Manifest object. In the following example, the
source manifests are all text files except for sharedManifest, which is the Manifest object from the
previous example:

Example 456. Separate MANIFEST.MF for a particular archive

build.gradle

tasks.register('barJar', Jar) {
 manifest {
 attributes key1: 'value1'
 from sharedManifest, 'src/config/basemanifest.txt'
 from(['src/config/javabasemanifest.txt',
'src/config/libbasemanifest.txt']) {
 eachEntry { details ->
 if (details.baseValue != details.mergeValue) {
 details.value = baseValue
 }
 if (details.key == 'foo') {
 details.exclude()
 }
 }
 }
 }
}

build.gradle.kts

tasks.register<Jar>("barJar") {
 manifest {
 attributes("key1" to "value1")
 from(sharedManifest, "src/config/basemanifest.txt")
 from(listOf("src/config/javabasemanifest.txt",
"src/config/libbasemanifest.txt")) {
 eachEntry(Action<ManifestMergeDetails> {
 if (baseValue != mergeValue) {
 value = baseValue
 }
 if (key == "foo") {
 exclude()
 }
 })
 }
 }
}

Manifests are merged in the order they are declared in the from statement. If the base manifest and
the merged manifest both define values for the same key, the merged manifest wins by default. You
can fully customize the merge behavior by adding eachEntry actions in which you have access to a

ManifestMergeDetails instance for each entry of the resulting manifest. Note that the merge is done
lazily, either when generating the JAR or when Manifest.writeTo() or
Manifest.getEffectiveManifest() are called.

Speaking of writeTo(), you can use that to easily write a manifest to disk at any time, like so:

Example 457. Saving a MANIFEST.MF to disk

build.gradle

tasks.named('jar') { manifest.writeTo(layout.buildDirectory.file(
'mymanifest.mf')) }

build.gradle.kts

tasks.jar { manifest.writeTo(layout.buildDirectory.file("mymanifest.mf")) }

Generating API documentation

The Java Library Plugin provides a javadoc task of type Javadoc, that will generate standard
Javadocs for all your production code, i.e. whatever source is in the main source set. The task
supports the core Javadoc and standard doclet options described in the Javadoc reference
documentation. See CoreJavadocOptions and StandardJavadocDocletOptions for a complete list of
those options.

As an example of what you can do, imagine you want to use Asciidoc syntax in your Javadoc
comments. To do this, you need to add Asciidoclet to Javadoc’s doclet path. Here’s an example that
does just that:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#options
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#options
https://docs.gradle.org/7.3.2/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html

Example 458. Using a custom doclet with Javadoc

build.gradle

configurations {
 asciidoclet
}

dependencies {
 asciidoclet 'org.asciidoctor:asciidoclet:1.+'
}

tasks.register('configureJavadoc') {
 doLast {
 javadoc {
 options.doclet = 'org.asciidoctor.Asciidoclet'
 options.docletpath = configurations.asciidoclet.files.toList()
 }
 }
}

javadoc {
 dependsOn configureJavadoc
}

build.gradle.kts

val asciidoclet by configurations.creating

dependencies {
 asciidoclet("org.asciidoctor:asciidoclet:1.+")
}

tasks.register("configureJavadoc") {
 doLast {
 tasks.javadoc {
 options.doclet = "org.asciidoctor.Asciidoclet"
 options.docletpath = asciidoclet.files.toList()
 }
 }
}

tasks.javadoc {
 dependsOn("configureJavadoc")
}

You don’t have to create a configuration for this, but it’s an elegant way to handle dependencies
that are required for a unique purpose.

You might also want to create your own Javadoc tasks, for example to generate API docs for the
tests:

Example 459. Defining a custom Javadoc task

build.gradle

tasks.register('testJavadoc', Javadoc) {
 source = sourceSets.test.allJava
}

build.gradle.kts

tasks.register<Javadoc>("testJavadoc") {
 source = sourceSets.test.get().allJava
}

These are just two non-trivial but common customizations that you might come across.

Cleaning the build

The Java Library Plugin adds a clean task to your project by virtue of applying the Base Plugin. This
task simply deletes everything in the $buildDir directory, hence why you should always put files
generated by the build in there. The task is an instance of Delete and you can change what directory
it deletes by setting its dir property.

Building JVM components

All of the specific JVM plugins are built on top of the Java Plugin. The examples above only
illustrated concepts provided by this base plugin and shared with all JVM plugins.

Read on to understand which plugins fits which project type, as it is recommended to pick a specific
plugin instead of applying the Java Plugin directly.

Building Java libraries

The unique aspect of library projects is that they are used (or "consumed") by other Java projects.
That means the dependency metadata published with the JAR file — usually in the form of a Maven
POM — is crucial. In particular, consumers of your library should be able to distinguish between
two different types of dependencies: those that are only required to compile your library and those
that are also required to compile the consumer.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html

Gradle manages this distinction via the Java Library Plugin, which introduces an api configuration
in addition to the implementation one covered in this chapter. If the types from a dependency
appear in public fields or methods of your library’s public classes, then that dependency is exposed
via your library’s public API and should therefore be added to the api configuration. Otherwise, the
dependency is an internal implementation detail and should be added to implementation.

If you’re unsure of the difference between an API and implementation dependency, the Java
Library Plugin chapter has a detailed explanation. In addition, you can explore a basic, practical
sample of building a Java library.

Building Java applications

Java applications packaged as a JAR aren’t set up for easy launching from the command line or a
desktop environment. The Application Plugin solves the command line aspect by creating a
distribution that includes the production JAR, its dependencies and launch scripts Unix-like and
Windows systems.

See the plugin’s chapter for more details, but here’s a quick summary of what you get:

• assemble creates ZIP and TAR distributions of the application containing everything needed to
run it

• A run task that starts the application from the build (for easy testing)

• Shell and Windows Batch scripts to start the application

You can see a basic example of building a Java application in the corresponding sample.

Building Java web applications

Java web applications can be packaged and deployed in a number of ways depending on the
technology you use. For example, you might use Spring Boot with a fat JAR or a Reactive-based
system running on Netty. Whatever technology you use, Gradle and its large community of plugins
will satisfy your needs. Core Gradle, though, only directly supports traditional Servlet-based web
applications deployed as WAR files.

That support comes via the War Plugin, which automatically applies the Java Plugin and adds an
extra packaging step that does the following:

• Copies static resources from src/main/webapp into the root of the WAR

• Copies the compiled production classes into a WEB-INF/classes subdirectory of the WAR

• Copies the library dependencies into a WEB-INF/lib subdirectory of the WAR

This is done by the war task, which effectively replaces the jar task — although that task remains
— and is attached to the assemble lifecycle task. See the plugin’s chapter for more details and
configuration options.

There is no core support for running your web application directly from the build, but we do
recommend that you try the Gretty community plugin, which provides an embedded Servlet
container.

../samples/sample_building_java_libraries.html
../samples/building-java-applications.html
https://projects.spring.io/spring-boot/
https://www.reactivemanifesto.org/
https://netty.io/
https://plugins.gradle.org/plugin/org.gretty

Building Java EE applications

Java enterprise systems have changed a lot over the years, but if you’re still deploying to JEE
application servers, you can make use of the Ear Plugin. This adds conventions and a task for
building EAR files. The plugin’s chapter has more details.

Building Java Platforms

A Java platform represents a set of dependency declarations and constraints that form a cohesive
unit to be applied on consuming projects. The platform has no source and no artifact of its own. It
maps in the Maven world to a BOM.

The support comes via the Java Platform plugin, which sets up the different configurations and
publication components.

NOTE This plugin is the exception as it does not apply the Java Plugin.

Enabling Java preview features

WARNING

Using a Java preview feature is very likely to make your code incompatible
with that compiled without a feature preview. As a consequence, we strongly
recommend you not to publish libraries compiled with preview features and
restrict the use of feature previews to toy projects.

To enable Java preview features for compilation, test execution and runtime, you can use the
following DSL snippet:

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Management
https://openjdk.java.net/jeps/12

Example 460. Enabling Java feature preview

build.gradle

tasks.withType(JavaCompile) {
 options.compilerArgs += "--enable-preview"
}
tasks.withType(Test) {
 jvmArgs += "--enable-preview"
}
tasks.withType(JavaExec) {
 jvmArgs += "--enable-preview"
}

build.gradle.kts

tasks.withType<JavaCompile> {
 options.compilerArgs.add("--enable-preview")
}
tasks.withType<Test> {
 jvmArgs("--enable-preview")
}
tasks.withType<JavaExec> {
 jvmArgs("--enable-preview")
}

Building other JVM language projects

If you want to leverage the multi language aspect of the JVM, most of what was described here will
still apply.

Gradle itself provides Groovy and Scala plugins. The plugins automatically apply support for
compiling Java code and can be further enhanced by combining them with the java-library plugin.

Compilation dependency between languages

These plugins create a dependency between Groovy/Scala compilation and Java compilation (of
source code in the java folder of a source set). You can change this default behavior by adjusting the
classpath of the involved compile tasks as shown in the following example:

Example 461. Changing the classpath of compile tasks

build.gradle

tasks.named('compileGroovy') {
 // Groovy only needs the declared dependencies
 // (and not longer the output of compileJava)
 classpath = sourceSets.main.compileClasspath
}
tasks.named('compileJava') {
 // Java also depends on the result of Groovy compilation
 // (which automatically makes it depend of compileGroovy)
 classpath += files(sourceSets.main.groovy.classesDirectory)
}

build.gradle.kts

tasks.named<AbstractCompile>("compileGroovy") {
 // Groovy only needs the declared dependencies
 // (and not longer the output of compileJava)
 classpath = sourceSets.main.get().compileClasspath
}
tasks.named<AbstractCompile>("compileJava") {
 // Java also depends on the result of Groovy compilation
 // (which automatically makes it depend of compileGroovy)
 classpath += files(sourceSets.main.get().groovy.classesDirectory)
}

1. By setting the compileGroovy classpath to be only sourceSets.main.compileClasspath, we
effectively remove the previous dependency on compileJava that was declared by having the
classpath also take into consideration sourceSets.main.java.classesDirectory

2. By adding sourceSets.main.groovy.classesDirectory to the compileJava classpath, we effectively
declare a dependency on the compileGroovy task

All of this is possible through the use of directory properties.

Extra language support

Beyond core Gradle, there are other great plugins for more JVM languages!

Testing in Java & JVM projects
Testing on the JVM is a rich subject matter. There are many different testing libraries and
frameworks, as well as many different types of test. All need to be part of the build, whether they

https://plugins.gradle.org/search?term=jvm

are executed frequently or infrequently. This chapter is dedicated to explaining how Gradle
handles differing requirements between and within builds, with significant coverage of how it
integrates with the two most common testing frameworks: JUnit and TestNG.

It explains:

• Ways to control how the tests are run (Test execution)

• How to select specific tests to run (Test filtering)

• What test reports are generated and how to influence the process (Test reporting)

• How Gradle finds tests to run (Test detection)

• How to make use of the major frameworks' mechanisms for grouping tests together (Test
grouping)

But first, we look at the basics of JVM testing in Gradle.

NOTE
A new configuration DSL for modeling test execution phases is available via the
incubating JVM Test Suite plugin.

The basics

All JVM testing revolves around a single task type: Test. This runs a collection of test cases using any
supported test library — JUnit, JUnit Platform or TestNG — and collates the results. You can then
turn those results into a report via an instance of the TestReport task type.

In order to operate, the Test task type requires just two pieces of information:

• Where to find the compiled test classes (property: Test.getTestClassesDirs())

• The execution classpath, which should include the classes under test as well as the test library
that you’re using (property: Test.getClasspath())

When you’re using a JVM language plugin — such as the Java Plugin — you will automatically get
the following:

• A dedicated test source set for unit tests

• A test task of type Test that runs those unit tests

The JVM language plugins use the source set to configure the task with the appropriate execution
classpath and the directory containing the compiled test classes. In addition, they attach the test
task to the check lifecycle task.

It’s also worth bearing in mind that the test source set automatically creates corresponding
dependency configurations — of which the most useful are testImplementation and testRuntimeOnly
— that the plugins tie into the test task’s classpath.

All you need to do in most cases is configure the appropriate compilation and runtime
dependencies and add any necessary configuration to the test task. The following example shows a
simple setup that uses JUnit 4.x and changes the maximum heap size for the tests' JVM to 1 gigabyte:

https://junit.org/
https://testng.org/
jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.TestReport.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:testClassesDirs
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:classpath

Example 462. A basic configuration for the 'test' task

build.gradle

dependencies {
 testImplementation 'junit:junit:4.13'
}

test {
 useJUnit()

 maxHeapSize = '1G'
}

build.gradle.kts

dependencies {
 testImplementation("junit:junit:4.13")
}

tasks.test {
 useJUnit()

 maxHeapSize = "1G"
}

The Test task has many generic configuration options as well as several framework-specific ones
that you can find described in JUnitOptions, JUnitPlatformOptions and TestNGOptions. We cover a
significant number of them in the rest of the chapter.

If you want to set up your own Test task with its own set of test classes, then the easiest approach is
to create your own source set and Test task instance, as shown in Configuring integration tests.

Test execution

Gradle executes tests in a separate ('forked') JVM, isolated from the main build process. This
prevents classpath pollution and excessive memory consumption for the build process. It also
allows you to run the tests with different JVM arguments than the build is using.

You can control how the test process is launched via several properties on the Test task, including
the following:

maxParallelForks — default: 1

You can run your tests in parallel by setting this property to a value greater than 1. This may
make your test suites complete faster, particularly if you run them on a multi-core CPU. When

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/testing/junit/JUnitOptions.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/testing/junitplatform/JUnitPlatformOptions.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html

using parallel test execution, make sure your tests are properly isolated from one another. Tests
that interact with the filesystem are particularly prone to conflict, causing intermittent test
failures.

Your tests can distinguish between parallel test processes by using the value of the
org.gradle.test.worker property, which is unique for each process. You can use this for anything
you want, but it’s particularly useful for filenames and other resource identifiers to prevent the
kind of conflict we just mentioned.

forkEvery — default: 0 (no maximum)

This property specifies the maximum number of test classes that Gradle should run on a test
process before its disposed of and a fresh one created. This is mainly used as a way to manage
leaky tests or frameworks that have static state that can’t be cleared or reset between tests.

Warning: a low value (other than 0) can severely hurt the performance of the tests

ignoreFailures — default: false

If this property is true, Gradle will continue with the project’s build once the tests have
completed, even if some of them have failed. Note that, by default, the Test task always executes
every test that it detects, irrespective of this setting.

failFast — (since Gradle 4.6) default: false

Set this to true if you want the build to fail and finish as soon as one of your tests fails. This can
save a lot of time when you have a long-running test suite and is particularly useful when
running the build on continuous integration servers. When a build fails before all tests have run,
the test reports only include the results of the tests that have completed, successfully or not.

You can also enable this behavior by using the --fail-fast command line option.

testLogging — default: not set

This property represents a set of options that control which test events are logged and at what
level. You can also configure other logging behavior via this property. See TestLoggingContainer
for more detail.

See Test for details on all the available configuration options.

NOTE

The test process can exit unexpectedly if configured incorrectly. For instance, if the
Java executable does not exist or an invalid JVM argument is provided, the test
process will fail to start. Similarly, if a test makes programmatic changes to the test
process, this can also cause unexpected failures.

For example, issues may occur if a SecurityManager is modified in a test because
Gradle’s internal messaging depends on reflection and socket communication,
which may be disrupted if the permissions on the security manager change. In this
particular case, you should restore the original SecurityManager after the test so that
the gradle test worker process can continue to function.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/testing/logging/TestLoggingContainer.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.oracle.com/javase/8/docs/api/java/lang/SecurityManager.html

Test filtering

It’s a common requirement to run subsets of a test suite, such as when you’re fixing a bug or
developing a new test case. Gradle provides two mechanisms to do this:

• Filtering (the preferred option)

• Test inclusion/exclusion

Filtering supersedes the inclusion/exclusion mechanism, but you may still come across the latter in
the wild.

With Gradle’s test filtering you can select tests to run based on:

• A fully-qualified class name or fully qualified method name, e.g. org.gradle.SomeTest,
org.gradle.SomeTest.someMethod

• A simple class name or method name if the pattern starts with an upper-case letter, e.g.
SomeTest, SomeTest.someMethod (since Gradle 4.7)

• '*' wildcard matching

You can enable filtering either in the build script or via the --tests command-line option. Here’s an
example of some filters that are applied every time the build runs:

Example 463. Filtering tests in the build script

build.gradle

test {
 filter {
 //include specific method in any of the tests
 includeTestsMatching "*UiCheck"

 //include all tests from package
 includeTestsMatching "org.gradle.internal.*"

 //include all integration tests
 includeTestsMatching "*IntegTest"
 }
}

build.gradle.kts

tasks.test {
 filter {
 //include specific method in any of the tests
 includeTestsMatching("*UiCheck")

 //include all tests from package
 includeTestsMatching("org.gradle.internal.*")

 //include all integration tests
 includeTestsMatching("*IntegTest")
 }
}

For more details and examples of declaring filters in the build script, please see the TestFilter
reference.

The command-line option is especially useful to execute a single test method. When you use --
tests, be aware that the inclusions declared in the build script are still honored. It is also possible to
supply multiple --tests options, all of whose patterns will take effect. The following sections have
several examples of using the command-line option.

NOTE
Not all test frameworks play well with filtering. Some advanced, synthetic tests may
not be fully compatible. However, the vast majority of tests and use cases work
perfectly well with Gradle’s filtering mechanism.

The following two sections look at the specific cases of simple class/method names and fully-

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/testing/TestFilter.html

qualified names.

Simple name pattern

Since 4.7, Gradle has treated a pattern starting with an uppercase letter as a simple class name, or a
class name + method name. For example, the following command lines run either all or exactly one
of the tests in the SomeTestClass test case, regardless of what package it’s in:

Executes all tests in SomeTestClass
gradle test --tests SomeTestClass

Executes a single specified test in SomeTestClass
gradle test --tests SomeTestClass.someSpecificMethod

gradle test --tests SomeTestClass.*someMethod*

Fully-qualified name pattern

Prior to 4.7 or if the pattern doesn’t start with an uppercase letter, Gradle treats the pattern as fully-
qualified. So if you want to use the test class name irrespective of its package, you would use
--tests *.SomeTestClass. Here are some more examples:

specific class
gradle test --tests org.gradle.SomeTestClass

specific class and method
gradle test --tests org.gradle.SomeTestClass.someSpecificMethod

method name containing spaces
gradle test --tests "org.gradle.SomeTestClass.some method containing spaces"

all classes at specific package (recursively)
gradle test --tests 'all.in.specific.package*'

specific method at specific package (recursively)
gradle test --tests 'all.in.specific.package*.someSpecificMethod'

gradle test --tests '*IntegTest'

gradle test --tests '*IntegTest*ui*'

gradle test --tests '*ParameterizedTest.foo*'

the second iteration of a parameterized test
gradle test --tests '*ParameterizedTest.*[2]'

Note that the wildcard '*' has no special understanding of the '.' package separator. It’s purely text
based. So --tests *.SomeTestClass will match any package, regardless of its 'depth'.

You can also combine filters defined at the command line with continuous build to re-execute a
subset of tests immediately after every change to a production or test source file. The following
executes all tests in the 'com.mypackage.foo' package or subpackages whenever a change triggers
the tests to run:

gradle test --continuous --tests "com.mypackage.foo.*"

Test reporting

The Test task generates the following results by default:

• An HTML test report

• XML test results in a format compatible with the Ant JUnit report task — one that is supported
by many other tools, such as CI servers

• An efficient binary format of the results used by the Test task to generate the other formats

In most cases, you’ll work with the standard HTML report, which automatically includes the results
from all your Test tasks, even the ones you explicitly add to the build yourself. For example, if you
add a Test task for integration tests, the report will include the results of both the unit tests and the
integration tests if both tasks are run.

Unlike with many of the testing configuration options, there are several project-level convention
properties that affect the test reports. For example, you can change the destination of the test
results and reports like so:

Example 464. Changing the default test report and results directories

build.gradle

reporting.baseDir = "my-reports"
testResultsDirName = "$buildDir/my-test-results"

tasks.register('showDirs') {
 doLast {
 logger.quiet(rootDir.toPath().relativize(project.reportsDir.toPath()
).toString())
 logger.quiet(rootDir.toPath().relativize(project.testResultsDir
.toPath()).toString())
 }
}

build.gradle.kts

reporting.baseDir = file("my-reports")
project.setProperty("testResultsDirName", "$buildDir/my-test-results")

tasks.register("showDirs") {
 doLast {

logger.quiet(rootDir.toPath().relativize((project.properties["reportsDir"] as
File).toPath()).toString())

logger.quiet(rootDir.toPath().relativize((project.properties["testResultsDir"
] as File).toPath()).toString())
 }
}

Output of gradle -q showDirs

> gradle -q showDirs
my-reports
build/my-test-results

Follow the link to the convention properties for more details.

There is also a standalone TestReport task type that you can use to generate a custom HTML test
report. All it requires are a value for destinationDir and the test results you want included in the
report. Here is a sample which generates a combined report for the unit tests from all subprojects:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.TestReport.html

Example 465. Creating a unit test report for subprojects

buildSrc/src/main/groovy/myproject.java-conventions.gradle

plugins {
 id 'java'
}

// Disable the test report for the individual test task
test {
 reports.html.required = false
}

// Share the test report data to be aggregated for the whole project
configurations {
 binaryTestResultsElements {
 canBeResolved = false
 canBeConsumed = true
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE, objects.named(Category,
Category.DOCUMENTATION))
 attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named(DocsType,
'test-report-data'))
 }
 outgoing.artifact(test.binaryResultsDirectory)
 }
}

build.gradle

// A resolvable configuration to collect test reports data
configurations {
 testReportData {
 canBeResolved = true
 canBeConsumed = false
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE, objects.named(Category,
Category.DOCUMENTATION))
 attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named(DocsType,
'test-report-data'))
 }
 }
}

dependencies {
 testReportData project(':core')
 testReportData project(':util')
}

tasks.register('testReport', TestReport) {
 destinationDir = layout.buildDirectory.dir('reports/allTests').get()
.asFile
 // Use test results from testReportData configuration
 testResultDirs.from(configurations.testReportData)
}

buildSrc/src/main/kotlin/myproject.java-conventions.gradle.kts

plugins {
 id("java")
}

// Disable the test report for the individual test task
tasks.named<Test>("test") {
 reports.html.required.set(false)
}

// Share the test report data to be aggregated for the whole project
configurations.create("binaryTestResultsElements") {
 isCanBeResolved = false
 isCanBeConsumed = true
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE,
objects.named(Category.DOCUMENTATION))
 attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named("test-report-
data"))
 }
 outgoing.artifact(tasks.test.map { task ->
task.getBinaryResultsDirectory().get() })
}

build.gradle.kts

val testReportData by configurations.creating {
 isCanBeResolved = true
 isCanBeConsumed = false
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE,
objects.named(Category.DOCUMENTATION))
 attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named("test-report-
data"))
 }
}

dependencies {
 testReportData(project(":core"))
 testReportData(project(":util"))
}

tasks.register<TestReport>("testReport") {
 destinationDir =
layout.buildDirectory.dir("reports/allTests").get().asFile
 // Use test results from testReportData configuration
 (getTestResultDirs() as ConfigurableFileCollection).from(testReportData)
}

In this example, we use a convention plugin myproject.java-conventions to expose the test results
from a project to Gradle’s variant aware dependency management engine.

The plugin declares a consumable binaryTestResultsElements configuration that represents the
binary test results of the test task. In the aggregation project’s build file, we declare the
testReportData configuration and depend on all of the projects that we want to aggregate the results
from. Gradle will automatically select the binary test result variant from each of the subprojects
instead of the project’s jar file. Lastly, we add a testReport task that aggregates the test results from
the testResultsDirs property, which contains all of the binary test results resolved from the
testReportData configuration.

You should note that the TestReport type combines the results from multiple test tasks and needs to
aggregate the results of individual test classes. This means that if a given test class is executed by
multiple test tasks, then the test report will include executions of that class, but it can be hard to
distinguish individual executions of that class and their output.

Communicating test results to CI servers and other tools via XML files

The Test tasks creates XML files describing the test results, in the “JUnit XML” pseudo standard. It is
common for CI servers and other tooling to observe test results via these XML files.

By default, the files are written to $buildDir/test-results/$testTaskName with a file per test class.
The location can be changed for all test tasks of a project, or individually per test task.

Example 466. Changing JUnit XML results location for all test tasks

build.gradle

testResultsDirName = "$buildDir/junit-xml"

build.gradle.kts

project.setProperty("testResultsDirName", "$buildDir/junit-xml")

With the above configuration, the XML files will be written to $buildDir/junit-xml/$testTaskName.

Example 467. Changing JUnit XML results location for a particular test task

build.gradle

test {
 reports {
 junitXml.outputLocation.set(layout.buildDirectory.dir("test-junit-
xml"))
 }
}

build.gradle.kts

tasks.test {
 reports {
 junitXml.outputLocation.set(layout.buildDirectory.dir("test-junit-
xml"))
 }
}

With the above configuration, the XML files for the test task will be written to $buildDir/test-
results/test-junit-xml. The location of the XML files for other test tasks will be unchanged.

Configuration options

The content of the XML files can also be configured to convey the results differently, by configuring
the JUnitXmlReport options.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/testing/JUnitXmlReport.html

Example 468. Configuring how the results are conveyed

build.gradle

test {
 reports {
 junitXml {
 outputPerTestCase = true // defaults to false
 mergeReruns = true // defaults to false
 }
 }
}

build.gradle.kts

tasks.test {
 reports {
 junitXml.apply {
 isOutputPerTestCase = true // defaults to false
 mergeReruns.set(true) // defaults to false
 }
 }
}

outputPerTestCase

The outputPerTestCase option, when enabled, associates any output logging generated during a test
case to that test case in the results. When disabled (the default) output is associated with the test
class as whole and not the individual test cases (e.g. test methods) that produced the logging output.
Most modern tools that observe JUnit XML files support the “output per test case” format.

If you are using the XML files to communicate test results, it is recommended to enable this option
as it provides more useful reporting.

mergeReruns

When mergeReruns is enabled, if a test fails but is then retried and succeeds, its failures will be
recorded as <flakyFailure> instead of <failure>, within one <testcase>. This is effectively the
reporting produced by the surefire plugin of Apache Maven™ when enabling reruns. If your CI
server understands this format, it will indicate that the test was flaky. If it does not, it will indicate
that the test succeeded as it will ignore the <flakyFailure> information. If the test does not succeed
(i.e. it fails for every retry), it will be indicated as having failed whether your tool understands this
format or not.

When mergeReruns is disabled (the default), each execution of a test will be listed as a separate test

https://maven.apache.org/components/surefire/maven-surefire-plugin/examples/rerun-failing-tests.html

case.

If you are using build scans or Gradle Enterprise, flaky tests will be detected regardless of this
setting.

Enabling this option is especially useful when using a CI tool that uses the XML test results to
determine build failure instead of relying on Gradle’s determination of whether the build failed or
not, and you wish to not consider the build failed if all failed tests passed when retried. This is the
case for the Jenkins CI server and its JUnit plugin. With mergeReruns enabled, tests that pass-on-retry
will no longer cause this Jenkins plugin to consider the build to have failed. However, failed test
executions will be omitted from the Jenkins test result visualizations as it does not consider
<flakyFailure> information. The separate Flaky Test Handler Jenkins plugin can be used in addition
to the JUnit Jenkins plugin to have such “flaky failures” also be visualized.

Tests are grouped and merged based on their reported name. When using any kind of test
parameterization that affects the reported test name, or any other kind of mechanism that
produces a potentially dynamic test name, care should be taken to ensure that the test name is
stable and does not unnecessarily change.

Enabling the mergeReruns option does not add any retry/rerun functionality to test execution.
Rerunning can be enabled by the test execution framework (e.g. JUnit’s @RepeatedTest), or via the
separate Test Retry Gradle plugin.

Test detection

By default, Gradle will run all tests that it detects, which it does by inspecting the compiled test
classes. This detection uses different criteria depending on the test framework used.

For JUnit, Gradle scans for both JUnit 3 and 4 test classes. A class is considered to be a JUnit test if it:

• Ultimately inherits from TestCase or GroovyTestCase

• Is annotated with @RunWith

• Contains a method annotated with @Test or a super class does

For TestNG, Gradle scans for methods annotated with @Test.

Note that abstract classes are not executed. In addition, be aware that Gradle scans up the
inheritance tree into jar files on the test classpath. So if those JARs contain test classes, they will also
be run.

If you don’t want to use test class detection, you can disable it by setting the scanForTestClasses
property on Test to false. When you do that, the test task uses only the includes and excludes
properties to find test classes.

If scanForTestClasses is false and no include or exclude patterns are specified, Gradle defaults to
running any class that matches the patterns **/*Tests.class and **/*Test.class, excluding those
that match **/Abstract*.class.

https://scans.gradle.com
https://gradle.com/gradle-enterprise-solution-overview/failure-analytics/
https://plugins.jenkins.io/junit/
https://plugins.jenkins.io/flaky-test-handler
https://junit.org/junit5/docs/current/user-guide/#writing-tests-repeated-tests
https://github.com/gradle/test-retry-gradle-plugin
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html

NOTE
With JUnit Platform, only includes and excludes are used to filter test classes —
scanForTestClasses has no effect.

Test grouping

JUnit, JUnit Platform and TestNG allow sophisticated groupings of test methods.

JUnit 4.8 introduced the concept of categories for grouping JUnit 4 tests classes and methods.[8]

Test.useJUnit(org.gradle.api.Action) allows you to specify the JUnit categories you want to include
and exclude. For example, the following configuration includes tests in CategoryA and excludes
those in CategoryB for the test task:

Example 469. JUnit Categories

build.gradle

test {
 useJUnit {
 includeCategories 'org.gradle.junit.CategoryA'
 excludeCategories 'org.gradle.junit.CategoryB'
 }
}

build.gradle.kts

tasks.test {
 useJUnit {
 includeCategories("org.gradle.junit.CategoryA")
 excludeCategories("org.gradle.junit.CategoryB")
 }
}

JUnit Platform introduced tagging to replace categories. You can specify the included/excluded tags
via Test.useJUnitPlatform(org.gradle.api.Action), as follows:

http://junit.org/junit5/docs/current/user-guide
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:useJUnit(org.gradle.api.Action)
http://junit.org/junit5/docs/current/user-guide
http://junit.org/junit5/docs/current/user-guide/#writing-tests-tagging-and-filtering
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform-org.gradle.api.Action-

Example 470. JUnit Platform Tags

build.gradle

test {
 useJUnitPlatform {
 includeTags 'fast'
 excludeTags 'slow'
 }
}

build.gradle.kts

tasks.test {
 useJUnitPlatform {
 includeTags("fast")
 excludeTags("slow")
 }
}

The TestNG framework uses the concept of test groups for a similar effect.[9] You can configure
which test groups to include or exclude during the test execution via the
Test.useTestNG(org.gradle.api.Action) setting, as seen here:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:useTestNG(org.gradle.api.Action)

Example 471. Grouping TestNG tests

build.gradle

test {
 useTestNG {
 excludeGroups 'integrationTests'
 includeGroups 'unitTests'
 }
}

build.gradle.kts

tasks.named<Test>("test") {
 useTestNG {
 val options = this as TestNGOptions
 options.excludeGroups("integrationTests")
 options.includeGroups("unitTests")
 }
}

Using JUnit 5

JUnit 5 is the latest version of the well-known JUnit test framework. Unlike its predecessor, JUnit 5 is
modularized and composed of several modules:

JUnit 5 = JUnit Platform + JUnit Jupiter + JUnit Vintage

The JUnit Platform serves as a foundation for launching testing frameworks on the JVM. JUnit
Jupiter is the combination of the new programming model and extension model for writing tests
and extensions in JUnit 5. JUnit Vintage provides a TestEngine for running JUnit 3 and JUnit 4 based
tests on the platform.

The following code enables JUnit Platform support in build.gradle:

http://junit.org/junit5
http://junit.org/junit5/docs/current/user-guide/#writing-tests
http://junit.org/junit5/docs/current/user-guide/#extensions

Example 472. Enabling JUnit Platform to run your tests

build.gradle

test {
 useJUnitPlatform()
}

build.gradle.kts

tasks.named<Test>("test") {
 useJUnitPlatform()
}

See Test.useJUnitPlatform() for more details.

NOTE

There are some known limitations of using JUnit 5 with Gradle, for example that
tests in static nested classes won’t be discovered. These will be fixed in future
version of Gradle. If you find more, please tell us at https://github.com/gradle/gradle/
issues/new

Compiling and executing JUnit Jupiter tests

To enable JUnit Jupiter support in Gradle, all you need to do is add the following dependency:

Example 473. JUnit Jupiter dependencies

build.gradle

dependencies {
 testImplementation 'org.junit.jupiter:junit-jupiter:5.7.1'
}

build.gradle.kts

dependencies {
 testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
}

You can then put your test cases into src/test/java as normal and execute them with gradle test.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform--
https://github.com/gradle/gradle/issues/new
https://github.com/gradle/gradle/issues/new

Executing legacy tests with JUnit Vintage

If you want to run JUnit 3/4 tests on JUnit Platform, or even mix them with Jupiter tests, you should
add extra JUnit Vintage Engine dependencies:

Example 474. JUnit Vintage dependencies

build.gradle

dependencies {
 testImplementation 'org.junit.jupiter:junit-jupiter:5.7.1'
 testCompileOnly 'junit:junit:4.13'
 testRuntimeOnly 'org.junit.vintage:junit-vintage-engine'
}

build.gradle.kts

dependencies {
 testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
 testCompileOnly("junit:junit:4.13")
 testRuntimeOnly("org.junit.vintage:junit-vintage-engine")
}

In this way, you can use gradle test to test JUnit 3/4 tests on JUnit Platform, without the need to
rewrite them.

Filtering test engine

JUnit Platform allows you to use different test engines. JUnit currently provides two TestEngine
implementations out of the box: junit-jupiter-engine and junit-vintage-engine. You can also write
and plug in your own TestEngine implementation as documented here.

By default, all test engines on the test runtime classpath will be used. To control specific test engine
implementations explicitly, you can add the following setting to your build script:

https://junit.org/junit5/docs/current/api/org.junit.jupiter.engine/module-summary.html
https://junit.org/junit5/docs/current/api/org.junit.vintage.engine/module-summary.html
https://junit.org/junit5/docs/current/user-guide/#launcher-api-engines-custom

Example 475. Filter specific engines

build.gradle

test {
 useJUnitPlatform {
 includeEngines 'junit-vintage'
 // excludeEngines 'junit-jupiter'
 }
}

build.gradle.kts

tasks.test {
 useJUnitPlatform {
 includeEngines("junit-vintage")
 // excludeEngines("junit-jupiter")
 }
}

Test execution order in TestNG

TestNG allows explicit control of the execution order of tests when you use a testng.xml file.
Without such a file — or an equivalent one configured by TestNGOptions.getSuiteXmlBuilder() —
you can’t specify the test execution order. However, what you can do is control whether all aspects
of a test — including its associated @BeforeXXX and @AfterXXX methods, such as those annotated with
@Before/AfterClass and @Before/AfterMethod — are executed before the next test starts. You do this
by setting the TestNGOptions.getPreserveOrder() property to true. If you set it to false, you may
encounter scenarios in which the execution order is something like: TestA.doBeforeClass() →
TestB.doBeforeClass() → TestA tests.

While preserving the order of tests is the default behavior when directly working with testng.xml
files, the TestNG API that is used by Gradle’s TestNG integration executes tests in unpredictable
order by default.[10] The ability to preserve test execution order was introduced with TestNG version
5.14.5. Setting the preserveOrder property to true for an older TestNG version will cause the build to
fail.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html#getSuiteXmlBuilder--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html#getPreserveOrder--
https://jitpack.io/com/github/cbeust/testng/master/javadoc/org/testng/TestNG.html

Example 476. Preserving order of TestNG tests

build.gradle

test {
 useTestNG {
 preserveOrder true
 }
}

build.gradle.kts

tasks.test {
 useTestNG {
 preserveOrder = true
 }
}

The groupByInstance property controls whether tests should be grouped by instance rather than by
class. The TestNG documentation explains the difference in more detail, but essentially, if you have
a test method A() that depends on B(), grouping by instance ensures that each A-B pairing, e.g. B(1)-
A(1), is executed before the next pairing. With group by class, all B() methods are run and then all
A() ones.

Note that you typically only have more than one instance of a test if you’re using a data provider to
parameterize it. Also, grouping tests by instances was introduced with TestNG version 6.1. Setting
the groupByInstances property to true for an older TestNG version will cause the build to fail.

http://testng.org/doc/documentation-main.html#dependencies-with-annotations

Example 477. Grouping TestNG tests by instances

build.gradle

test {
 useTestNG {
 groupByInstances = true
 }
}

build.gradle.kts

tasks.test {
 useTestNG {
 groupByInstances = true
 }
}

TestNG parameterized methods and reporting

TestNG supports parameterizing test methods, allowing a particular test method to be executed
multiple times with different inputs. Gradle includes the parameter values in its reporting of the
test method execution.

Given a parameterized test method named aTestMethod that takes two parameters, it will be
reported with the name aTestMethod(toStringValueOfParam1, toStringValueOfParam2). This makes it
easy to identify the parameter values for a particular iteration.

Configuring integration tests

A common requirement for projects is to incorporate integration tests in one form or another. Their
aim is to verify that the various parts of the project are working together properly. This often
means that they require special execution setup and dependencies compared to unit tests.

The simplest way to add integration tests to your build is by leveraging the incubating JVM Test
Suite plugin. If an incubating solution is not something for you, here are the steps you need to take
in your build:

1. Create a new source set for them

2. Add the dependencies you need to the appropriate configurations for that source set

3. Configure the compilation and runtime classpaths for that source set

4. Create a task to run the integration tests

You may also need to perform some additional configuration depending on what form the

http://testng.org/doc/documentation-main.html#parameters
jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
jvm_test_suite_plugin.pdf#jvm_test_suite_plugin

integration tests take. We will discuss those as we go.

Let’s start with a practical example that implements the first three steps in a build script, centered
around a new source set intTest:

Example 478. Setting up working integration tests

build.gradle

sourceSets {
 intTest {
 compileClasspath += sourceSets.main.output
 runtimeClasspath += sourceSets.main.output
 }
}

configurations {
 intTestImplementation.extendsFrom implementation
 intTestRuntimeOnly.extendsFrom runtimeOnly
}

dependencies {
 intTestImplementation 'junit:junit:4.13'
}

build.gradle.kts

sourceSets {
 create("intTest") {
 compileClasspath += sourceSets.main.get().output
 runtimeClasspath += sourceSets.main.get().output
 }
}

val intTestImplementation by configurations.getting {
 extendsFrom(configurations.implementation.get())
}

configurations["intTestRuntimeOnly"].extendsFrom(configurations.runtimeOnly.g
et())

dependencies {
 intTestImplementation("junit:junit:4.13")
}

This will set up a new source set called intTest that automatically creates:

• intTestImplementation, intTestCompileOnly, intTestRuntimeOnly configurations (and a few others
that are less commonly needed)

• A compileIntTestJava task that will compile all the source files under src/intTest/java

The example also does the following, not all of which you may need for your specific integration
tests:

• Adds the production classes from the main source set to the compilation and runtime classpaths
of the integration tests — sourceSets.main.output is a file collection of all the directories
containing compiled production classes and resources

• Makes the intTestImplementation configuration extend from implementation, which means that
all the declared dependencies of the production code also become dependencies of the
integration tests

• Does the same for the intTestRuntimeOnly configuration

In most cases, you want your integration tests to have access to the classes under test, which is why
we ensure that those are included on the compilation and runtime classpaths in this example. But
some types of test interact with the production code in a different way. For example, you may have
tests that run your application as an executable and verify the output. In the case of web
applications, the tests may interact with your application via HTTP. Since the tests don’t need direct
access to the classes under test in such cases, you don’t need to add the production classes to the
test classpath.

Another common step is to attach all the unit test dependencies to the integration tests as well —
via intTestImplementation.extendsFrom testImplementation — but that only makes sense if the
integration tests require all or nearly all the same dependencies that the unit tests have.

There are a couple of other facets of the example you should take note of:

• += allows you to append paths and collections of paths to compileClasspath and runtimeClasspath
instead of overwriting them

• If you want to use the convention-based configurations, such as intTestImplementation, you
must declare the dependencies after the new source set

Creating and configuring a source set automatically sets up the compilation stage, but it does
nothing with respect to running the integration tests. So the last piece of the puzzle is a custom test
task that uses the information from the new source set to configure its runtime classpath and the
test classes:

Example 479. Defining a working integration test task

build.gradle

tasks.register('integrationTest', Test) {
 description = 'Runs integration tests.'
 group = 'verification'

 testClassesDirs = sourceSets.intTest.output.classesDirs
 classpath = sourceSets.intTest.runtimeClasspath
 shouldRunAfter test
}

check.dependsOn integrationTest

build.gradle.kts

val integrationTest = task<Test>("integrationTest") {
 description = "Runs integration tests."
 group = "verification"

 testClassesDirs = sourceSets["intTest"].output.classesDirs
 classpath = sourceSets["intTest"].runtimeClasspath
 shouldRunAfter("test")
}

tasks.check { dependsOn(integrationTest) }

Again, we’re accessing a source set to get the relevant information, i.e. where the compiled test
classes are — the testClassesDirs property — and what needs to be on the classpath when running
them — classpath.

Users commonly want to run integration tests after the unit tests, because they are often slower to
run and you want the build to fail early on the unit tests rather than later on the integration tests.
That’s why the above example adds a shouldRunAfter() declaration. This is preferred over
mustRunAfter() so that Gradle has more flexibility in executing the build in parallel.

Testing Java Modules

If you are developing Java Modules, everything described in this chapter still applies and any of the
supported test frameworks can be used. However, there are some things to consider depending on
whether you need module information to be available, and module boundaries to be enforced,
during test execution. In this context, the terms whitebox testing (module boundaries are
deactivated or relaxed) and blackbox testing (module boundaries are in place) are often used.
Whitebox testing is used/needed for unit testing and blackbox testing fits functional or integration

test requirements.

Sample: Java Modules multi-project with integration tests

Whitebox unit test execution on the classpath

The simplest setup to write unit tests for functions or classes in modules is to not use module
specifics during test execution. For this, you just need to write tests the same way you would write
them for normal libraries. If you don’t have a module-info.java file in your test source set
(src/test/java) this source set will be considered as traditional Java library during compilation and
test runtime. This means, all dependencies, including Jars with module information, are put on the
classpath. The advantage is that all internal classes of your (or other) modules are then accessible
directly in tests. This may be a totally valid setup for unit testing, where we do not care about the
larger module structure, but only about testing single functions.

NOTE

If you are using Eclipse: By default, Eclipse also runs unit tests as modules using
module patching (see below). In an imported Gradle project, unit testing a module
with the Eclipse test runner might fail. You then need to manually adjust the
classpath/module path in the test run configuration or delegate test execution to
Gradle. This only concerns the test execution. Unit test compilation and
development works fine in Eclipse.

Blackbox integration testing

For integration tests, you have the option to define the test set itself as additional module. You do
this similar to how you turn your main sources into a module: by adding a module-info.java file to
the corresponding source set (e.g. integrationTests/java/module-info.java).

You can find a full example that includes blackbox integration tests here.

NOTE
In Eclipse, compiling multiple modules in one project is currently not support.
Therefore the integration test (blackbox) setup described here only works in Eclipse
if the tests are moved to a separate subproject.

Whitebox test execution with module patching

Another approach for whitebox testing is to stay in the module world by patching the tests into the
module under test. This way, module boundaries stay in place, but the tests themselves become part
of the module under test and can then access the module’s internals.

For which uses cases this is relevant and how this is best done is a topic of discussion. There is no
general best approach at the moment. Thus, there is no special support for this in Gradle right now.

You can however, setup module patching for tests like this:

• Add a module-info.java to your test source set that is a copy of the main module-info.java with
additional dependencies needed for testing (e.g. requires org.junit.jupiter.api).

• Configure both the testCompileJava and test tasks with arguments to patch the the main classes
with the test classes as shown below.

../samples/sample_java_modules_multi_project_with_integration_tests.html
../samples/sample_java_modules_multi_project_with_integration_tests.html
https://bugs.eclipse.org/bugs/show_bug.cgi?id=520667

Example 480. Patch module for testing using command line arguments

build.gradle

def moduleName = "org.gradle.sample"
def patchArgs = ["--patch-module", "$moduleName=${tasks.compileJava
.destinationDirectory.asFile.get().path}"]
tasks.named('compileTestJava') {
 options.compilerArgs += patchArgs
}
tasks.named('test') {
 jvmArgs += patchArgs
}

build.gradle.kts

val moduleName = "org.gradle.sample"
val patchArgs = listOf("--patch-module",
"$moduleName=${tasks.compileJava.get().destinationDirectory.asFile.get().path
}")
tasks.compileTestJava {
 options.compilerArgs.addAll(patchArgs)
}
tasks.test {
 jvmArgs(patchArgs)
}

NOTE
If custom arguments are used for patching, these are not picked up by Eclipse and
IDEA. You will most likely see invalid compilation errors in the IDE.

Skipping the tests

If you want to skip the tests when running a build, you have a few options. You can either do it via
command line arguments or in the build script. To do it on the command line, you can use the -x or
--exclude-task option like so:

gradle build -x test

This excludes the test task and any other task that it exclusively depends on, i.e. no other task
depends on the same task. Those tasks will not be marked "SKIPPED" by Gradle, but will simply not
appear in the list of tasks executed.

Skipping a test via the build script can be done a few ways. One common approach is to make test

execution conditional via the Task.onlyIf(org.gradle.api.specs.Spec) method. The following sample
skips the test task if the project has a property called mySkipTests:

Example 481. Skipping the unit tests based on a project property

build.gradle

test.onlyIf { !project.hasProperty('mySkipTests') }

build.gradle.kts

tasks.test { onlyIf { !project.hasProperty("mySkipTests") } }

In this case, Gradle will mark the skipped tests as "SKIPPED" rather than exclude them from the
build.

Forcing tests to run

In well-defined builds, you can rely on Gradle to only run tests if the tests themselves or the
production code change. However, you may encounter situations where the tests rely on a third-
party service or something else that might change but can’t be modeled in the build.

You can force tests to run in this situation by cleaning the output of the relevant Test task — say
test — and running the tests again, like so:

gradle cleanTest test

cleanTest is based on a task rule provided by the Base Plugin. You can use it for any task.

Debugging when running tests

On the few occasions that you want to debug your code while the tests are running, it can be
helpful if you can attach a debugger at that point. You can either set the Test.getDebug() property to
true or use the --debug-jvm command line option.

When debugging for tests is enabled, Gradle will start the test process suspended and listening on
port 5005.

You can also enable debugging in the DSL, where you can also configure other properties:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html#org.gradle.api.Task:onlyIf(org.gradle.api.specs.Spec)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:debug

test {
 debugOptions {
 enabled = true
 port = 4455
 server = true
 suspend = true
 }
}

With this configuration the test JVM will behave just like when passing the --debug-jvm argument
but it will listen on port 4455.

Using test fixtures

Producing and using test fixtures within a single project

Test fixtures are commonly used to setup the code under test, or provide utilities aimed at
facilitating the tests of a component. Java projects can enable test fixtures support by applying the
java-test-fixtures plugin, in addition to the java or java-library plugins:

Example 482. Applying the Java test fixtures plugin

lib/build.gradle

plugins {
 // A Java Library
 id 'java-library'
 // which produces test fixtures
 id 'java-test-fixtures'
 // and is published
 id 'maven-publish'
}

lib/build.gradle.kts

plugins {
 // A Java Library
 `java-library`
 // which produces test fixtures
 `java-test-fixtures`
 // and is published
 `maven-publish`
}

This will automatically create a testFixtures source set, in which you can write your test fixtures.
Test fixtures are configured so that:

• they can see the main source set classes

• test sources can see the test fixtures classes

For example for this main class:

src/main/java/com/acme/Person.java

public class Person {
 private final String firstName;
 private final String lastName;

 public Person(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

 // ...

A test fixture can be written in src/testFixtures/java:

src/testFixtures/java/com/acme/Simpsons.java

public class Simpsons {
 private static final Person HOMER = new Person("Homer", "Simpson");
 private static final Person MARGE = new Person("Marjorie", "Simpson");
 private static final Person BART = new Person("Bartholomew", "Simpson");
 private static final Person LISA = new Person("Elisabeth Marie", "Simpson");
 private static final Person MAGGIE = new Person("Margaret Eve", "Simpson");
 private static final List<Person> FAMILY = new ArrayList<Person>() {{
 add(HOMER);
 add(MARGE);
 add(BART);
 add(LISA);
 add(MAGGIE);
 }};

 public static Person homer() { return HOMER; }

 public static Person marge() { return MARGE; }

 public static Person bart() { return BART; }

 public static Person lisa() { return LISA; }

 public static Person maggie() { return MAGGIE; }

 // ...

Declaring dependencies of test fixtures

Similarly to the Java Library Plugin, test fixtures expose an API and an implementation
configuration:

java_library_plugin.html

Example 483. Declaring test fixture dependencies

lib/build.gradle

dependencies {
 testImplementation 'junit:junit:4.13'

 // API dependencies are visible to consumers when building
 testFixturesApi 'org.apache.commons:commons-lang3:3.9'

 // Implementation dependencies are not leaked to consumers when building
 testFixturesImplementation 'org.apache.commons:commons-text:1.6'
}

lib/build.gradle.kts

dependencies {
 testImplementation("junit:junit:4.13")

 // API dependencies are visible to consumers when building
 testFixturesApi("org.apache.commons:commons-lang3:3.9")

 // Implementation dependencies are not leaked to consumers when building
 testFixturesImplementation("org.apache.commons:commons-text:1.6")
}

It’s worth noticing that if a dependency is an implementation dependency of test fixtures, then when
compiling tests that depend on those test fixtures, the implementation dependencies will not leak
into the compile classpath. This results in improved separation of concerns and better compile
avoidance.

Consuming test fixtures of another project

Test fixtures are not limited to a single project. It is often the case that a dependent project tests also
needs the test fixtures of the dependency. This can be achieved very easily using the testFixtures
keyword:

Example 484. Adding a dependency on test fixtures of another project

build.gradle

dependencies {
 implementation(project(":lib"))

 testImplementation 'junit:junit:4.13'
 testImplementation(testFixtures(project(":lib")))
}

build.gradle.kts

dependencies {
 implementation(project(":lib"))

 testImplementation("junit:junit:4.13")
 testImplementation(testFixtures(project(":lib")))
}

Publishing test fixtures

One of the advantages of using the java-test-fixtures plugin is that test fixtures are published. By
convention, test fixtures will be published with an artifact having the test-fixtures classifier. For
both Maven and Ivy, an artifact with that classifier is simply published alongside the regular
artifacts. However, if you use the maven-publish or ivy-publish plugin, test fixtures are published as
additional variants in Gradle Module Metadata and you can directly depend on test fixtures of
external libraries in another Gradle project:

https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-1.0-specification.md

Example 485. Adding a dependency on test fixtures of an external library

build.gradle

dependencies {
 // Adds a dependency on the test fixtures of Gson, however this
 // project doesn't publish such a thing
 functionalTest testFixtures("com.google.code.gson:gson:2.8.5")
}

build.gradle.kts

dependencies {
 // Adds a dependency on the test fixtures of Gson, however this
 // project doesn't publish such a thing
 functionalTest(testFixtures("com.google.code.gson:gson:2.8.5"))
}

It’s worth noting that if the external project is not publishing Gradle Module Metadata, then
resolution will fail with an error indicating that such a variant cannot be found:

Output of gradle dependencyInsight --configuration functionalTestClasspath --dependency gson

> gradle dependencyInsight --configuration functionalTestClasspath --dependency gson

> Task :dependencyInsight
com.google.code.gson:gson:2.8.5 FAILED
 Failures:
 - Could not resolve com.google.code.gson:gson:2.8.5.
 - Unable to find a variant of com.google.code.gson:gson:2.8.5 providing the
requested capability com.google.code.gson:gson-test-fixtures:
 - Variant compile provides com.google.code.gson:gson:2.8.5
 - Variant runtime provides com.google.code.gson:gson:2.8.5
 - Variant platform-compile provides com.google.code.gson:gson-derived-
platform:2.8.5
 - Variant platform-runtime provides com.google.code.gson:gson-derived-
platform:2.8.5
 - Variant enforced-platform-compile provides com.google.code.gson:gson-
derived-enforced-platform:2.8.5
 - Variant enforced-platform-runtime provides com.google.code.gson:gson-
derived-enforced-platform:2.8.5

com.google.code.gson:gson:2.8.5 FAILED
\--- functionalTestClasspath

A web-based, searchable dependency report is available by adding the --scan option.

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

The error message mentions the missing com.google.code.gson:gson-test-fixtures capability, which
is indeed not defined for this library. That’s because by convention, for projects that use the java-
test-fixtures plugin, Gradle automatically creates test fixtures variants with a capability whose
name is the name of the main component, with the appendix -test-fixtures.

NOTE
If you publish your library and use test fixtures, but do not want to publish the
fixtures, you can deactivate publishing of the test fixtures variants as shown below.

Example 486. Disable publishing of test fixtures variants

build.gradle

components.java.withVariantsFromConfiguration(configurations.testFixturesApiE
lements) { skip() }
components.java.withVariantsFromConfiguration(configurations.testFixturesRunt
imeElements) { skip() }

build.gradle.kts

val javaComponent = components["java"] as AdhocComponentWithVariants
javaComponent.withVariantsFromConfiguration(configurations["testFixturesApiEl
ements"]) { skip() }
javaComponent.withVariantsFromConfiguration(configurations["testFixturesRunti
meElements"]) { skip() }

Managing Dependencies of JVM Projects
This chapter explains how to apply basic dependency management concepts to JVM-based projects.
For a detailed introduction to dependency management, see dependency management in Gradle.

Dissecting a typical build script

Let’s have a look at a very simple build script for a JVM-based project. It applies the Java Library
plugin which automatically introduces a standard project layout, provides tasks for performing
typical work and adequate support for dependency management.

Example 487. Dependency declarations for a JVM-based project

build.gradle

plugins {
 id 'java-library'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.hibernate:hibernate-core:3.6.7.Final'
 api 'com.google.guava:guava:23.0'
 testImplementation 'junit:junit:4.+'
}

build.gradle.kts

plugins {
 `java-library`
}

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.hibernate:hibernate-core:3.6.7.Final")
 api("com.google.guava:guava:23.0")
 testImplementation("junit:junit:4.+")
}

The Project.dependencies{} code block declares that Hibernate core 3.6.7.Final is required to
compile the project’s production source code. It also states that junit >= 4.0 is required to compile
the project’s tests. All dependencies are supposed to be looked up in the Maven Central repository
as defined by Project.repositories{}. The following sections explain each aspect in more detail.

Declaring module dependencies

There are various types of dependencies that you can declare. One such type is a module
dependency. A module dependency represents a dependency on a module with a specific version
built outside the current build. Modules are usually stored in a repository, such as Maven Central, a
corporate Maven or Ivy repository, or a directory in the local file system.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)

To define an module dependency, you add it to a dependency configuration:

Example 488. Definition of a module dependency

build.gradle

dependencies {
 implementation 'org.hibernate:hibernate-core:3.6.7.Final'
}

build.gradle.kts

dependencies {
 implementation("org.hibernate:hibernate-core:3.6.7.Final")
}

To find out more about defining dependencies, have a look at Declaring Dependencies.

Using dependency configurations

A Configuration is a named set of dependencies and artifacts. There are three main purposes for a
configuration:

Declaring dependencies

A plugin uses configurations to make it easy for build authors to declare what other subprojects
or external artifacts are needed for various purposes during the execution of tasks defined by
the plugin. For example a plugin may need the Spring web framework dependency to compile
the source code.

Resolving dependencies

A plugin uses configurations to find (and possibly download) inputs to the tasks it defines. For
example Gradle needs to download Spring web framework JAR files from Maven Central.

Exposing artifacts for consumption

A plugin uses configurations to define what artifacts it generates for other projects to consume.
For example the project would like to publish its compiled source code packaged in the JAR file
to an in-house Artifactory repository.

With those three purposes in mind, let’s take a look at a few of the standard configurations defined
by the Java Library Plugin.

implementation

The dependencies required to compile the production source of the project which are not part of
the API exposed by the project. For example the project uses Hibernate for its internal

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.Configuration.html

persistence layer implementation.

api

The dependencies required to compile the production source of the project which are part of the
API exposed by the project. For example the project uses Guava and exposes public interfaces
with Guava classes in their method signatures.

testImplementation

The dependencies required to compile and run the test source of the project. For example the
project decided to write test code with the test framework JUnit.

Various plugins add further standard configurations. You can also define your own custom
configurations in your build via Project.configurations{}. See What are dependency configurations
for the details of defining and customizing dependency configurations.

Declaring common Java repositories

How does Gradle know where to find the files for external dependencies? Gradle looks for them in
a repository. A repository is a collection of modules, organized by group, name and version. Gradle
understands different repository types, such as Maven and Ivy, and supports various ways of
accessing the repository via HTTP or other protocols.

By default, Gradle does not define any repositories. You need to define at least one with the help of
Project.repositories{} before you can use module dependencies. One option is use the Maven
Central repository:

Example 489. Usage of Maven central repository

build.gradle

repositories {
 mavenCentral()
}

build.gradle.kts

repositories {
 mavenCentral()
}

You can also have repositories on the local file system. This works for both Maven and Ivy
repositories.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)

Example 490. Usage of a local Ivy directory

build.gradle

repositories {
 ivy {
 // URL can refer to a local directory
 url "../local-repo"
 }
}

build.gradle.kts

repositories {
 ivy {
 // URL can refer to a local directory
 url = uri("../local-repo")
 }
}

A project can have multiple repositories. Gradle will look for a dependency in each repository in
the order they are specified, stopping at the first repository that contains the requested module.

To find out more about defining repositories, have a look at Declaring Repositories.

Publishing artifacts

To learn more about publishing artifacts, have a look at publishing plugins.

[7] In fact, any artifact added to the archives configuration will be built by assemble

[8] The JUnit wiki contains a detailed description on how to work with JUnit categories: https://github.com/junit-team/junit/wiki/
Categories.

[9] The TestNG documentation contains more details about test groups: http://testng.org/doc/documentation-main.html#test-
groups.

[10] The TestNG documentation contains more details about test ordering when working with testng.xml files: http://testng.org/doc/
documentation-main.html#testng-xml.

https://github.com/junit-team/junit/wiki/Categories
https://github.com/junit-team/junit/wiki/Categories
http://testng.org/doc/documentation-main.html#test-groups
http://testng.org/doc/documentation-main.html#test-groups
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml

C++ & Other Native Projects

Building C++ projects
Gradle uses a convention-over-configuration approach to building native projects. If you are
coming from another native build system, these concepts may be unfamiliar at first, but they serve
a purpose to simplify build script authoring.

We will look at C++ projects in detail in this chapter, but most of the topics will apply to other
supported native languages as well. If you don’t have much experience with building native
projects with Gradle, take a look at the C++ tutorials for step-by-step instructions on how to build
various types of basic C++ projects as well as some common use cases.

The C++ plugins covered in this chapter were introduced in 2018 and we recommend users to use
those plugins over the older Native plugins that you may find references to.

Introduction

The simplest build script for a C++ project applies the C++ application plugin or the C++ library
plugin and optionally sets the project version:

Example 491. Applying the C++ Plugin

build.gradle

plugins {
 id 'cpp-application' // or 'cpp-library'
}

version = '1.2.1'

build.gradle.kts

plugins {
 `cpp-application` // or `cpp-library`
}

version = "1.2.1"

By applying either of the C++ plugins, you get a whole host of features:

• compileDebugCpp and compileReleaseCpp tasks that compiles the C++ source files under
src/main/cpp for the well-known debug and release build types, respectively.

https://blog.gradle.org/introducing-the-new-cpp-plugins

• linkDebug and linkRelease tasks that link the compiled C++ object files into an executable for
applications or shared library for libraries with shared linkage for the debug and release build
types.

• createDebug and createRelease tasks that assemble the compiled C++ object files into a static
library for libraries with static linkage for the debug and release build types.

For any non-trivial C++ project, you’ll probably have some file dependencies and additional
configuration specific to your project.

The C++ plugins also integrates the above tasks into the standard lifecycle tasks. The task that
produces the development binary is attached to assemble. By default, the development binary is the
debug variant.

The rest of the chapter explains the different ways to customize the build to your requirements
when building libraries and applications.

Introducing build variants

Native projects can typically produce several different binaries, such as debug or release ones, or
ones that target particular platforms and processor architectures. Gradle manages this through the
concepts of dimensions and variants.

A dimension is simply a category, where each category is orthogonal to the rest. For example, the
"build type" dimension is a category that includes debug and release. The "architecture" dimension
covers processor architectures like x86-64 and PowerPC.

A variant is a combination of values for these dimensions, consisting of exactly one value for each
dimension. You might have a "debug x86-64" or a "release PowerPC" variant.

Gradle has built-in support for several dimensions and several values within each dimension. You
can find a list of them in the native plugin reference chapter.

Declaring your source files

Gradle’s C++ support uses a ConfigurableFileCollection directly from the application or library
script block to configure the set of sources to compile.

Libraries make a distinction between private (implementation details) and public (exported to
consumer) headers.

You can also configure sources for each binary build for those cases where sources are compiled
only on certain target machines.

https://docs.gradle.org/7.3.2/dsl/org.gradle.language.cpp.CppApplication.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.cpp.CppLibrary.html

Figure 27. Sources and C++ compilation

Test sources are configured on each test suite script block. See Testing C++ projects chapter.

Managing your dependencies

The vast majority of projects rely on other projects, so managing your project’s dependencies is an
important part of building any project. Dependency management is a big topic, so we will only
focus on the basics for C++ projects here. If you’d like to dive into the details, check out the
introduction to dependency management.

Gradle provides support for consuming pre-built binaries from Maven repositories published by
Gradle [11].

We will cover how to add dependencies between projects within a multi-build project.

Specifying dependencies for your C++ project requires two pieces of information:

• Identifying information for the dependency (project path, Maven GAV)

• What it’s needed for, e.g. compilation, linking, runtime or all of the above.

This information is specified in a dependencies {} block of the C++ application or library script
block. For example, to tell Gradle that your project requires library common to compile and link your
production code, you can use the following fragment:

Example 492. Declaring dependencies

build.gradle

application {
 dependencies {
 implementation project(':common')
 }
}

build.gradle.kts

application {
 dependencies {
 implementation(project(":common"))
 }
}

The Gradle terminology for the three elements is as follows:

• Configuration (ex: implementation) - a named collection of dependencies, grouped together for a
specific goal such as compiling or linking a module

• Project reference (ex: project(':common')) - the project referenced by the specified path

You can find a more comprehensive glossary of dependency management terms here.

As far as configurations go, the main ones of interest are:

• implementation - used for compilation, linking and runtime

• cppCompileVariant - for dependencies that are necessary to compile your production code but
shouldn’t be part of the linking or runtime process

• nativeLinkVariant - for dependencies that are necessary to link your code but shouldn’t be part
of the compilation or runtime process

• nativeRuntimeVariant - for dependencies that are necessary to run your component but
shouldn’t be part of the compilation or linking process

You can learn more about these and how they relate to one another in the native plugin reference
chapter.

Be aware that the C++ Library Plugin creates an additional configuration — api — for dependencies
that are required for compiling and linking both the module and any modules that depend on it.

We have only scratched the surface here, so we recommend that you read the dedicated
dependency management chapters once you’re comfortable with the basics of building C++ projects

cpp_library_plugin.pdf#cpp_library_plugin

with Gradle.

Some common scenarios that require further reading include:

• Defining a custom Maven-compatible repository

• Declaring dependencies with changing (e.g. SNAPSHOT) and dynamic (range) versions

• Declaring a sibling project as a dependency

• Controlling transitive dependencies and their versions

• Testing your fixes to 3rd-party dependency via composite builds (a better alternative to
publishing to and consuming from Maven Local)

You’ll discover that Gradle has a rich API for working with dependencies — one that takes time to
master, but is straightforward to use for common scenarios.

Compiling and linking your code

Compiling both your code can be trivially easy if you follow the conventions:

1. Put your source code under the src/main/cpp directory

2. Declare your compile dependencies in the implementation configurations (see the previous
section)

3. Run the assemble task

We recommend that you follow these conventions wherever possible, but you don’t have to.

There are several options for customization, as you’ll see next.

NOTE All CppCompile tasks are incremental and cacheable.

Supported tool chain

Gradle offers the ability to execute the same build using different tool chains. When you build a
native binary, Gradle will attempt to locate a tool chain installed on your machine that can build
the binary. Gradle select the first tool chain that can build for the target operating system and
architecture. In the future, Gradle will consider source and ABI compatibility when selecting a tool
chain.

Gradle has general support for the three major tool chains on major operating system: Clang [12],
GCC [13] and Visual C++ [14] (Windows-only). GCC and Clang installed using Macports and Homebrew
have been reported to work fine, but this isn’t tested continuously.

Windows

To build on Windows, install a compatible version of Visual Studio. The C++ plugins will discover
the Visual Studio installations and select the latest version. There is no need to mess around with
environment variables or batch scripts. This works fine from a Cygwin shell or the Windows
command-line.

https://docs.gradle.org/7.3.2/dsl/org.gradle.language.cpp.tasks.CppCompile.html

Alternatively, you can install Cygwin or MinGW with GCC. Clang is currently not supported.

macOS

To build on macOS, you should install Xcode. The C++ plugins will discover the Xcode installation
using the system PATH.

The C++ plugins also work with GCC and Clang installed with Macports or Homebrew [15]. To use one
of the Macports or Homebrew, you will need to add Macports/Homebrew to the system PATH.

Linux

To build on Linux, install a compatible version of GCC or Clang. The C++ plugins will discover GCC
or Clang using the system PATH.

Customizing file and directory locations

Imagine you have a legacy library project that uses an src directory for the production code and
private headers and include directory for exported headers. The conventional directory structure
won’t work, so you need to tell Gradle where to find the source and header files. You do that via the
application or library script block.

Each component script block, as well as each binary, defines where it’s source code resides. You can
override the convention values by using the following syntax:

Example 493. Setting C++ source set

build.gradle

library {
 source.from file('src')
 privateHeaders.from file('src')
 publicHeaders.from file('include')
}

build.gradle.kts

library {
 source.from(file("src"))
 privateHeaders.from(file("src"))
 publicHeaders.from(file("include"))
}

Now Gradle will only search directly in src for the source and private headers and in include for
public headers.

Changing compiler and linker options

Most of the compiler and linker options are accessible through the corresponding task, such as
compileVariantCpp, linkVariant and createVariant. These tasks are of type CppCompile,
LinkSharedLibrary and CreateStaticLibrary respectively. Read the task reference for an up-to-date
and comprehensive list of the options.

For example, if you want to change the warning level generated by the compiler for all variants,
you can use this configuration:

https://docs.gradle.org/7.3.2/dsl/org.gradle.language.cpp.tasks.CppCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.LinkSharedLibrary.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.CreateStaticLibrary.html

Example 494. Setting C++ compiler options for all variants

build.gradle

tasks.withType(CppCompile).configureEach {
 // Define a preprocessor macro for every binary
 macros.put("NDEBUG", null)

 // Define a compiler options
 compilerArgs.add '-W3'

 // Define toolchain-specific compiler options
 compilerArgs.addAll toolChain.map { toolChain ->
 if (toolChain in [Gcc, Clang]) {
 return ['-O2', '-fno-access-control']
 } else if (toolChain in VisualCpp) {
 return ['/Zi']
 }
 return []
 }
}

build.gradle.kts

tasks.withType(CppCompile::class.java).configureEach {
 // Define a preprocessor macro for every binary
 macros.put("NDEBUG", null)

 // Define a compiler options
 compilerArgs.add("-W3")

 // Define toolchain-specific compiler options
 compilerArgs.addAll(toolChain.map { toolChain ->
 when (toolChain) {
 is Gcc, is Clang -> listOf("-O2", "-fno-access-control")
 is VisualCpp -> listOf("/Zi")
 else -> listOf()
 }
 })
}

It’s also possible to find the instance for a specific variant through the BinaryCollection on the
application or library script block:

Example 495. Setting C++ compiler options per variant

build.gradle

application {
 binaries.configureEach(CppStaticLibrary) {
 // Define a preprocessor macro for every binary
 compileTask.get().macros.put("NDEBUG", null)

 // Define a compiler options
 compileTask.get().compilerArgs.add '-W3'

 // Define toolchain-specific compiler options
 if (toolChain in [Gcc, Clang]) {
 compileTask.get().compilerArgs.addAll(['-O2', '-fno-access
-control'])
 } else if (toolChain in VisualCpp) {
 compileTask.get().compilerArgs.add('/Zi')
 }
 }
}

build.gradle.kts

application {
 binaries.configureEach(CppStaticLibrary::class.java) {
 // Define a preprocessor macro for every binary
 compileTask.get().macros.put("NDEBUG", null)

 // Define a compiler options
 compileTask.get().compilerArgs.add("-W3")

 // Define toolchain-specific compiler options
 when (toolChain) {
 is Gcc, is Clang ->
compileTask.get().compilerArgs.addAll(listOf("-O2", "-fno-access-control"))
 is VisualCpp -> compileTask.get().compilerArgs.add("/Zi")
 }
 }
}

Selecting target machines

By default, Gradle will attempt to create a C++ binary variant for the host operating system and
architecture. It is possible to override this by specifying the set of TargetMachine on the application

or library script block:

Example 496. Setting target machines

build.gradle

application {
 targetMachines = [
 machines.linux.x86_64,
 machines.windows.x86, machines.windows.x86_64,
 machines.macOS.x86_64
]
}

build.gradle.kts

application {
 targetMachines.set(listOf(machines.windows.x86, machines.windows.x86_64,
machines.macOS.x86_64, machines.linux.x86_64))
}

Packaging and publishing

How you package and potentially publish your C++ project varies greatly in the native world.
Gradle comes with defaults, but custom packaging can be implemented without any issues.

• Executable files are published directly to Maven repositories.

• Shared and static library files are published directly to Maven repositories along with a zip of
the public headers.

• For applications, Gradle also supports installing and running the executable with all of its
shared library dependencies in a known location.

Cleaning the build

The C++ Application and Library Plugins add a clean task to you project by using the base plugin.
This task simply deletes everything in the $buildDir directory, hence why you should always put
files generated by the build in there. The task is an instance of Delete and you can change what
directory it deletes by setting its dir property.

Building C++ libraries

The unique aspect of library projects is that they are used (or "consumed") by other C++ projects.
That means the dependency metadata published with the binaries and headers — in the form of
Gradle Module Metadata — is crucial. In particular, consumers of your library should be able to

distinguish between two different types of dependencies: those that are only required to compile
your library and those that are also required to compile the consumer.

Gradle manages this distinction via the C++ Library Plugin, which introduces an api configuration
in addition to the implementation once covered in this chapter. If the types from a dependency
appear as unresolved symbols of the static library or within the public headers then that
dependency is exposed via your library’s public API and should, therefore, be added to the api
configuration. Otherwise, the dependency is an internal implementation detail and should be
added to implementation.

If you’re unsure of the difference between an API and implementation dependency, the C++ Library
Plugin chapter has a detailed explanation. In addition, you can see a basic, practical example of
building a C++ library in the corresponding sample.

Building C++ applications

See the C++ Application Plugin chapter for more details, but here’s a quick summary of what you
get:

• install create a directory containing everything needed to run it

• Shell and Windows Batch scripts to start the application

You can see a basic example of building a C++ application in the corresponding sample.

Testing in C++ projects
Testing in the native ecosystem takes many forms.

There are different testing libraries and frameworks, as well as many different types of test. All
need to be part of the build, whether they are executed frequently or infrequently. This chapter is
dedicated to explaining how Gradle handles differing requirements between and within builds,
with significant coverage of how it integrates with the executable-based testing frameworks, such
as Google Test.

Testing C++ projects in Gradle is fairly limited when compared to Testing in Java & JVM projects. In
this chapter, we explain the ways to control how tests are run (Test execution).

But first, we look at the basics of native testing in Gradle.

The basics

All C++ testing revolves around a single task type: RunTestExecutable. This runs a single test
executable built with any testing framework and asserts the execution was successful using the exit
code of the executable. The test case results aren’t collected and no reports are generated.

In order to operate, the RunTestExecutable task type requires just one piece of information:

• Where to find the built test executable (property: RunTestExecutable.getExecutable())

When you’re using the C++ Unit Test Plugin you will automatically get the following:

cpp_library_plugin.pdf#cpp_library_plugin
cpp_library_plugin.pdf#sec:cpp_library_api_vs_implementation
cpp_library_plugin.pdf#sec:cpp_library_api_vs_implementation
../samples/sample_building_cpp_libraries.html
cpp_application_plugin.pdf#cpp_application_plugin
../samples/sample_building_cpp_applications.html
https://github.com/google/googletest
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.tasks.RunTestExecutable.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.tasks.RunTestExecutable.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.tasks.RunTestExecutable.html#org.gradle.nativeplatform.test.tasks.RunTestExecutable:executable
cpp_unit_test_plugin.pdf#cpp_unit_test_plugin

• A dedicated unitTest extension for configuring test component and its variants

• A run task of type RunTestExecutable that runs the test executable

The test plugins configure the required pieces of information appropriately. In addition, they attach
the run task to the check lifecycle task. It also create the testImplementation dependency
configuration. Dependencies that are only needed for test compilation, linking and runtime may be
added to this configuration. The unitTest script block behave similarly to a application or library
script block.

The RunTestExecutable task has many configuration options. We cover a number of them in the
rest of the chapter.

Test execution

Gradle executes tests in a separate (‘forked’) process.

You can control how the test process is launched via several properties on the RunTestExecutable
task, including the following:

ignoreFailures - default: false

If this property is true, Gradle will continue with the project’s build once the tests have
completed, even if some of them have failed. Note that, by default, RunTestExecutable task type
always executes every test that it detects, irrespective of this setting.

See RunTestExecutable for details on all the available configuration options.

Building Swift projects
Gradle uses a convention-over-configuration approach to building native projects. If you are
coming from another native build system, these concepts may be unfamiliar at first, but they serve
a purpose to simplify build script authoring.

We will look at Swift projects in detail in this chapter, but most of the topics will apply to other
supported native languages as well.

Introduction

The simplest build script for a Swift project applies the Swift application plugin or the Swift library
plugin and optionally sets the project version:

https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.cpp.CppTestSuite.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.tasks.RunTestExecutable.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.tasks.RunTestExecutable.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.tasks.RunTestExecutable.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.tasks.RunTestExecutable.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.tasks.RunTestExecutable.html

Example 497. Applying the Swift Plugin

build.gradle

plugins {
 id 'swift-application' // or 'swift-library'
}

version = '1.2.1'

build.gradle.kts

plugins {
 `swift-application` // or `swift-library`
}

version = "1.2.1"

By applying either of the Swift plugins, you get a whole host of features:

• compileDebugSwift and compileReleaseSwift tasks that compiles the Swift source files under
src/main/swift for the well-known debug and release build types, respectively.

• linkDebug and linkRelease tasks that link the compiled Swift object files into an executable for
applications or shared library for libraries with shared linkage for the debug and release build
types.

• createDebug and createRelease tasks that assemble the compiled Swift object files into a static
library for libraries with static linkage for the debug and release build types.

For any non-trivial Swift project, you’ll probably have some file dependencies and additional
configuration specific to your project.

The Swift plugins also integrates the above tasks into the standard lifecycle tasks. The task that
produces the development binary is attached to assemble. By default, the development binary is the
debug variant.

The rest of the chapter explains the different ways to customize the build to your requirements
when building libraries and applications.

Introducing build variants

Native projects can typically produce several different binaries, such as debug or release ones, or
ones that target particular platforms and processor architectures. Gradle manages this through the
concepts of dimensions and variants.

A dimension is simply a category, where each category is orthogonal to the rest. For example, the
"build type" dimension is a category that includes debug and release. The "architecture" dimension
covers processor architectures like x86-64 and x86.

A variant is a combination of values for these dimensions, consisting of exactly one value for each
dimension. You might have a "debug x86-64" or a "release x86" variant.

Gradle has built-in support for several dimensions and several values within each dimension. You
can find a list of them in the native plugin reference chapter.

Declaring your source files

Gradle’s Swift support uses a ConfigurableFileCollection directly from the application or library
script block to configure the set of sources to compile.

Libraries make a distinction between private (implementation details) and public (exported to
consumer) headers.

You can also configure sources for each binary build for those cases where sources are compiled
only on certain target machines.

Figure 28. Sources and Swift compilation

Managing your dependencies

The vast majority of projects rely on other projects, so managing your project’s dependencies is an
important part of building any project. Dependency management is a big topic, so we will only
focus on the basics for Swift projects here. If you’d like to dive into the details, check out the
introduction to dependency management.

Gradle provides support for consuming pre-built binaries from Maven repositories published by
Gradle [16].

We will cover how to add dependencies between projects within a multi-build project.

Specifying dependencies for your Swift project requires two pieces of information:

https://docs.gradle.org/7.3.2/dsl/org.gradle.language.swift.SwiftApplication.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.swift.SwiftLibrary.html

• Identifying information for the dependency (project path, Maven GAV)

• What it’s needed for, e.g. compilation, linking, runtime or all of the above.

This information is specified in a dependencies {} block of the Swift application or library script
block. For example, to tell Gradle that your project requires library common to compile and link your
production code, you can use the following fragment:

Example 498. Declaring dependencies

build.gradle

application {
 dependencies {
 implementation project(':common')
 }
}

build.gradle.kts

application {
 dependencies {
 implementation(project(":common"))
 }
}

The Gradle terminology for the three elements is as follows:

• Configuration (ex: implementation) - a named collection of dependencies, grouped together for a
specific goal such as compiling or linking a module

• Project reference (ex: project(':common')) - the project referenced by the specified path

You can find a more comprehensive glossary of dependency management terms here.

As far as configurations go, the main ones of interest are:

• implementation - used for compilation, linking and runtime

• swiftCompileVariant - for dependencies that are necessary to compile your production code but
shouldn’t be part of the linking or runtime process

• nativeLinkVariant - for dependencies that are necessary to link your code but shouldn’t be part
of the compilation or runtime process

• nativeRuntimeVariant - for dependencies that are necessary to run your component but
shouldn’t be part of the compilation or linking process

You can learn more about these and how they relate to one another in the native plugin reference

chapter.

Be aware that the Swift Library Plugin creates an additional configuration — api — for
dependencies that are required for compiling and linking both the module and any modules that
depend on it.

We have only scratched the surface here, so we recommend that you read the dedicated
dependency management chapters once you’re comfortable with the basics of building Swift
projects with Gradle.

Some common scenarios that require further reading include:

• Defining a custom Maven-compatible repository

• Declaring dependencies with changing (e.g. SNAPSHOT) and dynamic (range) versions

• Declaring a sibling project as a dependency

• Controlling transitive dependencies and their versions

• Testing your fixes to 3rd-party dependency via composite builds (a better alternative to
publishing to and consuming from Maven Local)

You’ll discover that Gradle has a rich API for working with dependencies — one that takes time to
master, but is straightforward to use for common scenarios.

Compiling and linking your code

Compiling both your code can be trivially easy if you follow the conventions:

1. Put your source code under the src/main/swift directory

2. Declare your compile dependencies in the implementation configurations (see the previous
section)

3. Run the assemble task

We recommend that you follow these conventions wherever possible, but you don’t have to.

There are several options for customization, as you’ll see next.

NOTE All SwiftCompile tasks are incremental and cacheable.

Supported tool chain

Gradle support the official Swift tool chain for macOS and Linux. When you build a native binary,
Gradle will attempt to locate a tool chain installed on your machine that can build the binary.
Gradle select the first tool chain that can build for the target operating system, architecture and
Swift language support.

NOTE For Linux users, Gradle will discover the tool chain using the system PATH.

swift_library_plugin.pdf#swift_library_plugin
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.swift.tasks.SwiftCompile.html
https://swift.org/download/

Customizing file and directory locations

Imagine you are migrating a library project that follows the Swift Package Manager layout (e.g.
Sources/ModuleName_ directory for the production code). The conventional directory structure won’t
work, so you need to tell Gradle where to find the source files. You do that via the application or
library script block.

Each component script block, as well as each binary, defines where it’s source code resides. You can
override the convention values by using the following syntax:

Example 499. Setting Swift source set

build.gradle

library {
 source.from file('src')
}

build.gradle.kts

extensions.configure<SwiftLibrary> {
 source.from(file("Sources/Common"))
}

Now Gradle will only search directly in Sources/Common for the source.

Changing compiler and linker options

Most of the compiler and linker options are accessible through the corresponding task, such as
compileVariantSwift, linkVariant and createVariant. These tasks are of type SwiftCompile,
LinkSharedLibrary and CreateStaticLibrary respectively. Read the task reference for an up-to-date
and comprehensive list of the options.

For example, if you want to change the warning level generated by the compiler for all variants,
you can use this configuration:

https://docs.gradle.org/7.3.2/dsl/org.gradle.language.swift.tasks.SwiftCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.LinkSharedLibrary.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.tasks.CreateStaticLibrary.html

Example 500. Setting Swift compiler options for all variants

build.gradle

tasks.withType(SwiftCompile).configureEach {
 // Define a preprocessor macro for every binary
 macros.add("NDEBUG")

 // Define a compiler options
 compilerArgs.add '-O'
}

build.gradle.kts

tasks.withType(SwiftCompile::class.java).configureEach {
 // Define a preprocessor macro for every binary
 macros.add("NDEBUG")

 // Define a compiler options
 compilerArgs.add("-O")
}

It’s also possible to find the instance for a specific variant through the BinaryCollection on the
application or library script block:

Example 501. Setting Swift compiler options per variant

build.gradle

application {
 binaries.configureEach(SwiftStaticLibrary) {
 // Define a preprocessor macro for every binary
 compileTask.get().macros.add("NDEBUG")

 // Define a compiler options
 compileTask.get().compilerArgs.add '-O'
 }
}

build.gradle.kts

application {
 binaries.configureEach(SwiftStaticLibrary::class.java) {
 // Define a preprocessor macro for every binary
 compileTask.get().macros.add("NDEBUG")

 // Define a compiler options
 compileTask.get().compilerArgs.add("-O")
 }
}

Selecting target machines

By default, Gradle will attempt to create a Swift binary variant for the host operating system and
architecture. It is possible to override this by specifying the set of TargetMachine on the application
or library script block:

Example 502. Setting target machines

build.gradle

application {
 targetMachines = [
 machines.linux.x86_64,
 machines.macOS.x86_64
]
}

build.gradle.kts

application {
 targetMachines.set(listOf(machines.linux.x86_64, machines.macOS.x86_64))
}

Packaging and publishing

How you package and potentially publish your Swift project varies greatly in the native world.
Gradle comes with defaults, but custom packaging can be implemented without any issues.

• Executable files are published directly to Maven repositories.

• Shared and static library files are published directly to Maven repositories along with a zip of
the public headers.

• For applications, Gradle also supports installing and running the executable with all of its
shared library dependencies in a known location.

Cleaning the build

The Swift Application and Library Plugins add a clean task to you project by using the base plugin.
This task simply deletes everything in the $buildDir directory, hence why you should always put
files generated by the build in there. The task is an instance of Delete and you can change what
directory it deletes by setting its dir property.

Building Swift libraries

The unique aspect of library projects is that they are used (or "consumed") by other Swift projects.
That means the dependency metadata published with the binaries and headers — in the form of
Gradle Module Metadata — is crucial. In particular, consumers of your library should be able to
distinguish between two different types of dependencies: those that are only required to compile
your library and those that are also required to compile the consumer.

Gradle manages this distinction via the Swift Library Plugin, which introduces an api configuration

swift_library_plugin.pdf#swift_library_plugin

in addition to the implementation once covered in this chapter. If the types from a dependency
appear as unresolved symbols of the static library or within the public headers then that
dependency is exposed via your library’s public API and should, therefore, be added to the api
configuration. Otherwise, the dependency is an internal implementation detail and should be
added to implementation.

If you’re unsure of the difference between an API and implementation dependency, the Swift
Library Plugin chapter has a detailed explanation. In addition, you can see a basic, practical
example of building a Swift library in the corresponding sample.

Building Swift applications

See the Swift Application Plugin chapter for more details, but here’s a quick summary of what you
get:

• install create a directory containing everything needed to run it

• Shell and Windows Batch scripts to start the application

You can see a basic example of building a Swift application in the corresponding sample.

Testing in Swift projects
Testing in the native ecosystem is a rich subject matter. There are many different testing libraries
and frameworks, as well as many different types of test. All need to be part of the build, whether
they are executed frequently or infrequently. This chapter is dedicated to explaining how Gradle
handles differing requirements between and within builds, with significant coverage of how it
integrates with XCTest on both macOS and Linux.

It explains: - Ways to control how the tests are run (Test execution) - How to select specific tests to
run (Test filtering) - What test reports are generated and how to influence the process (Test
reporting) - How Gradle finds tests to run (Test detection)

But first, we look at the basics of native testing in Gradle.

The basics

Gradle supports deep integration with XCTest testing framework for the Swift language and
revolves around the XCTest task type. This runs a collection of test cases using the Xcode XCTest on
macOS or the open source Swift core library alternative on Linux and collates the results. You can
then turn those results into a report via an instance of the TestReport task type.

In order to operate, the XCTest task type requires three pieces of information: - Where to find the
built testable bundle (on macOS) or executable (on Linux) (property:
XCTest.getTestInstalledDirectory()) - The run script for executing the bundle or executable
(property: XCTest.getRunScriptFile()) - The working directory to execution the bundle or executable
(property: XCTest.getWorkingDirectory())

When you’re using the XCTest Plugin you will automatically get the following: - A dedicated xctest
extension of type SwiftXCTestSuite for configuring test component and its variants - A xcTest task of

swift_library_plugin.pdf#sec:swift_library_api_vs_implementation
swift_library_plugin.pdf#sec:swift_library_api_vs_implementation
../samples/sample_building_swift_libraries.html
swift_application_plugin.pdf#swift_application_plugin
../samples/sample_building_swift_applications.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.xctest.tasks.XCTest.html
https://developer.apple.com/documentation/xctest
https://github.com/apple/swift-corelibs-xctest
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.TestReport.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.xctest.tasks.XCTest.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.xctest.tasks.XCTest.html#org.gradle.nativeplatform.test.xctest.tasks.XCTest:testInstallDirectory
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.xctest.tasks.XCTest.html#org.gradle.nativeplatform.test.xctest.tasks.XCTest:runScriptFile
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.xctest.tasks.XCTest.html#org.gradle.nativeplatform.test.xctest.tasks.XCTest:workingDirectory
xctest_plugin.pdf#xctest_plugin
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.xctest.SwiftXCTestSuite.html

type XCTest that runs those unit tests - A testable bundle or executable linked with the main
component’s object files

The test plugins configure the required pieces of information appropriately. In addition, they attach
the xcTest or run task to the check lifecycle task. It also create the testImplementation dependency
configuration. Dependencies that are only needed for test compilation, linking and runtime may be
added to this configuration. The xctest script block behave similarly to a application or library
script block.

The XCTest task has many configuration options. We cover a significant number of them in the rest
of the chapter.

Test execution

Gradle executes tests in a separate (‘forked’) process.

You can control how the test process is launched via several properties on the XCTest task,
including the following:

ignoreFailures - default: false

If this property is true, Gradle will continue with the project’s build once the tests have
completed, even if some of them have failed. Note that, by default, both task type always
executes every test that it detects, irrespective of this setting.

testLogging - default: not set

This property represents a set of options that control which test events are logged and at what
level. You can also configure other logging behavior via this property. Set TestLoggingContainer
for more detail.

See XCTest for details on all the available configuration options.

Test filtering

It’s a common requirement to run subsets of a test suite, such as when you’re fixing a bug or
developing a new test case. Gradle provides filtering to do this. You can select tests to run based on:

• A simple class name or method name, e.g. SomeTest, SomeTest.someMethod

• ‘*’ wildcard matching

You can enable filtering either in the build script or via the --tests command-line option. Here’s an
example of some filters that are applied every time the build runs:

https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.xctest.tasks.XCTest.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.xctest.tasks.XCTest.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.xctest.tasks.XCTest.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/testing/logging/TestLoggingContainer.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.xctest.tasks.XCTest.html

Example 503. Filter tests on every build

build.gradle

xctest {
 binaries.configureEach {
 runTask.get().configure {
 // include all tests from test class
 filter.includeTestsMatching "SomeIntegTest.*" // or
`"Testing.SomeIntegTest.*"` on macOS
 }
 }
}

build.gradle.kts

xctest {
 binaries.configureEach {
 runTask.get().filter.includeTestsMatching("SomeIntegTest.*") // or
`"Testing.SomeIntegTest.*"` on macOS
 }
}

For more details and examples of declaring filters in the build script, please see the TestFilter
reference.

The command-line option is especially useful to execute a single test method. It is also possible to
supply multiple --tests options, all of whose patterns will take effect. The following sections have
several examples of using command-line option.

NOTE

The test filtering only support XCTest compatible filters at the moment. It means the
same filter will differ between macOS and Linux. On macOS, the bundle base name
needs to be prepended to the filter, e.g. TestBundle.SomeTest,
TestBundle.SomeTest.someMethod See the Simple name pattern section below for
more information about valid filtering pattern.

The following section looks at the specific cases of simple class/method names.

Simple name pattern

Gradle support simple class name, or a class name + method name test filtering. For example, the
following command lines run either all or exactly one of the tests in the SomeTestClass test case:

Executes all tests in SomeTestClass
gradle xcTest --tests SomeTestClass
or `gradle xcTest --tests TestBundle.SomeTestClass` on macOS

Executes a single specified test in SomeTestClass
gradle xcTest --tests TestBundle.SomeTestClass.someSpecificMethod
or `gradle xcTest --tests TestBundle.SomeTestClass.someSpecificMethod` on macOS

You can also combine filters defined at the command line with continuous build to re-execute a
subset of tests immediately after every change to a production or test source file. The following
executes all tests in the ‘SomeTestClass’ test class whenever a change triggers the tests to run:

gradle test --continuous --tests SomeTestClass

Test reporting

The XCTest task generates the following results by default:

• An HTML test report

• XML test results in a format compatible with the Ant JUnit report task - one that is supported by
many other tools, such as CI servers

• An efficient binary format of the results used by the XCTest task to generate the other formats

In most cases, you’ll work with the standard HTML report, which automatically includes the result
from your XCTest tasks.

There is also a standalone TestReport task type that you can use to generate a custom HTML test
report. All it requires are a value for destinationDir and the test results you want included in the
report. Here is a sample which generates a combined report for the unit tests from all subprojects:

https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.xctest.tasks.XCTest.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.TestReport.html

Example 504. Combine test reports from all subprojects

buildSrc/src/main/groovy/myproject.xctest-conventions.gradle

plugins {
 id 'xctest'
}

xctest {
 binaries.configureEach {
 runTask.get().configure {
 // Disable the test report for the individual test task
 reports.html.required = false
 }
 }
}

// Share the test report data to be aggregated for the whole project
configurations {
 binaryTestResultsElements {
 canBeResolved = false
 canBeConsumed = true
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE, objects.named(Category,
Category.DOCUMENTATION))
 attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named(DocsType,
'test-report-data'))
 }
 tasks.withType(XCTest).configureEach {
 outgoing.artifact(it.binaryResultsDirectory)
 }
 }
}

build.gradle

// A resolvable configuration to collect test reports data
configurations {
 testReportData {
 canBeResolved = true
 canBeConsumed = false
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE, objects.named(Category,
Category.DOCUMENTATION))
 attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named(DocsType,
'test-report-data'))
 }
 }
}

dependencies {
 testReportData project(':core')
 testReportData project(':util')
}

tasks.register('testReport', TestReport) {
 destinationDir = layout.buildDirectory.dir('reports/allTests').get()
.asFile
 // Use test results from testReportData configuration
 testResultDirs.from(configurations.testReportData)
}

buildSrc/src/main/kotlin/myproject.xctest-conventions.gradle.kts

plugins {
 id("xctest")
}

extensions.configure<SwiftXCTestSuite>() {
 binaries.configureEach {
 // Disable the test report for the individual test task
 runTask.get().reports.html.required.set(false)
 }
}

configurations.create("binaryTestResultsElements") {
 isCanBeResolved = false
 isCanBeConsumed = true
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE,
objects.named(Category.DOCUMENTATION))
 attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named("test-report-
data"))
 }
 tasks.withType<XCTest>() {
 outgoing.artifact(binaryResultsDirectory)
 }
}

build.gradle.kts

val testReportData by configurations.creating {
 isCanBeResolved = true
 isCanBeConsumed = false
 attributes {
 attribute(Category.CATEGORY_ATTRIBUTE,
objects.named(Category.DOCUMENTATION))
 attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named("test-report-
data"))
 }
}

dependencies {
 testReportData(project(":core"))
 testReportData(project(":util"))
}

tasks.register<TestReport>("testReport") {
 destinationDir =
layout.buildDirectory.dir("reports/allTests").get().asFile
 // Use test results from testReportData configuration
 (getTestResultDirs() as ConfigurableFileCollection).from(testReportData)
}

In this example, we use a convention plugin myproject.xctest-conventions to expose the test results
from a project to Gradle’s variant aware dependency management engine.

The plugin declares a consumable binaryTestResultsElements configuration that represents the
binary test results of the test task. In the aggregation project’s build file, we declare the
testReportData configuration and depend on all of the projects that we want to aggregate the results
from. Gradle will automatically select the binary test result variant from each of the subprojects
instead of the project’s jar file. Lastly, we add a testReport task that aggregates the test results from
the testResultsDirs property, which contains all of the binary test results resolved from the
testReportData configuration.

You should note that the TestReport type combines the results from multiple test tasks and needs to
aggregate the results of individual test classes. This means that it a given test class is executed by
multiple test tasks, then the test report will include executions of that class, but it can be hard to
distinguish individual executions of that class and their output.

[11] Unfortunately, Conan and Nuget repositories aren’t yet supported as core features

[12] Installed with Xcode on macOS

[13] Installed through Cygwin and MinGW for 32- and 64-bits architecture on Windows

[14] Installed with Visual Studio 2010 to 2019

[15] Macports and Homebrew installation of GCC and Clang is not officially supported

[16] Unfortunately, Cocoapods repositories aren’t yet supported as core features

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.TestReport.html

Native Projects using the Software Model

Building native software

CAUTION

The software model is being retired and the plugins mentioned in this chapter
will eventually be deprecated and removed. We recommend new projects
looking to build C++ applications and libraries use the newer replacement
plugins.

The native software plugins add support for building native software components, such as
executables or shared libraries, from code written in C++, C and other languages. While many
excellent build tools exist for this space of software development, Gradle offers developers its
trademark power and flexibility together with dependency management practices more
traditionally found in the JVM development space.

The native software plugins make use of the Gradle software model.

Features

The native software plugins provide:

• Support for building native libraries and applications on Windows, Linux, macOS and other
platforms.

• Support for several source languages.

• Support for building different variants of the same software, for different architectures,
operating systems, or for any purpose.

• Incremental parallel compilation, precompiled headers.

• Dependency management between native software components.

• Unit test execution.

• Generate Visual studio solution and project files.

• Deep integration with various tool chain, including discovery of installed tool chains.

Supported languages

The following source languages are currently supported:

• C

• C++

• Objective-C

• Objective-C++

• Assembly

• Windows resources

https://blog.gradle.org/state-and-future-of-the-gradle-software-model

Tool chain support

Gradle offers the ability to execute the same build using different tool chains. When you build a
native binary, Gradle will attempt to locate a tool chain installed on your machine that can build
the binary. You can fine tune exactly how this works, see Tool chain support for details.

The following tool chains are supported:

Operating
System

Tool Chain Notes

Linux GCC

Linux Clang

macOS XCode Uses the Clang tool chain bundled with XCode.

Windows Visual C++ Windows XP and later, Visual C++
2010/2012/2013/2015/2017/2019.

Windows GCC with Cygwin 32 and
Cygwin 64

Windows XP and later.

Windows GCC with MinGW and
MinGW64

Windows XP and later.

The following tool chains are unofficially supported. They generally work fine, but are not tested
continuously:

Operating
System

Tool Chain Note
s

macOS GCC from Macports

macOS Clang from Macports

UNIX-like GCC

UNIX-like Clang

Tool chain installation

NOTE
Note that if you are using GCC then you currently need to install support for C++,
even if you are not building from C++ source. This restriction will be removed in a
future Gradle version.

To build native software, you will need to have a compatible tool chain installed:

Windows

To build on Windows, install a compatible version of Visual Studio. The native plugins will discover
the Visual Studio installations and select the latest version. There is no need to mess around with
environment variables or batch scripts. This works fine from a Cygwin shell or the Windows
command-line.

http://gcc.gnu.org/
http://clang.llvm.org
https://visualstudio.microsoft.com/
http://gcc.gnu.org/
http://cygwin.com
http://cygwin.com
http://gcc.gnu.org/
http://www.mingw.org/
https://mingw-w64.org/doku.php
http://gcc.gnu.org/
http://clang.llvm.org
http://gcc.gnu.org/
http://clang.llvm.org

Alternatively, you can install Cygwin with GCC or MinGW. Clang is currently not supported.

macOS

To build on macOS, you should install XCode. The native plugins will discover the XCode installation
using the system PATH.

The native plugins also work with GCC and Clang bundled with Macports. To use one of the
Macports tool chains, you will need to make the tool chain the default using the port select
command and add Macports to the system PATH.

Linux

To build on Linux, install a compatible version of GCC or Clang. The native plugins will discover
GCC or Clang using the system PATH.

Native software model

The native software model builds on the base Gradle software model.

To build native software using Gradle, your project should define one or more native components.
Each component represents either an executable or a library that Gradle should build. A project
can define any number of components. Gradle does not define any components by default.

For each component, Gradle defines a source set for each language that the component can be built
from. A source set is essentially just a set of source directories containing source files. For example,
when you apply the c plugin and define a library called helloworld, Gradle will define, by default, a
source set containing the C source files in the src/helloworld/c directory. It will use these source
files to build the helloworld library. This is described in more detail below.

For each component, Gradle defines one or more binaries as output. To build a binary, Gradle will
take the source files defined for the component, compile them as appropriate for the source
language, and link the result into a binary file. For an executable component, Gradle can produce
executable binary files. For a library component, Gradle can produce both static and shared library
binary files. For example, when you define a library called helloworld and build on Linux, Gradle
will, by default, produce libhelloworld.so and libhelloworld.a binaries.

In many cases, more than one binary can be produced for a component. These binaries may vary
based on the tool chain used to build, the compiler/linker flags supplied, the dependencies
provided, or additional source files provided. Each native binary produced for a component is
referred to as a variant. Binary variants are discussed in detail below.

Parallel Compilation

Gradle uses the single build worker pool to concurrently compile and link native components, by
default. No special configuration is required to enable concurrent building.

By default, the worker pool size is determined by the number of available processors on the build
machine (as reported to the build JVM). To explicitly set the number of workers use the --max
-workers command-line option or org.gradle.workers.max system property. There is generally no

need to change this setting from its default.

The build worker pool is shared across all build tasks. This means that when using parallel project
execution, the maximum number of concurrent individual compilation operations does not
increase. For example, if the build machine has 4 processing cores and 10 projects are compiling in
parallel, Gradle will only use 4 total workers, not 40.

Building a library

To build either a static or shared native library, you define a library component in the components
container. The following sample defines a library called hello:

Example: Defining a library component

build.gradle

model {
 components {
 hello(NativeLibrarySpec)
 }
}

A library component is represented using NativeLibrarySpec. Each library component can produce
at least one shared library binary (SharedLibraryBinarySpec) and at least one static library binary
(StaticLibraryBinarySpec).

Building an executable

To build a native executable, you define an executable component in the components container. The
following sample defines an executable called main:

Example: Defining executable components

build.gradle

model {
 components {
 main(NativeExecutableSpec) {
 sources {
 c.lib library: "hello"
 }
 }
 }
}

An executable component is represented using NativeExecutableSpec. Each executable component
can produce at least one executable binary (NativeExecutableBinarySpec).

For each component defined, Gradle adds a FunctionalSourceSet with the same name. Each of these

https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/SharedLibraryBinarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/StaticLibraryBinarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeExecutableBinarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/language/base/FunctionalSourceSet.html

functional source sets will contain a language-specific source set for each of the languages
supported by the project.

Assembling or building dependents

Sometimes, you may need to assemble (compile and link) or build (compile, link and test) a
component or binary and its dependents (things that depend upon the component or binary). The
native software model provides tasks that enable this capability. First, the dependent components
report gives insight about the relationships between each component. Second, the build and
assemble dependents tasks allow you to assemble or build a component and its dependents in one
step.

In the following example, the build file defines OpenSSL as a dependency of libUtil and libUtil as a
dependency of LinuxApp and WindowsApp. Test suites are treated similarly. Dependents can be thought
of as reverse dependencies.

Figure 29. Dependent Components Example

NOTE
By following the dependencies backwards, you can see LinuxApp and WindowsApp are
dependents of libUtil. When libUtil is changed, Gradle will need to recompile or
relink LinuxApp and WindowsApp.

When you assemble dependents of a component, the component and all of its dependents are
compiled and linked, including any test suite binaries. Gradle’s up-to-date checks are used to only
compile or link if something has changed. For instance, if you have changed source files in a way
that do not affect the headers of your project, Gradle will be able to skip compilation for dependent
components and only need to re-link with the new library. Tests are not run when assembling a
component.

When you build dependents of a component, the component and all of its dependent binaries are
compiled, linked and checked. Checking components means running any check task including
executing any test suites, so tests are run when building a component.

In the following sections, we will demonstrate the usage of the assembleDependents*,
buildDependents* and dependentComponents tasks with a sample build that contains a CUnit test suite.
The build script for the sample is the following:

Example: Sample build

build.gradle

plugins {
 id 'c'
 id 'cunit-test-suite'
}

model {
 flavors {
 passing
 failing
 }
 platforms {
 x86 {
 if (operatingSystem.macOsX) {
 architecture "x64"
 } else {
 architecture "x86"
 }
 }
 }
 components {
 operators(NativeLibrarySpec) {
 targetPlatform "x86"
 }
 }
 testSuites {
 operatorsTest(CUnitTestSuiteSpec) {
 testing $.components.operators
 }
 }
}

Dependent components report

Gradle provides a report that you can run from the command-line that shows a graph of
components in your project and components that depend upon them. The following is an example
of running gradle dependentComponents on the sample project:

Example: Dependent components report

Output of gradle dependentComponents

> gradle dependentComponents

> Task :dependentComponents

--
Root project 'cunit'
--

operators - Components that depend on native library 'operators'
+--- operators:failingSharedLibrary
+--- operators:failingStaticLibrary
+--- operators:passingSharedLibrary
\--- operators:passingStaticLibrary

Some test suites were not shown, use --test-suites or --all to show them.

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

NOTE See DependentComponentsReport API documentation for more details.

By default, non-buildable binaries and test suites are hidden from the report. The
dependentComponents task provides options that allow you to see all dependents by using the --all
option:

Example: Dependent components report

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.reporting.dependents.DependentComponentsReport.html

Output of gradle dependentComponents --all

> gradle dependentComponents --all

> Task :dependentComponents

--
Root project 'cunit'
--

operators - Components that depend on native library 'operators'
+--- operators:failingSharedLibrary
+--- operators:failingStaticLibrary
| \--- operatorsTest:failingCUnitExe (t)
+--- operators:passingSharedLibrary
\--- operators:passingStaticLibrary
 \--- operatorsTest:passingCUnitExe (t)

operatorsTest - Components that depend on Cunit test suite 'operatorsTest'
+--- operatorsTest:failingCUnitExe (t)
\--- operatorsTest:passingCUnitExe (t)

(t) - Test suite binary

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

Here is the corresponding report for the operators component, showing dependents of all its
binaries:

Example: Report of components that depends on the operators component

Output of gradle dependentComponents --component operators

> gradle dependentComponents --component operators

> Task :dependentComponents

--
Root project 'cunit'
--

operators - Components that depend on native library 'operators'
+--- operators:failingSharedLibrary
+--- operators:failingStaticLibrary
+--- operators:passingSharedLibrary
\--- operators:passingStaticLibrary

Some test suites were not shown, use --test-suites or --all to show them.

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

Here is the corresponding report for the operators component, showing dependents of all its
binaries, including test suites:

Example: Report of components that depends on the operators component, including test
suites

Output of gradle dependentComponents --test-suites --component operators

> gradle dependentComponents --test-suites --component operators

> Task :dependentComponents

--
Root project 'cunit'
--

operators - Components that depend on native library 'operators'
+--- operators:failingSharedLibrary
+--- operators:failingStaticLibrary
| \--- operatorsTest:failingCUnitExe (t)
+--- operators:passingSharedLibrary
\--- operators:passingStaticLibrary
 \--- operatorsTest:passingCUnitExe (t)

(t) - Test suite binary

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

Assembling dependents

For each NativeBinarySpec, Gradle will create a task named
assembleDependents${component.name}${binary.variant} that assembles (compile and link) the binary
and all of its dependent binaries.

For each NativeComponentSpec, Gradle will create a task named
assembleDependents${component.name} that assembles all the binaries of the component and all of
their dependent binaries.

For example, to assemble the dependents of the "passing" flavor of the "static" library binary of the
"operators" component, you would run the assembleDependentsOperatorsPassingStaticLibrary task:

Example: Assemble components that depends on the passing/static binary of the operators
component

Output of gradle assembleDependentsOperatorsPassingStaticLibrary --max-workers=1

> gradle assembleDependentsOperatorsPassingStaticLibrary --max-workers=1
> Task :compileOperatorsTestPassingCUnitExeOperatorsC
> Task :operatorsTestCUnitLauncher
> Task :compileOperatorsTestPassingCUnitExeOperatorsTestC
> Task :compileOperatorsTestPassingCUnitExeOperatorsTestCunitLauncher
> Task :linkOperatorsTestPassingCUnitExe
> Task :operatorsTestPassingCUnitExe
> Task :assembleDependentsOperatorsTestPassingCUnitExe
> Task :compileOperatorsPassingStaticLibraryOperatorsC
> Task :createOperatorsPassingStaticLibrary
> Task :operatorsPassingStaticLibrary
> Task :assembleDependentsOperatorsPassingStaticLibrary

BUILD SUCCESSFUL in 0s
7 actionable tasks: 7 executed

In the output above, the targeted binary gets assembled as well as the test suite binary that depends
on it.

You can also assemble all of the dependents of a component (i.e. of all its binaries/variants) using
the corresponding component task, e.g. assembleDependentsOperators. This is useful if you have
many combinations of build types, flavors and platforms and want to assemble all of them.

Building dependents

For each NativeBinarySpec, Gradle will create a task named
buildDependents${component.name}${binary.variant} that builds (compile, link and check) the binary
and all of its dependent binaries.

For each NativeComponentSpec, Gradle will create a task named buildDependents${component.name}
that builds all the binaries of the component and all of their dependent binaries.

For example, to build the dependents of the "passing" flavor of the "static" library binary of the

https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeBinarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeComponentSpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeBinarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeComponentSpec.html

"operators" component, you would run the buildDependentsOperatorsPassingStaticLibrary task:

Example: Build components that depends on the passing/static binary of the operators
component

Output of gradle buildDependentsOperatorsPassingStaticLibrary --max-workers=1

> gradle buildDependentsOperatorsPassingStaticLibrary --max-workers=1
> Task :compileOperatorsTestPassingCUnitExeOperatorsC
> Task :operatorsTestCUnitLauncher
> Task :compileOperatorsTestPassingCUnitExeOperatorsTestC
> Task :compileOperatorsTestPassingCUnitExeOperatorsTestCunitLauncher
> Task :linkOperatorsTestPassingCUnitExe
> Task :operatorsTestPassingCUnitExe
> Task :installOperatorsTestPassingCUnitExe
> Task :runOperatorsTestPassingCUnitExe
> Task :checkOperatorsTestPassingCUnitExe
> Task :buildDependentsOperatorsTestPassingCUnitExe
> Task :compileOperatorsPassingStaticLibraryOperatorsC
> Task :createOperatorsPassingStaticLibrary
> Task :operatorsPassingStaticLibrary
> Task :buildDependentsOperatorsPassingStaticLibrary

BUILD SUCCESSFUL in 0s
9 actionable tasks: 9 executed

In the output above, the targeted binary as well as the test suite binary that depends on it are built
and the test suite has run.

You can also build all of the dependents of a component (i.e. of all its binaries/variants) using the
corresponding component task, e.g. buildDependentsOperators.

Tasks

For each NativeBinarySpec that can be produced by a build, a single lifecycle task is constructed
that can be used to create that binary, together with a set of other tasks that do the actual work of
compiling, linking or assembling the binary.

${component.name}Executable

Component Type

NativeExecutableSpec

Native Binary Type

NativeExecutableBinarySpec

Location of created binary

${project.buildDir}/exe/${component.name}/${component.name}

https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeBinarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeExecutableBinarySpec.html

${component.name}SharedLibrary

Component Type

NativeLibrarySpec

Native Binary Type

SharedLibraryBinarySpec

Location of created binary

${project.buildDir}/libs/${component.name}/shared/lib${component.name}.so

${component.name}StaticLibrary

Component Type

NativeLibrarySpec

Native Binary Type

StaticLibraryBinarySpec

Location of created binary

${project.buildDir}/libs/${component.name}/static/${component.name}.a

Check tasks

For each NativeBinarySpec that can be produced by a build, a single check task is constructed that
can be used to assemble and check that binary.

check${component.name}Executable

Component Type

NativeExecutableSpec

Native Binary Type

NativeExecutableBinarySpec

check${component.name}SharedLibrary

Component Type

NativeLibrarySpec

Native Binary Type

SharedLibraryBinarySpec

check${component.name}StaticLibrary

Component Type

NativeLibrarySpec

Native Binary Type

SharedLibraryBinarySpec

The built-in check task depends on all the check tasks for binaries in the project. Without either
CUnit or GoogleTest plugins, the binary check task only depends on the lifecycle task that assembles

https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/SharedLibraryBinarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/StaticLibraryBinarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeBinarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeExecutableBinarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/SharedLibraryBinarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/SharedLibraryBinarySpec.html

the binary, see Native tasks.

When the CUnit or GoogleTest plugins are applied, the task that executes the test suites for a
component are automatically wired to the appropriate check task.

You can also add custom check tasks as follows:

Example: Adding a custom check task

build.gradle

plugins {
 id "cpp"
}
// You don't need to apply the plugin below if you're already using CUnit or
GoogleTest support
apply plugin: TestingModelBasePlugin

tasks.register('myCustomCheck') {
 doLast {
 println 'Executing my custom check'
 }
}

model {
 components {
 hello(NativeLibrarySpec) {
 binaries.all {
 // Register our custom check task to all binaries of this component
 checkedBy $.tasks.myCustomCheck
 }
 }
 }
}

Now, running check or any of the check tasks for the hello binaries will run the custom check task:

Example: Running checks for a given binary

Output of gradle checkHelloSharedLibrary

> gradle checkHelloSharedLibrary

> Task :myCustomCheck
Executing my custom check

> Task :checkHelloSharedLibrary

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

Working with shared libraries

For each executable binary produced, the cpp plugin provides an install${binary.name} task, which
creates a development install of the executable, along with the shared libraries it requires. This
allows you to run the executable without needing to install the shared libraries in their final
locations.

Finding out more about your project

Gradle provides a report that you can run from the command-line that shows some details about
the components and binaries that your project produces. To use this report, just run gradle
components. Below is an example of running this report for one of the sample projects:

Example: The components report

Output of gradle components

> gradle components

> Task :components

--
Root project 'cpp'
--

Native library 'hello'

Source sets
 C++ source 'hello:cpp'
 srcDir: src/hello/cpp

Binaries
 Shared library 'hello:sharedLibrary'
 build using task: :helloSharedLibrary
 build type: build type 'debug'
 flavor: flavor 'default'
 target platform: platform 'current'
 tool chain: Tool chain 'clang' (Clang)
 shared library file: build/libs/hello/shared/libhello.dylib
 Static library 'hello:staticLibrary'
 build using task: :helloStaticLibrary
 build type: build type 'debug'
 flavor: flavor 'default'
 target platform: platform 'current'
 tool chain: Tool chain 'clang' (Clang)
 static library file: build/libs/hello/static/libhello.a

Native executable 'main'

Source sets
 C++ source 'main:cpp'
 srcDir: src/main/cpp

Binaries
 Executable 'main:executable'
 build using task: :mainExecutable
 install using task: :installMainExecutable
 build type: build type 'debug'
 flavor: flavor 'default'
 target platform: platform 'current'
 tool chain: Tool chain 'clang' (Clang)
 executable file: build/exe/main/main

Note: currently not all plugins register their components, so some components may not
be visible here.

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

Language support

Presently, Gradle supports building native software from any combination of source languages
listed below. A native binary project will contain one or more named FunctionalSourceSet instances
(e.g. 'main', 'test', etc), each of which can contain LanguageSourceSets containing source files, one for
each language.

• C

• C++

• Objective-C

• Objective-C++

• Assembly

• Windows resources

C++ sources

C++ language support is provided by means of the 'cpp' plugin.

Example: The 'cpp' plugin

build.gradle

plugins {
 id 'cpp'
}

C++ sources to be included in a native binary are provided via a CppSourceSet, which defines a set

https://docs.gradle.org/7.3.2/dsl/org.gradle.language.cpp.CppSourceSet.html

of C++ source files and optionally a set of exported header files (for a library). By default, for any
named component the CppSourceSet contains .cpp source files in src/${name}/cpp, and header files
in src/${name}/headers.

While the cpp plugin defines these default locations for each CppSourceSet, it is possible to extend
or override these defaults to allow for a different project layout.

Example: C++ source set

build.gradle

sources {
 cpp {
 source {
 srcDir "src/source"
 include "**/*.cpp"
 }
 }
}

For a library named 'main', header files in src/main/headers are considered the "public" or
"exported" headers. Header files that should not be exported should be placed inside the
src/main/cpp directory (though be aware that such header files should always be referenced in a
manner relative to the file including them).

C sources

C language support is provided by means of the 'c' plugin.

Example: The 'c' plugin

build.gradle

plugins {
 id 'c'
}

C sources to be included in a native binary are provided via a CSourceSet, which defines a set of C
source files and optionally a set of exported header files (for a library). By default, for any named
component the CSourceSet contains .c source files in src/${name}/c, and header files in
src/${name}/headers.

While the c plugin defines these default locations for each CSourceSet, it is possible to extend or
override these defaults to allow for a different project layout.

Example: C source set

https://docs.gradle.org/7.3.2/dsl/org.gradle.language.cpp.CppSourceSet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.cpp.CppSourceSet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.c.CSourceSet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.c.CSourceSet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.c.CSourceSet.html

build.gradle

sources {
 c {
 source {
 srcDir "src/source"
 include "**/*.c"
 }
 exportedHeaders {
 srcDir "src/include"
 }
 }
}

For a library named 'main', header files in src/main/headers are considered the "public" or
"exported" headers. Header files that should not be exported should be placed inside the src/main/c
directory (though be aware that such header files should always be referenced in a manner relative
to the file including them).

Assembler sources

Assembly language support is provided by means of the 'assembler' plugin.

Example: The 'assembler' plugin

build.gradle

plugins {
 id 'assembler'
}

Assembler sources to be included in a native binary are provided via a AssemblerSourceSet, which
defines a set of Assembler source files. By default, for any named component the
AssemblerSourceSet contains .s source files under src/${name}/asm.

Objective-C sources

Objective-C language support is provided by means of the 'objective-c' plugin.

Example: The 'objective-c' plugin

build.gradle

plugins {
 id 'objective-c'
}

Objective-C sources to be included in a native binary are provided via a ObjectiveCSourceSet, which
defines a set of Objective-C source files. By default, for any named component the

https://docs.gradle.org/7.3.2/dsl/org.gradle.language.assembler.AssemblerSourceSet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.assembler.AssemblerSourceSet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html

ObjectiveCSourceSet contains .m source files under src/${name}/objectiveC.

Objective-C++ sources

Objective-C++ language support is provided by means of the 'objective-cpp' plugin.

Example: The 'objective-cpp' plugin

build.gradle

plugins {
 id 'objective-cpp'
}

Objective-C++ sources to be included in a native binary are provided via a ObjectiveCppSourceSet,
which defines a set of Objective-C++ source files. By default, for any named component the
ObjectiveCppSourceSet contains .mm source files under src/${name}/objectiveCpp.

Configuring the compiler, assembler and linker

Each binary to be produced is associated with a set of compiler and linker settings, which include
command-line arguments as well as macro definitions. These settings can be applied to all binaries,
an individual binary, or selectively to a group of binaries based on some criteria.

Example: Settings that apply to all binaries

build.gradle

model {
 binaries {
 all {
 // Define a preprocessor macro for every binary
 cppCompiler.define "NDEBUG"

 // Define toolchain-specific compiler and linker options
 if (toolChain in Gcc) {
 cppCompiler.args "-O2", "-fno-access-control"
 linker.args "-Xlinker", "-S"
 }
 if (toolChain in VisualCpp) {
 cppCompiler.args "/Zi"
 linker.args "/DEBUG"
 }
 }
 }
}

Each binary is associated with a particular NativeToolChain, allowing settings to be targeted based
on this value.

https://docs.gradle.org/7.3.2/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

It is easy to apply settings to all binaries of a particular type:

Example: Settings that apply to all shared libraries

build.gradle

// For any shared library binaries built with Visual C++,
// define the DLL_EXPORT macro
model {
 binaries {
 withType(SharedLibraryBinarySpec) {
 if (toolChain in VisualCpp) {
 cCompiler.args "/Zi"
 cCompiler.define "DLL_EXPORT"
 }
 }
 }
}

Furthermore, it is possible to specify settings that apply to all binaries produced for a particular
executable or library component:

Example: Settings that apply to all binaries produced for the 'main' executable component

build.gradle

model {
 components {
 main(NativeExecutableSpec) {
 targetPlatform "x86"
 binaries.all {
 if (toolChain in VisualCpp) {
 sources {
 platformAsm(AssemblerSourceSet) {
 source.srcDir "src/main/asm_i386_masm"
 }
 }
 assembler.args "/Zi"
 } else {
 sources {
 platformAsm(AssemblerSourceSet) {
 source.srcDir "src/main/asm_i386_gcc"
 }
 }
 assembler.args "-g"
 }
 }
 }
 }
}

The example above will apply the supplied configuration to all executable binaries built.

Similarly, settings can be specified to target binaries for a component that are of a particular type:
e.g. all shared libraries for the main library component.

Example: Settings that apply only to shared libraries produced for the 'main' library
component

build.gradle

model {
 components {
 main(NativeLibrarySpec) {
 binaries.withType(SharedLibraryBinarySpec) {
 // Define a preprocessor macro that only applies to shared libraries
 cppCompiler.define "DLL_EXPORT"
 }
 }
 }
}

Windows Resources

When using the VisualCpp tool chain, Gradle is able to compile Window Resource (rc) files and link
them into a native binary. This functionality is provided by the 'windows-resources' plugin.

Example: The 'windows-resources' plugin

build.gradle

plugins {
 id 'windows-resources'
}

Windows resources to be included in a native binary are provided via a WindowsResourceSet,
which defines a set of Windows Resource source files. By default, for any named component the
WindowsResourceSet contains .rc source files under src/${name}/rc.

As with other source types, you can configure the location of the windows resources that should be
included in the binary.

Example: Configuring the location of Windows resource sources

https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.rc.WindowsResourceSet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.rc.WindowsResourceSet.html

build-resource-only-dll.gradle

sources {
 rc {
 source {
 srcDirs "src/hello/rc"
 }
 exportedHeaders {
 srcDirs "src/hello/headers"
 }
 }
}

You are able to construct a resource-only library by providing Windows Resource sources with no
other language sources, and configure the linker as appropriate:

Example: Building a resource-only dll

build-resource-only-dll.gradle

model {
 components {
 helloRes(NativeLibrarySpec) {
 binaries.all {
 rcCompiler.args "/v"
 linker.args "/noentry", "/machine:x86"
 }
 sources {
 rc {
 source {
 srcDirs "src/hello/rc"
 }
 exportedHeaders {
 srcDirs "src/hello/headers"
 }
 }
 }
 }
 }
}

The example above also demonstrates the mechanism of passing extra command-line arguments to
the resource compiler. The rcCompiler extension is of type PreprocessingTool.

Library Dependencies

Dependencies for native components are binary libraries that export header files. The header files
are used during compilation, with the compiled binary dependency being used during linking and
execution. Header files should be organized into subdirectories to prevent clashes of commonly

https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/PreprocessingTool.html

named headers. For instance, if your mylib project has a logging.h header, it will make it less likely
the wrong header is used if you include it as "mylib/logging.h" instead of "logging.h".

Dependencies within the same project

A set of sources may depend on header files provided by another binary component within the
same project. A common example is a native executable component that uses functions provided by
a separate native library component.

Such a library dependency can be added to a source set associated with the executable component:

Example: Providing a library dependency to the source set

build.gradle

sources {
 cpp {
 lib library: "hello"
 }
}

Alternatively, a library dependency can be provided directly to the NativeExecutableBinarySpec for
the executable.

Example: Providing a library dependency to the binary

build.gradle

model {
 components {
 hello(NativeLibrarySpec) {
 sources {
 c {
 source {
 srcDir "src/source"
 include "**/*.c"
 }
 exportedHeaders {
 srcDir "src/include"
 }
 }
 }
 }
 main(NativeExecutableSpec) {
 sources {
 cpp {
 source {
 srcDir "src/source"
 include "**/*.cpp"
 }
 }
 }
 binaries.all {
 // Each executable binary produced uses the 'hello' static library
binary
 lib library: 'hello', linkage: 'static'
 }
 }
 }
}

Project Dependencies

For a component produced in a different Gradle project, the notation is similar.

Example: Declaring project dependencies

lib/build.gradle

plugins {
 id 'cpp'
}

model {
 components {
 main(NativeLibrarySpec)
 }

 // For any shared library binaries built with Visual C++,
 // define the DLL_EXPORT macro
 binaries {
 withType(SharedLibraryBinarySpec) {
 if (toolChain in VisualCpp) {
 cppCompiler.define "DLL_EXPORT"
 }
 }
 }
}

exe/build.gradle

plugins {
 id 'cpp'
}

model {
 components {
 main(NativeExecutableSpec) {
 sources {
 cpp {
 lib project: ':lib', library: 'main'
 }
 }
 }
 }
}

Precompiled Headers

Precompiled headers are a performance optimization that reduces the cost of compiling widely
used headers multiple times. This feature precompiles a header such that the compiled object file
can be reused when compiling each source file rather than recompiling the header each time. This
support is available for C, C++, Objective-C, and Objective-C++ builds.

To configure a precompiled header, first a header file needs to be defined that includes all of the
headers that should be precompiled. It must be specified as the first included header in every

source file where the precompiled header should be used. It is assumed that this header file, and
any headers it contains, make use of header guards so that they can be included in an idempotent
manner. If header guards are not used in a header file, it is possible the header could be compiled
more than once and could potentially lead to a broken build.

Example: Creating a precompiled header file

src/hello/headers/pch.h

#ifndef PCH_H
#define PCH_H
#include <iostream>
#include "hello.h"
#endif

Example: Including a precompiled header file in a source file

src/hello/cpp/hello.cpp

#include "pch.h"

void LIB_FUNC Greeter::hello () {
 std::cout << "Hello world!" << std::endl;
}

Precompiled headers are specified on a source set. Only one precompiled header file can be
specified on a given source set and will be applied to all source files that declare it as the first
include. If a source files does not include this header file as the first header, the file will be
compiled in the normal manner (without making use of the precompiled header object file). The
string provided should be the same as that which is used in the "#include" directive in the source
files.

Example: Configuring a precompiled header

build.gradle

model {
 components {
 hello(NativeLibrarySpec) {
 sources {
 cpp {
 preCompiledHeader "pch.h"
 }
 }
 }
 }
}

A precompiled header must be included in the same way for all files that use it. Usually, this means

the header file should exist in the source set "headers" directory or in a directory included on the
compiler include path.

Native Binary Variants

For each executable or library defined, Gradle is able to build a number of different native binary
variants. Examples of different variants include debug vs release binaries, 32-bit vs 64-bit binaries,
and binaries produced with different custom preprocessor flags.

Binaries produced by Gradle can be differentiated on build type, platform, and flavor. For each of
these 'variant dimensions', it is possible to specify a set of available values as well as target each
component at one, some or all of these. For example, a plugin may define a range of support
platforms, but you may choose to only target Windows-x86 for a particular component.

Build types

A build type determines various non-functional aspects of a binary, such as whether debug
information is included, or what optimisation level the binary is compiled with. Typical build types
are 'debug' and 'release', but a project is free to define any set of build types.

Example: Defining build types

build.gradle

model {
 buildTypes {
 debug
 release
 }
}

If no build types are defined in a project, then a single, default build type called 'debug' is added.

For a build type, a Gradle project will typically define a set of compiler/linker flags per tool chain.

Example: Configuring debug binaries

build.gradle

model {
 binaries {
 all {
 if (toolChain in Gcc && buildType == buildTypes.debug) {
 cppCompiler.args "-g"
 }
 if (toolChain in VisualCpp && buildType == buildTypes.debug) {
 cppCompiler.args '/Zi'
 cppCompiler.define 'DEBUG'
 linker.args '/DEBUG'
 }
 }
 }
}

NOTE

At this stage, it is completely up to the build script to configure the relevant
compiler/linker flags for each build type. Future versions of Gradle will
automatically include the appropriate debug flags for any 'debug' build type, and
may be aware of various levels of optimisation as well.

Platform

An executable or library can be built to run on different operating systems and cpu architectures,
with a variant being produced for each platform. Gradle defines each OS/architecture combination
as a NativePlatform, and a project may define any number of platforms. If no platforms are defined
in a project, then a single, default platform 'current' is added.

NOTE

Presently, a Platform consists of a defined operating system and architecture. As we
continue to develop the native binary support in Gradle, the concept of Platform
will be extended to include things like C-runtime version, Windows SDK, ABI, etc.
Sophisticated builds may use the extensibility of Gradle to apply additional
attributes to each platform, which can then be queried to specify particular
includes, preprocessor macros or compiler arguments for a native binary.

Example: Defining platforms

https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.platform.NativePlatform.html

build.gradle

model {
 platforms {
 x86 {
 architecture "x86"
 }
 x64 {
 architecture "x86_64"
 }
 itanium {
 architecture "ia-64"
 }
 }
}

For a given variant, Gradle will attempt to find a NativeToolChain that is able to build for the target
platform. Available tool chains are searched in the order defined. See the tool chains section below
for more details.

Flavor

Each component can have a set of named flavors, and a separate binary variant can be produced
for each flavor. While the build type and target platform variant dimensions have a defined
meaning in Gradle, each project is free to define any number of flavors and apply meaning to them
in any way.

An example of component flavors might differentiate between 'demo', 'paid' and 'enterprise'
editions of the component, where the same set of sources is used to produce binaries with different
functions.

Example: Defining flavors

https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

build.gradle

model {
 flavors {
 english
 french
 }
 components {
 hello(NativeLibrarySpec) {
 binaries.all {
 if (flavor == flavors.french) {
 cppCompiler.define "FRENCH"
 }
 }
 }
 }
}

In the example above, a library is defined with a 'english' and 'french' flavor. When compiling the
'french' variant, a separate macro is defined which leads to a different binary being produced.

If no flavor is defined for a component, then a single default flavor named 'default' is used.

Selecting the build types, platforms and flavors for a component

For a default component, Gradle will attempt to create a native binary variant for each and every
combination of buildType and flavor defined for the project. It is possible to override this on a per-
component basis, by specifying the set of targetBuildTypes and/or targetFlavors. By default, Gradle
will build for the default platform, see above, unless specified explicitly on a per-component basis
by specifying a set of targetPlatforms.

Example: Targeting a component at particular platforms

build.gradle

model {
 components {
 hello(NativeLibrarySpec) {
 targetPlatform "x86"
 targetPlatform "x64"
 }
 main(NativeExecutableSpec) {
 targetPlatform "x86"
 targetPlatform "x64"
 sources {
 cpp.lib library: 'hello', linkage: 'static'
 }
 }
 }
}

Here you can see that the TargetedNativeComponent.targetPlatform(java.lang.String) method is
used to specify a platform that the NativeExecutableSpec named main should be built for.

A similar mechanism exists for selecting
TargetedNativeComponent.targetBuildTypes(java.lang.String…) and
TargetedNativeComponent.targetFlavors(java.lang.String…).

Building all possible variants

When a set of build types, target platforms, and flavors is defined for a component, a
NativeBinarySpec model element is created for every possible combination of these. However, in
many cases it is not possible to build a particular variant, perhaps because no tool chain is available
to build for a particular platform.

If a binary variant cannot be built for any reason, then the NativeBinarySpec associated with that
variant will not be buildable. It is possible to use this property to create a task to generate all
possible variants on a particular machine.

Example: Building all possible variants

build.gradle

model {
 tasks {
 buildAllExecutables(Task) {
 dependsOn $.binaries.findAll { it.buildable }
 }
 }
}

https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetPlatform(java.lang.String)
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetBuildTypes(java.lang.String[])
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeBinarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeBinarySpec.html

Tool chains

A single build may utilize different tool chains to build variants for different platforms. To this end,
the core 'native-binary' plugins will attempt to locate and make available supported tool chains.
However, the set of tool chains for a project may also be explicitly defined, allowing additional
cross-compilers to be configured as well as allowing the install directories to be specified.

Defining tool chains

The supported tool chain types are:

• Gcc

• Clang

• VisualCpp

Example: Defining tool chains

build.gradle

model {
 toolChains {
 visualCpp(VisualCpp) {
 // Specify the installDir if Visual Studio cannot be located
 // installDir "C:/Apps/Microsoft Visual Studio 10.0"
 }
 gcc(Gcc) {
 // Uncomment to use a GCC install that is not in the PATH
 // path "/usr/bin/gcc"
 }
 clang(Clang)
 }
}

Each tool chain implementation allows for a certain degree of configuration (see the API
documentation for more details).

Using tool chains

It is not necessary or possible to specify the tool chain that should be used to build. For a given
variant, Gradle will attempt to locate a NativeToolChain that is able to build for the target platform.
Available tool chains are searched in the order defined.

NOTE

When a platform does not define an architecture or operating system, the default
target of the tool chain is assumed. So if a platform does not define a value for
operatingSystem, Gradle will find the first available tool chain that can build for the
specified architecture.

The core Gradle tool chains are able to target the following architectures out of the box. In each
case, the tool chain will target the current operating system. See the next section for information on

https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.toolchain.Clang.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

cross-compiling for other operating systems.

Tool Chain Architectures

GCC x86, x86_64

Clang x86, x86_64

Visual C++ x86, x86_64, ia-64

So for GCC running on linux, the supported target platforms are 'linux/x86' and 'linux/x86_64'. For
GCC running on Windows via Cygwin, platforms 'windows/x86' and 'windows/x86_64' are
supported. (The Cygwin POSIX runtime is not yet modelled as part of the platform, but will be in the
future.)

If no target platforms are defined for a project, then all binaries are built to target a default
platform named 'current'. This default platform does not specify any architecture or
operatingSystem value, hence using the default values of the first available tool chain.

Gradle provides a hook that allows the build author to control the exact set of arguments passed to
a tool chain executable. This enables the build author to work around any limitations in Gradle, or
assumptions that Gradle makes. The arguments hook should be seen as a 'last-resort' mechanism,
with preference given to truly modelling the underlying domain.

Example: Reconfigure tool arguments

build.gradle

model {
 toolChains {
 visualCpp(VisualCpp) {
 eachPlatform {
 cppCompiler.withArguments { args ->
 args << "-DFRENCH"
 }
 }
 }
 clang(Clang) {
 eachPlatform {
 cCompiler.withArguments { args ->
 Collections.replaceAll(args, "CUSTOM", "-DFRENCH")
 }
 linker.withArguments { args ->
 args.remove "CUSTOM"
 }
 staticLibArchiver.withArguments { args ->
 args.remove "CUSTOM"
 }
 }
 }
 }
}

Cross-compiling with GCC

Cross-compiling is possible with the Gcc and Clang tool chains, by adding support for additional
target platforms. This is done by specifying a target platform for a toolchain. For each target
platform a custom configuration can be specified.

Example: Defining target platforms

https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.toolchain.Clang.html

build.gradle

model {
 toolChains {
 gcc(Gcc) {
 target("arm"){
 cppCompiler.withArguments { args ->
 args << "-m32"
 }
 linker.withArguments { args ->
 args << "-m32"
 }
 }
 target("sparc")
 }
 }
 platforms {
 arm {
 architecture "arm"
 }
 sparc {
 architecture "sparc"
 }
 }
 components {
 main(NativeExecutableSpec) {
 targetPlatform "arm"
 targetPlatform "sparc"
 }
 }
}

Visual Studio IDE integration

Gradle has the ability to generate Visual Studio project and solution files for the native components
defined in your build. This ability is added by the visual-studio plugin. For a multi-project build, all
projects with native components (and the root project) should have this plugin applied.

When the visual-studio plugin is applied to the root project, a task named visualStudio is created,
which will generate a Visual Studio solution file containing all components in the build. This
solution will include a Visual Studio project for each component, as well as configuring each
component to build using Gradle.

A task named openVisualStudio is also created by the visual-studio plugin when the project is the
root project. This task generates the Visual Studio solution and then opens the solution in Visual
Studio. This means you can simply run gradlew openVisualStudio from the root project to generate
and open the Visual Studio solution in one convenient step.

The content of the generated visual studio files can be modified via API hooks, provided by the
visualStudio extension. Take a look at the 'visual-studio' sample, or see

VisualStudioExtension.getProjects() and VisualStudioRootExtension.getSolution() in the API
documentation for more details.

CUnit support

The Gradle cunit plugin provides support for compiling and executing CUnit tests in your native-
binary project. For each NativeExecutableSpec and NativeLibrarySpec defined in your project,
Gradle will create a matching CUnitTestSuiteSpec component, named ${component.name}Test.

CUnit sources

Gradle will create a CSourceSet named 'cunit' for each CUnitTestSuiteSpec component in the
project. This source set should contain the cunit test files for the component under test. Source files
can be located in the conventional location (src/${component.name}Test/cunit) or can be configured
like any other source set.

Gradle initialises the CUnit test registry and executes the tests, utilising some generated CUnit
launcher sources. Gradle will expect and call a function with the signature void
gradle_cunit_register() that you can use to configure the actual CUnit suites and tests to execute.

Example: Registering CUnit tests

suite_operators.c

#include <CUnit/Basic.h>
#include "gradle_cunit_register.h"
#include "test_operators.h"

int suite_init(void) {
 return 0;
}

int suite_clean(void) {
 return 0;
}

void gradle_cunit_register() {
 CU_pSuite pSuiteMath = CU_add_suite("operator tests", suite_init, suite_clean);
 CU_add_test(pSuiteMath, "test_plus", test_plus);
 CU_add_test(pSuiteMath, "test_minus", test_minus);
}

NOTE
Due to this mechanism, your CUnit sources may not contain a main method since
this will clash with the method provided by Gradle.

Building CUnit executables

A CUnitTestSuiteSpec component has an associated NativeExecutableSpec or NativeLibrarySpec
component. For each NativeBinarySpec configured for the main component, a matching

https://docs.gradle.org/7.3.2/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:projects
https://docs.gradle.org/7.3.2/dsl/org.gradle.ide.visualstudio.VisualStudioRootExtension.html#org.gradle.ide.visualstudio.VisualStudioRootExtension:solution
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.c.CSourceSet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeBinarySpec.html

CUnitTestSuiteBinarySpec will be configured on the test suite component. These test suite binaries
can be configured in a similar way to any other binary instance:

Example: Configuring CUnit tests

build.gradle

model {
 binaries {
 withType(CUnitTestSuiteBinarySpec) {
 lib library: "cunit", linkage: "static"

 if (flavor == flavors.failing) {
 cCompiler.define "PLUS_BROKEN"
 }
 }
 }
}

NOTE
Both the CUnit sources provided by your project and the generated launcher
require the core CUnit headers and libraries. Presently, this library dependency
must be provided by your project for each CUnitTestSuiteBinarySpec.

Running CUnit tests

For each CUnitTestSuiteBinarySpec, Gradle will create a task to execute this binary, which will run
all of the registered CUnit tests. Test results will be found in the ${build.dir}/test-results
directory.

Example: Running CUnit tests

build.gradle

plugins {
 id 'c'
 id 'cunit-test-suite'
}

model {
 flavors {
 passing
 failing
 }
 platforms {
 x86 {
 if (operatingSystem.macOsX) {
 architecture "x64"
 } else {
 architecture "x86"
 }

https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteBinarySpec.html

 }
 }
 repositories {
 libs(PrebuiltLibraries) {
 cunit {
 headers.srcDir "libs/cunit/2.1-2/include"
 binaries.withType(StaticLibraryBinary) {
 staticLibraryFile =
 file("libs/cunit/2.1-2/lib/" +
 findCUnitLibForPlatform(targetPlatform))
 }
 }
 }
 }
 components {
 operators(NativeLibrarySpec) {
 targetPlatform "x86"
 }
 }
 testSuites {
 operatorsTest(CUnitTestSuiteSpec) {
 testing $.components.operators
 }
 }
}
model {
 binaries {
 withType(CUnitTestSuiteBinarySpec) {
 lib library: "cunit", linkage: "static"

 if (flavor == flavors.failing) {
 cCompiler.define "PLUS_BROKEN"
 }
 }
 }
}

Output of gradle -q runOperatorsTestFailingCUnitExe

> gradle -q runOperatorsTestFailingCUnitExe

There were test failures:
 1. /home/user/gradle/samples/src/operatorsTest/c/test_plus.c:6 - plus(0, -2) == -2
 2. /home/user/gradle/samples/src/operatorsTest/c/test_plus.c:7 - plus(2, 2) == 4

FAILURE: Build failed with an exception.

* What went wrong:
Execution failed for task ':runOperatorsTestFailingCUnitExe'.
> There were failing tests. See the results at:
file:///home/user/gradle/samples/build/test-results/operatorsTest/failing/

* Try:
> Run with --stacktrace option to get the stack trace.
> Run with --info or --debug option to get more log output.
> Run with --scan to get full insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 0s

NOTE

The current support for CUnit is quite rudimentary. Plans for future integration
include:

• Allow tests to be declared with Javadoc-style annotations.

• Improved HTML reporting, similar to that available for JUnit.

• Real-time feedback for test execution.

• Support for additional test frameworks.

GoogleTest support

The Gradle google-test plugin provides support for compiling and executing GoogleTest tests in
your native-binary project. For each NativeExecutableSpec and NativeLibrarySpec defined in your
project, Gradle will create a matching GoogleTestTestSuiteSpec component, named
${component.name}Test.

GoogleTest sources

Gradle will create a CppSourceSet named 'cpp' for each GoogleTestTestSuiteSpec component in the
project. This source set should contain the GoogleTest test files for the component under test.
Source files can be located in the conventional location (src/${component.name}Test/cpp) or can be
configured like any other source set.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.language.cpp.CppSourceSet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html

Building GoogleTest executables

A GoogleTestTestSuiteSpec component has an associated NativeExecutableSpec or
NativeLibrarySpec component. For each NativeBinarySpec configured for the main component, a
matching GoogleTestTestSuiteBinarySpec will be configured on the test suite component. These test
suite binaries can be configured in a similar way to any other binary instance:

Example: Registering GoogleTest tests

build.gradle

model {
 binaries {
 withType(GoogleTestTestSuiteBinarySpec) {
 lib library: "googleTest", linkage: "static"

 if (flavor == flavors.failing) {
 cppCompiler.define "PLUS_BROKEN"
 }

 if (targetPlatform.operatingSystem.linux) {
 cppCompiler.args '-pthread'
 linker.args '-pthread'

 if (toolChain instanceof Gcc || toolChain instanceof Clang) {
 // Use C++03 with the old ABIs, as this is what the googletest
binaries were built with
 cppCompiler.args '-std=c++03', '-D_GLIBCXX_USE_CXX11_ABI=0'
 linker.args '-std=c++03'
 }
 }
 }
 }
}

NOTE
The GoogleTest sources provided by your project require the core GoogleTest
headers and libraries. Presently, this library dependency must be provided by your
project for each GoogleTestTestSuiteBinarySpec.

Running GoogleTest tests

For each GoogleTestTestSuiteBinarySpec, Gradle will create a task to execute this binary, which will
run all of the registered GoogleTest tests. Test results will be found in the ${build.dir}/test-results
directory.

https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeExecutableSpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeLibrarySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/nativeplatform/NativeBinarySpec.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteBinarySpec.html

NOTE

The current support for GoogleTest is quite rudimentary. Plans for future
integration include:

• Improved HTML reporting, similar to that available for JUnit.

• Real-time feedback for test execution.

• Support for additional test frameworks.

Implementing model rules in a plugin

CAUTION
Rule based configuration will be deprecated. New plugins should not use this
concept. Instead, use the standard approach described in the Writing Custom
Plugins chapter.

A plugin can define rules by extending RuleSource and adding methods that define the rules. The
plugin class can either extend RuleSource directly or can implement Plugin and include a nested
RuleSource subclass.

Refer to the API docs for RuleSource for more details.

Applying additional rules

A rule method annotated with Rules can apply a RuleSource to a target model element.

https://blog.gradle.org/state-and-future-of-the-gradle-software-model
https://docs.gradle.org/7.3.2/javadoc/org/gradle/model/RuleSource.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/model/RuleSource.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/model/RuleSource.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/model/RuleSource.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/model/Rules.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/model/RuleSource.html

Extending Gradle

Developing Custom Gradle Task Types
Gradle supports two types of task. One such type is the simple task, where you define the task with
an action closure. We have seen these in Build Script Basics. For this type of task, the action closure
determines the behaviour of the task. This type of task is good for implementing one-off tasks in
your build script.

The other type of task is the enhanced task, where the behaviour is built into the task, and the task
provides some properties which you can use to configure the behaviour. We have seen these in
Authoring Tasks. Most Gradle plugins use enhanced tasks. With enhanced tasks, you don’t need to
implement the task behaviour as you do with simple tasks. You simply declare the task and
configure the task using its properties. In this way, enhanced tasks let you reuse a piece of
behaviour in many different places, possibly across different builds.

The behaviour and properties of an enhanced task are defined by the task’s class. When you
declare an enhanced task, you specify the type, or class of the task.

Implementing your own custom task class in Gradle is easy. You can implement a custom task class
in pretty much any language you like, provided it ends up compiled to JVM bytecode. In our
examples, we are going to use Groovy as the implementation language. Groovy, Java or Kotlin are
all good choices as the language to use to implement a task class, as the Gradle API has been
designed to work well with these languages. In general, a task implemented using Java or Kotlin,
which are statically typed, will perform better than the same task implemented using Groovy.

Packaging a task class

There are several places where you can put the source for the task class.

Build script

You can include the task class directly in the build script. This has the benefit that the task class
is automatically compiled and included in the classpath of the build script without you having to
do anything. However, the task class is not visible outside the build script, and so you cannot
reuse the task class outside the build script it is defined in.

buildSrc project

You can put the source for the task class in the rootProjectDir/buildSrc/src/main/groovy
directory (or rootProjectDir/buildSrc/src/main/java or rootProjectDir/buildSrc/src/main/kotlin
depending on which language you prefer). Gradle will take care of compiling and testing the task
class and making it available on the classpath of the build script. The task class is visible to every
build script used by the build. However, it is not visible outside the build, and so you cannot
reuse the task class outside the build it is defined in. Using the buildSrc project approach
separates the task declaration — that is, what the task should do — from the task
implementation — that is, how the task does it.

See Organizing Gradle Projects for more details about the buildSrc project.

Standalone project

You can create a separate project for your task class. This project produces and publishes a JAR
which you can then use in multiple builds and share with others. Generally, this JAR might
include some custom plugins, or bundle several related task classes into a single library. Or some
combination of the two.

In our examples, we will start with the task class in the build script, to keep things simple. Then we
will look at creating a standalone project.

Writing a simple task class

To implement a custom task class, you extend DefaultTask.

Example 505. Defining a custom task

build.gradle

abstract class GreetingTask extends DefaultTask {
}

build.gradle.kts

abstract class GreetingTask : DefaultTask() {
}

This task doesn’t do anything useful, so let’s add some behaviour. To do so, we add a method to the
task and mark it with the TaskAction annotation. Gradle will call the method when the task
executes. You don’t have to use a method to define the behaviour for the task. You could, for
instance, call doFirst() or doLast() with a closure in the task constructor to add behaviour.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.DefaultTask.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskAction.html

Example 506. A hello world task

build.gradle

abstract class GreetingTask extends DefaultTask {
 @TaskAction
 def greet() {
 println 'hello from GreetingTask'
 }
}

// Create a task using the task type
tasks.register('hello', GreetingTask)

build.gradle.kts

abstract class GreetingTask : DefaultTask() {
 @TaskAction
 fun greet() {
 println("hello from GreetingTask")
 }
}

// Create a task using the task type
tasks.register<GreetingTask>("hello")

Output of gradle -q hello

> gradle -q hello
hello from GreetingTask

Let’s add a property to the task, so we can customize it. Tasks are objects, and when you declare a
task, you can set the properties or call methods on the task object. Here we add a greeting property,
and set the value when we declare the greeting task.

Example 507. A customizable hello world task

build.gradle

abstract class GreetingTask extends DefaultTask {
 @Input
 abstract Property<String> getGreeting()

 GreetingTask() {
 greeting.convention('hello from GreetingTask')
 }

 @TaskAction
 def greet() {
 println greeting.get()
 }
}

// Use the default greeting
tasks.register('hello', GreetingTask)

// Customize the greeting
tasks.register('greeting',GreetingTask) {
 greeting = 'greetings from GreetingTask'
}

build.gradle.kts

abstract class GreetingTask : DefaultTask() {
 @get:Input
 abstract val greeting: Property<String>

 init {
 greeting.convention("hello from GreetingTask")
 }

 @TaskAction
 fun greet() {
 println(greeting.get())
 }
}

// Use the default greeting
tasks.register<GreetingTask>("hello")

// Customize the greeting
tasks.register<GreetingTask>("greeting") {
 greeting.set("greetings from GreetingTask")
}

Output of gradle -q hello greeting

> gradle -q hello greeting
hello from GreetingTask
greetings from GreetingTask

A standalone project

Now we will move our task to a standalone project, so we can publish it and share it with others.
This project is simply a Groovy project that produces a JAR containing the task class. Here is a
simple build script for the project. It applies the Groovy plugin, and adds the Gradle API as a
compile-time dependency.

Example 508. A build for a custom task

build.gradle

plugins {
 id 'groovy'
}

dependencies {
 implementation gradleApi()
}

build.gradle.kts

plugins {
 groovy
}

dependencies {
 implementation(gradleApi())
}

We just follow the convention for where the source for the task class should go.

Example: A custom task

src/main/groovy/org/gradle/GreetingTask.groovy

package org.gradle

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction
import org.gradle.api.tasks.Input

class GreetingTask extends DefaultTask {

 @Input
 String greeting = 'hello from GreetingTask'

 @TaskAction
 def greet() {
 println greeting
 }
}

Using your task class in another project

To use a task class in a build script, you need to add the class to the build script’s classpath. To do
this, you use a buildscript { } block, as described in External dependencies for the build script.
The following example shows how you might do this when the JAR containing the task class has
been published to a local repository:

Example 509. Using a custom task in another project

build.gradle

buildscript {
 repositories {
 maven {
 url = uri(repoLocation)
 }
 }
 dependencies {
 classpath 'org.gradle:task:1.0-SNAPSHOT'
 }
}

tasks.register('greeting', org.gradle.GreetingTask) {
 greeting = 'howdy!'
}

build.gradle.kts

buildscript {
 repositories {
 maven {
 url = uri(repoLocation)
 }
 }
 dependencies {
 classpath("org.gradle:task:1.0-SNAPSHOT")
 }
}

tasks.register<org.gradle.GreetingTask>("greeting") {
 greeting = "howdy!"
}

Writing tests for your task class

You can use the ProjectBuilder class to create Project instances to use when you test your task class.

Example: Testing a custom task

src/test/groovy/org/gradle/GreetingTaskTest.groovy

class GreetingTaskTest {
 @Test
 void canAddTaskToProject() {
 Project project = ProjectBuilder.builder().build()
 def task = project.task('greeting', type: GreetingTask)
 assertTrue(task instanceof GreetingTask)
 }
}

Incremental tasks

With Gradle, it’s very simple to implement a task that is skipped when all of its inputs and outputs
are up to date (see Incremental Builds). However, there are times when only a few input files have
changed since the last execution, and you’d like to avoid reprocessing all of the unchanged inputs.
This can be particularly useful for a transformer task that converts input files to output files on a
1:1 basis.

If you’d like to optimize your build so that only out-of-date input files are processed, you can do so
with an incremental task.

NOTE

There is the IncrementalTaskInputs API, which is available in Gradle versions
before 5.4. When using IncrementalTaskInputs, it is only possible to query for all
file changes of the task inputs. It is not possible to query for changes of individual
input file properties. Moreover, the old API does not distinguish between
incremental and non-incremental task inputs, so the task itself needs to determine
where the changes originated from. Therefore, the usage of this API is deprecated,
and it will be removed eventually. The new InputChanges API, which is documented
here, replaces the old API and addresses its shortcomings. If you need to use the old
API, have a look at the documentation in the user manual for Gradle 5.3.1.

Implementing an incremental task

For a task to process inputs incrementally, that task must contain an incremental task action. This is
a task action method that has a single InputChanges parameter. That parameter tells Gradle that
the action only wants to process the changed inputs. In addition, the task needs to declare at least
one incremental file input property by using either @Incremental or @SkipWhenEmpty.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testfixtures/ProjectBuilder.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/incremental/IncrementalTaskInputs.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/incremental/IncrementalTaskInputs.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html
https://docs.gradle.org/5.3.1/userguide/custom_tasks.html#incremental_tasks
https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/work/Incremental.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html

IMPORTANT

To query incremental changes for an input file property, that property
always needs to return the same instance. The easiest way to accomplish this
is to use one of the following types for such properties: RegularFileProperty,
DirectoryProperty or ConfigurableFileCollection.

You can learn more about RegularFileProperty and DirectoryProperty in the
Lazy Configuration chapter, especially the sections on using read-only and
configurable properties and lazy file properties.

The incremental task action can use InputChanges.getFileChanges() to find out what files have
changed for a given file-based input property, be it of type RegularFileProperty, DirectoryProperty
or ConfigurableFileCollection. The method returns an Iterable of type FileChanges, which in turn
can be queried for the following:

• the affected file

• the change type (ADDED, REMOVED or MODIFIED)

• the normalized path of the changed file

• the file type of the changed file

The following example demonstrates an incremental task that has a directory input. It assumes that
the directory contains a collection of text files and copies them to an output directory, reversing the
text within each file. The key things to note are the type of the inputDir property, its annotations,
and how the action (execute()) uses getFileChanges() to process the subset of files that have
actually changed since the last build. You can also see how the action deletes a target file if the
corresponding input file has been removed:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/RegularFileProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/DirectoryProperty.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/work/FileChange.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/work/FileChange.html#getFile--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/work/FileChange.html#getChangeType--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/work/FileChange.html#getNormalizedPath--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/work/FileChange.html#getFileType--

Example 510. Defining an incremental task action

build.gradle

abstract class IncrementalReverseTask extends DefaultTask {
 @Incremental
 @PathSensitive(PathSensitivity.NAME_ONLY)
 @InputDirectory
 abstract DirectoryProperty getInputDir()

 @OutputDirectory
 abstract DirectoryProperty getOutputDir()

 @Input
 abstract Property<String> getInputProperty()

 @TaskAction
 void execute(InputChanges inputChanges) {
 println(inputChanges.incremental
 ? 'Executing incrementally'
 : 'Executing non-incrementally'
)

 inputChanges.getFileChanges(inputDir).each { change ->
 if (change.fileType == FileType.DIRECTORY) return

 println "${change.changeType}: ${change.normalizedPath}"
 def targetFile = outputDir.file(change.normalizedPath).get()
.asFile
 if (change.changeType == ChangeType.REMOVED) {
 targetFile.delete()
 } else {
 targetFile.text = change.file.text.reverse()
 }
 }
 }
}

build.gradle.kts

abstract class IncrementalReverseTask : DefaultTask() {
 @get:Incremental
 @get:PathSensitive(PathSensitivity.NAME_ONLY)
 @get:InputDirectory
 abstract val inputDir: DirectoryProperty

 @get:OutputDirectory
 abstract val outputDir: DirectoryProperty

 @get:Input
 abstract val inputProperty: Property<String>

 @TaskAction
 fun execute(inputChanges: InputChanges) {
 println(
 if (inputChanges.isIncremental) "Executing incrementally"
 else "Executing non-incrementally"
)

 inputChanges.getFileChanges(inputDir).forEach { change ->
 if (change.fileType == FileType.DIRECTORY) return@forEach

 println("${change.changeType}: ${change.normalizedPath}")
 val targetFile =
outputDir.file(change.normalizedPath).get().asFile
 if (change.changeType == ChangeType.REMOVED) {
 targetFile.delete()
 } else {
 targetFile.writeText(change.file.readText().reversed())
 }
 }
 }
}

If for some reason the task is executed non-incrementally, for example by running with --rerun
-tasks, all files are reported as ADDED, irrespective of the previous state. In this case, Gradle
automatically removes the previous outputs, so the incremental task only needs to process the
given files.

For a simple transformer task like the above example, the task action simply needs to generate
output files for any out-of-date inputs and delete output files for any removed inputs.

IMPORTANT A task may only contain a single incremental task action.

Which inputs are considered out of date?

When there is a previous execution of the task, and the only changes since that execution are to
incremental input file properties, then Gradle is able to determine which input files need to be
processed (incremental execution). In this case, the InputChanges.getFileChanges() method returns
details for all input files for the given property that were added, modified or removed.

However, there are many cases where Gradle is unable to determine which input files need to be
processed (non-incremental execution). Examples include:

• There is no history available from a previous execution.

• You are building with a different version of Gradle. Currently, Gradle does not use task history
from a different version.

• An upToDateWhen criterion added to the task returns false.

• An input property has changed since the previous execution.

• A non-incremental input file property has changed since the previous execution.

• One or more output files have changed since the previous execution.

In all of these cases, Gradle will report all input files as ADDED and the getFileChanges() method will
return details for all the files that comprise the given input property.

You can check if the task execution is incremental or not with the InputChanges.isIncremental()
method.

An incremental task in action

Given the example incremental task implementation above, let’s walk through some scenarios
based on it.

First, consider an instance of IncrementalReverseTask that is executed against a set of inputs for the
first time. In this case, all inputs will be considered added, as shown here:

https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-
https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges.html##org.gradle.work.InputChanges:incremental

Example 511. Running the incremental task for the first time

build.gradle

tasks.register('incrementalReverse', IncrementalReverseTask) {
 inputDir = file('inputs')
 outputDir = file("$buildDir/outputs")
 inputProperty = project.properties['taskInputProperty'] ?: 'original'
}

build.gradle.kts

tasks.register<IncrementalReverseTask>("incrementalReverse") {
 inputDir.set(file("inputs"))
 outputDir.set(file("$buildDir/outputs"))
 inputProperty.set(project.properties["taskInputProperty"] as String? ?:
"original")
}

Build layout

.
├── build.gradle
└── inputs
 ├── 1.txt
 ├── 2.txt
 └── 3.txt

Output of gradle -q incrementalReverse

> gradle -q incrementalReverse
Executing non-incrementally
ADDED: 1.txt
ADDED: 2.txt
ADDED: 3.txt

Naturally when the task is executed again with no changes, then the entire task is up to date and
the task action is not executed:

Example 512. Running the incremental task with unchanged inputs

Output of gradle incrementalReverse

> gradle incrementalReverse
> Task :incrementalReverse UP-TO-DATE

BUILD SUCCESSFUL in 0s
1 actionable task: 1 up-to-date

When an input file is modified in some way or a new input file is added, then re-executing the task
results in those files being returned by InputChanges.getFileChanges(). The following example
modifies the content of one file and adds another before running the incremental task:

Example 513. Running the incremental task with updated input files

build.gradle

tasks.register('updateInputs') {
 outputs.dir('inputs')
 doLast {
 file('inputs/1.txt').text = 'Changed content for existing file 1.'
 file('inputs/4.txt').text = 'Content for new file 4.'
 }
}

build.gradle.kts

tasks.register("updateInputs") {
 outputs.dir("inputs")
 doLast {
 file("inputs/1.txt").writeText("Changed content for existing file
1.")
 file("inputs/4.txt").writeText("Content for new file 4.")
 }
}

Output of gradle -q updateInputs incrementalReverse

> gradle -q updateInputs incrementalReverse
Executing incrementally
MODIFIED: 1.txt
ADDED: 4.txt

https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)

NOTE
The various mutation tasks (updateInputs, removeInput, etc) are only present to
demonstrate the behavior of incremental tasks. They should not be viewed as the
kinds of tasks or task implementations you should have in your own build scripts.

When an existing input file is removed, then re-executing the task results in that file being returned
by InputChanges.getFileChanges() as REMOVED. The following example removes one of the existing
files before executing the incremental task:

Example 514. Running the incremental task with an input file removed

build.gradle

tasks.register('removeInput') {
 outputs.dir('inputs')
 doLast {
 file('inputs/3.txt').delete()
 }
}

build.gradle.kts

tasks.register("removeInput") {
 outputs.dir("inputs")
 doLast {
 file("inputs/3.txt").delete()
 }
}

Output of gradle -q removeInput incrementalReverse

> gradle -q removeInput incrementalReverse
Executing incrementally
REMOVED: 3.txt

When an output file is deleted (or modified), then Gradle is unable to determine which input files
are out of date. In this case, details for all the input files for the given property are returned by
InputChanges.getFileChanges(). The following example removes just one of the output files from the
build directory, but notice how all the input files are considered to be ADDED:

https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)
https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)

Example 515. Running the incremental task with an output file removed

build.gradle

tasks.register('removeOutput') {
 outputs.dir("$buildDir/outputs")
 doLast {
 file("$buildDir/outputs/1.txt").delete()
 }
}

build.gradle.kts

tasks.register("removeOutput") {
 outputs.dir("$buildDir/outputs")
 doLast {
 file("$buildDir/outputs/1.txt").delete()
 }
}

Output of gradle -q removeOutput incrementalReverse

> gradle -q removeOutput incrementalReverse
Executing non-incrementally
ADDED: 1.txt
ADDED: 2.txt
ADDED: 3.txt

The last scenario we want to cover concerns what happens when a non-file-based input property is
modified. In such cases, Gradle is unable to determine how the property impacts the task outputs,
so the task is executed non-incrementally. This means that all input files for the given property are
returned by InputChanges.getFileChanges() and they are all treated as ADDED. The following example
sets the project property taskInputProperty to a new value when running the incrementalReverse
task and that project property is used to initialize the task’s inputProperty property, as you can see
in the first example of this section. Here’s the output you can expect in this case:

https://docs.gradle.org/7.3.2/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)

Example 516. Running the incremental task with an input property changed

Output of gradle -q -PtaskInputProperty=changed incrementalReverse

> gradle -q -PtaskInputProperty=changed incrementalReverse
Executing non-incrementally
ADDED: 1.txt
ADDED: 2.txt
ADDED: 3.txt

Storing incremental state for cached tasks

Using Gradle’s InputChanges is not the only way to create tasks that only work on changes since the
last execution. Tools like the Kotlin compiler provide incrementality as a built-in feature. The way
this is typically implemented is that the tool stores some analysis data about the state of the
previous execution in some file. If such state files are relocatable, then they can be declared as
outputs of the task. This way when the task’s results are loaded from cache, the next execution can
already use the analysis data loaded from cache, too.

However, if the state files are non-relocatable, then they can’t be shared via the build cache. Indeed,
when the task is loaded from cache, any such state files must be cleaned up to prevent stale state
from confusing the tool during the next execution. Gradle can ensure such stale files are removed if
they are declared via task.localState.register() or if a property is marked with the @LocalState
annotation.

Declaring and Using Command Line Options

Sometimes a user wants to declare the value of an exposed task property on the command line
instead of the build script. Being able to pass in property values on the command line is particularly
helpful if they change more frequently. The task API supports a mechanism for marking a property
to automatically generate a corresponding command line parameter with a specific name at
runtime.

Declaring a command-line option

Exposing a new command line option for a task property is straightforward. You just have to
annotate the corresponding setter method of a property with Option. An option requires a
mandatory identifier. Additionally, you can provide an optional description. A task can expose as
many command line options as properties available in the class.

Let’s have a look at an example to illustrate the functionality. The custom task UrlVerify verifies
whether a given URL can be resolved by making a HTTP call and checking the response code. The
URL to be verified is configurable through the property url. The setter method for the property is
annotated with @Option.

Example: Declaring a command line option

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/TaskLocalState.html#register-java.lang.Object...-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/LocalState.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/options/Option.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/options/Option.html

UrlVerify.java

import org.gradle.api.tasks.options.Option;

public class UrlVerify extends DefaultTask {
 private String url;

 @Option(option = "url", description = "Configures the URL to be verified.")
 public void setUrl(String url) {
 this.url = url;
 }

 @Input
 public String getUrl() {
 return url;
 }

 @TaskAction
 public void verify() {
 getLogger().quiet("Verifying URL '{}'", url);

 // verify URL by making a HTTP call
 }
}

All options declared for a task can be rendered as console output by running the help task and the
--task option.

Using an option on the command line

Using an option on the command line has to adhere to the following rules:

• The option uses a double-dash as prefix e.g. --url. A single dash does not qualify as valid syntax
for a task option.

• The option argument follows directly after the task declaration e.g. verifyUrl
--url=http://www.google.com/.

• Multiple options of a task can be declared in any order on the command line following the task
name.

Getting back to the previous example, the build script creates a task instance of type UrlVerify and
provides a value from the command line through the exposed option.

Example 517. Using a command line option

build.gradle

tasks.register('verifyUrl', UrlVerify)

build.gradle.kts

tasks.register<UrlVerify>("verifyUrl")

Output of gradle -q verifyUrl --url=http://www.google.com/

> gradle -q verifyUrl --url=http://www.google.com/
Verifying URL 'http://www.google.com/'

Supported data types for options

Gradle limits the set of data types that can be used for declaring command line options. The use on
the command line differ per type.

boolean, Boolean, Property<Boolean>

Describes an option with the value true or false. Passing the option on the command line treats
the value as true. For example --enabled equates to true. The absence of the option uses the
default value of the property.

String, Property<String>

Describes an option with an arbitrary String value. Passing the option on the command line also
requires a value e.g. --container-id=2x94held or --container-id 2x94held.

enum, Property<enum>

Describes an option as an enumerated type. Passing the option on the command line also
requires a value e.g. --log-level=DEBUG or --log-level debug. The value is not case sensitive.

List<String>, List<enum>

Describes an option that can takes multiple values of a given type. The values for the option have
to be provided as multiple declarations e.g. --image-id=123 --image-id=456. Other notations such
as comma-separated lists or multiple values separated by a space character are currently not
supported.

Documenting available values for an option

In theory, an option for a property type String or List<String> can accept any arbitrary value.
Expected values for such an option can be documented programmatically with the help of the
annotation OptionValues. This annotation may be assigned to any method that returns a List of one

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/options/OptionValues.html

of the supported data types. In addition, you have to provide the option identifier to indicate the
relationship between option and available values.

NOTE
Passing a value on the command line that is not supported by the option does not
fail the build or throw an exception. You’ll have to implement custom logic for such
behavior in the task action.

This example demonstrates the use of multiple options for a single task. The task implementation
provides a list of available values for the option output-type.

Example: Declaring available values for an option

UrlProcess.java

import org.gradle.api.tasks.options.Option;
import org.gradle.api.tasks.options.OptionValues;

public class UrlProcess extends DefaultTask {
 private String url;
 private OutputType outputType;

 @Option(option = "url", description = "Configures the URL to be write to the
output.")
 public void setUrl(String url) {
 this.url = url;
 }

 @Input
 public String getUrl() {
 return url;
 }

 @Option(option = "output-type", description = "Configures the output type.")
 public void setOutputType(OutputType outputType) {
 this.outputType = outputType;
 }

 @OptionValues("output-type")
 public List<OutputType> getAvailableOutputTypes() {
 return new ArrayList<OutputType>(Arrays.asList(OutputType.values()));
 }

 @Input
 public OutputType getOutputType() {
 return outputType;
 }

 @TaskAction
 public void process() {
 getLogger().quiet("Writing out the URL response from '{}' to '{}'", url,
outputType);

 // retrieve content from URL and write to output
 }

 private static enum OutputType {
 CONSOLE, FILE
 }
}

Listing command line options

Command line options using the annotations Option and OptionValues are self-documenting. You
will see declared options and their available values reflected in the console output of the help task.
The output renders options in alphabetical order.

Example: Listing available values for option

Output of gradle -q help --task processUrl

> gradle -q help --task processUrl
Detailed task information for processUrl

Path
 :processUrl

Type
 UrlProcess (UrlProcess)

Options
 --output-type Configures the output type.
 Available values are:
 CONSOLE
 FILE

 --url Configures the URL to be write to the output.

Description
 -

Group
 -

Limitations

Support for declaring command line options currently comes with a few limitations.

• Command line options can only be declared for custom tasks via annotation. There’s no
programmatic equivalent for defining options.

• Options cannot be declared globally e.g. on a project-level or as part of a plugin.

• When assigning an option on the command line then the task exposing the option needs to be
spelled out explicitly e.g. gradle check --tests abc does not work even though the check task
depends on the test task.

The Worker API

As can be seen from the discussion of incremental tasks, the work that a task performs can be
viewed as discrete units (i.e. a subset of inputs that are transformed to a certain subset of outputs).
Many times, these units of work are highly independent of each other, meaning they can be

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/options/Option.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/options/OptionValues.html

performed in any order and simply aggregated together to form the overall action of the task. In a
single threaded execution, these units of work would execute in sequence, however if we have
multiple processors, it would be desirable to perform independent units of work concurrently. By
doing so, we can fully utilize the available resources at build time and complete the activity of the
task faster.

The Worker API provides a mechanism for doing exactly this. It allows for safe, concurrent
execution of multiple items of work during a task action. But the benefits of the Worker API are not
confined to parallelizing the work of a task. You can also configure a desired level of isolation such
that work can be executed in an isolated classloader or even in an isolated process. Furthermore,
the benefits extend beyond even the execution of a single task. Using the Worker API, Gradle can
begin to execute tasks in parallel by default. In other words, once a task has submitted its work to
be executed asynchronously, and has exited the task action, Gradle can then begin the execution of
other independent tasks in parallel, even if those tasks are in the same project.

Using the Worker API

NOTE
A step-by-step description of converting a normal task action to use the worker API
can be found in the section on developing parallel tasks.

In order to submit work to the Worker API, two things must be provided: an implementation of the
unit of work, and the parameters for the unit of work.

The parameters for the unit of work are defined as an interface or abstract class that implements
WorkParameters. The parameters type must be a managed type.

You can find out more about implementing work parameters in Developing Custom Gradle Types.

The implementation is a class that extends WorkAction. This class should be abstract and should
not implement the getParameters() method. Gradle will inject an implementation of this method at
runtime with the parameters object for each unit of work.

worker_api.pdf#tasks_parallel_worker
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkParameters.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkAction.html

Example 518. Defining the unit of work parameters and implementation

build.gradle

// The parameters for a single unit of work
interface ReverseParameters extends WorkParameters {
 RegularFileProperty getFileToReverse()
 DirectoryProperty getDestinationDir()
}

// The implementation of a single unit of work.
abstract class ReverseFile implements WorkAction<ReverseParameters> {
 private final FileSystemOperations fileSystemOperations

 @Inject
 public ReverseFile(FileSystemOperations fileSystemOperations) {
 this.fileSystemOperations = fileSystemOperations
 }

 @Override
 void execute() {
 fileSystemOperations.copy {
 from parameters.fileToReverse
 into parameters.destinationDir
 filter { String line -> line.reverse() }
 }
 }
}

build.gradle.kts

// The parameters for a single unit of work
interface ReverseParameters : WorkParameters {
 val fileToReverse : RegularFileProperty
 val destinationDir : DirectoryProperty
}

// The implementation of a single unit of work
abstract class ReverseFile @Inject constructor(val fileSystemOperations:
FileSystemOperations) : WorkAction<ReverseParameters> {
 override fun execute() {
 fileSystemOperations.copy {
 from(parameters.fileToReverse)
 into(parameters.destinationDir)
 filter { line: String -> line.reversed() }
 }
 }
}

A WorkAction implementation can inject services that provide capabilities during work execution,
such as the FileSystemOperations service in the example above. See Service Injection for further
information on injecting service types.

In order to submit the unit of work, it is necessary to first acquire the WorkerExecutor. To do this, a
task should have a constructor annotated with javax.inject.Inject that accepts a WorkerExecutor
parameter. Gradle will inject the instance of WorkerExecutor at runtime when the task is created.
Then a WorkQueue object can be created and individual items of work can be submitted.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileSystemOperations.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkerExecutor.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkerExecutor.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkerExecutor.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkQueue.html

Example 519. Submitting a unit of work for execution

build.gradle

abstract class ReverseFiles extends SourceTask {
 private final WorkerExecutor workerExecutor

 @OutputDirectory
 abstract DirectoryProperty getOutputDir()

 // The WorkerExecutor will be injected by Gradle at runtime
 @Inject
 ReverseFiles(WorkerExecutor workerExecutor) {
 this.workerExecutor = workerExecutor
 }

 @TaskAction
 void reverseFiles() {
 // Create a WorkQueue to submit work items
 WorkQueue workQueue = workerExecutor.noIsolation()

 // Create and submit a unit of work for each file
 source.each { file ->
 workQueue.submit(ReverseFile.class) { ReverseParameters
parameters ->
 parameters.fileToReverse = file
 parameters.destinationDir = outputDir
 }
 }
 }
}

build.gradle.kts

// The WorkerExecutor will be injected by Gradle at runtime
abstract class ReverseFiles @Inject constructor(private val workerExecutor:
WorkerExecutor) : SourceTask() {
 @get:OutputDirectory
 abstract val outputDir: DirectoryProperty

 @TaskAction
 fun reverseFiles() {
 // Create a WorkQueue to submit work items
 val workQueue = workerExecutor.noIsolation()

 // Create and submit a unit of work for each file
 source.forEach { file ->
 workQueue.submit(ReverseFile::class) {
 fileToReverse.set(file)
 destinationDir.set(outputDir)
 }
 }
 }
}

Once all of the work for a task action has been submitted, it is safe to exit the task action. The work
will be executed asynchronously and in parallel (up to the setting of max-workers). Of course, any
tasks that are dependent on this task (and any subsequent task actions of this task) will not begin
executing until all of the asynchronous work completes. However, other independent tasks that
have no relationship to this task can begin executing immediately.

If any failures occur while executing the asynchronous work, the task will fail and a
WorkerExecutionException will be thrown detailing the failure for each failed work item. This will
be treated like any failure during task execution and will prevent any dependent tasks from
executing.

In some cases, however, it might be desirable to wait for work to complete before exiting the task
action. This is possible using the WorkQueue.await() method. As in the case of allowing the work to
complete asynchronously, any failures that occur while executing an item of work will be surfaced
as a WorkerExecutionException thrown from the WorkQueue.await() method.

NOTE

Note that Gradle will only begin running other independent tasks in parallel when a
task has exited a task action and returned control of execution to Gradle. When
WorkQueue.await() is used, execution does not leave the task action. This means
that Gradle will not allow other tasks to begin executing and will wait for the task
action to complete before doing so.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkerExecutionException.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkQueue.html#await--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkerExecutionException.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkQueue.html#await--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkQueue.html#await--

Example 520. Waiting for asynchronous work to complete

build.gradle

 // Create a WorkQueue to submit work items
 WorkQueue workQueue = workerExecutor.noIsolation()

 // Create and submit a unit of work for each file
 source.each { file ->
 workQueue.submit(ReverseFile.class) { ReverseParameters
parameters ->
 parameters.fileToReverse = file
 parameters.destinationDir = outputDir
 }
 }

 // Wait for all asynchronous work submitted to this queue to complete
before continuing
 workQueue.await()
 logger.lifecycle("Created ${outputDir.get().asFile.listFiles().
length} reversed files in ${projectLayout.projectDirectory.asFile
.relativePath(outputDir.get().asFile)}")

build.gradle.kts

 // Create a WorkQueue to submit work items
 val workQueue = workerExecutor.noIsolation()

 // Create and submit a unit of work for each file
 source.forEach { file ->
 workQueue.submit(ReverseFile::class) {
 fileToReverse.set(file)
 destinationDir.set(outputDir)
 }
 }

 // Wait for all asynchronous work submitted to this queue to complete
before continuing
 workQueue.await()
 logger.lifecycle("Created ${outputDir.get().asFile.listFiles().size}
reversed files in
${outputDir.get().asFile.toRelativeString(projectLayout.projectDirectory.asFi
le)}")

Isolation Modes

Gradle provides three isolation modes that can be configured when creating a WorkQueue and are
specified using the one of the following methods on WorkerExecutor:

WorkerExecutor.noIsolation()

This states that the work should be run in a thread with a minimum of isolation. For instance, it
will share the same classloader that the task is loaded from. This is the fastest level of isolation.

WorkerExecutor.classLoaderIsolation()

This states that the work should be run in a thread with an isolated classloader. The classloader
will have the classpath from the classloader that the unit of work implementation class was
loaded from as well as any additional classpath entries added through
ClassLoaderWorkerSpec.getClasspath().

WorkerExecutor.processIsolation()

This states that the work should be run with a maximum level of isolation by executing the work
in a separate process. The classloader of the process will use the classpath from the classloader
that the unit of work was loaded from as well as any additional classpath entries added through
ClassLoaderWorkerSpec.getClasspath(). Furthermore, the process will be a Worker Daemon
which will stay alive and can be reused for future work items that may have the same
requirements. This process can be configured with different settings than the Gradle JVM using
ProcessWorkerSpec.forkOptions(org.gradle.api.Action).

Worker Daemons

When using processIsolation(), gradle will start a long-lived Worker Daemon process that can be
reused for future work items.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkQueue.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkerExecutor.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkerExecutor.html#noIsolation--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkerExecutor.html#classLoaderIsolation-org.gradle.api.Action-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/ClassLoaderWorkerSpec.html#getClasspath--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkerExecutor.html#processIsolation-org.gradle.api.Action-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/ClassLoaderWorkerSpec.html#getClasspath--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/ProcessWorkerSpec.html#forkOptions-org.gradle.api.Action-

Example 521. Submitting an item of work to run in a worker daemon

build.gradle

 // Create a WorkQueue with process isolation
 WorkQueue workQueue = workerExecutor.processIsolation() {
ProcessWorkerSpec spec ->
 // Configure the options for the forked process
 forkOptions { JavaForkOptions options ->
 options.maxHeapSize = "512m"
 options.systemProperty "org.gradle.sample.showFileSize",
"true"
 }
 }

 // Create and submit a unit of work for each file
 source.each { file ->
 workQueue.submit(ReverseFile.class) { ReverseParameters
parameters ->
 parameters.fileToReverse = file
 parameters.destinationDir = outputDir
 }
 }

build.gradle.kts

 // Create a WorkQueue with process isolation
 val workQueue = workerExecutor.processIsolation() {
 // Configure the options for the forked process
 forkOptions {
 maxHeapSize = "512m"
 systemProperty("org.gradle.sample.showFileSize", "true")
 }
 }

 // Create and submit a unit of work for each file
 source.forEach { file ->
 workQueue.submit(ReverseFile::class) {
 fileToReverse.set(file)
 destinationDir.set(outputDir)
 }
 }

When a unit of work for a Worker Daemon is submitted, Gradle will first look to see if a compatible,
idle daemon already exists. If so, it will send the unit of work to the idle daemon, marking it as

busy. If not, it will start a new daemon. When evaluating compatibility, Gradle looks at a number of
criteria, all of which can be controlled through
ProcessWorkerSpec.forkOptions(org.gradle.api.Action).

By default, a worker daemon starts with a maximum heap of 512MB. This can be changed by
adjusting the workers fork options.

executable

A daemon is considered compatible only if it uses the same java executable.

classpath

A daemon is considered compatible if its classpath contains all of the classpath entries
requested. Note that a daemon is considered compatible only if the classpath exactly matches
the requested classpath.

heap settings

A daemon is considered compatible if it has at least the same heap size settings as requested. In
other words, a daemon that has higher heap settings than requested would be considered
compatible.

jvm arguments

A daemon is considered compatible if it has set all of the jvm arguments requested. Note that a
daemon is considered compatible if it has additional jvm arguments beyond those requested
(except for arguments treated specially such as heap settings, assertions, debug, etc).

system properties

A daemon is considered compatible if it has set all of the system properties requested with the
same values. Note that a daemon is considered compatible if it has additional system properties
beyond those requested.

environment variables

A daemon is considered compatible if it has set all of the environment variables requested with
the same values. Note that a daemon is considered compatible if it has more environment
variables in addition to those requested.

bootstrap classpath

A daemon is considered compatible if it contains all of the bootstrap classpath entries requested.
Note that a daemon is considered compatible if it has more bootstrap classpath entries in
addition to those requested.

debug

A daemon is considered compatible only if debug is set to the same value as requested (true or
false).

enable assertions

A daemon is considered compatible only if enable assertions is set to the same value as
requested (true or false).

https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/ProcessWorkerSpec.html#forkOptions-org.gradle.api.Action-

default character encoding

A daemon is considered compatible only if the default character encoding is set to the same
value as requested.

Worker daemons will remain running until either the build daemon that started them is stopped, or
system memory becomes scarce. When available system memory is low, Gradle will begin stopping
worker daemons in an attempt to minimize memory consumption.

Cancellation and timeouts

In order to support cancellation (e.g. when the user stops the build with CTRL+C) and task timeouts,
custom tasks should react to their executing thread being interrupted. The same is true for work
items submitted via the worker API. If a task does not respond to an interrupt within 10s, the
daemon will shut down in order to free up system resources.

More details

It’s often a good approach to package custom task types in a custom Gradle plugin. The plugin can
provide useful defaults and conventions for the task type, and provides a convenient way to use the
task type from a build script or another plugin. Please see Developing Custom Gradle Plugins for
more details.

Gradle provides a number of features that are helpful when developing Gradle types, including
tasks. Please see Developing Custom Gradle Types for more details.

Developing Custom Gradle Plugins
A Gradle plugin packages up reusable pieces of build logic, which can be used across many
different projects and builds. Gradle allows you to implement your own plugins, so you can reuse
your build logic, and share it with others.

You can implement a Gradle plugin in any language you like, provided the implementation ends up
compiled as JVM bytecode. In our examples, we are going to use Java as the implementation
language for standalone plugin project and Groovy or Kotlin in the buildscript plugin examples. In
general, a plugin implemented using Java or Kotlin, which are statically typed, will perform better
than the same plugin implemented using Groovy.

Packaging a plugin

There are several places where you can put the source for the plugin.

Build script

You can include the source for the plugin directly in the build script. This has the benefit that the
plugin is automatically compiled and included in the classpath of the build script without you
having to do anything. However, the plugin is not visible outside the build script, and so you
cannot reuse the plugin outside the build script it is defined in.

buildSrc project

You can put the source for the plugin in the rootProjectDir/buildSrc/src/main/java directory (or
rootProjectDir/buildSrc/src/main/groovy or rootProjectDir/buildSrc/src/main/kotlin depending
on which language you prefer). Gradle will take care of compiling and testing the plugin and
making it available on the classpath of the build script. The plugin is visible to every build script
used by the build. However, it is not visible outside the build, and so you cannot reuse the plugin
outside the build it is defined in.

See Organizing Gradle Projects for more details about the buildSrc project.

Standalone project

You can create a separate project for your plugin. This project produces and publishes a JAR
which you can then use in multiple builds and share with others. Generally, this JAR might
include some plugins, or bundle several related task classes into a single library. Or some
combination of the two.

In our examples, we will start with the plugin in the build script, to keep things simple. Then we
will look at creating a standalone project.

Writing a simple plugin

To create a Gradle plugin, you need to write a class that implements the Plugin interface. When the
plugin is applied to a project, Gradle creates an instance of the plugin class and calls the instance’s
Plugin.apply() method. The project object is passed as a parameter, which the plugin can use to
configure the project however it needs to. The following sample contains a greeting plugin, which
adds a hello task to the project.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html#apply-T-

Example 522. A custom plugin

build.gradle

class GreetingPlugin implements Plugin<Project> {
 void apply(Project project) {
 project.task('hello') {
 doLast {
 println 'Hello from the GreetingPlugin'
 }
 }
 }
}

// Apply the plugin
apply plugin: GreetingPlugin

build.gradle.kts

class GreetingPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 project.task("hello") {
 doLast {
 println("Hello from the GreetingPlugin")
 }
 }
 }
}

// Apply the plugin
apply<GreetingPlugin>()

Output of gradle -q hello

> gradle -q hello
Hello from the GreetingPlugin

One thing to note is that a new instance of a plugin is created for each project it is applied to. Also
note that the Plugin class is a generic type. This example has it receiving the Project type as a type
parameter. A plugin can instead receive a parameter of type Settings, in which case the plugin can
be applied in a settings script, or a parameter of type Gradle, in which case the plugin can be
applied in an initialization script.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.invocation.Gradle.html

Making the plugin configurable

Most plugins offer some configuration options for build scripts and other plugins to use to
customize how the plugin works. Plugins do this using extension objects. The Gradle Project has an
associated ExtensionContainer object that contains all the settings and properties for the plugins
that have been applied to the project. You can provide configuration for your plugin by adding an
extension object to this container. An extension object is simply an object with Java Bean properties
that represent the configuration.

Let’s add a simple extension object to the project. Here we add a greeting extension object to the
project, which allows you to configure the greeting.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/ExtensionContainer.html

Example 523. A custom plugin extension

build.gradle

abstract class GreetingPluginExtension {
 abstract Property<String> getMessage()

 GreetingPluginExtension() {
 message.convention('Hello from GreetingPlugin')
 }
}

class GreetingPlugin implements Plugin<Project> {
 void apply(Project project) {
 // Add the 'greeting' extension object
 def extension = project.extensions.create('greeting',
GreetingPluginExtension)
 // Add a task that uses configuration from the extension object
 project.task('hello') {
 doLast {
 println extension.message.get()
 }
 }
 }
}

apply plugin: GreetingPlugin

// Configure the extension
greeting.message = 'Hi from Gradle'

build.gradle.kts

abstract class GreetingPluginExtension {
 abstract val message: Property<String>

 init {
 message.convention("Hello from GreetingPlugin")
 }
}

class GreetingPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 // Add the 'greeting' extension object
 val extension =
project.extensions.create<GreetingPluginExtension>("greeting")
 // Add a task that uses configuration from the extension object
 project.task("hello") {
 doLast {
 println(extension.message.get())
 }
 }
 }
}

apply<GreetingPlugin>()

// Configure the extension
the<GreetingPluginExtension>().message.set("Hi from Gradle")

Output of gradle -q hello

> gradle -q hello
Hi from Gradle

In this example, GreetingPluginExtension is an object with a property called message. The extension
object is added to the project with the name greeting. This object then becomes available as a
project property with the same name as the extension object.

Oftentimes, you have several related properties you need to specify on a single plugin. Gradle adds
a configuration block for each extension object, so you can group settings together. The following
example shows you how this works.

Example 524. A custom plugin with configuration block

build.gradle

interface GreetingPluginExtension {
 Property<String> getMessage()
 Property<String> getGreeter()
}

class GreetingPlugin implements Plugin<Project> {
 void apply(Project project) {
 def extension = project.extensions.create('greeting',
GreetingPluginExtension)
 project.task('hello') {
 doLast {
 println "${extension.message.get()} from ${extension.greeter
.get()}"
 }
 }
 }
}

apply plugin: GreetingPlugin

// Configure the extension using a DSL block
greeting {
 message = 'Hi'
 greeter = 'Gradle'
}

build.gradle.kts

interface GreetingPluginExtension {
 val message: Property<String>
 val greeter: Property<String>
}

class GreetingPlugin : Plugin<Project> {
 override fun apply(project: Project) {
 val extension =
project.extensions.create<GreetingPluginExtension>("greeting")
 project.task("hello") {
 doLast {
 println("${extension.message.get()} from
${extension.greeter.get()}")
 }
 }
 }
}

apply<GreetingPlugin>()

// Configure the extension using a DSL block
configure<GreetingPluginExtension> {
 message.set("Hi")
 greeter.set("Gradle")
}

Output of gradle -q hello

> gradle -q hello
Hi from Gradle

In this example, several settings can be grouped together within the greeting closure. The name of
the closure block in the build script (greeting) needs to match the extension object name. Then,
when the closure is executed, the fields on the extension object will be mapped to the variables
within the closure based on the standard Groovy closure delegate feature.

In this example, several settings can be grouped together within the
configure<GreetingPluginExtension> block. The type used on the configure function in the build
script (GreetingPluginExtension) needs to match the extension type. Then, when the block is
executed, the receiver of the block is the extension.

In this way, using an extension object extends the Gradle DSL to add a project property and DSL
block for the plugin. And because an extension object is simply a regular object, you can provide
your own DSL nested inside the plugin block by adding properties and methods to the extension
object.

Developing project extensions

You can find out more about implementing project extensions in Developing Custom Gradle Types.

Working with files in custom tasks and plugins

When developing custom tasks and plugins, it’s a good idea to be very flexible when accepting
input configuration for file locations. You should use Gradle’s managed properties and
project.layout to select file or directory locations. By this, the actual location will only be resolved
when the file is needed and can be reconfigured at any time during build configuration.

Example 525. Evaluating file properties lazily

build.gradle

abstract class GreetingToFileTask extends DefaultTask {

 @OutputFile
 abstract RegularFileProperty getDestination()

 @TaskAction
 def greet() {
 def file = getDestination().get().asFile
 file.parentFile.mkdirs()
 file.write 'Hello!'
 }
}

def greetingFile = objects.fileProperty()

tasks.register('greet', GreetingToFileTask) {
 destination = greetingFile
}

tasks.register('sayGreeting') {
 dependsOn greet
 doLast {
 def file = greetingFile.get().asFile
 println "${file.text} (file: ${file.name})"
 }
}

greetingFile.set(layout.buildDirectory.file('hello.txt'))

build.gradle.kts

abstract class GreetingToFileTask : DefaultTask() {

 @get:OutputFile
 abstract val destination: RegularFileProperty

 @TaskAction
 fun greet() {
 val file = destination.get().asFile
 file.parentFile.mkdirs()
 file.writeText("Hello!")
 }
}

val greetingFile = objects.fileProperty()

tasks.register<GreetingToFileTask>("greet") {
 destination.set(greetingFile)
}

tasks.register("sayGreeting") {
 dependsOn("greet")
 doLast {
 val file = greetingFile.get().asFile
 println("${file.readText()} (file: ${file.name})")
 }
}

greetingFile.set(layout.buildDirectory.file("hello.txt"))

Output of gradle -q sayGreeting

> gradle -q sayGreeting
Hello! (file: hello.txt)

In this example, we configure the greet task destination property as a closure/provider, which is
evaluated with the Project.file(java.lang.Object) method to turn the return value of the
closure/provider into a File object at the last minute. You will notice that in the example above we
specify the greetingFile property value after we have configured to use it for the task. This kind of
lazy evaluation is a key benefit of accepting any value when setting a file property, then resolving
that value when reading the property.

Mapping extension properties to task properties

Capturing user input from the build script through an extension and mapping it to input/output
properties of a custom task is a useful pattern. The build script author interacts only with the DSL

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

defined by the extension. The imperative logic is hidden in the plugin implementation.

Gradle provides some types that you can use in task implementations and extensions to help you
with this. Refer to Lazy Configuration for more information.

A standalone project

Now we will move our plugin to a standalone project so that we can publish it and share it with
others. This project is simply a Java project that produces a JAR containing the plugin classes. The
easiest and the recommended way to package and publish a plugin is to use the Java Gradle Plugin
Development Plugin. This plugin will automatically apply the Java Plugin, add the gradleApi()
dependency to the api configuration, generate the required plugin descriptors in the resulting JAR
file and configure the Plugin Marker Artifact to be used when publishing. Here is a simple build
script for the project.

Example 526. A build for a custom plugin

build.gradle

plugins {
 id 'java-gradle-plugin'
}

gradlePlugin {
 plugins {
 simplePlugin {
 id = 'org.example.greeting'
 implementationClass = 'org.example.GreetingPlugin'
 }
 }
}

build.gradle.kts

plugins {
 `java-gradle-plugin`
}

gradlePlugin {
 plugins {
 create("simplePlugin") {
 id = "org.example.greeting"
 implementationClass = "org.example.GreetingPlugin"
 }
 }
}

Creating a plugin id

Plugin ids are fully qualified in a manner similar to Java packages (i.e. a reverse domain name).
This helps to avoid collisions and provides a way to group plugins with similar ownership.

Your plugin id should be a combination of components that reflect namespace (a reasonable
pointer to you or your organization) and the name of the plugin it provides. For example if you had
a Github account named "foo" and your plugin was named "bar", a suitable plugin id might be
com.github.foo.bar. Similarly, if the plugin was developed at the baz organization, the plugin id
might be org.baz.bar.

Plugin ids should conform to the following:

• May contain any alphanumeric character, '.', and '-'.

• Must contain at least one '.' character separating the namespace from the name of the plugin.

• Conventionally use a lowercase reverse domain name convention for the namespace.

• Conventionally use only lowercase characters in the name.

• org.gradle and com.gradleware namespaces may not be used.

• Cannot start or end with a '.' character.

• Cannot contain consecutive '.' characters (i.e. '..').

Although there are conventional similarities between plugin ids and package names, package
names are generally more detailed than is necessary for a plugin id. For instance, it might seem
reasonable to add "gradle" as a component of your plugin id, but since plugin ids are only used for
Gradle plugins, this would be superfluous. Generally, a namespace that identifies ownership and a
name are all that are needed for a good plugin id.

Publishing your plugin

If you are publishing your plugin internally for use within your organization, you can publish it
like any other code artifact. See the Ivy and Maven chapters on publishing artifacts.

If you are interested in publishing your plugin to be used by the wider Gradle community, you can
publish it to the Gradle Plugin Portal. This site provides the ability to search for and gather
information about plugins contributed by the Gradle community. Please refer to the corresponding
section on how to make your plugin available on this site.

Using your plugin in another project

To use a plugin in a build script, you need to configure the repository in pluginManagement {} block
of the project’s settings file. The following example shows how you might do this when the plugin
has been published to a local repository:

http://plugins.gradle.org
publishing_gradle_plugins.pdf#publishing_portal

Example 527. Using a custom plugin in another project

settings.gradle

pluginManagement {
 repositories {
 maven {
 url = uri(repoLocation)
 }
 }
}

build.gradle

plugins {
 id 'org.example.greeting' version '1.0-SNAPSHOT'
}

settings.gradle.kts

pluginManagement {
 repositories {
 maven {
 url = uri(repoLocation)
 }
 }
}

build.gradle.kts

plugins {
 id("org.example.greeting") version "1.0-SNAPSHOT"
}

Note for plugins published without java-gradle-plugin

If your plugin was published without using the Java Gradle Plugin Development Plugin, the
publication will be lacking Plugin Marker Artifact, which is needed for plugins DSL to locate the
plugin. In this case, the recommended way to resolve the plugin in another project is to add a
resolutionStrategy section to the pluginManagement {} block of the project’s settings file as shown
below.

Example 528. Resolution strategy for plugins without Plugin Marker Artifact

settings.gradle

 resolutionStrategy {
 eachPlugin {
 if (requested.id.namespace == 'org.example') {
 useModule("org.example:custom-plugin:${requested.version}")
 }
 }
 }

settings.gradle.kts

 resolutionStrategy {
 eachPlugin {
 if (requested.id.namespace == "org.example") {
 useModule("org.example:custom-plugin:${requested.version}")
 }
 }
 }

Precompiled script plugins

In addition to plugins written as standalone projects, Gradle also allows you to provide build logic
written in either Groovy or Kotlin DSLs as precompiled script plugins. You write these as *.gradle
files in src/main/groovy directory or *.gradle.kts files in src/main/kotlin directory.

Precompiled script plugins are compiled into class files and packaged into a jar. For all intents and
purposes, they are binary plugins and can be applied by plugin ID, tested and published as binary
plugins. In fact, the plugin metadata for them is generated using the Gradle Plugin Development
Plugin.

NOTE

Kotlin DSL precompiled script plugins built with Gradle 6.0 cannot be used with
earlier versions of Gradle. This limitation will be lifted in a future version of Gradle.

Groovy DSL precompiled script plugins are available starting with Gradle 6.4.
Groovy DSL precompiled script plugins can be applied in projects that use Gradle
5.0 and later.

To apply a precompiled script plugin, you need to know its ID which is derived from the plugin
script’s filename (minus the .gradle extension).

To apply a precompiled script plugin, you need to know its ID which is derived from the plugin
script’s filename (minus the .gradle.kts extension) and its (optional) package declaration.

For example, the script src/main/groovy/java-library-convention.gradle would have a plugin ID of
java-library-convention. Likewise, src/main/groovy/my.java-library-convention.gradle would result
in a plugin ID of my.java-library-convention.

For example, the script src/main/kotlin/java-library-convention.gradle.kts would have a plugin ID
of java-library-convention (assuming it has no package declaration). Likewise,
src/main/kotlin/my/java-library-convention.gradle.kts would result in a plugin ID of my.java-
library-convention as long as it has a package declaration of my.

To demonstrate how you can implement and use a precompiled script plugin, let’s walk through an
example based on a buildSrc project.

First, you need a buildSrc/build.gradle file that applies the groovy-gradle-plugin plugin:

First, you need a buildSrc/build.gradle.kts file that applies the kotlin-dsl plugin:

Example 529. Enabling precompiled script plugins

buildSrc/build.gradle

plugins {
 id 'groovy-gradle-plugin'
}

buildSrc/build.gradle.kts

plugins {
 `kotlin-dsl`
}

repositories {
 mavenCentral()
}

We recommend that you also create a buildSrc/settings.gradle file, which you may leave empty.

We recommend that you also create a buildSrc/settings.gradle.kts file, which you may leave
empty.

Next, create a new java-library-convention.gradle file in the buildSrc/src/main/groovy directory
and set its contents to the following:

Next, create a new java-library-convention.gradle.kts file in the buildSrc/src/main/kotlin
directory and set its contents to the following:

Example 530. Creating a simple script plugin

buildSrc/src/main/groovy/java-library-convention.gradle

plugins {
 id 'java-library'
 id 'checkstyle'
}

java {
 sourceCompatibility = JavaVersion.VERSION_11
 targetCompatibility = JavaVersion.VERSION_11
}

checkstyle {
 maxWarnings = 0
 // ...
}

tasks.withType(JavaCompile) {
 options.warnings = true
 // ...
}

dependencies {
 testImplementation("junit:junit:4.13")
 // ...
}

buildSrc/src/main/kotlin/java-library-convention.gradle.kts

plugins {
 `java-library`
 checkstyle
}

java {
 sourceCompatibility = JavaVersion.VERSION_11
 targetCompatibility = JavaVersion.VERSION_11
}

checkstyle {
 maxWarnings = 0
 // ...
}

tasks.withType<JavaCompile> {
 options.isWarnings = true
 // ...
}

dependencies {
 testImplementation("junit:junit:4.13")
 // ...
}

This script plugin simply applies the Java Library and Checkstyle Plugins and configures them. Note
that this will actually apply the plugins to the main project, i.e. the one that applies the precompiled
script plugin.

Finally, apply the script plugin to the root project as follows:

Example 531. Applying the precompiled script plugin to the main project

build.gradle

plugins {
 id 'java-library-convention'
}

build.gradle.kts

plugins {
 `java-library-convention`
}

Applying external plugins in precompiled script plugins

In order to apply an external plugin in a precompiled script plugin, it has to be added to the plugin
project’s implementation classpath in the plugin’s build file.

buildSrc/build.gradle

plugins {
 id 'groovy-gradle-plugin'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation 'com.bmuschko:gradle-docker-plugin:6.4.0'
}

buildSrc/build.gradle.kts

plugins {
 `kotlin-dsl`
}

repositories {
 mavenCentral()
}

dependencies {
 implementation("com.bmuschko:gradle-docker-plugin:6.4.0")
}

It can then be applied in the precompiled script plugin.

buildSrc/src/main/groovy/my-plugin.gradle

plugins {
 id 'com.bmuschko.docker-remote-api'
}

buildSrc/src/main/kotlin/my-plugin.gradle.kts

plugins {
 id("com.bmuschko.docker-remote-api")
}

The plugin version in this case is defined in the dependency declaration.

Writing tests for your plugin

You can use the ProjectBuilder class to create Project instances to use when you test your plugin
implementation.

Example: Testing a custom plugin

src/test/java/org/example/GreetingPluginTest.java

public class GreetingPluginTest {
 @Test
 public void greeterPluginAddsGreetingTaskToProject() {
 Project project = ProjectBuilder.builder().build();
 project.getPluginManager().apply("org.example.greeting");

 assertTrue(project.getTasks().getByName("hello") instanceof GreetingTask);
 }
}

More details

Plugins often also provide custom task types. Please see Developing Custom Gradle Task Types for
more details.

Gradle provides a number of features that are helpful when developing Gradle types, including
plugins. Please see Developing Custom Gradle Types for more details.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/testfixtures/ProjectBuilder.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html

CAUTION

When developing Gradle Plugins, it is important to be cautious when logging
information to the build log. Logging sensitive information (e.g. credentials,
tokens, certain environment variables) is considered a security vulnerability.
Build logs for public Continuous Integration services are world-viewable and
can expose this sensitive information.

Behind the scenes

So how does Gradle find the Plugin implementation? The answer is - you need to provide a
properties file in the JAR’s META-INF/gradle-plugins directory that matches the id of your plugin,
which is handled by Java Gradle Plugin Development Plugin.

Example: Wiring for a custom plugin

src/main/resources/META-INF/gradle-plugins/org.example.greeting.properties

implementation-class=org.example.GreetingPlugin

Notice that the properties filename matches the plugin id and is placed in the resources folder, and
that the implementation-class property identifies the Plugin implementation class.

Developing Custom Gradle Types
There are several different kinds of "add-ons" to Gradle that you can develop, such as plugins, tasks,
project extensions or artifact transforms, that are all implemented as classes and other types that
can run on the JVM. This chapter discusses some of the features and concepts that are common to
these types. You can use these features to help implement custom Gradle types and provide a
consistent DSL for your users.

This chapter applies to the following types:

• Plugin types.

• Task types.

• Artifact transform parameters types.

• Worker API work action parameters types.

• Extension objects created using ExtensionContainer.create(), for example a project extension
registered by a plugin.

• Objects created using ObjectFactory.newInstance().

• Objects created for a managed nested property.

• Elements of a NamedDomainObjectContainer.

Configuration using properties

The custom Gradle types that you implement often hold some configuration that you want to make
available to build scripts and other plugins. For example, a download task may have configuration

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Plugin.html

that specifies the URL to download from and the file system location to write the result to.

Managed properties

Gradle provides its own managed properties concept that allows you to declare each property as an
abstract getter (Java, Groovy) or an abstract property (Kotlin). Gradle then provides the
implementation for such a property automatically. It is called a managed property, as Gradle takes
care of managing the state of the property. A property may be mutable, meaning that it has both a
get() method and set() method, or read-only, meaning that it has only a get() method. Read-only
properties are also called providers.

Mutable managed properties

To declare a mutable managed property, add an abstract getter method of type Property<T> - where
T can be any serializable type or a fully Gradle managed type. (See the list further down for more
specific property types.) The property must not have any setter methods. Here is an example of a
task type with an uri property of type URI:

Example 532. Mutable managed property

Download.java

public abstract class Download extends DefaultTask {

 @Input
 public abstract Property<URI> getUri(); // abstract getter of type Property<T>

 @TaskAction
 void run() {
 System.out.println("Downloading " + getUri().get()); // Use the `uri`
property
 }
}

Note that for a property to be considered a mutable managed property, the property’s getter
methods must be abstract and have public or protected visibility. The property type must be one of
the following:

• Property<T>

• RegularFileProperty

• DirectoryProperty

• ListProperty<T>

• SetProperty<T>

• MapProperty<K, V>

• ConfigurableFileCollection

• ConfigurableFileTree

• DomainObjectSet<T>

• NamedDomainObjectContainer<T>

Gradle creates values for managed properties in the same way as ObjectFactory.

Read-only managed properties

To declare a read-only managed property, also called provider, add a getter method of type
Provider<T>. The method implementation then needs to derive the value, for example from other
properties.

Here is an example of a task type with a uri provider that is derived from a location property:

Example 533. Read-only managed property

Download.java

public abstract class Download extends DefaultTask {
 @Input
 public abstract Property<String> getLocation();

 @Internal
 public Provider<URI> getUri() {
 return getLocation().map(l -> URI.create("https://" + l));
 }

 @TaskAction
 void run() {
 System.out.println("Downloading " + getUri().get()); // Use the `uri`
provider (read-only property)
 }
}

Read-only managed nested properties

To declare a read-only managed nested property, add an abstract getter method for the property to
the type annotated with @Nested. The property should not have any setter methods. Gradle provides
an implementation for the getter method, and also creates a value for the property. The nested type
is also treated as a custom type, and can use the features discussed in this chapter.

This pattern is useful when a custom type has a nested complex type which has the same lifecycle.
If the lifecycle is different, consider using Property<NestedType> instead.

Here is an example of a task type with a resource property. The Resource type is also a custom
Gradle type and defines some managed properties:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html

Example 534. Read-only managed nested property

Download.java

public abstract class Download extends DefaultTask {
 @Nested
 public abstract Resource getResource(); // Use an abstract getter method
annotated with @Nested

 @TaskAction
 void run() {
 // Use the `resource` property
 System.out.println("Downloading https://" + getResource().getHostName()
.get() + "/" + getResource().getPath().get());
 }
}

public interface Resource {
 @Input
 Property<String> getHostName();
 @Input
 Property<String> getPath();
}

Note that for a property to be considered a read-only managed nested property, the property’s
getter methods must be abstract and have public or protected visibility. The property must not
have any setter methods. In addition, the property getter must be annotated with @Nested.

Read-only managed "name" property

If the type contains an abstract property called "name" of type String, Gradle provides an
implementation for the getter method, and extends each constructor with a "name" parameter,
which comes before all other constructor parameters. If the type is an interface, Gradle will provide
a constructor with a single "name" parameter and @Inject semantics.

You can have your type implement or extend the Named interface, which defines such a read-only
"name" property.

Managed types

A managed type is an abstract class or interface with no fields and whose properties are all
managed. That is, it is a type whose state is entirely managed by Gradle.

A named managed type is a managed type that additionally has an abstract property "name" of type
String. Named managed types are especially useful as the element type of
NamedDomainObjectContainer (see below).

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Named.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/NamedDomainObjectContainer.html

Example 535. Managed type defined as interface

Resource.java

public interface Resource {
 @Input
 Property<String> getHostName();
 @Input
 Property<String> getPath();
}

Java bean properties.

Sometimes you may see properties implemented in the Java bean property style. That is, they do
not use a Property<T> or Provider<T> types but are instead implemented with concrete setter and
getter methods (or corresponding conveniences in Groovy or Kotlin). This style of property
definition is legacy in Gradle and is discouraged. Properties in Gradle’s core plugins that are still of
this style will be migrated to managed properties in future versions.

DSL support and extensibility

When Gradle creates an instance of a custom type, it decorates the instance to mix-in DSL and
extensibility support.

Each decorated instance implements ExtensionAware, and so can have extension objects attached
to it.

Note that plugins and the elements of containers created using Project.container() are currently not
decorated, due to backwards compatibility issues.

Service injection

Gradle provides a number of useful services that can be used by custom Gradle types. For example,
the WorkerExecutor service can be used by a task to run work in parallel, as seen in the worker API
section. The services are made available through service injection.

Available services

The following services are available for injection:

• ObjectFactory - Allows model objects to be created. See Creating objects explicitly for more
details.

• ProjectLayout - Provides access to key project locations. See lazy configuration for more details.
This service is unavailable in Worker API actions.

• ProviderFactory - Creates Provider instances. See lazy configuration for more details.

• WorkerExecutor - Allows a task to run work in parallel. See the worker API for more details.

• FileSystemOperations - Allows a task to run operations on the filesystem such as deleting files,

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/plugins/ExtensionAware.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Project.html#container-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkerExecutor.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ProjectLayout.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/provider/ProviderFactory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/workers/WorkerExecutor.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileSystemOperations.html

copying files or syncing directories.

• ArchiveOperations - Allows a task to run operations on archive files such as ZIP or TAR files.

• ExecOperations - Allows a task to run external processes with dedicated support for running
external java programs.

• ToolingModelBuilderRegistry - Allows a plugin to registers a Gradle tooling API model.

Out of the above, ProjectLayout and WorkerExecutor services are only available for injection in
project plugins.

Constructor injection

There are 2 ways that an object can receive the services that it needs. The first option is to add the
service as a parameter of the class constructor. The constructor must be annotated with the
javax.inject.Inject annotation. Gradle uses the declared type of each constructor parameter to
determine the services that the object requires. The order of the constructor parameters and their
names are not significant and can be whatever you like.

Here is an example that shows a task type that receives an ObjectFactory via its constructor:

Example 536. Constructor service injection

Download.java

public class Download extends DefaultTask {
 private final DirectoryProperty outputDirectory;

 // Inject an ObjectFactory into the constructor
 @Inject
 public Download(ObjectFactory objectFactory) {
 // Use the factory
 outputDirectory = objectFactory.directoryProperty();
 }

 @OutputDirectory
 public DirectoryProperty getOutputDirectory() {
 return outputDirectory;
 }

 @TaskAction
 void run() {
 // ...
 }
}

Property injection

Alternatively, a service can be injected by adding a property getter method annotated with the
javax.inject.Inject annotation to the class. This can be useful, for example, when you cannot

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/ArchiveOperations.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/process/ExecOperations.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/tooling/provider/model/ToolingModelBuilderRegistry.html

change the constructor of the class due to backwards compatibility constraints. This pattern also
allows Gradle to defer creation of the service until the getter method is called, rather than when the
instance is created. This can help with performance. Gradle uses the declared return type of the
getter method to determine the service to make available. The name of the property is not
significant and can be whatever you like.

The property getter method must be public or protected. The method can be abstract or, in cases
where this isn’t possible, can have a dummy method body. The method body is discarded.

Here is an example that shows a task type that receives a two services via property getter methods:

Example 537. Property service injection

Download.java

public abstract class Download extends DefaultTask {
 // Use an abstract getter method
 @Inject
 protected abstract ObjectFactory getObjectFactory();

 // Alternatively, use a getter method with a dummy implementation
 @Inject
 protected WorkerExecutor getWorkerExecutor() {
 // Method body is ignored
 throw new UnsupportedOperationException();
 }

 @TaskAction
 void run() {
 WorkerExecutor workerExecutor = getWorkerExecutor();
 ObjectFactory objectFactory = getObjectFactory();
 // Use the executor and factory ...
 }
}

Creating objects explicitly

NOTE Prefer letting Gradle create objects automatically by using managed properties.

A custom Gradle type can use the ObjectFactory service to create instances of Gradle types to use
for its property values. These instances can make use of the features discussed in this chapter,
allowing you to create objects and a nested DSL.

In the following example, a project extension receives an ObjectFactory instance through its
constructor. The constructor uses this to create a nested Resource object (also a custom Gradle type)
and makes this object available through the resource property.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html

Example 538. Nested object creation

DownloadExtension.java

public class DownloadExtension {
 // A nested instance
 private final Resource resource;

 @Inject
 public DownloadExtension(ObjectFactory objectFactory) {
 // Use an injected ObjectFactory to create a Resource object
 resource = objectFactory.newInstance(Resource.class);
 }

 public Resource getResource() {
 return resource;
 }
}

public interface Resource {
 Property<URI> getUri();
}

Collection types

Gradle provides types for maintaining collections of objects, intended to work well to extends
Gradle’s DSLs and provide useful features such as lazy configuration.

NamedDomainObjectContainer

A NamedDomainObjectContainer manages a set of objects, where each element has a name
associated with it. The container takes care of creating and configuring the elements, and provides
a DSL that build scripts can use to define and configure elements. It is intended to hold objects
which are themselves configurable, for example a set of custom Gradle objects.

Gradle uses NamedDomainObjectContainer type extensively throughout the API. For example, the
project.tasks object used to manage the tasks of a project is a NamedDomainObjectContainer<Task>.

You can create a container instance using the ObjectFactory service, which provides the
ObjectFactory.domainObjectContainer() method. This is also available using the Project.container()
method, however in a custom Gradle type it’s generally better to use the injected ObjectFactory
service instead of passing around a Project instance.

You can also create a container instance using a read-only managed property, described above.

In order to use a type with any of the domainObjectContainer() methods, it must either

• be a named managed type; or

• expose a property named “name” as the unique, and constant, name for the object. The

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/NamedDomainObjectContainer.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#domainObjectContainer-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Project.html#container-java.lang.Class-

domainObjectContainer(Class) variant of the method creates new instances by calling the
constructor of the class that takes a string argument, which is the desired name of the object.

Objects created this way are treated as custom Gradle types, and so can make use of the features
discussed in this chapter, for example service injection or managed properties.

See the above link for domainObjectContainer() method variants that allow custom instantiation
strategies.

Example 539. Managing a collection of objects

DownloadExtension.java

public interface DownloadExtension {
 NamedDomainObjectContainer<Resource> getResources();
}

public interface Resource {
 // Type must have a read-only 'name' property
 String getName();

 Property<URI> getUri();

 Property<String> getUserName();
}

For each container property, Gradle automatically adds a block to the Groovy and Kotlin DSL that
you can use to configure the contents of the container:

Example 540. Configure block

build.gradle.kts

plugins {
 id("org.gradle.sample.download")
}

download {
 // Can use a block to configure the container contents
 resources {
 register("gradle") {
 uri.set(uri("https://gradle.org"))
 }
 }
}

build.gradle

plugins {
 id("org.gradle.sample.download")
}

download {
 // Can use a block to configure the container contents
 resources {
 register('gradle') {
 uri = uri('https://gradle.org')
 }
 }
}

ExtensiblePolymorphicDomainObjectContainer

An ExtensiblePolymorphicDomainObjectContainer is a NamedDomainObjectContainer that allows you
to define instantiation strategies for different types of objects.

You can create an instance using the ObjectFactory.polymorphicDomainObjectContainer() method.

NamedDomainObjectSet

A NamedDomainObjectSet holds a set of configurable objects, where each element has a name
associated with it. This is similar to NamedDomainObjectContainer, however a NamedDomainObjectSet
doesn’t manage the objects in the collection. They need to be created and added manually.

You can create an instance using the ObjectFactory.namedDomainObjectSet() method.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/ExtensiblePolymorphicDomainObjectContainer.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#polymorphicDomainObjectContainer-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/NamedDomainObjectSet.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#namedDomainObjectSet-java.lang.Class-

NamedDomainObjectList

A NamedDomainObjectList holds a list of configurable objects, where each element has a name
associated with it. This is similar to NamedDomainObjectContainer, however a NamedDomainObjectList
doesn’t manage the objects in the collection. They need to be created and added manually.

You can create an instance using the ObjectFactory.namedDomainObjectList() method.

DomainObjectSet

A DomainObjectSet simply holds a set of configurable objects. Compared to
NamedDomainObjectContainer, a DomainObjectSet doesn’t manage the objects in the collection. They
need to be created and added manually.

You can create an instance using the ObjectFactory.domainObjectSet() method.

Gradle Plugin Development Plugin
The Java Gradle Plugin development plugin can be used to assist in the development of Gradle
plugins. It automatically applies the Java Library plugin, adds the gradleApi() dependency to the
api configuration and performs validation of plugin metadata during jar task execution.

The plugin also integrates with TestKit, a library that aids in writing and executing functional tests
for plugin code. It automatically adds the gradleTestKit() dependency to the testImplementation
configuration and generates a plugin classpath manifest file consumed by a GradleRunner instance if
found. Please refer to Automatic classpath injection with the Plugin Development Plugin for more
on its usage, configuration options and samples.

Usage

To use the Java Gradle Plugin Development plugin, include the following in your build script:

Example 541. Using the Java Gradle Plugin Development plugin

build.gradle

plugins {
 id 'java-gradle-plugin'
}

build.gradle.kts

plugins {
 `java-gradle-plugin`
}

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/NamedDomainObjectList.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#namedDomainObjectList-java.lang.Class-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/DomainObjectSet.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/model/ObjectFactory.html#domainObjectSet-java.lang.Class-

Applying the plugin automatically applies the Java Library plugin and adds the gradleApi()
dependency to the api configuration. It also adds some validations to the build.

The following validations are performed:

• There is a plugin descriptor defined for the plugin.

• The plugin descriptor contains an implementation-class property.

• The implementation-class property references a valid class file in the jar.

• Each property getter or the corresponding field must be annotated with a property annotation
like @InputFile and @OutputDirectory. Properties that don’t participate in up-to-date checks
should be annotated with @Internal.

Any failed validations will result in a warning message.

For each plugin you are developing, add an entry to the gradlePlugin {} script block:

Example 542. Using the gradlePlugin {} block.

build.gradle

gradlePlugin {
 plugins {
 simplePlugin {
 id = 'org.gradle.sample.simple-plugin'
 implementationClass = 'org.gradle.sample.SimplePlugin'
 }
 }
}

build.gradle.kts

gradlePlugin {
 plugins {
 create("simplePlugin") {
 id = "org.gradle.sample.simple-plugin"
 implementationClass = "org.gradle.sample.SimplePlugin"
 }
 }
}

The gradlePlugin {} block defines the plugins being built by the project including the id and
implementationClass of the plugin. From this data about the plugins being developed, Gradle can
automatically:

• Generate the plugin descriptor in the jar file’s META-INF directory.

• If gradlePlugin.isAutomatedPublishing is not false, configure the Maven or Ivy Publish Plugins
publishing plugins to publish a Plugin Marker Artifact for each plugin.

• Moreover, if the Plugin Publishing Plugin is applied, it will publish each plugin using the same
name, plugin id, display name, and description to the Gradle Plugin Portal (see Publishing
Plugins to Gradle Plugin Portal for details).

https://plugins.gradle.org/docs/publish-plugin
publishing_gradle_plugins.pdf#publishing_portal
publishing_gradle_plugins.pdf#publishing_portal

Reference

A Groovy Build Script Primer
Ideally, a Groovy build script looks mostly like configuration: setting some properties of the project,
configuring dependencies, declaring tasks, and so on. That configuration is based on Groovy
language constructs. This primer aims to explain what those constructs are and — most
importantly — how they relate to Gradle’s API documentation.

The Project object

As Groovy is an object-oriented language based on Java, its properties and methods apply to objects.
In some cases, the object is implicit — particularly at the top level of a build script, i.e. not nested
inside a {} block.

Consider this fragment of build script, which contains an unqualified property and block:

version = '1.0.0.GA'

configurations {
 ...
}

Both version and configurations {} are part of org.gradle.api.Project.

This example reflects how every Groovy build script is backed by an implicit instance of Project. If
you see an unqualified element and you don’t know where it’s defined, always check the Project
API documentation to see if that’s where it’s coming from.

CAUTION

Avoid using Groovy MetaClass programming techniques in your build scripts.
Gradle provides its own API for adding dynamic runtime properties.

Use of Groovy-specific metaprogramming can cause builds to retain large
amounts of memory between builds that will eventually cause the Gradle
daemon to run out-of-memory.

Properties

<obj>.<name> // Get a property value
<obj>.<name> = <value> // Set a property to a new value
"$<name>" // Embed a property value in a string
"${<obj>.<name>}" // Same as previous (embedded value)

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://groovy-lang.org/metaprogramming.html#_metaclasses

Examples

version = '1.0.1'
myCopyTask.description = 'Copies some files'

file("$buildDir/classes")
println "Destination: ${myCopyTask.destinationDir}"

A property represents some state of an object. The presence of an = sign is a clear indicator that
you’re looking at a property. Otherwise, a qualified name — it begins with <obj>. — without any
other decoration is also a property.

If the name is unqualified, then it may be one of the following:

• A task instance with that name.

• A property on Project.

• An extra property defined elsewhere in the project.

• A property of an implicit object within a block.

• A local variable defined earlier in the build script.

Note that plugins can add their own properties to the Project object. The API documentation lists all
the properties added by core plugins. If you’re struggling to find where a property comes from,
check the documentation for the plugins that the build uses.

TIP
When referencing a project property in your build script that is added by a non-core
plugin, consider prefixing it with project. — it’s clear then that the property belongs
to the project object.

Properties in the API documentation

The Groovy DSL reference shows properties as they are used in your build scripts, but the Javadocs
only display methods. That’s because properties are implemented as methods behind the scenes:

• A property can be read if there is a method named get<PropertyName> with zero arguments that
returns the same type as the property.

• A property can be modified if there is a method named set<PropertyName> with one argument
that has the same type as the property and a return type of void.

Note that property names usually start with a lower-case letter, but that letter is upper case in the
method names. So the getter method getProjectVersion() corresponds to the property
projectVersion. This convention does not apply when the name begins with at least two upper-case
letters, in which case there is not change in case. For example, getRAM() corresponds to the property
RAM.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://docs.gradle.org/7.3.2/dsl/
https://docs.gradle.org/7.3.2/dsl/

Examples

project.getVersion()
project.version

project.setVersion('1.0.1')
project.version = '1.0.1'

Methods

<obj>.<name>() // Method call with no arguments
<obj>.<name>(<arg>, <arg>) // Method call with multiple arguments
<obj>.<name> <arg>, <arg> // Method call with multiple args (no parentheses)

Examples

myCopyTask.include '**/*.xml', '**/*.properties'

ext.resourceSpec = copySpec() // `copySpec()` comes from `Project`

file('src/main/java')
println 'Hello, World!'

A method represents some behavior of an object, although Gradle often uses methods to configure
the state of objects as well. Methods are identifiable by their arguments or empty parentheses. Note
that parentheses are sometimes required, such as when a method has zero arguments, so you may
find it simplest to always use parentheses.

NOTE
Gradle has a convention whereby if a method has the same name as a collection-
based property, then the method appends its values to that collection.

Blocks

Blocks are also methods, just with specific types for the last argument.

<obj>.<name> {
 ...
}

<obj>.<name>(<arg>, <arg>) {
 ...
}

Examples

plugins {
 id 'java-library'
}

configurations {
 assets
}

sourceSets {
 main {
 java {
 srcDirs = ['src']
 }
 }
}

dependencies {
 implementation project(':util')
}

Blocks are a mechanism for configuring multiple aspects of a build element in one go. They also
provide a way to nest configuration, leading to a form of structured data.

There are two important aspects of blocks that you should understand:

1. They are implemented as methods with specific signatures.

2. They can change the target ("delegate") of unqualified methods and properties.

Both are based on Groovy language features and we explain them in the following sections.

Block method signatures

You can easily identify a method as the implementation behind a block by its signature, or more
specifically, its argument types. If a method corresponds to a block:

• It must have at least one argument.

• The last argument must be of type groovy.lang.Closure or org.gradle.api.Action.

For example, Project.copy(Action) matches these requirements, so you can use the syntax:

copy {
 into "$buildDir/tmp"
 from 'custom-resources'
}

That leads to the question of how into() and from() work. They’re clearly methods, but where
would you find them in the API documentation? The answer comes from understanding object

https://docs.groovy-lang.org/latest/html/gapi/groovy/lang/Closure.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/Action.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

delegation.

Delegation

The section on properties lists where unqualified properties might be found. One common place is
on the Project object. But there is an alternative source for those unqualified properties and
methods inside a block: the block’s delegate object.

To help explain this concept, consider the last example from the previous section:

copy {
 into "$buildDir/tmp"
 from 'custom-resources'
}

All the methods and properties in this example are unqualified. You can easily find copy() and
buildDir in the Project API documentation, but what about into() and from()? These are resolved
against the delegate of the copy {} block. What is the type of that delegate? You’ll need to check the
API documentation for that.

There are two ways to determine the delegate type, depending on the signature of the block
method:

• For Action arguments, look at the type’s parameter.

In the example above, the method signature is copy(Action<? super CopySpec>) and it’s the bit
inside the angle brackets that tells you the delegate type — CopySpec in this case.

• For Closure arguments, the documentation will explicitly say in the description what type is
being configured or what type the delegate it (different terminology for the same thing).

Hence you can find both into() and from() on CopySpec. You might even notice that both of those
methods have variants that take an Action as their last argument, which means you can use block
syntax with them.

All new Gradle APIs declare an Action argument type rather than Closure, which makes it very easy
to pick out the delegate type. Even older APIs have an Action variant in addition to the old Closure
one.

Local variables

def <name> = <value> // Untyped variable
<type> <name> = <value> // Typed variable

Examples

def i = 1
String errorMsg = 'Failed, because reasons'

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#into-java.lang.Object-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object...-

Local variables are a Groovy construct — unlike extra properties — that can be used to share values
within a build script.

CAUTION

Avoid using local variables in the root of the project, i.e. as pseudo project
properties. They cannot be read outside of the build script and Gradle has no
knowledge of them.

Within a narrower context — such as configuring a task — local variables can
occasionally be helpful.

Gradle Kotlin DSL Primer
Gradle’s Kotlin DSL provides an alternative syntax to the traditional Groovy DSL with an enhanced
editing experience in supported IDEs, with superior content assist, refactoring, documentation, and
more. This chapter provides details of the main Kotlin DSL constructs and how to use it to interact
with the Gradle API.

TIP
If you are interested in migrating an existing Gradle build to the Kotlin DSL, please
also check out the dedicated migration section.

Prerequisites

• The embedded Kotlin compiler is known to work on Linux, macOS, Windows, Cygwin, FreeBSD
and Solaris on x86-64 architectures.

• Knowledge of Kotlin syntax and basic language features is very helpful. The Kotlin reference
documentation and Kotlin Koans will help you to learn the basics.

• Use of the plugins {} block to declare Gradle plugins significantly improves the editing
experience and is highly recommended.

IDE support

The Kotlin DSL is fully supported by IntelliJ IDEA and Android Studio. Other IDEs do not yet provide
helpful tools for editing Kotlin DSL files, but you can still import Kotlin-DSL-based builds and work
with them as usual.

Table 22. IDE support matrix

Build import Syntax highlighting 1 Semantic editor 2

IntelliJ IDEA ✓ ✓ ✓

Android Studio ✓ ✓ ✓

Eclipse IDE ✓ ✓ ✖

CLion ✓ ✓ ✖

Apache NetBeans ✓ ✓ ✖

Visual Studio Code (LSP) ✓ ✓ ✖

migrating_from_groovy_to_kotlin_dsl.pdf#migrating_groovy_kotlin
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/tutorials/koans.html

Build import Syntax highlighting 1 Semantic editor 2

Visual Studio ✓ ✖ ✖

1 Kotlin syntax highlighting in Gradle Kotlin DSL scripts

2 code completion, navigation to sources, documentation, refactorings etc… in Gradle Kotlin DSL scripts

As mentioned in the limitations, you must import your project from the Gradle model to get
content-assist and refactoring tools for Kotlin DSL scripts in IntelliJ IDEA.

Builds with slow configuration time might affect the IDE responsiveness, so please check out the
performance section to help resolve such issues.

Automatic build import vs. automatic reloading of script dependencies

Both IntelliJ IDEA and Android Studio — which is derived from IntelliJ IDEA — will detect when
you make changes to your build logic and offer two suggestions:

1. Import the whole build again

2. Reload script dependencies when editing a build script

We recommend that you disable automatic build import, but enable automatic reloading of script
dependencies. That way you get early feedback while editing Gradle scripts and control over when
the whole build setup gets synchronized with your IDE.

Troubleshooting

The IDE support is provided by two components:

• The Kotlin Plugin used by IntelliJ IDEA/Android Studio

• Gradle

The level of support varies based on the versions of each.

If you run into trouble, the first thing you should try is running ./gradlew tasks from the command
line to see whether your issue is limited to the IDE. If you encounter the same problem from the
command line, then the issue is with the build rather than the IDE integration.

If you can run the build successfully from the command line but your script editor is complaining,
then you should try restarting your IDE and invalidating its caches.

If the above doesn’t work and you suspect an issue with the Kotlin DSL script editor, you can:

https://www.jetbrains.com/help/idea/gradle.html#gradle_import
performance.pdf#performance_gradle

• Run ./gradle tasks to get more details

• Check the logs in one of these locations:

◦ $HOME/Library/Logs/gradle-kotlin-dsl on Mac OS X

◦ $HOME/.gradle-kotlin-dsl/log on Linux

◦ $HOME/AppData/Local/gradle-kotlin-dsl/log on Windows

• Open an issue on the Gradle issue tracker, including as much detail as you can.

From version 5.1 onwards, the log directory is cleaned up automatically. It is checked periodically
(at most every 24 hours) and log files are deleted if they haven’t been used for 7 days.

If the above isn’t enough to pinpoint the problem, you can enable the
org.gradle.kotlin.dsl.logging.tapi system property in your IDE. This will cause the Gradle
Daemon to log extra information in its log file located in $HOME/.gradle/daemon. In IntelliJ IDEA this
can be done by opening Help > Edit Custom VM Options… and adding
-Dorg.gradle.kotlin.dsl.logging.tapi=true.

For IDE problems outside of the Kotlin DSL script editor, please open issues in the corresponding
IDE’s issue tracker:

• JetBrains’s IDEA issue tracker,

• Google’s Android Studio issue tracker.

Lastly, if you face problems with Gradle itself or with the Kotlin DSL, please open issues on the
Gradle issue tracker.

Kotlin DSL scripts

Just like the Groovy-based equivalent, the Kotlin DSL is implemented on top of Gradle’s Java API.
Everything you can read in a Kotlin DSL script is Kotlin code compiled and executed by Gradle.
Many of the objects, functions and properties you use in your build scripts come from the Gradle
API and the APIs of the applied plugins.

Script file names

NOTE
Groovy DSL script files use the .gradle file name extension.

Kotlin DSL script files use the .gradle.kts file name extension.

To activate the Kotlin DSL, simply use the .gradle.kts extension for your build scripts in place of
.gradle. That also applies to the settings file — for example settings.gradle.kts — and initialization
scripts.

Note that you can mix Groovy DSL build scripts with Kotlin DSL ones, i.e. a Kotlin DSL build script
can apply a Groovy DSL one and each project in a multi-project build can use either one.

We recommend that you apply the following conventions to get better IDE support:

• Name settings scripts (or any script that is backed by a Gradle Settings object) according to the

https://github.com/gradle/gradle/issues/
https://github.com/gradle/gradle/issues/

pattern *.settings.gradle.kts — this includes script plugins that are applied from settings
scripts

• Name initialization scripts according to the pattern *.init.gradle.kts or simply
init.gradle.kts.

This is so that the IDE knows what type of object "backs" the script, be it Project, Settings or Gradle.

Implicit imports

All Kotlin DSL build scripts have implicit imports consisting of:

• The default Gradle API imports

• The Kotlin DSL API, which is all types within the org.gradle.kotlin.dsl and
org.gradle.kotlin.dsl.plugins.dsl packages currently

CAUTION

Avoid using internal Kotlin DSL APIs

Use of internal Kotlin DSL APIs in plugins and build scripts has the potential to
break builds when either Gradle or plugins change. The Kotlin DSL API extends
the Gradle public API with the types listed in the corresponding API docs that
are in the org.gradle.kotlin.dsl or org.gradle.kotlin.dsl.plugins.dsl packages
(but not subpackages of those).

Type-safe model accessors

The Groovy DSL allows you to reference many elements of the build model by name, even when
they are defined at runtime. Think named configurations, named source sets, and so on. For
example, you can get hold of the implementation configuration via configurations.implementation.

The Kotlin DSL replaces such dynamic resolution with type-safe model accessors that work with
model elements contributed by plugins.

Understanding when type-safe model accessors are available

The Kotlin DSL currently supports type-safe model accessors for any of the following that are
contributed by plugins:

• Dependency and artifact configurations (such as implementation and runtimeOnly contributed by
the Java Plugin)

• Project extensions and conventions (such as sourceSets)

• Elements in the tasks and configurations containers

• Elements in project-extension containers (for example the source sets contributed by the Java
Plugin that are added to the sourceSets container)

• Extensions on each of the above

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.invocation.Gradle.html
https://gradle.github.io/kotlin-dsl-docs/api/
https://gradle.github.io/kotlin-dsl-docs/api/

IMPORTANT
Only the main project build scripts and precompiled project script plugins
have type-safe model accessors. Initialization scripts, settings scripts, script
plugins do not. These limitations will be removed in a future Gradle release.

The set of type-safe model accessors available is calculated right before evaluating the script body,
immediately after the plugins {} block. Any model elements contributed after that point do not
work with type-safe model accessors. For example, this includes any configurations you might
define in your own build script. However, this approach does mean that you can use type-safe
accessors for any model elements that are contributed by plugins that are applied by parent
projects.

The following project build script demonstrates how you can access various configurations,
extensions and other elements using type-safe accessors:

Example 543. Using type-safe model accessors

build.gradle.kts

plugins {
 `java-library`
}

dependencies { ①
 api("junit:junit:4.13")
 implementation("junit:junit:4.13")
 testImplementation("junit:junit:4.13")
}

configurations { ①
 implementation {
 resolutionStrategy.failOnVersionConflict()
 }
}

sourceSets { ②
 main { ③
 java.srcDir("src/core/java")
 }
}

java { ④
 sourceCompatibility = JavaVersion.VERSION_11
 targetCompatibility = JavaVersion.VERSION_11
}

tasks {
 test { ⑤
 testLogging.showExceptions = true
 }
}

① Uses type-safe accessors for the api, implementation and testImplementation dependency
configurations contributed by the Java Library Plugin

② Uses an accessor to configure the sourceSets project extension

③ Uses an accessor to configure the main source set

④ Uses an accessor to configure the java source for the main source set

⑤ Uses an accessor to configure the test task

TIP

Your IDE knows about the type-safe accessors, so it will include them in its
suggestions. This will happen both at the top level of your build scripts — most plugin
extensions are added to the Project object — and within the blocks that configure an
extension.

Note that accessors for elements of containers such as configurations, tasks and sourceSets
leverage Gradle’s configuration avoidance APIs. For example, on tasks they are of type
TaskProvider<T> and provide a lazy reference and lazy configuration of the underlying task. Here
are some examples that illustrate the situations in which configuration avoidance applies:

tasks.test {
 // lazy configuration
}

// Lazy reference
val testProvider: TaskProvider<Test> = tasks.test

testProvider {
 // lazy configuration
}

// Eagerly realized Test task, defeat configuration avoidance if done out of a lazy
context
val test: Test = tasks.test.get()

For all other containers than tasks, accessors for elements are of type NamedDomainObjectProvider<T>
and provide the same behavior.

Understanding what to do when type-safe model accessors are not available

Consider the sample build script shown above that demonstrates the use of type-safe accessors. The
following sample is exactly the same except that is uses the apply() method to apply the plugin. The
build script can not use type-safe accessors in this case because the apply() call happens in the body
of the build script. You have to use other techniques instead, as demonstrated here:

Example 544. Configuring plugins without type-safe accessors

build.gradle.kts

apply(plugin = "java-library")

dependencies {
 "api"("junit:junit:4.13")
 "implementation"("junit:junit:4.13")
 "testImplementation"("junit:junit:4.13")
}

configurations {
 "implementation" {
 resolutionStrategy.failOnVersionConflict()
 }
}

configure<SourceSetContainer> {
 named("main") {
 java.srcDir("src/core/java")
 }
}

configure<JavaPluginConvention> {
 sourceCompatibility = JavaVersion.VERSION_11
 targetCompatibility = JavaVersion.VERSION_11
}

tasks {
 named<Test>("test") {
 testLogging.showExceptions = true
 }
}

Type-safe accessors are unavailable for model elements contributed by the following:

• Plugins applied via the apply(plugin = "id") method

• The project build script

• Script plugins, via apply(from = "script-plugin.gradle.kts")

• Plugins applied via cross-project configuration

You also can not use type-safe accessors in Binary Gradle plugins implemented in Kotlin.

If you can’t find a type-safe accessor, fall back to using the normal API for the corresponding types.
To do that, you need to know the names and/or types of the configured model elements. We’ll now
show you how those can be discovered by looking at the above script in detail.

Artifact configurations

The following sample demonstrates how to reference and configure artifact configurations without
type accessors:

Example 545. Artifact configurations

build.gradle.kts

apply(plugin = "java-library")

dependencies {
 "api"("junit:junit:4.13")
 "implementation"("junit:junit:4.13")
 "testImplementation"("junit:junit:4.13")
}

configurations {
 "implementation" {
 resolutionStrategy.failOnVersionConflict()
 }
}

The code looks similar to that for the type-safe accessors, except that the configuration names are
string literals in this case. You can use string literals for configuration names in dependency
declarations and within the configurations {} block.

The IDE won’t be able to help you discover the available configurations in this situation, but you
can look them up either in the corresponding plugin’s documentation or by running gradle
dependencies.

Project extensions and conventions

Project extensions and conventions have both a name and a unique type, but the Kotlin DSL only
needs to know the type in order to configure them. As the following sample shows for the
sourceSets {} and java {} blocks from the original example build script, you can use the
configure<T>() function with the corresponding type to do that:

https://gradle.github.io/kotlin-dsl-docs/api/org.gradle.kotlin.dsl/org.gradle.api.-project/configure.html

Example 546. Project extensions and conventions

build.gradle.kts

apply(plugin = "java-library")

configure<SourceSetContainer> {
 named("main") {
 java.srcDir("src/core/java")
 }
}

configure<JavaPluginConvention> {
 sourceCompatibility = JavaVersion.VERSION_11
 targetCompatibility = JavaVersion.VERSION_11
}

Note that sourceSets is a Gradle extension on Project of type SourceSetContainer and java is an
extension on Project of type JavaPluginExtension.

You can discover what extensions and conventions are available either by looking at the
documentation for the applied plugins or by running gradle kotlinDslAccessorsReport, which prints
the Kotlin code necessary to access the model elements contributed by all the applied plugins. The
report provides both names and types. As a last resort, you can also check a plugin’s source code,
but that shouldn’t be necessary in the majority of cases.

Note that you can also use the the<T>() function if you only need a reference to the extension or
convention without configuring it, or if you want to perform a one-line configuration, like so:

the<SourceSetContainer>()["main"].srcDir("src/core/java")

The snippet above also demonstrates one way of configuring the elements of a project extension
that is a container.

Elements in project-extension containers

Container-based project extensions, such as SourceSetContainer, also allow you to configure the
elements held by them. In our sample build script, we want to configure a source set named main
within the source set container, which we can do by using the named() method in place of an
accessor, like so:

https://gradle.github.io/kotlin-dsl-docs/api/org.gradle.kotlin.dsl/org.gradle.api.-project/the.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/NamedDomainObjectCollection.html#named-java.lang.String-

Example 547. Elements of project extensions that are containers

build.gradle.kts

apply(plugin = "java-library")

configure<SourceSetContainer> {
 named("main") {
 java.srcDir("src/core/java")
 }
}

All elements within a container-based project extension have a name, so you can use this technique
in all such cases.

As for project extensions and conventions themselves, you can discover what elements are present
in any container by either looking at the documentation of the applied plugins or by running gradle
kotlinDslAccessorsReport. And as a last resort, you may be able to view the plugin’s source code to
find out what it does, but that shouldn’t be necessary in the majority of cases.

Tasks

Tasks are not managed through a container-based project extension, but they are part of a
container that behaves in a similar way. This means that you can configure tasks in the same way
as you do for source sets, as you can see in this example:

Example 548. Tasks

build.gradle.kts

apply(plugin = "java-library")

tasks {
 named<Test>("test") {
 testLogging.showExceptions = true
 }
}

We are using the Gradle API to refer to the tasks by name and type, rather than using accessors.
Note that it’s necessary to specify the type of the task explicitly, otherwise the script won’t compile
because the inferred type will be Task, not Test, and the testLogging property is specific to the Test
task type. You can, however, omit the type if you only need to configure properties or to call
methods that are common to all tasks, i.e. they are declared on the Task interface.

One can discover what tasks are available by running gradle tasks. You can then find out the type
of a given task by running gradle help --task <taskName>, as demonstrated here:

❯ ./gradlew help --task test
...
Type
 Test (org.gradle.api.tasks.testing.Test)

Note that the IDE can assist you with the required imports, so you only need the simple names of
the types, i.e. without the package name part. In this case, there’s no need to import the Test task
type as it is part of the Gradle API and is therefore imported implicitly.

About conventions

Some of the Gradle core plugins expose configurability with the help of a so-called convention
object. These serve a similar purpose to — and have now been superseded by — extensions. Please
avoid using convention objects when writing new plugins. The long term plan is to migrate all
Gradle core plugins to use extensions and remove the convention objects altogether.

As seen above, the Kotlin DSL provides accessors only for convention objects on Project. There are
situations that require you to interact with a Gradle plugin that uses convention objects on other
types. The Kotlin DSL provides the withConvention(T::class) {} extension function to do this:

Example 549. Configuring source set conventions

build.gradle.kts

plugins {
 groovy
}

sourceSets {
 main {
 withConvention(GroovySourceSet::class) {
 groovy.srcDir("src/core/groovy")
 }
 }
}

This technique is most commonly required for source sets that are added by language plugins other
than the Java Plugin, e.g. the Groovy Plugin and the Scala Plugin. You can see which plugins add
which properties to source sets in the SourceSet reference documentation.

Multi-project builds

As with single-project builds, you should try to use the plugins {} block in your multi-project builds

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.SourceSet.html

so that you can use the type-safe accessors. Another consideration with multi-project builds is that
you won’t be able to use type-safe accessors when configuring subprojects within the root build
script or with other forms of cross configuration between projects. We discuss both topics in more
detail in the following sections.

Applying plugins

You can declare your plugins within the subprojects to which they apply, but we recommend that
you also declare them within the root project build script. This makes it easier to keep plugin
versions consistent across projects within a build. The approach also improves the performance of
the build.

The Using Gradle plugins chapter explains how you can declare plugins in the root project build
script with a version and then apply them to the appropriate subprojects' build scripts. What
follows is an example of this approach using three subprojects and three plugins. Note how the root
build script only declares the community plugins as the Java Library Plugin is tied to the version of
Gradle you are using:

Example 550. Declare plugin dependencies in the root build script using the plugins {} block

settings.gradle.kts

rootProject.name = "multi-project-build"
include("domain", "infra", "http")

build.gradle.kts

plugins {
 id("com.github.johnrengelman.shadow") version "4.0.1" apply false
 id("io.ratpack.ratpack-java") version "1.8.2" apply false
}

domain/build.gradle.kts

plugins {
 `java-library`
}

dependencies {
 api("javax.measure:unit-api:1.0")
 implementation("tec.units:unit-ri:1.0.3")
}

infra/build.gradle.kts

plugins {
 `java-library`
 id("com.github.johnrengelman.shadow")
}

shadow {
 applicationDistribution.from("src/dist")
}

tasks.shadowJar {
 minimize()
}

http/build.gradle.kts

plugins {
 java
 id("io.ratpack.ratpack-java")
}

dependencies {
 implementation(project(":domain"))
 implementation(project(":infra"))
 implementation(ratpack.dependency("dropwizard-metrics"))
}

application {
 mainClass.set("example.App")
}

ratpack.baseDir = file("src/ratpack/baseDir")

If your build requires additional plugin repositories on top of the Gradle Plugin Portal, you should
declare them in the pluginManagement {} block in your settings.gradle.kts file, like so:

Example 551. Declare additional plugin repositories

settings.gradle.kts

pluginManagement {
 repositories {
 mavenCentral()
 gradlePluginPortal()
 }
}

Plugins fetched from a source other than the Gradle Plugin Portal can only be declared via the
plugins {} block if they are published with their plugin marker artifacts.

NOTE
At the time of writing, all versions of the Android Plugin for Gradle up to 3.2.0
present in the google() repository lack plugin marker artifacts.

If those artifacts are missing, then you can’t use the plugins {} block. You must instead fall back to
declaring your plugin dependencies using the buildscript {} block in the root project build script.
Here’s an example of doing that for the Android Plugin:

https://plugins.gradle.org/

Example 552. Declare plugin dependencies in the root build script using the buildscript {} block

settings.gradle.kts

include("lib", "app")

build.gradle.kts

buildscript {
 repositories {
 google()
 gradlePluginPortal()
 }
 dependencies {
 classpath("com.android.tools.build:gradle:4.1.2")
 }
}

lib/build.gradle.kts

plugins {
 id("com.android.library")
}

android {
 // ...
}

app/build.gradle.kts

plugins {
 id("com.android.application")
}

android {
 // ...
}

This technique is not that different from what Android Studio produces when creating a new build.
The main difference is that the subprojects' build scripts in the above sample declare their plugins
using the plugins {} block. This means that you can use type-safe accessors for the model elements
that they contribute.

Note that you can’t use this technique if you want to apply such a plugin either to the root project
build script of a multi-project build (rather than solely to its subprojects) or to a single-project build.
You’ll need to use a different approach in those cases that we detail in another section.

Cross-configuring projects

Cross project configuration is a mechanism by which you can configure a project from another
project’s build script. A common example is when you configure subprojects in the root project
build script.

Taking this approach means that you won’t be able to use type-safe accessors for model elements
contributed by the plugins. You will instead have to rely on string literals and the standard Gradle
APIs.

As an example, let’s modify the Java/Ratpack sample build to fully configure its subprojects from
the root project build script:

Example 553. Cross-configuring projects

settings.gradle.kts

rootProject.name = "multi-project-build"
include("domain", "infra", "http")

build.gradle.kts

import com.github.jengelman.gradle.plugins.shadow.ShadowExtension
import com.github.jengelman.gradle.plugins.shadow.tasks.ShadowJar
import ratpack.gradle.RatpackExtension

plugins {
 id("com.github.johnrengelman.shadow") version "4.0.1" apply false
 id("io.ratpack.ratpack-java") version "1.8.2" apply false
}

project(":domain") {
 apply(plugin = "java-library")
 dependencies {
 "api"("javax.measure:unit-api:1.0")
 "implementation"("tec.units:unit-ri:1.0.3")
 }
}

project(":infra") {
 apply(plugin = "java-library")
 apply(plugin = "com.github.johnrengelman.shadow")
 configure<ShadowExtension> {
 applicationDistribution.from("src/dist")
 }
 tasks.named<ShadowJar>("shadowJar") {
 minimize()
 }
}

project(":http") {
 apply(plugin = "java")
 apply(plugin = "io.ratpack.ratpack-java")
 repositories { mavenCentral() }
 val ratpack = the<RatpackExtension>()
 dependencies {
 "implementation"(project(":domain"))
 "implementation"(project(":infra"))
 "implementation"(ratpack.dependency("dropwizard-metrics"))
 "runtimeOnly"("org.slf4j:slf4j-simple:1.7.25")
 }
 configure<JavaApplication> {
 mainClass.set("example.App")
 }
 ratpack.baseDir = file("src/ratpack/baseDir")
}

Note how we’re using the apply() method to apply the plugins since the plugins {} block doesn’t
work in this context. We are also using standard APIs instead of type-safe accessors to configure

tasks, extensions and conventions — an approach that we discussed in more detail elsewhere.

When you can’t use the plugins {} block

Plugins fetched from a source other than the Gradle Plugin Portal may or may not be usable with
the plugins {} block. It depends on how they have been published and, specifically, whether they
have been published with the necessary plugin marker artifacts.

For example, the Android Plugin for Gradle is not published to the Gradle Plugin Portal and — at
least up to version 3.2.0 of the plugin — the metadata required to resolve the artifacts for a given
plugin identifier is not published to the Google repository.

If your build is a multi-project build and you don’t need to apply such a plugin to your root project,
then you can get round this issue using the technique described above. For any other situation,
keep reading.

TIP
When publishing plugins, please use Gradle’s built-in Gradle Plugin Development
Plugin. It automates the publication of the metadata necessary to make your plugins
usable with the plugins {} block.

We will show you in this section how to apply the Android Plugin to a single-project build or the
root project of a multi-project build. The goal is to instruct your build on how to map the
com.android.application plugin identifier to a resolvable artifact. This is done in two steps:

• Add a plugin repository to the build’s settings script

• Map the plugin ID to the corresponding artifact coordinates

You accomplish both steps by configuring a pluginManagement {} block in the build’s settings script.
To demonstrate, the following sample adds the google() repository — where the Android plugin is
published — to the repository search list, and uses a resolutionStrategy {} block to map the
com.android.application plugin ID to the com.android.tools.build:gradle:<version> artifact
available in the google() repository:

https://plugins.gradle.org/

Example 554. Mapping plugin IDs to dependency coordinates

settings.gradle.kts

pluginManagement {
 repositories {
 google()
 gradlePluginPortal()
 }
 resolutionStrategy {
 eachPlugin {
 if(requested.id.namespace == "com.android") {

useModule("com.android.tools.build:gradle:${requested.version}")
 }
 }
 }
}

build.gradle.kts

plugins {
 id("com.android.application") version "4.1.2"
}

android {
 // ...
}

In fact, the above sample will work for all com.android.* plugins that are provided by the specified
module. That’s because the packaged module contains the details of which plugin ID maps to which
plugin implementation class, using the properties-file mechanism described in the Writing Custom
Plugins chapter.

See the Plugin Management section of the Gradle user manual for more information on the
pluginManagement {} block and what it can be used for.

Working with container objects

The Gradle build model makes heavy use of container objects (or just "containers"). For example,
both configurations and tasks are container objects that contain Configuration and Task objects
respectively. Community plugins also contribute containers, like the android.buildTypes container
contributed by the Android Plugin.

The Kotlin DSL provides several ways for build authors to interact with containers. We look at each
of those ways next, using the tasks container as an example.

TIP
Note that you can leverage the type-safe accessors described in another section if you
are configuring existing elements on supported containers. That section also describes
which containers support type-safe accessors.

Using the container API

All containers in Gradle implement NamedDomainObjectContainer<DomainObjectType>. Some of
them can contain objects of different types and implement
PolymorphicDomainObjectContainer<BaseType>. The simplest way to interact with containers is
through these interfaces.

The following sample demonstrates how you can use the named() method to configure existing
tasks and the register() method to create new ones.

Example 555. Using the container API

build.gradle.kts

tasks.named("check") ①
tasks.register("myTask1") ②

tasks.named<JavaCompile>("compileJava") ③
tasks.register<Copy>("myCopy1") ④

tasks.named("assemble") { ⑤
 dependsOn(":myTask1")
}
tasks.register("myTask2") { ⑥
 description = "Some meaningful words"
}

tasks.named<Test>("test") { ⑦
 testLogging.showStackTraces = true
}
tasks.register<Copy>("myCopy2") { ⑧
 from("source")
 into("destination")
}

① Gets a reference of type Task to the existing task named check

② Registers a new untyped task named myTask1

③ Gets a reference to the existing task named compileJava of type JavaCompile

④ Registers a new task named myCopy1 of type Copy

⑤ Gets a reference to the existing (untyped) task named assemble and configures it — you can only
configure properties and methods that are available on Task with this syntax

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.NamedDomainObjectContainer.html#org.gradle.api.NamedDomainObjectContainer
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.PolymorphicDomainObjectContainer.html#org.gradle.api.PolymorphicDomainObjectContainer
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.NamedDomainObjectContainer.html#org.gradle.api.NamedDomainObjectContainer:named(java.lang.String)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.NamedDomainObjectContainer.html#org.gradle.api.NamedDomainObjectContainer:register(java.lang.String)

⑥ Registers a new untyped task named myTask2 and configures it — you can only configure
properties and methods that are available on Task in this case

⑦ Gets a reference to the existing task named test of type Test and configures it — in this case you
have access to the properties and methods of the specified type

⑧ Registers a new task named myCopy2 of type Copy and configures it

NOTE
The above sample relies on the configuration avoidance APIs. If you need or want to
eagerly configure or register container elements, simply replace named() with
getByName() and register() with create().

Using Kotlin delegated properties

Another way to interact with containers is via Kotlin delegated properties. These are particularly
useful if you need a reference to a container element that you can use elsewhere in the build. In
addition, Kotlin delegated properties can easily be renamed via IDE refactoring.

The following sample does the exact same things as the one in the previous section, but it uses
delegated properties and reuses those references in place of string-literal task paths:

Example 556. Using Kotlin delegated properties

build.gradle.kts

val check by tasks.existing
val myTask1 by tasks.registering

val compileJava by tasks.existing(JavaCompile::class)
val myCopy1 by tasks.registering(Copy::class)

val assemble by tasks.existing {
 dependsOn(myTask1) ①
}
val myTask2 by tasks.registering {
 description = "Some meaningful words"
}

val test by tasks.existing(Test::class) {
 testLogging.showStackTraces = true
}
val myCopy2 by tasks.registering(Copy::class) {
 from("source")
 into("destination")
}

① Uses the reference to the myTask1 task rather than a task path

NOTE
The above rely on configuration avoidance APIs. If you need to eagerly configure or
register container elements simply replace existing() with getting() and
registering() with creating().

Configuring multiple container elements together

When configuring several elements of a container one can group interactions in a block in order to
avoid repeating the container’s name on each interaction. The following example uses a
combination of type-safe accessors, the container API and Kotlin delegated properties:

Example 557. Container scope

build.gradle.kts

tasks {
 test {
 testLogging.showStackTraces = true
 }
 val myCheck by registering {
 doLast { /* assert on something meaningful */ }
 }
 check {
 dependsOn(myCheck)
 }
 register("myHelp") {
 doLast { /* do something helpful */ }
 }
}

Working with runtime properties

Gradle has two main sources of properties that are defined at runtime: project properties and extra
properties. The Kotlin DSL provides specific syntax for working with these types of properties,
which we look at in the following sections.

Project properties

The Kotlin DSL allows you to access project properties by binding them via Kotlin delegated
properties. Here’s a sample snippet that demonstrates the technique for a couple of project
properties, one of which must be defined:

build.gradle.kts

val myProperty: String by project ①
val myNullableProperty: String? by project ②

① Makes the myProperty project property available via a myProperty delegated property — the

https://gradle.github.io/kotlin-dsl-docs/api/org.gradle.kotlin.dsl/org.gradle.api.-named-domain-object-container/existing.html
https://gradle.github.io/kotlin-dsl-docs/api/org.gradle.kotlin.dsl/org.gradle.api.-named-domain-object-container/getting.html
https://gradle.github.io/kotlin-dsl-docs/api/org.gradle.kotlin.dsl/org.gradle.api.-named-domain-object-container/registering.html
https://gradle.github.io/kotlin-dsl-docs/api/org.gradle.kotlin.dsl/org.gradle.api.-named-domain-object-container/creating.html

project property must exist in this case, otherwise the build will fail when the build script
attempts to use the myProperty value

② Does the same for the myNullableProperty project property, but the build won’t fail on using the
myNullableProperty value as long as you check for null (standard Kotlin rules for null safety
apply)

The same approach works in both settings and initialization scripts, except you use by settings and
by gradle respectively in place of by project.

Extra properties

Extra properties are available on any object that implements the ExtensionAware interface. Kotlin
DSL allows you to access extra properties and create new ones via delegated properties, using any
of the by extra forms demonstrated in the following sample:

build.gradle.kts

val myNewProperty by extra("initial value") ①
val myOtherNewProperty by extra { "calculated initial value" } ②

val myProperty: String by extra ③
val myNullableProperty: String? by extra ④

① Creates a new extra property called myNewProperty in the current context (the project in this case)
and initializes it with the value "initial value", which also determines the property’s type

② Create a new extra property whose initial value is calculated by the provided lambda

③ Binds an existing extra property from the current context (the project in this case) to a
myProperty reference

④ Does the same as the previous line but allows the property to have a null value

This approach works for all Gradle scripts: project build scripts, script plugins, settings scripts and
initialization scripts.

You can also access extra properties on a root project from a subproject using the following syntax:

my-sub-project/build.gradle.kts

val myNewProperty: String by rootProject.extra ①

① Binds the root project’s myNewProperty extra property to a reference of the same name

Extra properties aren’t just limited to projects. For example, Task extends ExtensionAware, so you can
attach extra properties to tasks as well. Here’s an example that defines a new myNewTaskProperty on
the test task and then uses that property to initialize another task:

https://kotlinlang.org/docs/reference/null-safety.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.ExtensionAware.html#org.gradle.api.plugins.ExtensionAware

build.gradle.kts

tasks {
 test {
 val reportType by extra("dev") ①
 doLast {
 // Use 'suffix' for post processing of reports
 }
 }

 register<Zip>("archiveTestReports") {
 val reportType: String by test.get().extra ②
 archiveAppendix.set(reportType)
 from(test.get().reports.html.destination)
 }
}

① Creates a new reportType extra property on the test task

② Makes the test task’s reportType extra property available to configure the archiveTestReports
task

If you’re happy to use eager configuration rather than the configuration avoidance APIs, you could
use a single, "global" property for the report type, like this:

build.gradle.kts

tasks.test.doLast { ... }

val testReportType by tasks.test.get().extra("dev") ①

tasks.create<Zip>("archiveTestReports") {
 archiveAppendix.set(testReportType) ②
 from(test.get().reports.html.destination)
}

① Creates and initializes an extra property on the test task, binding it to a "global" property

② Uses the "global" property to initialize the archiveTestReports task

There is one last syntax for extra properties that we should cover, one that treats extra as a map.
We recommend against using this in general as you lose the benefits of Kotlin’s type checking and it
prevents IDEs from providing as much support as they could. However, it is more succinct than the
delegated properties syntax and can reasonably be used if you only need to set the value of an extra
property without referencing it later.

Here’s a simple example demonstrating how to set and read extra properties using the map syntax:

build.gradle.kts

extra["myNewProperty"] = "initial value" ①

tasks.create("myTask") {
 doLast {
 println("Property: ${project.extra["myNewProperty"]}") ②
 }
}

① Creates a new project extra property called myNewProperty and sets its value

② Reads the value from the project extra property we created — note the project. qualifier on
extra[…], otherwise Gradle will assume we want to read an extra property from the task

The Kotlin DSL Plugin

The Kotlin DSL Plugin provides a convenient way to develop Kotlin-based projects that contribute
build logic. That includes buildSrc projects, included builds and Gradle plugins.

The plugin achieves this by doing the following:

• Applies the Kotlin Plugin, which adds support for compiling Kotlin source files.

• Adds the kotlin-stdlib-jdk8, kotlin-reflect and gradleKotlinDsl() dependencies to the
compileOnly and testImplementation configurations, which allows you to make use of those
Kotlin libraries and the Gradle API in your Kotlin code.

• Configures the Kotlin compiler with the same settings that are used for Kotlin DSL scripts,
ensuring consistency between your build logic and those scripts.

• Enables support for precompiled script plugins.

CAUTION

Avoid specifying a version for the kotlin-dsl plugin

Each Gradle release is meant to be used with a specific version of the kotlin-dsl
plugin and compatibility between arbitrary Gradle releases and kotlin-dsl
plugin versions is not guaranteed. Using an unexpected version of the kotlin-
dsl plugin in a build will emit a warning and can cause hard to diagnose
problems.

This is the basic configuration you need to use the plugin:

https://kotlinlang.org/docs/reference/using-gradle.html#targeting-the-jvm

Example 558. Applying the Kotlin DSL Plugin to a buildSrc project

buildSrc/build.gradle.kts

plugins {
 `kotlin-dsl`
}

repositories {
 // The org.jetbrains.kotlin.jvm plugin requires a repository
 // where to download the Kotlin compiler dependencies from.
 mavenCentral()
}

The embedded Kotlin

Gradle embeds Kotlin in order to provide support for Kotlin-based scripts.

Kotlin versions

Gradle ships with kotlin-compiler-embeddable plus matching versions of kotlin-stdlib and kotlin-
reflect libraries. For example, Gradle 4.3 ships with the Kotlin DSL v0.12.1 that includes Kotlin
1.1.51 versions of these modules. The kotlin package from those modules is visible through the
Gradle classpath.

The compatibility guarantees provided by Kotlin apply for both backward and forward
compatibility.

Backward compatibility

Our approach is to only do backwards-breaking Kotlin upgrades on a major Gradle release. We will
always clearly document which Kotlin version we ship and announce upgrade plans before a major
release.

Plugin authors who want to stay compatible with older Gradle versions need to limit their API
usage to a subset that is compatible with these old versions. It’s not really different from any other
new API in Gradle. E.g. if we introduce a new API for dependency resolution and a plugin wants to
use that API, then they either need to drop support for older Gradle versions or they need to do
some clever organization of their code to only execute the new code path on newer versions.

Forward compatibility

The biggest issue is the compatibility between the external kotlin-gradle-plugin version and the
kotlin-stdlib version shipped with Gradle. More generally, between any plugin that transitively
depends on kotlin-stdlib and its version shipped with Gradle. As long as the combination is
compatible everything should work. This will become less of an issue as the language matures.

https://kotlinlang.org/docs/reference/compatibility.html

Kotlin compiler arguments

These are the Kotlin compiler arguments used for compiling Kotlin DSL scripts and Kotlin sources
and scripts in a project that has the kotlin-dsl plugin applied:

-jvm-target=1.8

Sets the target version of the generated JVM bytecode to 1.8.

-Xjsr305=strict

Sets up Kotlin’s Java interoperability to strictly follow JSR-305 annotations for increased null
safety. See Calling Java code from Kotlin in the Kotlin documentation for more information.

Interoperability

When mixing languages in your build logic, you may have to cross language boundaries. An
extreme example would be a build that uses tasks and plugins that are implemented in Java,
Groovy and Kotlin, while also using both Kotlin DSL and Groovy DSL build scripts.

Quoting the Kotlin reference documentation:

Kotlin is designed with Java Interoperability in mind. Existing Java code can
be called from Kotlin in a natural way, and Kotlin code can be used from
Java rather smoothly as well.

Both calling Java from Kotlin and calling Kotlin from Java are very well covered in the Kotlin
reference documentation.

The same mostly applies to interoperability with Groovy code. In addition, the Kotlin DSL provides
several ways to opt into Groovy semantics, which we look at next.

Static extensions

Both the Groovy and Kotlin languages support extending existing classes via Groovy Extension
modules and Kotlin extensions.

To call a Kotlin extension function from Groovy, call it as a static function, passing the receiver as
the first parameter:

Example 559. Calling a Kotlin extension from Groovy

build.gradle

TheTargetTypeKt.kotlinExtensionFunction(receiver, "parameters", 42,
aReference)

Kotlin extension functions are package-level functions and you can learn how to locate the name of
the type declaring a given Kotlin extension in the Package-Level Functions section of the Kotlin

https://kotlinlang.org/docs/reference/java-interop.html#compiler-configuration
https://kotlinlang.org/docs/reference/java-interop.html
https://kotlinlang.org/docs/reference/java-to-kotlin-interop.html
https://groovy-lang.org/metaprogramming.html#_extension_modules
https://groovy-lang.org/metaprogramming.html#_extension_modules
https://kotlinlang.org/docs/reference/extensions.html
https://kotlinlang.org/docs/reference/java-to-kotlin-interop.html#package-level-functions

reference documentation.

To call a Groovy extension method from Kotlin, the same approach applies: call it as a static
function passing the receiver as the first parameter. Here’s an example:

Example 560. Calling a Groovy extension from Kotlin

build.gradle.kts

TheTargetTypeGroovyExtension.groovyExtensionMethod(receiver, "parameters",
42, aReference)

Named parameters and default arguments

Both the Groovy and Kotlin languages support named function parameters and default arguments,
although they are implemented very differently. Kotlin has fully-fledged support for both, as
described in the Kotlin language reference under named arguments and default arguments. Groovy
implements named arguments in a non-type-safe way based on a Map<String, ?> parameter, which
means they cannot be combined with default arguments. In other words, you can only use one or
the other in Groovy for any given method.

Calling Kotlin from Groovy

To call a Kotlin function that has named arguments from Groovy, just use a normal method call
with positional parameters. There is no way to provide values by argument name.

To call a Kotlin function that has default arguments from Groovy, always pass values for all the
function parameters.

Calling Groovy from Kotlin

To call a Groovy function with named arguments from Kotlin, you need to pass a Map<String, ?>, as
shown in this example:

Example 561. Call Groovy function with named arguments from Kotlin

build.gradle.kts

groovyNamedArgumentTakingMethod(mapOf(
 "parameterName" to "value",
 "other" to 42,
 "and" to aReference))

To call a Groovy function with default arguments from Kotlin, always pass values for all the
parameters.

https://kotlinlang.org/docs/reference/functions.html#named-arguments
https://kotlinlang.org/docs/reference/functions.html#default-arguments
https://groovy-lang.org/objectorientation.html#_named_arguments
https://groovy-lang.org/objectorientation.html#_default_arguments

Groovy closures from Kotlin

You may sometimes have to call Groovy methods that take Closure arguments from Kotlin code. For
example, some third-party plugins written in Groovy expect closure arguments.

NOTE
Gradle plugins written in any language should prefer the type Action<T> type in
place of closures. Groovy closures and Kotlin lambdas are automatically mapped to
arguments of that type.

In order to provide a way to construct closures while preserving Kotlin’s strong typing, two helper
methods exist:

• closureOf<T> {}

• delegateClosureOf<T> {}

Both methods are useful in different circumstances and depend upon the method you are passing
the Closure instance into.

Some plugins expect simple closures, as with the Bintray plugin:

Example 562. Use closureOf<T> {}

build.gradle.kts

bintray {
 pkg(closureOf<PackageConfig> {
 // Config for the package here
 })
}

In other cases, like with the Gretty Plugin when configuring farms, the plugin expects a delegate
closure:

https://groovy-lang.org/closures.html
https://plugins.gradle.org/plugin/com.jfrog.bintray
https://plugins.gradle.org/plugin/org.gretty

Example 563. Use delegateClosureOf<T> {}

build.gradle.kts

dependencies {
 implementation("group:artifact:1.2.3") {
 artifact(delegateClosureOf<DependencyArtifact> {
 // configuration for the artifact
 name = "artifact-name"
 })
 }
}

There sometimes isn’t a good way to tell, from looking at the source code, which version to use.
Usually, if you get a NullPointerException with closureOf<T> {}, using delegateClosureOf<T> {} will
resolve the problem.

These two utility functions are useful for configuration closures, but some plugins might expect
Groovy closures for other purposes. The KotlinClosure0 to KotlinClosure2 types allows adapting
Kotlin functions to Groovy closures with more flexibility.

Example 564. Use KotlinClosureX types

build.gradle.kts

somePlugin {

 // Adapt parameter-less function
 takingParameterLessClosure(KotlinClosure0({
 "result"
 }))

 // Adapt unary function
 takingUnaryClosure(KotlinClosure1<String, String>({
 "result from single parameter $this"
 }))

 // Adapt binary function
 takingBinaryClosure(KotlinClosure2<String, String, String>({ a, b ->
 "result from parameters $a and $b"
 }))
}

The Kotlin DSL Groovy Builder

If some plugin makes heavy use of Groovy metaprogramming, then using it from Kotlin or Java or
any statically-compiled language can be very cumbersome.

The Kotlin DSL provides a withGroovyBuilder {} utility extension that attaches the Groovy
metaprogramming semantics to objects of type Any. The following example demonstrates several
features of the method on the object target:

Example 565. Use withGroovyBuilder {}

build.gradle.kts

target.withGroovyBuilder { ①

 // GroovyObject methods available ②
 val foo = getProperty("foo")
 setProperty("foo", "bar")
 invokeMethod("name", arrayOf("parameters", 42, aReference))

 // Kotlin DSL utilities
 "name"("parameters", 42, aReference) ③
 "blockName" { ④
 // Same Groovy Builder semantics on `blockName`
 }
 "another"("name" to "example", "url" to "https://example.com/") ⑤
}

① The receiver is a GroovyObject and provides Kotlin helpers

② The GroovyObject API is available

③ Invoke the methodName method, passing some parameters

④ Configure the blockName property, maps to a Closure taking method invocation

⑤ Invoke another method taking named arguments, maps to a Groovy named arguments
Map<String, ?> taking method invocation

Using a Groovy script

Another option when dealing with problematic plugins that assume a Groovy DSL build script is to
configure them in a Groovy DSL build script that is applied from the main Kotlin DSL build script:

https://groovy-lang.org/metaprogramming.html
https://docs.groovy-lang.org/latest/html/api/groovy/lang/GroovyObject.html

Example 566. Using a Groovy script

build.gradle.kts

plugins {
 id("dynamic-groovy-plugin") version "1.0" ①
}
apply(from = "dynamic-groovy-plugin-configuration.gradle") ②

dynamic-groovy-plugin-configuration.gradle

native { ③
 dynamic {
 groovy as Usual
 }
}

① The Kotlin build script requests and applies the plugin

② The Kotlin build script applies the Groovy script

③ The Groovy script uses dynamic Groovy to configure plugin

Limitations

• The Kotlin DSL is known to be slower than the Groovy DSL on first use, for example with clean
checkouts or on ephemeral continuous integration agents. Changing something in the buildSrc
directory also has an impact as it invalidates build-script caching. The main reason for this is
the slower script compilation for Kotlin DSL.

• In IntelliJ IDEA, you must import your project from the Gradle model in order to get content
assist and refactoring support for your Kotlin DSL build scripts.

• The Kotlin DSL will not support the model {} block, which is part of the discontinued Gradle
Software Model.

• We recommend against enabling the incubating configuration on demand feature as it can lead
to very hard-to-diagnose problems.

If you run into trouble or discover a suspected bug, please report the issue in the Gradle issue
tracker.

Gradle Plugin Reference
This page contains links and short descriptions for all the core plugins provided by Gradle itself.

https://github.com/gradle/gradle/issues/15886
https://www.jetbrains.com/help/idea/gradle.html#gradle_import
https://blog.gradle.org/state-and-future-of-the-gradle-software-model
https://blog.gradle.org/state-and-future-of-the-gradle-software-model
https://github.com/gradle/gradle/issues/
https://github.com/gradle/gradle/issues/

JVM languages and frameworks

Java

Provides support for building any type of Java project.

Java Library

Provides support for building a Java library.

Java Platform

Provides support for building a Java platform.

Groovy

Provides support for building any type of Groovy project.

Scala

Provides support for building any type of Scala project.

ANTLR

Provides support for generating parsers using ANTLR.

JVM Test Suite

Provides support for modeling and configuring multiple test suite invocations.

Native languages

C++ Application

Provides support for building C++ applications on Windows, Linux, and macOS.

C++ Library

Provides support for building C++ libraries on Windows, Linux, and macOS.

C++ Unit Test

Provides support for building and running C++ executable-based tests on Windows, Linux, and
macOS.

Swift Application

Provides support for building Swift applications on Linux and macOS.

Swift Library

Provides support for building Swift libraries on Linux and macOS.

XCTest

Provides support for building and running XCTest-based tests on Linux and macOS.

Packaging and distribution

Application

Provides support for building JVM-based, runnable applications.

https://groovy-lang.org/
https://www.scala-lang.org/
http://www.antlr.org/
jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
cpp_application_plugin.pdf#cpp_application_plugin
cpp_library_plugin.pdf#cpp_library_plugin
cpp_unit_test_plugin.pdf#cpp_unit_test_plugin
swift_application_plugin.pdf#swift_application_plugin
swift_library_plugin.pdf#swift_library_plugin
xctest_plugin.pdf#xctest_plugin

WAR

Provides support for building and packaging WAR-based Java web applications.

EAR

Provides support for building and packaging Java EE applications.

Maven Publish

Provides support for publishing artifacts to Maven-compatible repositories.

Ivy Publish

Provides support for publishing artifacts to Ivy-compatible repositories.

Distribution

Makes it easy to create ZIP and tarball distributions of your project.

Java Library Distribution

Provides support for creating a ZIP distribution of a Java library project that includes its runtime
dependencies.

Code analysis

Checkstyle

Performs quality checks on your project’s Java source files using Checkstyle and generates
associated reports.

PMD

Performs quality checks on your project’s Java source files using PMD and generates associated
reports.

JaCoCo

Provides code coverage metrics for your Java project using JaCoCo.

CodeNarc

Performs quality checks on your Groovy source files using CodeNarc and generates associated
reports.

IDE integration

Eclipse

Generates Eclipse project files for the build that can be opened by the IDE. This set of plugins can
also be used to fine tune Buildship’s import process for Gradle builds.

IntelliJ IDEA

Generates IDEA project files for the build that can be opened by the IDE. It can also be used to
fine tune IDEA’s import process for Gradle builds.

Visual Studio

Generates Visual Studio solution and project files for build that can be opened by the IDE.

https://checkstyle.org/index.html
http://pmd.github.io/
http://www.eclemma.org/jacoco/
http://codenarc.sourceforge.net/index.html
http://projects.eclipse.org/projects/tools.buildship
visual_studio_plugin.pdf#visual_studio_plugin

Xcode

Generates Xcode workspace and project files for the build that can be opened by the IDE.

Utility

Base

Provides common lifecycle tasks, such as clean, and other features common to most builds.

Build Init

Generates a new Gradle build of a specified type, such as a Java library. It can also generate a
build script from a Maven POM — see Migrating from Maven to Gradle for more details.

Signing

Provides support for digitally signing generated files and artifacts.

Plugin Development

Makes it easier to develop and publish a Gradle plugin.

Project Report Plugin

Helps to generate reports containing useful information about your build.

Command-Line Interface

The command-line interface is one of the primary methods of interacting with
Gradle. The following serves as a reference of executing and customizing Gradle
use of a command-line or when writing scripts or configuring continuous
integration.

Use of the Gradle Wrapper is highly encouraged. You should substitute ./gradlew or gradlew.bat for
gradle in all following examples when using the Wrapper.

Executing Gradle on the command-line conforms to the following structure. Options are allowed
before and after task names.

gradle [taskName...] [--option-name...]

If multiple tasks are specified, they should be separated with a space.

Options that accept values can be specified with or without = between the option and argument;
however, use of = is recommended.

--console=plain

Options that enable behavior have long-form options with inverses specified with --no-. The
following are opposites.

xcode_plugin.pdf#xcode_plugin
project_report_plugin.pdf#project_report_plugin

--build-cache
--no-build-cache

Many long-form options, have short option equivalents. The following are equivalent:

--help
-h

NOTE
Many command-line flags can be specified in gradle.properties to avoid needing to
be typed. See the configuring build environment guide for details.

The following sections describe use of the Gradle command-line interface, grouped roughly by user
goal. Some plugins also add their own command line options, for example --tests for Java test
filtering. For more information on exposing command line options for your own tasks, see
Declaring and using command-line options.

Executing tasks

You can learn about what projects and tasks are available in the project reporting section. Most
builds support a common set of tasks known as lifecycle tasks. These include the build, assemble,
and check tasks.

In order to execute a task called "myTask" on the root project, type:

$ gradle :myTask

This will run the single "myTask" and also all of its task dependencies.

Executing tasks in multi-project builds

In a multi-project build, subproject tasks can be executed with ":" separating subproject name and
task name. The following are equivalent when run from the root project:

$ gradle :my-subproject:taskName
$ gradle my-subproject:taskName

You can also run a task for all subprojects by using a task selector that consists of the task name
only. For example, this will run the "test" task for all subprojects when invoked from the root
project directory:

$ gradle test

NOTE

Some tasks selectors, like help or dependencies, will only run the task on the project
they are invoked on and not on all the subprojects. The main motivation for this is
that these tasks print out information that would be hard to process if it combined
the information from all projects.

When invoking Gradle from within a subproject, the project name should be omitted:

$ cd my-subproject
$ gradle taskName

NOTE
When executing the Gradle Wrapper from subprojects, one must reference gradlew
relatively. For example: ../gradlew taskName. The community gdub project aims to
make this more convenient.

Executing multiple tasks

You can also specify multiple tasks. For example, the following will execute the test and deploy
tasks in the order that they are listed on the command-line and will also execute the dependencies
for each task.

$ gradle test deploy

Excluding tasks from execution

You can exclude a task from being executed using the -x or --exclude-task command-line option
and providing the name of the task to exclude.

Figure 30. Simple Task Graph

Excluding tasks

$ gradle dist --exclude-task test

> Task :compile
compiling source

> Task :dist
building the distribution

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

http://www.gdub.rocks/

You can see that the test task is not executed, even though it is a dependency of the dist task. The
test task’s dependencies such as compileTest are not executed either. Those dependencies of test
that are required by another task, such as compile, are still executed.

Forcing tasks to execute

You can force Gradle to execute all tasks ignoring up-to-date checks using the --rerun-tasks option:

$ gradle test --rerun-tasks

This will force test and all task dependencies of test to execute. It’s a little like running gradle
clean test, but without the build’s generated output being deleted.

Continuing the build when a failure occurs

By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the
build to complete sooner, but hides other failures that would have occurred. In order to discover as
many failures as possible in a single build execution, you can use the --continue option.

$ gradle test --continue

When executed with --continue, Gradle will execute every task to be executed where all of the
dependencies for that task completed without failure, instead of stopping as soon as the first failure
is encountered. Each of the encountered failures will be reported at the end of the build.

If a task fails, any subsequent tasks that were depending on it will not be executed. For example,
tests will not run if there is a compilation failure in the code under test; because the test task will
depend on the compilation task (either directly or indirectly).

Name abbreviation

When you specify tasks on the command-line, you don’t have to provide the full name of the task.
You only need to provide enough of the task name to uniquely identify the task. For example, it’s
likely gradle che is enough for Gradle to identify the check task.

The same applies for project names. You can execute the check task in the library subproject with
the gradle lib:che command.

You can use camel case patterns for more complex abbreviations. These patterns are expanded to
match camel case and kebab case names. For example the pattern foBa (or even fB) matches fooBar
and foo-bar.

More concretely, you can run the compileTest task in the my-awesome-library subproject with the
gradle mAL:cT command.

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Kebab_case

Abbreviated project and task names

$ gradle mAL:cT

> Task :my-awesome-library:compileTest
compiling unit tests

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

You can also use these abbreviations with the -x command-line option.

Common tasks

The following are task conventions applied by built-in and most major Gradle plugins.

Computing all outputs

It is common in Gradle builds for the build task to designate assembling all outputs and running all
checks.

$ gradle build

Running applications

It is common for applications to be run with the run task, which assembles the application and
executes some script or binary.

$ gradle run

Running all checks

It is common for all verification tasks, including tests and linting, to be executed using the check
task.

$ gradle check

Cleaning outputs

You can delete the contents of the build directory using the clean task, though doing so will cause
pre-computed outputs to be lost, causing significant additional build time for the subsequent task
execution.

$ gradle clean

Project reporting

Gradle provides several built-in tasks which show particular details of your build. This can be
useful for understanding the structure and dependencies of your build, and for debugging
problems.

You can get basic help about available reporting options using gradle help.

Listing projects

Running gradle projects gives you a list of the sub-projects of the selected project, displayed in a
hierarchy.

$ gradle projects

You also get a project report within build scans. Learn more about creating build scans.

Listing tasks

Running gradle tasks gives you a list of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task.

$ gradle tasks

By default, this report shows only those tasks which have been assigned to a task group. You can
obtain more information in the task listing using the --all option.

$ gradle tasks --all

If you need to be more precise, you can display only the tasks from a specific group using the
--group option.

$ gradle tasks --group="build setup"

Show task usage details

Running gradle help --task someTask gives you detailed information about a specific task.

https://scans.gradle.com/

Obtaining detailed help for tasks

$ gradle -q help --task libs
Detailed task information for libs

Paths
 :api:libs
 :webapp:libs

Type
 Task (org.gradle.api.Task)

Description
 Builds the JAR

Group
 build

This information includes the full task path, the task type, possible command line options and the
description of the given task.

Reporting dependencies

Build scans give a full, visual report of what dependencies exist on which configurations, transitive
dependencies, and dependency version selection.

$ gradle myTask --scan

This will give you a link to a web-based report, where you can find dependency information like
this.

Learn more in Viewing and debugging dependencies.

Listing project dependencies

Running gradle dependencies gives you a list of the dependencies of the selected project, broken
down by configuration. For each configuration, the direct and transitive dependencies of that
configuration are shown in a tree. Below is an example of this report:

$ gradle dependencies

Concrete examples of build scripts and output available in the Viewing and debugging
dependencies.

Running gradle buildEnvironment visualises the buildscript dependencies of the selected project,
similarly to how gradle dependencies visualizes the dependencies of the software being built.

$ gradle buildEnvironment

Running gradle dependencyInsight gives you an insight into a particular dependency (or
dependencies) that match specified input.

$ gradle dependencyInsight

Since a dependency report can get large, it can be useful to restrict the report to a particular

configuration. This is achieved with the optional --configuration parameter:

Listing project properties

Running gradle properties gives you a list of the properties of the selected project.

Information about properties

$ gradle -q api:properties

--
Project ':api' - The shared API for the application
--

allprojects: [project ':api']
ant: org.gradle.api.internal.project.DefaultAntBuilder@12345
antBuilderFactory: org.gradle.api.internal.project.DefaultAntBuilderFactory@12345
artifacts:
org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandler_Decorated@12345
asDynamicObject: DynamicObject for project ':api'
baseClassLoaderScope:
org.gradle.api.internal.initialization.DefaultClassLoaderScope@12345

Command-line completion

Gradle provides bash and zsh tab completion support for tasks, options, and Gradle properties
through gradle-completion, installed separately.

[gradle completion 4.0] | gradle-completion-4.0.gif

Figure 31. Gradle Completion

Debugging options

-?, -h, --help

Shows a help message with all available CLI options.

-v, --version

Prints Gradle, Groovy, Ant, JVM, and operating system version information.

-S, --full-stacktrace

Print out the full (very verbose) stacktrace for any exceptions. See also logging options.

-s, --stacktrace

Print out the stacktrace also for user exceptions (e.g. compile error). See also logging options.

--scan

Create a build scan with fine-grained information about all aspects of your Gradle build.

https://github.com/gradle/gradle-completion
https://gradle.com/build-scans

-Dorg.gradle.debug=true

Debug Gradle client (non-Daemon) process. Gradle will wait for you to attach a debugger at
localhost:5005 by default.

-Dorg.gradle.daemon.debug=true

Debug Gradle Daemon process.

Performance options

Try these options when optimizing build performance. Learn more about improving performance
of Gradle builds here.

Many of these options can be specified in gradle.properties so command-line flags are not
necessary. See the configuring build environment guide.

--build-cache, --no-build-cache

Toggles the Gradle build cache. Gradle will try to reuse outputs from previous builds. Default is
off.

--configure-on-demand, --no-configure-on-demand

Toggles Configure-on-demand. Only relevant projects are configured in this build run. Default is
off.

--max-workers

Sets maximum number of workers that Gradle may use. Default is number of processors.

--parallel, --no-parallel

Build projects in parallel. For limitations of this option, see Parallel Project Execution. Default is
off.

--priority

Specifies the scheduling priority for the Gradle daemon and all processes launched by it. Values
are normal or low. Default is normal.

--profile

Generates a high-level performance report in the $buildDir/reports/profile directory. --scan is
preferred.

--scan

Generate a build scan with detailed performance diagnostics.

performance.pdf#performance_gradle
performance.pdf#performance_gradle

--watch-fs, --no-watch-fs

Toggles watching the file system. When enabled Gradle re-uses information it collects about the
file system between builds. Enabled by default on operating systems where Gradle supports this
feature.

Gradle daemon options

You can manage the Gradle Daemon through the following command line options.

--daemon, --no-daemon

Use the Gradle Daemon to run the build. Starts the daemon if not running or existing daemon
busy. Default is on.

--foreground

Starts the Gradle Daemon in a foreground process.

--status (Standalone command)

Run gradle --status to list running and recently stopped Gradle daemons. Only displays
daemons of the same Gradle version.

--stop (Standalone command)

Run gradle --stop to stop all Gradle Daemons of the same version.

-Dorg.gradle.daemon.idletimeout=(number of milliseconds)

Gradle Daemon will stop itself after this number of milliseconds of idle time. Default is 10800000
(3 hours).

Logging options

Setting log level

You can customize the verbosity of Gradle logging with the following options, ordered from least
verbose to most verbose. Learn more in the logging documentation.

-Dorg.gradle.logging.level=(quiet,warn,lifecycle,info,debug)

Set logging level via Gradle properties.

-q, --quiet

Log errors only.

-w, --warn

Set log level to warn.

-i, --info

Set log level to info.

-d, --debug

Log in debug mode (includes normal stacktrace).

Lifecycle is the default log level.

Customizing log format

You can control the use of rich output (colors and font variants) by specifying the "console" mode in
the following ways:

-Dorg.gradle.console=(auto,plain,rich,verbose)

Specify console mode via Gradle properties. Different modes described immediately below.

--console=(auto,plain,rich,verbose)

Specifies which type of console output to generate.

Set to plain to generate plain text only. This option disables all color and other rich output in the
console output. This is the default when Gradle is not attached to a terminal.

Set to auto (the default) to enable color and other rich output in the console output when the
build process is attached to a console, or to generate plain text only when not attached to a
console. This is the default when Gradle is attached to a terminal.

Set to rich to enable color and other rich output in the console output, regardless of whether the
build process is not attached to a console. When not attached to a console, the build output will
use ANSI control characters to generate the rich output.

Set to verbose to enable color and other rich output like the rich, but output task names and
outcomes at the lifecycle log level, as is done by default in Gradle 3.5 and earlier.

Showing or hiding warnings

By default, Gradle won’t display all warnings (e.g. deprecation warnings). Instead, Gradle will
collect them and render a summary at the end of the build like:

Deprecated Gradle features were used in this build, making it incompatible with Gradle
5.0.

You can control the verbosity of warnings on the console with the following options:

-Dorg.gradle.warning.mode=(all,fail,none,summary)

Specify warning mode via Gradle properties. Different modes described immediately below.

--warning-mode=(all,fail,none,summary)

Specifies how to log warnings. Default is summary.

Set to all to log all warnings.

Set to fail to log all warnings and fail the build if there are any warnings.

Set to summary to suppress all warnings and log a summary at the end of the build.

Set to none to suppress all warnings, including the summary at the end of the build.

Rich Console

Gradle’s rich console displays extra information while builds are running.

Features:

• Progress bar and timer visually describe overall status

• Parallel work-in-progress lines below describe what is happening now

• Colors and fonts are used to highlight important output and errors

Execution options

The following options affect how builds are executed, by changing what is built or how
dependencies are resolved.

--include-build

Run the build as a composite, including the specified build. See Composite Builds.

--offline

Specifies that the build should operate without accessing network resources. Learn more about
options to override dependency caching.

--refresh-dependencies

Refresh the state of dependencies. Learn more about how to use this in the dependency
management docs.

--dry-run

Run Gradle with all task actions disabled. Use this to show which task would have executed.

--write-locks

Indicates that all resolved configurations that are lockable should have their lock state persisted.
Learn more about this in dependency locking.

--update-locks <group:name>[,<group:name>]*

Indicates that versions for the specified modules have to be updated in the lock file. This flag
also implies --write-locks. Learn more about this in dependency locking.

--no-rebuild

Do not rebuild project dependencies. Useful for debugging and fine-tuning buildSrc, but can lead
to wrong results. Use with caution!

Environment options

You can customize many aspects about where build scripts, settings, caches, and so on through the
options below. Learn more about customizing your build environment.

-b, --build-file (deprecated)

Specifies the build file. For example: gradle --build-file=foo.gradle. The default is build.gradle,
then build.gradle.kts.

-c, --settings-file (deprecated)

Specifies the settings file. For example: gradle --settings-file=somewhere/else/settings.gradle

-g, --gradle-user-home

Specifies the Gradle user home directory. The default is the .gradle directory in the user’s home
directory.

-p, --project-dir

Specifies the start directory for Gradle. Defaults to current directory.

--project-cache-dir

Specifies the project-specific cache directory. Default value is .gradle in the root project
directory.

-D, --system-prop

Sets a system property of the JVM, for example -Dmyprop=myvalue. See System Properties.

-I, --init-script

Specifies an initialization script. See Init Scripts.

-P, --project-prop

Sets a project property of the root project, for example -Pmyprop=myvalue. See Project Properties.

-Dorg.gradle.jvmargs

Set JVM arguments.

-Dorg.gradle.java.home

Set JDK home dir.

Bootstrapping new projects

Creating new Gradle builds

Use the built-in gradle init task to create a new Gradle builds, with new or existing projects.

$ gradle init

Most of the time you’ll want to specify a project type. Available types include basic (default), java-
library, java-application, and more. See init plugin documentation for details.

$ gradle init --type java-library

Standardize and provision Gradle

The built-in gradle wrapper task generates a script, gradlew, that invokes a declared version of
Gradle, downloading it beforehand if necessary.

$ gradle wrapper --gradle-version=4.4

You can also specify --distribution-type=(bin|all), --gradle-distribution-url, --gradle
-distribution-sha256-sum in addition to --gradle-version. Full details on how to use these options
are documented in the Gradle wrapper section.

Continuous Build

Continuous Build allows you to automatically re-execute the requested tasks when task inputs
change.

For example, you can continuously run the test task and all dependent tasks by running:

$ gradle test --continuous

Gradle will behave as if you ran gradle test after a change to sources or tests that contribute to the
requested tasks. This means that unrelated changes (such as changes to build scripts) will not
trigger a rebuild. In order to incorporate build logic changes, the continuous build must be
restarted manually.

Terminating Continuous Build

If Gradle is attached to an interactive input source, such as a terminal, the continuous build can be
exited by pressing CTRL-D (On Microsoft Windows, it is required to also press ENTER or RETURN after
CTRL-D). If Gradle is not attached to an interactive input source (e.g. is running as part of a script),
the build process must be terminated (e.g. using the kill command or similar). If the build is being
executed via the Tooling API, the build can be cancelled using the Tooling API’s cancellation
mechanism.

Limitations and quirks

There are several issues to be aware with the current implementation of continuous build. These
are likely to be addressed in future Gradle releases.

Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs
while executing, Gradle will detect the change and trigger a new build. If every time the task
executes, the inputs are modified again, the build will be triggered again. This isn’t unique to
continuous build. A task that modifies its own inputs will never be considered up-to-date when run
"normally" without continuous build.

If your build enters a build cycle like this, you can track down the task by looking at the list of files
reported changed by Gradle. After identifying the file(s) that are changed during each build, you
should look for a task that has that file as an input. In some cases, it may be obvious (e.g., a Java file
is compiled with compileJava). In other cases, you can use --info logging to find the task that is out-
of-date due to the identified files.

Restrictions with Java 9

Due to class access restrictions related to Java 9, Gradle cannot set some operating system specific

options, which means that:

• On macOS, Gradle will poll for file changes every 10 seconds instead of every 2 seconds.

• On Windows, Gradle must use individual file watches (like on Linux/Mac OS), which may cause
continuous build to no longer work on very large projects.

Performance and stability

The JDK file watching facility relies on inefficient file system polling on macOS (see: JDK-7133447).
This can significantly delay notification of changes on large projects with many source files.

Additionally, the watching mechanism may deadlock under heavy load on macOS (see: JDK-
8079620). This will manifest as Gradle appearing not to notice file changes. If you suspect this is
occurring, exit continuous build and start again.

On Linux, OpenJDK’s implementation of the file watch service can sometimes miss file system
events (see: JDK-8145981).

Changes to symbolic links

• Creating or removing symbolic link to files will initiate a build.

• Modifying the target of a symbolic link will not cause a rebuild.

• Creating or removing symbolic links to directories will not cause rebuilds.

• Creating new files in the target directory of a symbolic link will not cause a rebuild.

• Deleting the target directory will not cause a rebuild.

Changes to build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means
that changes to task configuration, or any other change to the build model, are effectively ignored.

Gradle & Third-party Tools
Gradle can be integrated with many different third-party tools such as IDEs and continuous
integration platforms. Here we look at some of the more common ones as well as how to integrate
your own tool with Gradle.

IDEs

Android Studio

As a variant of IntelliJ IDEA, Android Studio has built-in support for importing and building
Gradle projects. You can also use the IDEA Plugin for Gradle to fine-tune the import process if
that’s necessary.

This IDE also has an extensive user guide to help you get the most out of the IDE and Gradle.

Eclipse

If you want to work on a project within Eclipse that has a Gradle build, you should use the

https://bugs.openjdk.java.net/browse/JDK-7133447
https://bugs.openjdk.java.net/browse/JDK-8079620
https://bugs.openjdk.java.net/browse/JDK-8079620
https://bugs.openjdk.java.net/browse/JDK-8145981
https://developer.android.com/studio/
https://developer.android.com/studio/intro/

Eclipse Buildship plugin. This will allow you to import and run Gradle builds. If you need to fine
tune the import process so that the project loads correctly, you can use the Eclipse Plugins for
Gradle. See the associated release announcement for details on what fine tuning you can do.

IntelliJ IDEA

IDEA has built-in support for importing Gradle projects. If you need to fine tune the import
process so that the project loads correctly, you can use the IDEA Plugin for Gradle.

NetBeans

Add the Gradle Support plugin to NetBeans in order to import and run projects with Gradle
builds.

Visual Studio

For developing C++ projects, Gradle comes with a Visual Studio plugin.

Xcode

For developing C++ projects, Gradle comes with a Xcode plugin.

CLion

JetBrains supports building C++ projects with Gradle.

Continuous integration

We have dedicated guides showing you how to integrate a Gradle project with the following CI
platforms:

• Jenkins

• TeamCity

• Travis CI

Even if you don’t use one of the above, you can almost certainly configure your CI platform to use
the Gradle Wrapper scripts.

How to integrate with Gradle

There are two main ways to integrate a tool with Gradle:

• The Gradle build uses the tool

• The tool executes the Gradle build

The former case is typically implemented as a Gradle plugin. The latter can be accomplished by
embedding Gradle through the Tooling API as described below.

Embedding Gradle using the Tooling API

Introduction to the Tooling API

Gradle provides a programmatic API called the Tooling API, which you can use for embedding

https://projects.eclipse.org/projects/tools.buildship
https://discuss.gradle.org/t/buildship-1-0-18-is-now-available/19012
http://plugins.netbeans.org/plugin/44510/gradle-support
visual_studio_plugin.pdf#visual_studio_plugin
xcode_plugin.pdf#xcode_plugin
https://blog.jetbrains.com/clion/2018/05/clion-starts-2018-2-eap-sanitizers-gradle-db-performance/
jenkins.pdf#build_jenkins
teamcity.pdf#build_teamcity
travis-ci.pdf#build_travis

Gradle into your own software. This API allows you to execute and monitor builds and to query
Gradle about the details of a build. The main audience for this API is IDE, CI server, other UI
authors; however, the API is open for anyone who needs to embed Gradle in their application.

• Gradle TestKit uses the Tooling API for functional testing of your Gradle plugins.

• Eclipse Buildship uses the Tooling API for importing your Gradle project and running tasks.

• IntelliJ IDEA uses the Tooling API for importing your Gradle project and running tasks.

Tooling API Features

A fundamental characteristic of the Tooling API is that it operates in a version independent way.
This means that you can use the same API to work with builds that use different versions of Gradle,
including versions that are newer or older than the version of the Tooling API that you are using.
The Tooling API is Gradle wrapper aware and, by default, uses the same Gradle version as that used
by the wrapper-powered build.

Some features that the Tooling API provides:

• Query the details of a build, including the project hierarchy and the project dependencies,
external dependencies (including source and Javadoc jars), source directories and tasks of each
project.

• Execute a build and listen to stdout and stderr logging and progress messages (e.g. the messages
shown in the 'status bar' when you run on the command line).

• Execute a specific test class or test method.

• Receive interesting events as a build executes, such as project configuration, task execution or
test execution.

• Cancel a build that is running.

• Combine multiple separate Gradle builds into a single composite build.

• The Tooling API can download and install the appropriate Gradle version, similar to the
wrapper.

• The implementation is lightweight, with only a small number of dependencies. It is also a well-
behaved library, and makes no assumptions about your classloader structure or logging
configuration. This makes the API easy to embed in your application.

Tooling API and the Gradle Build Daemon

The Tooling API always uses the Gradle daemon. This means that subsequent calls to the Tooling
API, be it model building requests or task executing requests will be executed in the same long-
living process. Gradle Daemon contains more details about the daemon, specifically information on
situations when new daemons are forked.

Quickstart

As the Tooling API is an interface for developers, the Javadoc is the main documentation for it.

To use the Tooling API, add the following repository and dependency declarations to your build

http://projects.eclipse.org/projects/tools.buildship
https://www.jetbrains.com/idea/

script:

Example 567. Using the tooling API

build.gradle

repositories {
 maven { url 'https://repo.gradle.org/gradle/libs-releases' }
}

dependencies {
 implementation "org.gradle:gradle-tooling-api:$toolingApiVersion"
 // The tooling API need an SLF4J implementation available at runtime,
replace this with any other implementation
 runtimeOnly 'org.slf4j:slf4j-simple:1.7.10'
}

build.gradle.kts

repositories {
 maven { url = uri("https://repo.gradle.org/gradle/libs-releases") }
}

dependencies {
 implementation("org.gradle:gradle-tooling-api:$toolingApiVersion")
 // The tooling API need an SLF4J implementation available at runtime,
replace this with any other implementation
 runtimeOnly("org.slf4j:slf4j-simple:1.7.10")
}

The main entry point to the Tooling API is the GradleConnector. You can navigate from there to find
code samples and explore the available Tooling API models. You can use GradleConnector.connect()
to create a ProjectConnection. A ProjectConnection connects to a single Gradle project. Using the
connection you can execute tasks, tests and retrieve models relative to this project.

Compatibility of Java and Gradle versions

The Tooling API requires Java 8 or later. The Gradle version used by builds may impose additional
Java version requirements.

The Tooling API supports running builds using Gradle 2.6 and later. Gradle 5.0 and up require
clients to use Tooling API version 3.0 or later.

You should note that not all features of the Tooling API are available for all versions of Gradle. Refer
to the documentation for each class and method for more details.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/tooling/GradleConnector.html
https://docs.gradle.org/nightly/javadoc/org/gradle/tooling/GradleConnector.html#connect--
https://docs.gradle.org/7.3.2/javadoc/org/gradle/tooling/ProjectConnection.html

In general, the Tooling API client can run on a different version of Java than the build, but classes
that are sent to the build via custom build actions need to be targeted to the lowest supported Java
version.

• Gradle 2.6-2.14.1 only supports Java 6 through Java 8.

• Gradle 3.x and 4.x require a minimum version of Java 7.

• Gradle 5 and above require a minimum version of Java 8.

The Gradle Wrapper
The recommended way to execute any Gradle build is with the help of the Gradle Wrapper (in short
just “Wrapper”). The Wrapper is a script that invokes a declared version of Gradle, downloading it
beforehand if necessary. As a result, developers can get up and running with a Gradle project
quickly without having to follow manual installation processes saving your company time and
money.

Figure 32. The Wrapper workflow

In a nutshell you gain the following benefits:

• Standardizes a project on a given Gradle version, leading to more reliable and robust builds.

• Provisioning a new Gradle version to different users and execution environment (e.g. IDEs or
Continuous Integration servers) is as simple as changing the Wrapper definition.

So how does it work? For a user there are typically three different workflows:

• You set up a new Gradle project and want to add the Wrapper to it.

• You want to run a project with the Wrapper that already provides it.

• You want to upgrade the Wrapper to a new version of Gradle.

The following sections explain each of these use cases in more detail.

Adding the Gradle Wrapper

Generating the Wrapper files requires an installed version of the Gradle runtime on your machine
as described in Installation. Thankfully, generating the initial Wrapper files is a one-time process.

Every vanilla Gradle build comes with a built-in task called wrapper. You’ll be able to find the task
listed under the group "Build Setup tasks" when listing the tasks. Executing the wrapper task
generates the necessary Wrapper files in the project directory.

Running the Wrapper task

$ gradle wrapper
> Task :wrapper

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

NOTE

To make the Wrapper files available to other developers and execution
environments you’ll need to check them into version control. All Wrapper files
including the JAR file are very small in size. Adding the JAR file to version control is
expected. Some organizations do not allow projects to submit binary files to version
control. At the moment there are no alternative options to the approach.

The generated Wrapper properties file, gradle/wrapper/gradle-wrapper.properties, stores the
information about the Gradle distribution.

• The server hosting the Gradle distribution.

• The type of Gradle distribution. By default that’s the -bin distribution containing only the
runtime but no sample code and documentation.

• The Gradle version used for executing the build. By default the wrapper task picks the exact same
Gradle version that was used to generate the Wrapper files.

gradle/wrapper/gradle-wrapper.properties

distributionUrl=https\://services.gradle.org/distributions/gradle-7.3.2-bin.zip

All of those aspects are configurable at the time of generating the Wrapper files with the help of the
following command line options.

--gradle-version

The Gradle version used for downloading and executing the Wrapper.

--distribution-type

The Gradle distribution type used for the Wrapper. Available options are bin and all. The default
value is bin.

--gradle-distribution-url

The full URL pointing to Gradle distribution ZIP file. Using this option makes --gradle-version
and --distribution-type obsolete as the URL already contains this information. This option is
extremely valuable if you want to host the Gradle distribution inside your company’s network.

--gradle-distribution-sha256-sum

The SHA256 hash sum used for verifying the downloaded Gradle distribution.

Let’s assume the following use case to illustrate the use of the command line options. You would
like to generate the Wrapper with version 7.3.2 and use the -all distribution to enable your IDE to
enable code-completion and being able to navigate to the Gradle source code. Those requirements
are captured by the following command line execution:

Providing options to Wrapper task

$ gradle wrapper --gradle-version 7.3.2 --distribution-type all
> Task :wrapper

BUILD SUCCESSFUL in 0s
1 actionable task: 1 executed

As a result you can find the desired information in the Wrapper properties file.

Example: The generated distribution URL

distributionUrl=https\://services.gradle.org/distributions/gradle-7.3.2-all.zip

Let’s have a look at the following project layout to illustrate the expected Wrapper files:

.
├── a-subproject
│ └── build.gradle
├── settings.gradle
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradlew
└── gradlew.bat

.
├── a-subproject
│ └── build.gradle.kts
├── settings.gradle.kts
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradlew
└── gradlew.bat

A Gradle project typically provides a settings.gradle(.kts) file and one build.gradle(.kts) file for
each subproject. The Wrapper files live alongside in the gradle directory and the root directory of
the project. The following list explains their purpose.

gradle-wrapper.jar

The Wrapper JAR file containing code for downloading the Gradle distribution.

gradle-wrapper.properties

A properties file responsible for configuring the Wrapper runtime behavior e.g. the Gradle
version compatible with this version. Note that more generic settings, like configuring the
Wrapper to use a proxy, need to go into a different file.

gradlew, gradlew.bat

A shell script and a Windows batch script for executing the build with the Wrapper.

You can go ahead and execute the build with the Wrapper without having to install the Gradle
runtime. If the project you are working on does not contain those Wrapper files then you’ll need to
generate them.

Using the Gradle Wrapper

It is recommended to always execute a build with the Wrapper to ensure a reliable, controlled and
standardized execution of the build. Using the Wrapper looks almost exactly like running the build
with a Gradle installation. Depending on the operating system you either run gradlew or gradlew.bat
instead of the gradle command. The following console output demonstrate the use of the Wrapper
on a Windows machine for a Java-based project.

Executing the build with the Wrapper batch file

$ gradlew.bat build
Downloading https://services.gradle.org/distributions/gradle-5.0-all.zip
...
Unzipping C:\Documents and Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-
all\ac27o8rbd0ic8ih41or9l32mv\gradle-5.0-all.zip to C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-al\ac27o8rbd0ic8ih41or9l32mv
Set executable permissions for: C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-
all\ac27o8rbd0ic8ih41or9l32mv\gradle-5.0\bin\gradle

BUILD SUCCESSFUL in 12s
1 actionable task: 1 executed

In case the Gradle distribution is not available on the machine, the Wrapper will download it and
store in the local file system. Any subsequent build invocation is going to reuse the existing local
distribution as long as the distribution URL in the Gradle properties doesn’t change.

NOTE

The Wrapper shell script and batch file reside in the root directory of a single or
multi-project Gradle build. You will need to reference the correct path to those files
in case you want to execute the build from a subproject directory e.g. ../../gradlew
tasks.

Upgrading the Gradle Wrapper

Projects will typically want to keep up with the times and upgrade their Gradle version to benefit
from new features and improvements. One way to upgrade the Gradle version is manually change
the distributionUrl property in the Wrapper’s gradle-wrapper.properties file. The better and
recommended option is to run the wrapper task and provide the target Gradle version as described
in Adding the Gradle Wrapper. Using the wrapper task ensures that any optimizations made to the
Wrapper shell script or batch file with that specific Gradle version are applied to the project. As
usual, you should commit the changes to the Wrapper files to version control.

Note that running the wrapper task once will update gradle-wrapper.properties only, but leave the
wrapper itself in gradle-wrapper.jar untouched. This is usually fine as new versions of Gradle can
be run even with ancient wrapper files. If you nevertheless want all the wrapper files to be
completely up-to-date, you’ll need to run the wrapper task a second time.

Use the Gradle wrapper task to generate the wrapper, specifying a version. The default is the current
version. Once you have upgraded the wrapper, you can check that it’s the version you expect by

executing ./gradlew --version.

Example: Upgrading the Wrapper version

$./gradlew wrapper --gradle-version 7.3.2

BUILD SUCCESSFUL in 4s
1 actionable task: 1 executed

Customizing the Gradle Wrapper

Most users of Gradle are happy with the default runtime behavior of the Wrapper. However,
organizational policies, security constraints or personal preferences might require you to dive
deeper into customizing the Wrapper. Thankfully, the built-in wrapper task exposes numerous
options to bend the runtime behavior to your needs. Most configuration options are exposed by the
underlying task type Wrapper.

Let’s assume you grew tired of defining the -all distribution type on the command line every time
you upgrade the Wrapper. You can save yourself some keyboard strokes by re-configuring the
wrapper task.

Example 568. Customizing the Wrapper task

build.gradle

tasks.named('wrapper') {
 distributionType = Wrapper.DistributionType.ALL
}

build.gradle.kts

tasks.wrapper {
 distributionType = Wrapper.DistributionType.ALL
}

With the configuration in place running ./gradlew wrapper --gradle-version 7.3.2 is enough to
produce a distributionUrl value in the Wrapper properties file that will request the -all
distribution.

The generated distribution URL

distributionUrl=https\://services.gradle.org/distributions/gradle-7.3.2-all.zip

Check out the API documentation for more detail descriptions of the available configuration

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

options. You can also find various samples for configuring the Wrapper in the Gradle distribution.

Authenticated Gradle distribution download

The Gradle Wrapper can download Gradle distributions from servers using HTTP Basic
Authentication. This enables you to host the Gradle distribution on a private protected server. You
can specify a username and password in two different ways depending on your use case: as system
properties or directly embedded in the distributionUrl. Credentials in system properties take
precedence over the ones embedded in distributionUrl.

TIP

Security Warning

HTTP Basic Authentication should only be used with HTTPS URLs and not plain HTTP
ones. With Basic Authentication, the user credentials are sent in clear text.

Using system properties can be done in the .gradle/gradle.properties file in the user’s home
directory, or by other means, see Gradle Configuration Properties.

Specifying the HTTP Basic Authentication credentials using system properties

systemProp.gradle.wrapperUser=username
systemProp.gradle.wrapperPassword=password

Embedding credentials in the distributionUrl in the gradle/wrapper/gradle-wrapper.properties file
also works. Please note that this file is to be committed into your source control system. Shared
credentials embedded in distributionUrl should only be used in a controlled environment.

Specifying the HTTP Basic Authentication credentials in distributionUrl

distributionUrl=https://username:password@somehost/path/to/gradle-distribution.zip

This can be used in conjunction with a proxy, authenticated or not. See Accessing the web via a
proxy for more information on how to configure the Wrapper to use a proxy.

Verification of downloaded Gradle distributions

The Gradle Wrapper allows for verification of the downloaded Gradle distribution via SHA-256
hash sum comparison. This increases security against targeted attacks by preventing a man-in-the-
middle attacker from tampering with the downloaded Gradle distribution.

To enable this feature, download the .sha256 file associated with the Gradle distribution you want
to verify.

Downloading the SHA-256 file

You can download the .sha256 file from the stable releases or release candidate and nightly
releases. The format of the file is a single line of text that is the SHA-256 hash of the corresponding
zip file.

You can also reference the list of Gradle distribution checksums.

https://services.gradle.org/distributions/
https://services.gradle.org/distributions-snapshots/
https://services.gradle.org/distributions-snapshots/
https://gradle.org/release-checksums/

Configuring checksum verification

Add the downloaded hash sum to gradle-wrapper.properties using the distributionSha256Sum
property or use --gradle-distribution-sha256-sum on the command-line.

Configuring SHA-256 checksum verification

distributionSha256Sum=371cb9fbebbe9880d147f59bab36d61eee122854ef8c9ee1ecf12b82368bcf10

Gradle will report a build failure in case the configured checksum does not match the checksum
found on the server for hosting the distribution. Checksum Verification is only performed if the
configured Wrapper distribution hasn’t been downloaded yet.

Verifying the integrity of the Gradle Wrapper JAR

The Wrapper JAR is a binary file that will be executed on the computers of developers and build
servers. As with all such files, you should be sure that it’s trustworthy before executing it. Since the
Wrapper JAR is usually checked into a project’s version control system, there is the potential for a
malicious actor to replace the original JAR with a modified one by submitting a pull request that
seemingly only upgrades the Gradle version.

To verify the integrity of the Wrapper JAR, Gradle has created a GitHub Action that automatically
checks Wrapper JARs in pull requests against a list of known good checksums. Gradle also publishes
the checksums of all releases (except for version 3.3 to 4.0.2, which did not generate reproducible
JARs), so you can manually verify the integrity of the Wrapper JAR.

Automatically verifying the Gradle Wrapper JAR on GitHub

The GitHub Action is released separately from Gradle, so please check its documentation for how to
apply it to your project.

Manually verifying the Gradle Wrapper JAR

You can manually verify the checksum of the Wrapper JAR to ensure that it has not been tampered
with by running the following commands on one of the major operating systems:

Manually verifying the checksum of the Wrapper JAR on Linux

$ cd gradle/wrapper
$ curl --location --output gradle-wrapper.jar.sha256 \
 https://services.gradle.org/distributions/gradle-7.3.2-wrapper.jar.sha256
$ echo " gradle-wrapper.jar" >> gradle-wrapper.jar.sha256
$ sha256sum --check gradle-wrapper.jar.sha256
gradle-wrapper.jar: OK

https://github.com/marketplace/actions/gradle-wrapper-validation
https://gradle.org/release-checksums/
https://github.com/marketplace/actions/gradle-wrapper-validation

Manually verifying the checksum of the Wrapper JAR on macOS

$ cd gradle/wrapper
$ curl --location --output gradle-wrapper.jar.sha256 \
 https://services.gradle.org/distributions/gradle-7.3.2-wrapper.jar.sha256
$ echo " gradle-wrapper.jar" >> gradle-wrapper.jar.sha256
$ shasum --check gradle-wrapper.jar.sha256
gradle-wrapper.jar: OK

Manually verifying the checksum of the Wrapper JAR on Windows (using PowerShell)

> $expected = Invoke-RestMethod -Uri https://services.gradle.org/distributions/gradle-
7.3.2-wrapper.jar.sha256
> $actual = (Get-FileHash gradle\wrapper\gradle-wrapper.jar -Algorithm
SHA256).Hash.ToLower()
> @{$true = 'OK: Checksum match'; $false = "ERROR: Checksum mismatch!`nExpected:
$expected`nActual: $actual"}[$actual -eq $expected]
OK: Checksum match

Troubleshooting a checksum mismatch

If the checksum does not match the one you expected, chances are the wrapper task wasn’t executed
with the upgraded Gradle distribution. Thus, you should first check whether the actual checksum
matches the one of a different Gradle version. Here are the commands you can run on the major
operating systems to generate the actual checksum of the Wrapper JAR:

Generating the actual checksum of the Wrapper JAR on Linux

$ sha256sum gradle/wrapper/gradle-wrapper.jar
d81e0f23ade952b35e55333dd5f1821585e887c6d24305aeea2fbc8dad564b95
gradle/wrapper/gradle-wrapper.jar

Generating the actual checksum of the Wrapper JAR on macOS

$ shasum --algorithm=256 gradle/wrapper/gradle-wrapper.jar
d81e0f23ade952b35e55333dd5f1821585e887c6d24305aeea2fbc8dad564b95
gradle/wrapper/gradle-wrapper.jar

Generating the actual checksum of the Wrapper JAR on Windows (using PowerShell)

> (Get-FileHash gradle\wrapper\gradle-wrapper.jar -Algorithm SHA256).Hash.ToLower()
d81e0f23ade952b35e55333dd5f1821585e887c6d24305aeea2fbc8dad564b95

Once you know the actual checksum, check whether it’s listed on https://gradle.org/release-
checksums/. If it is listed, you have verified the integrity of the Wrapper JAR. If the version of
Gradle that generated the Wrapper JAR doesn’t match the version in gradle/wrapper/gradle-
wrapper.properties, it’s safe to run the wrapper task again to update the Wrapper JAR.

https://gradle.org/release-checksums/
https://gradle.org/release-checksums/

If the checksum is not listed on the page, the Wrapper JAR might be from a milestone, release
candidate, or nightly build or may have been generated by Gradle 3.3 to 4.0.2. You should try to find
out how it was generated but treat it as untrustworthy until proven otherwise. If you think the
Wrapper JAR was compromised, please let the Gradle team know by sending an email to
security@gradle.com.

The Directories and Files Gradle Uses
Gradle uses two main directories to perform and manage its work: the Gradle user home directory
and the Project root directory. The following two sections describe what is stored in each of them
and how transient files and directories are cleaned up.

Gradle user home directory

The Gradle user home directory ($USER_HOME/.gradle by default) is used to store global configuration
properties and initialization scripts as well as caches and log files. It is roughly structured as
follows:

├── caches ①
│ ├── 4.8 ②
│ ├── 4.9 ②
│ ├── ⋮
│ ├── jars-3 ③
│ └── modules-2 ③
├── daemon ④
│ ├── ⋮
│ ├── 4.8
│ └── 4.9
├── init.d ⑤
│ └── my-setup.gradle
├── jdks ⑥
│ ├── ⋮
│ └── jdk-14.0.2+12
├── wrapper
│ └── dists ⑦
│ ├── ⋮
│ ├── gradle-4.8-bin
│ ├── gradle-4.9-all
│ └── gradle-4.9-bin
└── gradle.properties ⑧

① Global cache directory (for everything that’s not project-specific)

② Version-specific caches (e.g. to support incremental builds)

③ Shared caches (e.g. for artifacts of dependencies)

④ Registry and logs of the Gradle Daemon

⑤ Global initialization scripts

mailto:security@gradle.com

⑥ JDKs downloaded by the toolchain support

⑦ Distributions downloaded by the Gradle Wrapper

⑧ Global Gradle configuration properties

Cleanup of caches and distributions

From version 4.10 onwards, Gradle automatically cleans its user home directory. The cleanup runs
in the background when the Gradle daemon is stopped or shuts down. If using --no-daemon, it runs
in the foreground after the build session with a visual progress indicator.

The following cleanup strategies are applied periodically (at most every 24 hours):

• Version-specific caches in caches/<gradle-version>/ are checked for whether they are still in
use.If not, directories for release versions are deleted after 30 days of inactivity, snapshot
versions after 7 days of inactivity.

• Shared caches in caches/ (e.g. jars-*) are checked for whether they are still in use.If there’s no
Gradle version that still uses them, they are deleted.

• Files in shared caches used by the current Gradle version in caches/ (e.g. jars-3 or modules-2)
are checked for when they were last accessed.Depending on whether the file can be recreated
locally or would have to be downloaded from a remote repository again, it will be deleted after
7 or 30 days of not being accessed, respectively.

• Gradle distributions in wrapper/dists/ are checked for whether they are still in use, i.e. whether
there’s a corresponding version-specific cache directory.Unused distributions are deleted.

Project root directory

The project root directory contains all source files that are part of your project. In addition, it
contains files and directories that are generated by Gradle such as .gradle and build. While the
former are usually checked in to source control, the latter are transient files used by Gradle to
support features like incremental builds. Overall, the anatomy of a typical project root directory
looks roughly as follows:

toolchains.pdf#sec:provisioning

├── .gradle ①
│ ├── 4.8 ②
│ ├── 4.9 ②
│ └── ⋮
├── build ③
├── gradle
│ └── wrapper ④
├── gradle.properties ⑤
├── gradlew ⑥
├── gradlew.bat ⑥
├── settings.gradle or settings.gradle.kts ⑦
├── subproject-one ⑧
| └── build.gradle or build.gradle.kts ⑨
├── subproject-two ⑧
| └── build.gradle or build.gradle.kts ⑨
└── ⋮

① Project-specific cache directory generated by Gradle

② Version-specific caches (e.g. to support incremental builds)

③ The build directory of this project into which Gradle generates all build artifacts.

④ Contains the JAR file and configuration of the Gradle Wrapper

⑤ Project-specific Gradle configuration properties

⑥ Scripts for executing builds using the Gradle Wrapper

⑦ The project’s settings file where the list of subprojects is defined

⑧ Usually a project is organized into one or multiple subprojects

⑨ Each subproject has its own Gradle build script

Project cache cleanup

From version 4.10 onwards, Gradle automatically cleans the project-specific cache directory. After
building the project, version-specific cache directories in .gradle/<gradle-version>/ are checked
periodically (at most every 24 hours) for whether they are still in use. They are deleted if they
haven’t been used for 7 days.

Plugins

The ANTLR Plugin
The ANTLR plugin extends the Java plugin to add support for generating parsers using ANTLR.

NOTE The ANTLR plugin supports ANTLR version 2, 3 and 4.

Usage

To use the ANTLR plugin, include the following in your build script:

Example 569. Using the ANTLR plugin

build.gradle

plugins {
 id 'antlr'
}

build.gradle.kts

plugins {
 antlr
}

Tasks

The ANTLR plugin adds a number of tasks to your project, as shown below.

generateGrammarSource — AntlrTask

Generates the source files for all production ANTLR grammars.

generateTestGrammarSource — AntlrTask

Generates the source files for all test ANTLR grammars.

generateSourceSetGrammarSource — AntlrTask

Generates the source files for all ANTLR grammars for the given source set.

The ANTLR plugin adds the following dependencies to tasks added by the Java plugin.

Table 23. ANTLR plugin - additional task dependencies

http://www.antlr.org/
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Task name Depends on

compileJava generateGrammarSource

compileTestJava generateTestGrammarSource

compileSourceSetJava generateSourceSetGrammarSource

Project layout

src/main/antlr

Production ANTLR grammar files. If the ANTLR grammar is organized in packages, the structure
in the antlr folder should reflect the package structure. This ensures that the generated sources
end up in the correct target subfolder.

src/test/antlr

Test ANTLR grammar files.

src/sourceSet/antlr

ANTLR grammar files for the given source set.

Dependency management

The ANTLR plugin adds an antlr dependency configuration which provides the ANTLR
implementation to use. The following example shows how to use ANTLR version 3.

Example 570. Declare ANTLR version

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 antlr "org.antlr:antlr:3.5.2" // use ANTLR version 3
 // antlr "org.antlr:antlr4:4.5" // use ANTLR version 4
}

build.gradle.kts

repositories {
 mavenCentral()
}

dependencies {
 antlr("org.antlr:antlr:3.5.2") // use ANTLR version 3
 // antlr("org.antlr:antlr4:4.5") // use ANTLR version 4
}

If no dependency is declared, antlr:antlr:2.7.7 will be used as the default. To use a different
ANTLR version add the appropriate dependency to the antlr dependency configuration as above.

Contributed extension

antlr — AntlrSourceDirectorySet

The ANTLR grammar files of this source set. Contains all .g or .g4 files found in the ANTLR
source directories, and excludes all other types of files. Default value is non-null.

Convention properties (deprecated)

The ANTLR plugin adds one convention property.

antlr — SourceDirectorySet

The ANTLR grammar files of this source set. Contains all .g or .g4 files found in the ANTLR
source directories, and excludes all other types of files. Default value is non-null.

This convention property is deprecated and superseded by the extension described above.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.antlr.AntlrSourceDirectorySet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.file.SourceDirectorySet.html

Source set properties

The ANTLR plugin adds the following properties to each source set in the project.

antlr.srcDirs — Set<File>

The source directories containing the ANTLR grammar files of this source set. Can set using
anything that implicitly converts to a file collection. Default value is [projectDir/src/name
/antlr].

Controlling the ANTLR generator process

The ANTLR tool is executed in a forked process. This allows fine grained control over memory
settings for the ANTLR process. To set the heap size of an ANTLR process, the maxHeapSize property
of AntlrTask can be used. To pass additional command-line arguments, append to the arguments
property of AntlrTask.

Example 571. Setting custom max heap size and extra arguments for ANTLR

build.gradle

generateGrammarSource {
 maxHeapSize = "64m"
 arguments += ["-visitor", "-long-messages"]
}

build.gradle.kts

tasks.generateGrammarSource {
 maxHeapSize = "64m"
 arguments = arguments + listOf("-visitor", "-long-messages")
}

The Application Plugin
The Application plugin facilitates creating an executable JVM application. It makes it easy to start
the application locally during development, and to package the application as a TAR and/or ZIP
including operating system specific start scripts.

Applying the Application plugin also implicitly applies the Java plugin. The main source set is
effectively the “application”.

Applying the Application plugin also implicitly applies the Distribution plugin. A main distribution is
created that packages up the application, including code dependencies and generated start scripts.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Building JVM applications

To use the application plugin, include the following in your build script:

Example 572. Using the application plugin

build.gradle

plugins {
 id 'application'
}

build.gradle.kts

plugins {
 application
}

The only mandatory configuration for the plugin is the specification of the main class (i.e. entry
point) of the application.

Example 573. Configure the application main class

build.gradle

application {
 mainClass = 'org.gradle.sample.Main'
}

build.gradle.kts

application {
 mainClass.set("org.gradle.sample.Main")
}

You can run the application by executing the run task (type: JavaExec). This will compile the main
source set, and launch a new JVM with its classes (along with all runtime dependencies) as the
classpath and using the specified main class. You can launch the application in debug mode with
gradle run --debug-jvm (see JavaExec.setDebug(boolean)).

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/JavaExec.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/JavaExec.html#setDebug-boolean-

Since Gradle 4.9, the command line arguments can be passed with --args. For example, if you want
to launch the application with command line arguments foo --bar, you can use gradle run
--args="foo --bar" (see JavaExec.setArgsString(java.lang.String).

If your application requires a specific set of JVM settings or system properties, you can configure
the applicationDefaultJvmArgs property. These JVM arguments are applied to the run task and also
considered in the generated start scripts of your distribution.

Example 574. Configure default JVM settings

build.gradle

application {
 applicationDefaultJvmArgs = ['-Dgreeting.language=en']
}

build.gradle.kts

application {
 applicationDefaultJvmArgs = listOf("-Dgreeting.language=en")
}

If your application’s start scripts should be in a different directory than bin, you can configure the
executableDir property.

Example 575. Configure custom directory for start scripts

build.gradle

application {
 executableDir = 'custom_bin_dir'
}

build.gradle.kts

application {
 executableDir = "custom_bin_dir"
}

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/JavaExec.html#setArgsString-java.lang.String-

Building applications using the Java Module System

Gradle supports the building of Java Modules as described in the corresponding section of the Java
Library plugin documentation. Java modules can also be runnable and you can use the application
plugin to run and package such a modular application. For this, you need to do two things in
addition to what you do for a non-modular application.

First, you need to add a module-info.java file to describe your application module. Please refer to
the Java Library plugin documentation for more details on this topic.

Second, you need to tell Gradle the name of the module you want to run in addition to the main
class name like this:

Example 576. Configure the modular application’s main module

build.gradle

application {
 mainModule = 'org.gradle.sample.app' // name defined in module-info.java
 mainClass = 'org.gradle.sample.Main'
}

build.gradle.kts

application {
 mainModule.set("org.gradle.sample.app") // name defined in module-
info.java
 mainClass.set("org.gradle.sample.Main")
}

That’s all. If you run your application, by executing the run task or through a generated start script,
it will run as module and respect module boundaries at runtime. For example, reflective access to
an internal package from another module can fail.

The configured main class is also baked into the module-info.class file of your application Jar. If you
run the modular application directly using the java command, it is then sufficient to provide the
module name.

You can also look at a ready made example that includes a modular application as part of a multi-
project.

Building a distribution

A distribution of the application can be created, by way of the Distribution plugin (which is
automatically applied). A main distribution is created with the following content:

https://www.oracle.com/corporate/features/understanding-java-9-modules.html
../samples/sample_java_modules_multi_project.html

Table 24. Distribution content

Location Content

(root dir) src/dist

lib All runtime dependencies and main source set class files.

bin Start scripts (generated by startScripts task).

Static files to be added to the distribution can be simply added to src/dist. More advanced
customization can be done by configuring the CopySpec exposed by the main distribution.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/CopySpec.html

Example 577. Include output from other tasks in the application distribution

build.gradle

tasks.register('createDocs') {
 def docs = layout.buildDirectory.dir('docs')
 outputs.dir docs
 doLast {
 docs.get().asFile.mkdirs()
 docs.get().file('readme.txt').asFile.write('Read me!')
 }
}

distributions {
 main {
 contents {
 from(createDocs) {
 into 'docs'
 }
 }
 }
}

build.gradle.kts

val createDocs by tasks.registering {
 val docs = layout.buildDirectory.dir("docs")
 outputs.dir(docs)
 doLast {
 docs.get().asFile.mkdirs()
 docs.get().file("readme.txt").asFile.writeText("Read me!")
 }
}

distributions {
 main {
 contents {
 from(createDocs) {
 into("docs")
 }
 }
 }
}

By specifying that the distribution should include the task’s output files (see more about tasks),

Gradle knows that the task that produces the files must be invoked before the distribution can be
assembled and will take care of this for you.

You can run gradle installDist to create an image of the application in build/install/projectName.
You can run gradle distZip to create a ZIP containing the distribution, gradle distTar to create an
application TAR or gradle assemble to build both.

Customizing start script generation

The application plugin can generate Unix (suitable for Linux, macOS etc.) and Windows start scripts
out of the box. The start scripts launch a JVM with the specified settings defined as part of the
original build and runtime environment (e.g. JAVA_OPTS env var). The default script templates are
based on the same scripts used to launch Gradle itself, that ship as part of a Gradle distribution.

The start scripts are completely customizable. Please refer to the documentation of
CreateStartScripts for more details and customization examples.

Tasks

The Application plugin adds the following tasks to the project.

run — JavaExec

Depends on: classes

Starts the application.

startScripts — CreateStartScripts

Depends on: jar

Creates OS specific scripts to run the project as a JVM application.

installDist — Sync

Depends on: jar, startScripts

Installs the application into a specified directory.

distZip — Zip

Depends on: jar, startScripts

Creates a full distribution ZIP archive including runtime libraries and OS specific scripts.

distTar — Tar

Depends on: jar, startScripts

Creates a full distribution TAR archive including runtime libraries and OS specific scripts.

Application extension

The Application Plugin adds an extension to the project, which you can use to configure its
behavior. See the JavaApplication DSL documentation for more information on the properties

https://docs.gradle.org/7.3.2/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Sync.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.JavaApplication.html

available on the extension.

You can configure the extension via the application {} block shown earlier, for example using the
following in your build script:

build.gradle

application {
 executableDir = 'custom_bin_dir'
}

build.gradle.kts

application {
 executableDir = "custom_bin_dir"
}

Licensing

The Gradle start scripts that are bundled with your application are licensed under the Apache 2.0
Software License. This does not affect your application, which you can license as you choose.

Convention properties (deprecated)

This plugin also adds some convention properties to the project, which you can use to configure its
behavior. These are deprecated and superseded by the extension described above. See the Project
DSL documentation for information on them.

Unlike the extension properties, these properties appear as top-level project properties in the build
script. For example, to change the application name you can just add the following to your build
script:

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#N14FED

build.gradle

application.applicationName = 'my-app'

build.gradle.kts

application.applicationName = "my-app"

The Base Plugin
The Base Plugin provides some tasks and conventions that are common to most builds and adds a
structure to the build that promotes consistency in how they are run. Its most significant
contribution is a set of lifecycle tasks that act as an umbrella for the more specific tasks provided by
other plugins and build authors.

Usage

Example 578. Applying the Base Plugin

build.gradle

plugins {
 id 'base'
}

build.gradle.kts

plugins {
 base
}

Task

clean — Delete

Deletes the build directory and everything in it, i.e. the path specified by the Project.getBuildDir()
project property.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:buildDir

check — lifecycle task

Plugins and build authors should attach their verification tasks, such as ones that run tests, to
this lifecycle task using check.dependsOn(task).

assemble — lifecycle task

Plugins and build authors should attach tasks that produce distributions and other consumable
artifacts to this lifecycle task. For example, jar produces the consumable artifact for Java
libraries. Attach tasks to this lifecycle task using assemble.dependsOn(task).

build — lifecycle task

Depends on: check, assemble

Intended to build everything, including running all tests, producing the production artifacts and
generating documentation. You will probably rarely attach concrete tasks directly to build as
assemble and check are typically more appropriate.

buildConfiguration — task rule

Assembles those artifacts attached to the named configuration. For example, buildArchives will
execute any task that is required to create any artifact attached to the archives configuration.

cleanTask — task rule

Removes the defined outputs of a task, e.g. cleanJar will delete the JAR file produced by the jar
task of the Java Plugin.

Dependency management

The Base Plugin adds no configurations for dependencies, but it does add the following
configurations:

default

A fallback configuration used by consumer projects. Let’s say you have project B with a project
dependency on project A. Gradle uses some internal logic to determine which of project A’s
artifacts and dependencies are added to the specified configuration of project B. If no other
factors apply — you don’t need to worry what these are — then Gradle falls back to using
everything in project A’s default configuration.

New builds and plugins should not be using the default configuration! It remains for the
reason of backwards compatibility.

archives

A standard configuration for the production artifacts of a project.

Note that the assemble task generates all artifacts that are attached to the archives configuration.

Contributed extensions

The Base Plugin adds the base extension to the project. This allows to configure the following
properties inside a dedicated DSL block.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.BasePluginExtension.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.BasePluginExtension.html

Example 579. Using the base extension

build.gradle

base {
 archivesName = "gradle"
 distsDirectory = layout.buildDirectory.dir('custom-dist')
 libsDirectory = layout.buildDirectory.dir('custom-libs')
}

build.gradle.kts

base {
 archivesName.set("gradle")
 distsDirectory.set(layout.buildDirectory.dir("custom-dist"))
 libsDirectory.set(layout.buildDirectory.dir("custom-libs"))
}

archivesName — default: $project.name

Provides the default AbstractArchiveTask.getArchiveBaseName() for archive tasks.

distsDirectory — default: $buildDir/distributions

Default name of the directory in which distribution archives, i.e. non-JARs, are created.

libsDirectory — default: $buildDir/libs

Default name of the directory in which library archives, i.e. JARs, are created.

The plugin also provides default values for the following properties on any task that extends
AbstractArchiveTask:

destinationDirectory

Defaults to distsDirectory for non-JAR archives and libsDirectory for JARs and derivatives of
JAR, such as WARs.

archiveVersion

Defaults to $project.version or 'unspecified' if the project has no version.

archiveBaseName

Defaults to $archivesBaseName.

Conventions (deprecated)

The Base Plugin also adds conventions related to the creation of archives, such as ZIPs, TARs and
JARs. These are deprecated and superseded by the extension described above. See the

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:archiveBaseName
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html

BasePluginConvention DSL documentation for information on them.

Build Init Plugin
The Build Init plugin can be used to create a new Gradle build. It supports creating brand new
Gradle builds of various types as well as converting existing Apache Maven builds to Gradle.

Supported Gradle build types

The Build Init plugin supports generating various build types. These are listed below and more
detail is available about each type in the following section.

Table 25. Build init types

Type Description

pom Converts an existing Apache Maven build to
Gradle

basic A basic, empty, Gradle build

java-application A command-line application implemented in
Java

java-gradle-plugin A Gradle plugin implemented in Java

java-library A Java library

kotlin-application A command-line application implemented in
Kotlin/JVM

kotlin-gradle-plugin A Gradle plugin implemented in Kotlin/JVM

kotlin-library A Kotlin/JVM library

groovy-application A command-line application implemented in
Groovy

groovy-gradle-plugin A Gradle plugin implemented in Groovy

groovy-library A Groovy library

scala-application A Scala application

scala-library A Scala library

cpp-application A command-line application implemented in
C++

cpp-library A C++ library

Tasks

The plugin adds the following tasks to the project:

init — InitBuild

Depends on: wrapper

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.BasePluginConvention.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.buildinit.tasks.InitBuild.html

Generates a Gradle build.

wrapper — Wrapper

Generates Gradle wrapper files.

Gradle plugins usually need to be applied to a project before they can be used (see Using plugins).
However, the Build Init plugin is automatically applied to the root project of every build, which
means you do not need to apply it explicitly in order to use it. You can simply execute the task
named init in the directory where you would like to create the Gradle build. There is no need to
create a “stub” build.gradle file in order to apply the plugin.

The Build Init plugin also uses the wrapper task to generate the Gradle Wrapper files for the build.

What to create

The simplest, and recommended, way to use the init task is to run gradle init from an interactive
console. Gradle will list the available build types and ask you to select one. It will then ask some
additional questions to allow you to fine-tune the result.

There are several command-line options available for the init task that control what it will
generate. You can use these when Gradle is not running from an interactive console.

The build type can be specified by using the --type command-line option. For example, to create a
Java library project run: gradle init --type java-library.

If a --type option is not provided, Gradle will attempt to infer the type from the environment. For
example, it will infer a type of “pom” if it finds a pom.xml file to convert to a Gradle build. If the type
could not be inferred, the type “basic” will be used.

The init task also supports generating build scripts using either the Gradle Groovy DSL or the
Gradle Kotlin DSL. The build script DSL defaults to the Groovy DSL for most build types and to the
Kotlin DSL for Kotlin build types. The DSL can be selected by using the --dsl command-line option.
For example, to create a Java library project with Kotlin DSL build scripts run: gradle init --type
java-library --dsl kotlin.

You can change the name of the generated project using the --project-name option. It defaults to the
name of the directory where the init task is run.

You can change the package used for generated source files using the --package option. It defaults to
the project name.

If the --incubating option is provided, Gradle will generate build scripts which may use the latest
versions of APIs, which are marked @Incubating and remain subject to change.

All build types also setup the Gradle wrapper.

Build init types

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.wrapper.Wrapper.html
feature_lifecycle.pdf#feature_lifecycle

pom build type (Maven conversion)

The “pom” type can be used to convert an Apache Maven build to a Gradle build. This works by
converting the POM to one or more Gradle files. It is only able to be used if there is a valid “pom.xml”
file in the directory that the init task is invoked in or, if invoked via the “-p” command line option,
in the specified project directory. This “pom” type will be automatically inferred if such a file exists.

The Maven conversion implementation was inspired by the maven2gradle tool that was originally
developed by Gradle community members.

The conversion process has the following features:

• Uses effective POM and effective settings (support for POM inheritance, dependency
management, properties)

• Supports both single module and multimodule projects

• Supports custom module names (that differ from directory names)

• Generates general metadata - id, description and version

• Applies Maven Publish, Java and War Plugins (as needed)

• Supports packaging war projects as jars if needed

• Generates dependencies (both external and inter-module)

• Generates download repositories (inc. local Maven repository)

• Adjusts Java compiler settings

• Supports packaging of sources, tests, and javadocs

• Supports TestNG runner

• Generates global exclusions from Maven enforcer plugin settings

• Provides an option for handling Maven repositories located at URLs using http

The --insecure-protocol option

This option is used to tell the conversion process how to handle converting Maven repositories
located at insecure http URLs. Insecure Repositories Set the --insecure-protocol option. The default
value is warn.

Available values are:

• fail - Abort the build immediately upon encountering an insecure repository URL.

• allow - Automatically sets the allowInsecureProtocol property to true for the Maven repository
URL in the generated Gradle build script.

• warn - Emits a warning about each insecure URL. Generates commented-out lines to enable each
repository, as per the allow option. You will have to opt-in by editing the generated script and
uncommenting each repository URL, or else the Gradle build will fail.

• upgrade - Convert http URLs to https URLs automatically.

https://github.com/jbaruch/maven2gradle
https://docs.gradle.org/7.3.2/dsl/org.gradle.buildinit.tasks.InitBuild.html#org.gradle.buildinit.tasks.InitBuild:getInsecureProtocol

java-application build type

The “java-application” build type is not inferable. It must be explicitly specified.

It has the following features:

• Uses the “application” plugin to produce a command-line application implemented in Java

• Uses the “mavenCentral” dependency repository

• Uses JUnit 4 for testing

• Has directories in the conventional locations for source code

• Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a --test-framework argument value. To
use a different test framework, execute one of the following commands:

• gradle init --type java-application --test-framework junit-jupiter: Uses JUnit Jupiter for
testing instead of JUnit 4

• gradle init --type java-application --test-framework spock: Uses Spock for testing instead of
JUnit 4

• gradle init --type java-application --test-framework testng: Uses TestNG for testing instead
of JUnit 4

java-library build type

The “java-library” build type is not inferable. It must be explicitly specified.

It has the following features:

• Uses the “java” plugin to produce a library implemented in Java

• Uses the “mavenCentral” dependency repository

• Uses JUnit 4 for testing

• Has directories in the conventional locations for source code

• Contains a sample class and unit test, if there are no existing source or test files

Alternative test framework can be specified by supplying a --test-framework argument value. To
use a different test framework, execute one of the following commands:

• gradle init --type java-library --test-framework junit-jupiter: Uses JUnit Jupiter for testing
instead of JUnit 4

• gradle init --type java-library --test-framework spock: Uses Spock for testing instead of JUnit
4

• gradle init --type java-library --test-framework testng: Uses TestNG for testing instead of
JUnit 4

https://junit.org/junit4/
https://junit.org
https://spockframework.org
https://testng.org/doc/index.html
https://junit.org/junit4/
https://junit.org
http://code.google.com/p/spock/
http://testng.org/doc/index.html

java-gradle-plugin build type

The “java-gradle-plugin” build type is not inferable. It must be explicitly specified.

It has the following features:

• Uses the “java-gradle-plugin” plugin to produce a Gradle plugin implemented in Java

• Uses the “mavenCentral” dependency repository

• Uses JUnit 4 and TestKit for testing

• Has directories in the conventional locations for source code

• Contains a sample class and unit test, if there are no existing source or test files

kotlin-application build type

The “kotlin-application” build type is not inferable. It must be explicitly specified.

It has the following features:

• Uses the “org.jetbrains.kotlin.jvm” and “application“ plugins to produce a command-line
application implemented in Kotlin

• Uses the “mavenCentral” dependency repository

• Uses Kotlin 1.x

• Uses Kotlin test library for testing

• Has directories in the conventional locations for source code

• Contains a sample Kotlin class and an associated Kotlin test class, if there are no existing source
or test files

kotlin-library build type

The “kotlin-library” build type is not inferable. It must be explicitly specified.

It has the following features:

• Uses the “org.jetbrains.kotlin.jvm” plugin to produce a library implemented in Kotlin

• Uses the “mavenCentral” dependency repository

• Uses Kotlin 1.x

• Uses Kotlin test library for testing

• Has directories in the conventional locations for source code

• Contains a sample Kotlin class and an associated Kotlin test class, if there are no existing source
or test files

kotlin-gradle-plugin build type

The “kotlin-gradle-plugin” build type is not inferable. It must be explicitly specified.

https://junit.org/junit4/
https://kotlinlang.org/api/latest/kotlin.test/index.html
https://kotlinlang.org/api/latest/kotlin.test/index.html

It has the following features:

• Uses the “java-gradle-plugin” and “org.jetbrains.kotlin.jvm” plugins to produce a Gradle
plugin implemented in Kotlin

• Uses the “mavenCentral” dependency repository

• Uses Kotlin 1.x

• Uses Kotlin test library and TestKit for testing

• Has directories in the conventional locations for source code

• Contains a sample class and unit test, if there are no existing source or test files

scala-application build type

The “scala-application” build type is not inferable. It must be explicitly specified.

It has the following features:

• Uses the “scala” plugin to produce an application implemented in Scala

• Uses the “mavenCentral” dependency repository

• Uses Scala 2.13

• Uses ScalaTest for testing

• Has directories in the conventional locations for source code

• Contains a sample Scala class and an associated ScalaTest test suite, if there are no existing
source or test files

scala-library build type

The “scala-library” build type is not inferable. It must be explicitly specified.

It has the following features:

• Uses the “scala” plugin to produce a library implemented in Scala

• Uses the “mavenCentral” dependency repository

• Uses Scala 2.13

• Uses ScalaTest for testing

• Has directories in the conventional locations for source code

• Contains a sample Scala class and an associated ScalaTest test suite, if there are no existing
source or test files

groovy-library build type

The “groovy-library” build type is not inferable. It must be explicitly specified.

It has the following features:

• Uses the “groovy” plugin to produce a library implemented in Groovy

https://kotlinlang.org/api/latest/kotlin.test/index.html
http://www.scalatest.org
http://www.scalatest.org

• Uses the “mavenCentral” dependency repository

• Uses Groovy 2.x

• Uses Spock testing framework for testing

• Has directories in the conventional locations for source code

• Contains a sample Groovy class and an associated Spock specification, if there are no existing
source or test files

groovy-application build type

The “groovy-application” build type is not inferable. It must be explicitly specified.

It has the following features:

• Uses the “application” and “groovy” plugins to produce a command-line application
implemented in Groovy

• Uses the “mavenCentral” dependency repository

• Uses Groovy 2.x

• Uses Spock testing framework for testing

• Has directories in the conventional locations for source code

• Contains a sample Groovy class and an associated Spock specification, if there are no existing
source or test files

groovy-gradle-plugin build type

The “groovy-gradle-plugin” build type is not inferable. It must be explicitly specified.

It has the following features:

• Uses the “java-gradle-plugin” and “groovy” plugins to produce a Gradle plugin implemented in
Groovy

• Uses the “mavenCentral” dependency repository

• Uses Groovy 2.x

• Uses Spock testing framework and TestKit for testing

• Has directories in the conventional locations for source code

• Contains a sample class and unit test, if there are no existing source or test files

cpp-application build type

The “cpp-application” build type is not inferable. It must be explicitly specified.

It has the following features:

• Uses the “cpp-application” plugin to produce a command-line application implemented in C++

• Uses the “cpp-unit-test” plugin to build and run simple unit tests

http://spockframework.org
http://spockframework.org
http://spockframework.org

• Has directories in the conventional locations for source code

• Contains a sample C++ class, a private header file and an associated test class, if there are no
existing source or test files

cpp-library build type

The “cpp-library” build type is not inferable. It must be explicitly specified.

It has the following features:

• Uses the “cpp-library” plugin to produce a C++ library

• Uses the “cpp-unit-test” plugin to build and run simple unit tests

• Has directories in the conventional locations for source code

• Contains a sample C++ class, a public header file and an associated test class, if there are no
existing source or test files

basic build type

The “basic” build type is useful for creating a new Gradle build. It creates sample settings and build
files, with comments and links to help get started.

This type is used when no type was explicitly specified, and no type could be inferred.

The Checkstyle Plugin
The Checkstyle plugin performs quality checks on your project’s Java source files using Checkstyle
and generates reports from these checks.

Usage

To use the Checkstyle plugin, include the following in your build script:

https://checkstyle.org/index.html

Example 580. Using the Checkstyle plugin

build.gradle

plugins {
 id 'checkstyle'
}

build.gradle.kts

plugins {
 checkstyle
}

The plugin adds a number of tasks to the project that perform the quality checks. You can execute
the checks by running gradle check.

Note that Checkstyle will run with the same Java version used to run Gradle.

Tasks

The Checkstyle plugin adds the following tasks to the project:

checkstyleMain — Checkstyle

Depends on: classes

Runs Checkstyle against the production Java source files.

checkstyleTest — Checkstyle

Depends on: testClasses

Runs Checkstyle against the test Java source files.

checkstyleSourceSet — Checkstyle

Depends on: sourceSetClasses

Runs Checkstyle against the given source set’s Java source files.

Dependencies added to other tasks

The Checkstyle plugin adds the following dependencies to tasks defined by the Java plugin.

check

Depends on: All Checkstyle tasks, including checkstyleMain and checkstyleTest.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.Checkstyle.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.Checkstyle.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.Checkstyle.html

Project layout

By default, the Checkstyle plugin expects configuration files to be placed in the root project, but this
can be changed.

<root>
└── config
 └── checkstyle ①
 └── checkstyle.xml ②
 └── suppressions.xml

① Checkstyle configuration files go here

② Primary Checkstyle configuration file

Dependency management

The Checkstyle plugin adds the following dependency configurations:

Table 26. Checkstyle plugin - dependency configurations

Name Meaning

checkstyle The Checkstyle libraries to use

Configuration

See the CheckstyleExtension class in the API documentation.

Built-in variables

The Checkstyle plugin defines a config_loc property that can be used in Checkstyle configuration
files to define paths to other configuration files like suppressions.xml.

Example 581. Using the config_loc property

checkstyle.xml

<module name="SuppressionFilter">
 <property name="file" value="${config_loc}/suppressions.xml"/>
</module>

Customizing the HTML report

The HTML report generated by the Checkstyle task can be customized using a XSLT stylesheet, for
example to highlight specific errors or change its appearance:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.Checkstyle.html

Example 582. Customizing the HTML report

build.gradle

tasks.withType(Checkstyle) {
 reports {
 xml.required = false
 html.required = true
 html.stylesheet resources.text.fromFile('config/xsl/checkstyle-
custom.xsl')
 }
}

build.gradle.kts

tasks.withType<Checkstyle>().configureEach {
 reports {
 xml.required.set(false)
 html.required.set(true)
 html.stylesheet = resources.text.fromFile("config/xsl/checkstyle-
custom.xsl")
 }
}

View a sample Checkstyle stylesheet.

The CodeNarc Plugin
The CodeNarc plugin performs quality checks on your project’s Groovy source files using CodeNarc
and generates reports from these checks.

Usage

To use the CodeNarc plugin, include the following in your build script:

https://github.com/checkstyle/contribution/tree/master/xsl
http://codenarc.sourceforge.net/index.html

Example 583. Using the CodeNarc plugin

build.gradle

plugins {
 id 'codenarc'
}

build.gradle.kts

plugins {
 codenarc
}

The plugin adds a number of tasks to the project that perform the quality checks when used with
the Groovy Plugin. You can execute the checks by running gradle check.

Tasks

The CodeNarc plugin adds the following tasks to the project:

codenarcMain — CodeNarc

Runs CodeNarc against the production Groovy source files.

codenarcTest — CodeNarc

Runs CodeNarc against the test Groovy source files.

codenarcSourceSet — CodeNarc

Runs CodeNarc against the given source set’s Groovy source files.

Dependencies added to other tasks

The CodeNarc plugin adds the following dependencies to tasks defined by the Groovy plugin.

check

Depends on: All CodeNarc tasks, including codenarcMain and codenarcTest.

Project layout

The CodeNarc plugin expects the following project layout:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.CodeNarc.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.CodeNarc.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.CodeNarc.html

<root>
└── config
 └── codenarc ①
 └── codenarc.xml ②

① CodeNarc configuration files go here

② Primary CodeNarc configuration file

Dependency management

The CodeNarc plugin adds the following dependency configurations:

Table 27. CodeNarc plugin - dependency configurations

Name Meaning

codenarc The CodeNarc libraries to use

Configuration

See the CodeNarcExtension class in the API documentation.

The Distribution Plugin
The Distribution Plugin facilitates building archives that serve as distributions of the project.
Distribution archives typically contain the executable application and other supporting files, such
as documentation.

Usage

To use the Distribution Plugin, include the following in your build script:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.CodeNarcExtension.html

Example 584. Using the Distribution Plugin

build.gradle

plugins {
 id 'distribution'
}

build.gradle.kts

plugins {
 distribution
}

The plugin adds an extension named distributions of type DistributionContainer to the project. It
also creates a single distribution in the distributions container extension named main. If your build
only produces one distribution you only need to configure this distribution (or use the defaults).

You can run gradle distZip to package the main distribution as a ZIP, or gradle distTar to create a
TAR file. To build both types of archives just run gradle assembleDist. The files will be created at
$buildDir/distributions/${project.name}-${project.version}.«ext».

You can run gradle installDist to assemble the uncompressed distribution into $buildDir
/install/${project.name}.

Tasks

The Distribution Plugin adds a number of tasks to your project, as shown below.

distZip — Zip

Creates a ZIP archive of the distribution contents.

distTar — Task

Creates a TAR archive of the distribution contents.

assembleDist — Task

Depends on: distTar, distZip

Creates ZIP and TAR archives of the distribution contents.

installDist — Sync

Assembles the distribution content and installs it on the current machine.

For each additional distribution you add to the project, the Distribution Plugin adds the following
tasks, where distributionName comes from Distribution.getName():

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.distribution.DistributionContainer.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Sync.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/distribution/Distribution.html#getName--

distributionNameDistZip — Zip

Creates a ZIP archive of the distribution contents.

distributionNameDistTar — Tar

Creates a TAR archive of the distribution contents.

assembleDistributionNameDist — Task

Depends on: distributionNameDistTar, distributionNameDistZip

Creates ZIP and TAR archives of the distribution contents.

installDistributionNameDist — Sync

Assembles the distribution content and installs it on the current machine.

The following sample creates a custom distribution that will cause four additional tasks to be added
to the project: customDistZip, customDistTar, assembleCustomDist, and installCustomDist:

Example 585. Adding extra distributions

build.gradle

distributions {
 custom {
 // configure custom distribution
 }
}

build.gradle.kts

distributions {
 create("custom") {
 // configure custom distribution
 }
}

Given that the project name is myproject and version 1.2, running gradle customDistZip will
produce a ZIP file named myproject-custom-1.2.zip.

Running gradle installCustomDist will install the distribution contents into
$buildDir/install/custom.

Distribution contents

All of the files in the src/$distribution.name/dist directory will automatically be included in the
distribution. You can add additional files by configuring the Distribution object that is part of the

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Sync.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/distribution/Distribution.html

container.

Example 586. Configuring the main distribution

build.gradle

distributions {
 main {
 distributionBaseName = 'someName'
 contents {
 from 'src/readme'
 }
 }
}

build.gradle.kts

distributions {
 main {
 distributionBaseName.set("someName")
 contents {
 from("src/readme")
 }
 }
}

In the example above, the content of the src/readme directory will be included in the distribution
(along with the files in the src/main/dist directory which are added by default).

The baseName property has also been changed. This will cause the distribution archives to be created
with a different name.

Publishing

A distribution can be published using the Ivy Publish Plugin or Maven Publish Plugin.

Using the Ivy/Maven Publish Plugins

To publish a distribution to an Ivy repository with the Ivy Publish Plugin, add one or both of its
archive tasks to an IvyPublication. The following sample demonstrates how to add the ZIP archive
of the main distribution and the TAR archive of the custom distribution to the myDistribution
publication:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyPublication.html

Example 587. Adding distribution archives to an Ivy publication

build.gradle

plugins {
 id 'ivy-publish'
}

publishing {
 publications {
 myDistribution(IvyPublication) {
 artifact distZip
 artifact customDistTar
 }
 }
}

build.gradle.kts

plugins {
 `ivy-publish`
}

publishing {
 publications {
 create<IvyPublication>("myDistribution") {
 artifact(tasks.distZip.get())
 artifact(tasks["customDistTar"])
 }
 }
}

Similarly, to publish a distribution to a Maven repository using the Maven Publish Plugin, add one
or both of its archive tasks to a MavenPublication as follows:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.MavenPublication.html

Example 588. Adding distribution archives to a Maven publication

build.gradle

plugins {
 id 'maven-publish'
}

publishing {
 publications {
 myDistribution(MavenPublication) {
 artifact distZip
 artifact customDistTar
 }
 }
}

build.gradle.kts

plugins {
 `maven-publish`
}

publishing {
 publications {
 create<MavenPublication>("myDistribution") {
 artifact(tasks.distZip)
 artifact(tasks["customDistTar"])
 }
 }
}

The Ear Plugin
The Ear plugin adds support for assembling web application EAR files. It adds a default EAR archive
task. It doesn’t require the Java plugin, but for projects that also use the Java plugin it disables the
default JAR archive generation.

Usage

To use the Ear plugin, include the following in your build script:

Example 589. Using the Ear plugin

build.gradle

plugins {
 id 'ear'
}

build.gradle.kts

plugins {
 ear
}

Tasks

The Ear plugin adds the following tasks to the project.

ear — Ear

Depends on: compile (only if the Java plugin is also applied)

Assembles the application EAR file.

Dependencies added to other tasks

The Ear plugin adds the following dependencies to tasks added by the Base Plugin.

assemble

Depends on: ear.

Project layout

.
└── src
 └── main
 └── application ①

① Ear resources, such as a META-INF directory

Dependency management

The Ear plugin adds two dependency configurations: deploy and earlib. All dependencies in the
deploy configuration are placed in the root of the EAR archive, and are not transitive. All
dependencies in the earlib configuration are placed in the 'lib' directory in the EAR archive and are

https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ear.Ear.html

transitive.

Convention properties (ear)

appDirName — String

The name of the application source directory, relative to the project directory. Default value:
`src/main/application`.

libDirName — String

The name of the lib directory inside the generated EAR. Default value: `lib`.

deploymentDescriptor — DeploymentDescriptor

Metadata to generate a deployment descriptor file, e.g. application.xml. Default value: A
deployment descriptor with sensible defaults named application.xml`. If this file already exists in
the `appDirName/META-INF then the existing file contents will be used and the explicit
configuration in the ear.deploymentDescriptor will be ignored.

generateDeploymentDescriptor — Boolean

Specifies if deploymentDescriptor should be generated. Default value: `true`.

These properties are provided by a EarPluginConvention convention object.

Configuring the ear tasks via the plugin’s convention properties is deprecated. If you need to
change from the default values, configure the appropriate tasks directly. If you want to configure all
Ear tasks in the project, use tasks.withType(Ear.class).configureEach(…).

Ear

The default behavior of the Ear task is to copy the content of src/main/application to the root of the
archive. If your application directory doesn’t contain a META-INF/application.xml deployment
descriptor then one will be generated for you.

The Ear class in the API documentation has additional useful information.

Customizing

Here is an example with the most important customization options:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ear/descriptor/DeploymentDescriptor.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ear.EarPluginConvention.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/DomainObjectCollection.html#withType-java.lang.Class-
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ear.Ear.html

Example 590. Customization of ear plugin

build.gradle

plugins {
 id 'ear'
 id 'java'
}

repositories { mavenCentral() }

dependencies {
 // The following dependencies will be the ear modules and
 // will be placed in the ear root
 deploy project(path: ':war', configuration: 'archives')

 // The following dependencies will become ear libs and will
 // be placed in a dir configured via the libDirName property
 earlib group: 'log4j', name: 'log4j', version: '1.2.15', ext: 'jar'
}

ear {
 appDirectory = file('src/main/app') // use application metadata found in
this folder
 // put dependent libraries into APP-INF/lib inside the generated EAR
 libDirName 'APP-INF/lib'
 deploymentDescriptor { // custom entries for application.xml:
// fileName = "application.xml" // same as the default value
// version = "6" // same as the default value
 applicationName = "customear"
 initializeInOrder = true
 displayName = "Custom Ear" // defaults to project.name
 // defaults to project.description if not set
 description = "My customized EAR for the Gradle documentation"
// libraryDirectory = "APP-INF/lib" // not needed, above libDirName
setting does this
// module("my.jar", "java") // won't deploy as my.jar isn't deploy
dependency
// webModule("my.war", "/") // won't deploy as my.war isn't deploy
dependency
 securityRole "admin"
 securityRole "superadmin"
 withXml { provider -> // add a custom node to the XML
 provider.asNode().appendNode("data-source", "my/data/source")
 }
 }
}

build.gradle.kts

plugins {
 ear
 java
}

repositories { mavenCentral() }

dependencies {
 // The following dependencies will be the ear modules and
 // will be placed in the ear root
 deploy(project(path = ":war", configuration = "archives"))

 // The following dependencies will become ear libs and will
 // be placed in a dir configured via the libDirName property
 earlib(group = "log4j", name = "log4j", version = "1.2.15", ext = "jar")
}

tasks.named<Ear>("ear") {
 appDirectory.set(file("src/main/app")) // use application metadata found
in this folder
}

ear {
 // put dependent libraries into APP-INF/lib inside the generated EAR
 libDirName = "APP-INF/lib"
 deploymentDescriptor { // custom entries for application.xml:
// fileName = "application.xml" // same as the default value
// version = "6" // same as the default value
 applicationName = "customear"
 initializeInOrder = true
 displayName = "Custom Ear" // defaults to project.name
 // defaults to project.description if not set
 description = "My customized EAR for the Gradle documentation"
// libraryDirectory = "APP-INF/lib" // not needed, above libDirName
setting does this
// module("my.jar", "java") // won't deploy as my.jar isn't deploy
dependency
// webModule("my.war", "/") // won't deploy as my.war isn't deploy
dependency
 securityRole("admin")
 securityRole("superadmin")
 withXml { // add a custom node to the XML
 asElement().apply {
 appendChild(ownerDocument.createElement("data-source").apply
{ textContent = "my/data/source" })
 }
 }
 }
}

You can also use customization options that the Ear task provides, such as from and metaInf.

Using custom descriptor file

You may already have appropriate settings in a application.xml file and want to use that instead of
configuring the ear.deploymentDescriptor section of the build script. To accommodate that goal,
place the META-INF/application.xml in the right place inside your source folders (see the appDirName
property). The file contents will be used and the explicit configuration in the
ear.deploymentDescriptor will be ignored.

The Eclipse Plugins
The Eclipse plugins generate files that are used by the Eclipse IDE, thus making it possible to import
the project into Eclipse (File - Import… - Existing Projects into Workspace).

The eclipse-wtp is automatically applied whenever the eclipse plugin is applied to a War or Ear
project. For utility projects (i.e. Java projects used by other web projects), you need to apply the
eclipse-wtp plugin explicitly.

What exactly the eclipse plugin generates depends on which other plugins are used:

Table 28. Eclipse plugin behavior

Plugin Description

None Generates minimal .project file.

Java Adds Java configuration to .project. Generates .classpath and JDT settings file.

Groovy Adds Groovy configuration to .project file.

Scala Adds Scala support to .project and .classpath files.

War Adds web application support to .project file.

Ear Adds ear application support to .project file.

The eclipse-wtp plugin generates all WTP settings files and enhances the .project file. If a Java or
War is applied, .classpath will be extended to get a proper packaging structure for this utility
library or web application project.

Both Eclipse plugins are open to customization and provide a standardized set of hooks for adding
and removing content from the generated files.

Usage

To use either the Eclipse or the Eclipse WTP plugin, include one of the lines in your build script:

https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ear.Ear.html
http://eclipse.org

Example 591. Using the Eclipse plugin

build.gradle

plugins {
 id 'eclipse'
}

build.gradle.kts

plugins {
 eclipse
}

Example 592. Using the Eclipse WTP plugin

build.gradle

plugins {
 id 'eclipse-wtp'
}

build.gradle.kts

plugins {
 `eclipse-wtp`
}

Note: Internally, the eclipse-wtp plugin also applies the eclipse plugin so you don’t need to apply
both.

Both Eclipse plugins add a number of tasks to your projects. The main tasks that you will use are
the eclipse and cleanEclipse tasks.

Tasks

The Eclipse plugins add the tasks shown below to a project.

Eclipse Plugin tasks

eclipse — Task

Depends on: all Eclipse configuration file generation tasks

Generates all Eclipse configuration files

cleanEclipse — Delete

Depends on: all Eclipse configuration file clean tasks

Removes all Eclipse configuration files

cleanEclipseProject — Delete

Removes the .project file.

cleanEclipseClasspath — Delete

Removes the .classpath file.

cleanEclipseJdt — Delete

Removes the .settings/org.eclipse.jdt.core.prefs file.

eclipseProject — GenerateEclipseProject

Generates the .project file.

eclipseClasspath — GenerateEclipseClasspath

Generates the .classpath file.

eclipseJdt — GenerateEclipseJdt

Generates the .settings/org.eclipse.jdt.core.prefs file.

Eclipse WTP Plugin — additional tasks

cleanEclipseWtpComponent — Delete

Removes the .settings/org.eclipse.wst.common.component file.

cleanEclipseWtpFacet — Delete

Removes the .settings/org.eclipse.wst.common.project.facet.core.xml file.

eclipseWtpComponent — GenerateEclipseWtpComponent

Generates the .settings/org.eclipse.wst.common.component file.

eclipseWtpFacet — GenerateEclipseWtpFacet

Generates the .settings/org.eclipse.wst.common.project.facet.core.xml file.

Configuration

Table 29. Configuration of the Eclipse plugins

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseProject.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseClasspath.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseJdt.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpComponent.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpFacet.html

Model Reference
name

Description

EclipseModel eclipse Top level element that enables configuration of the Eclipse
plugin in a DSL-friendly fashion.

EclipseProject eclipse.project Allows configuring project information

EclipseClasspath eclipse.classpa
th

Allows configuring classpath information.

EclipseJdt eclipse.jdt Allows configuring jdt information (source/target Java
compatibility).

EclipseWtpCom
ponent

eclipse.wtp.com
ponent

Allows configuring wtp component information only if eclipse-
wtp plugin was applied.

EclipseWtpFacet eclipse.wtp.fac
et

Allows configuring wtp facet information only if eclipse-wtp
plugin was applied.

Customizing the generated files

The Eclipse plugins allow you to customize the generated metadata files. The plugins provide a DSL
for configuring model objects that model the Eclipse view of the project. These model objects are
then merged with the existing Eclipse XML metadata to ultimately generate new metadata. The
model objects provide lower level hooks for working with domain objects representing the file
content before and after merging with the model configuration. They also provide a very low level
hook for working directly with the raw XML for adjustment before it is persisted, for fine tuning
and configuration that the Eclipse and Eclipse WTP plugins do not model.

Merging

Sections of existing Eclipse files that are also the target of generated content will be amended or
overwritten, depending on the particular section. The remaining sections will be left as-is.

Disabling merging with a complete rewrite

To completely rewrite existing Eclipse files, execute a clean task together with its corresponding
generation task, like “gradle cleanEclipse eclipse” (in that order). If you want to make this the
default behavior, add “tasks.eclipse.dependsOn(cleanEclipse)” to your build script. This makes it
unnecessary to execute the clean task explicitly.

This strategy can also be used for individual files that the plugins would generate. For instance, this
can be done for the “.classpath” file with “gradle cleanEclipseClasspath eclipseClasspath”.

Hooking into the generation lifecycle

The Eclipse plugins provide objects modeling the sections of the Eclipse files that are generated by
Gradle. The generation lifecycle is as follows:

1. The file is read; or a default version provided by Gradle is used if it does not exist

2. The beforeMerged hook is executed with a domain object representing the existing file

https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseModel.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html

3. The existing content is merged with the configuration inferred from the Gradle build or defined
explicitly in the eclipse DSL

4. The whenMerged hook is executed with a domain object representing contents of the file to be
persisted

5. The withXml hook is executed with a raw representation of the XML that will be persisted

6. The final XML is persisted

Advanced configuration hooks

The following list covers the domain object used for each of the Eclipse model types:

EclipseProject

• beforeMerged { Project arg -> … }

• whenMerged { Project arg -> … }

• withXml { XmlProvider arg -> … }

EclipseClasspath

• beforeMerged { Classpath arg -> … }

• whenMerged { Classpath arg -> … }

• withXml { XmlProvider arg -> … }

EclipseWtpComponent

• beforeMerged { WtpComponent arg -> … }

• whenMerged { WtpComponent arg -> … }

• withXml { XmlProvider arg -> … }

EclipseWtpFacet

• beforeMerged { WtpFacet arg -> … }

• whenMerged { WtpFacet arg -> … }

• withXml { XmlProvider arg -> … }

EclipseJdt

• beforeMerged { Jdt arg -> … }

• whenMerged { Jdt arg -> … }

• withProperties { arg -> } argument type ⇒ java.util.Properties

Partial overwrite of existing content

A complete overwrite causes all existing content to be discarded, thereby losing any changes made
directly in the IDE. Alternatively, the beforeMerged hook makes it possible to overwrite just certain
parts of the existing content. The following example removes all existing dependencies from the
Classpath domain object:

https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/eclipse/model/Project.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/eclipse/model/Project.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/XmlProvider.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/XmlProvider.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/XmlProvider.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/XmlProvider.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html

Example 593. Partial Overwrite for Classpath

build.gradle

eclipse.classpath.file {
 beforeMerged { classpath ->
 classpath.entries.removeAll { entry -> entry.kind == 'lib' || entry
.kind == 'var' }
 }
}

build.gradle.kts

import org.gradle.plugins.ide.eclipse.model.Classpath

eclipse.classpath.file {
 beforeMerged(Action<Classpath> {
 entries.removeAll { entry -> entry.kind == "lib" || entry.kind ==
"var" }
 })
}

The resulting .classpath file will only contain Gradle-generated dependency entries, but not any
other dependency entries that may have been present in the original file. (In the case of
dependency entries, this is also the default behavior.) Other sections of the .classpath file will be
either left as-is or merged. The same could be done for the natures in the .project file:

Example 594. Partial Overwrite for Project

build.gradle

eclipse.project.file.beforeMerged { project ->
 project.natures.clear()
}

build.gradle.kts

import org.gradle.plugins.ide.eclipse.model.Project

eclipse.project.file.beforeMerged(Action<Project> {
 natures.clear()
})

Modifying the fully populated domain objects

The whenMerged hook allows to manipulate the fully populated domain objects. Often this is the
preferred way to customize Eclipse files. Here is how you would export all the dependencies of an
Eclipse project:

Example 595. Export Classpath Entries

build.gradle

eclipse.classpath.file {
 whenMerged { classpath ->
 classpath.entries.findAll { entry -> entry.kind == 'lib' }*.exported
= false
 }
}

build.gradle.kts

import org.gradle.plugins.ide.eclipse.model.AbstractClasspathEntry
import org.gradle.plugins.ide.eclipse.model.Classpath

eclipse.classpath.file {
 whenMerged(Action<Classpath> { ->
 entries.filter { entry -> entry.kind == "lib" }
 .forEach { (it as AbstractClasspathEntry).isExported = false }
 })
}

Modifying the XML representation

The withXml hook allows to manipulate the in-memory XML representation just before the file gets
written to disk. Although Groovy’s XML support and Kotlin’s extension functions make up for a lot,
this approach is less convenient than manipulating the domain objects. In return, you get total
control over the generated file, including sections not modeled by the domain objects.

Example 596. Customizing the XML

build.gradle

eclipse.wtp.facet.file.withXml { provider ->
 provider.asNode().fixed.find { it.@facet == 'jst.java' }.@facet =
'jst2.java'
}

build.gradle.kts

import org.w3c.dom.Element

eclipse.wtp.facet.file.withXml(Action<XmlProvider> {
 fun Element.firstElement(predicate: Element.() -> Boolean) =
 childNodes
 .run { (0 until length).map(::item) }
 .filterIsInstance<Element>()
 .first { it.predicate() }

 asElement()
 .firstElement { tagName === "fixed" && getAttribute("facet") ==
"jst.java" }
 .setAttribute("facet", "jst2.java")
})

The Groovy Plugin
The Groovy plugin extends the Java plugin to add support for Groovy projects. It can deal with
Groovy code, mixed Groovy and Java code, and even pure Java code (although we don’t necessarily
recommend to use it for the latter). The plugin supports joint compilation, which allows you to
freely mix and match Groovy and Java code, with dependencies in both directions. For example, a
Groovy class can extend a Java class that in turn extends a Groovy class. This makes it possible to
use the best language for the job, and to rewrite any class in the other language if needed.

Note that if you want to benefit from the API / implementation separation, you can also apply the
java-library plugin to your Groovy project.

Usage

To use the Groovy plugin, include the following in your build script:

https://groovy-lang.org/

Example 597. Using the Groovy plugin

build.gradle

plugins {
 id 'groovy'
}

build.gradle.kts

plugins {
 groovy
}

Tasks

The Groovy plugin adds the following tasks to the project. Information about altering the
dependencies to Java compile tasks are found here.

compileGroovy — GroovyCompile

Depends on: compileJava

Compiles production Groovy source files.

compileTestGroovy — GroovyCompile

Depends on: compileTestJava

Compiles test Groovy source files.

compileSourceSetGroovy — GroovyCompile

Depends on: compileSourceSetJava

Compiles the given source set’s Groovy source files.

groovydoc — Groovydoc

Generates API documentation for the production Groovy source files.

The Groovy plugin adds the following dependencies to tasks added by the Java plugin.

Table 30. Groovy plugin - additional task
dependencies

Task name Depends on

classes compileGroovy

testClasses compileTestGroovy

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

Task name Depends on

sourceSetClasses compileSourceSetGroovy

Figure 33. Groovy plugin - tasks

Project layout

The Groovy plugin assumes the project layout shown in Groovy Layout. All the Groovy source
directories can contain Groovy and Java code. The Java source directories may only contain Java
source code.[17] None of these directories need to exist or have anything in them; the Groovy plugin
will simply compile whatever it finds.

src/main/java

Production Java source.

src/main/resources

Production resources, such as XML and properties files.

src/main/groovy

Production Groovy source. May also contain Java source files for joint compilation.

src/test/java

Test Java source.

src/test/resources

Test resources.

src/test/groovy

Test Groovy source. May also contain Java source files for joint compilation.

src/sourceSet/java

Java source for the source set named sourceSet.

src/sourceSet/resources

Resources for the source set named sourceSet.

src/sourceSet/groovy

Groovy source files for the given source set. May also contain Java source files for joint
compilation.

Changing the project layout

Just like the Java plugin, the Groovy plugin allows you to configure custom locations for Groovy
production and test source files.

Example 598. Custom Groovy source layout

build.gradle

sourceSets {
 main {
 groovy {
 srcDirs = ['src/groovy']
 }
 }

 test {
 groovy {
 srcDirs = ['test/groovy']
 }
 }
}

build.gradle.kts

sourceSets {
 main {
 groovy {
 setSrcDirs(listOf("src/groovy"))
 }
 }

 test {
 groovy {
 setSrcDirs(listOf("test/groovy"))
 }
 }
}

Dependency management

Because Gradle’s build language is based on Groovy, and parts of Gradle are implemented in
Groovy, Gradle already ships with a Groovy library. Nevertheless, Groovy projects need to explicitly
declare a Groovy dependency. This dependency will then be used on compile and runtime class
paths. It will also be used to get hold of the Groovy compiler and Groovydoc tool, respectively.

If Groovy is used for production code, the Groovy dependency should be added to the
implementation configuration:

Example 599. Configuration of Groovy dependency

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.codehaus.groovy:groovy-all:2.4.15'
}

build.gradle.kts

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.codehaus.groovy:groovy-all:2.4.15")
}

If Groovy is only used for test code, the Groovy dependency should be added to the
testImplementation configuration:

Example 600. Configuration of Groovy test dependency

build.gradle

dependencies {
 testImplementation 'org.codehaus.groovy:groovy-all:2.4.15'
}

build.gradle.kts

dependencies {
 testImplementation("org.codehaus.groovy:groovy-all:2.4.15")
}

To use the Groovy library that ships with Gradle, declare a localGroovy() dependency. Note that
different Gradle versions ship with different Groovy versions; as such, using localGroovy() is less
safe then declaring a regular Groovy dependency.

Example 601. Configuration of bundled Groovy dependency

build.gradle

dependencies {
 implementation localGroovy()
}

build.gradle.kts

dependencies {
 implementation(localGroovy())
}

The Groovy library doesn’t necessarily have to come from a remote repository. It could also come
from a local lib directory, perhaps checked in to source control:

Example 602. Configuration of Groovy file dependency

build.gradle

repositories {
 flatDir { dirs 'lib' }
}

dependencies {
 implementation module('org.codehaus.groovy:groovy:2.4.15') {
 dependency('org.ow2.asm:asm-all:5.0.3')
 dependency('antlr:antlr:2.7.7')
 dependency('commons-cli:commons-cli:1.2')
 module('org.apache.ant:ant:1.9.4') {
 dependencies('org.apache.ant:ant-junit:1.9.4@jar',
 'org.apache.ant:ant-launcher:1.9.4')
 }
 }
}

build.gradle.kts

repositories {
 flatDir { dirs("lib") }
}

dependencies {
 implementation(module("org.codehaus.groovy:groovy:2.4.15") {
 dependency("org.ow2.asm:asm-all:5.0.3")
 dependency("antlr:antlr:2.7.7")
 dependency("commons-cli:commons-cli:1.2")
 module("org.apache.ant:ant:1.9.4") {
 dependencies("org.apache.ant:ant-junit:1.9.4@jar",
 "org.apache.ant:ant-launcher:1.9.4")
 }
 })
}

Automatic configuration of groovyClasspath

The GroovyCompile and Groovydoc tasks consume Groovy code in two ways: on their classpath, and
on their groovyClasspath. The former is used to locate classes referenced by the source code, and
will typically contain the Groovy library along with other libraries. The latter is used to load and
execute the Groovy compiler and Groovydoc tool, respectively, and should only contain the Groovy
library and its dependencies.

Unless a task’s groovyClasspath is configured explicitly, the Groovy (base) plugin will try to infer it
from the task’s classpath. This is done as follows:

• If a groovy-all(-indy) Jar is found on classpath, that jar will be added to groovyClasspath.

• If a groovy(-indy) jar is found on classpath, and the project has at least one repository declared,
a corresponding groovy(-indy) repository dependency will be added to groovyClasspath.

• Otherwise, execution of the task will fail with a message saying that groovyClasspath could not
be inferred.

Note that the “-indy” variation of each jar refers to the version with invokedynamic support.

Convention properties

The Groovy plugin does not add any convention properties to the project.

Source set properties

The Groovy plugin adds the following extensions to each source set in the project. You can use these
properties in your build script as though they were properties of the source set object.

Groovy Plugin — source set properties

groovy — GroovySourceDirectorySet (read-only)

Default value: Not null

The Groovy source files of this source set. Contains all .groovy and .java files found in the
Groovy source directories, and excludes all other types of files.

groovy.srcDirs — Set<File>

Default value: [projectDir/src/name/groovy]

The source directories containing the Groovy source files of this source set. May also contain
Java source files for joint compilation. Can set using anything described in Specifying Multiple
Files.

allGroovy — FileTree (read-only)

Default value: Not null

All Groovy source files of this source set. Contains only the .groovy files found in the Groovy
source directories.

These properties are provided by a convention object of type GroovySourceSet.

The Groovy plugin also modifies some source set properties:

Groovy Plugin - modified source set properties

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.GroovySourceDirectorySet.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.GroovySourceSet.html

Property
name

Change

allJava Adds all .java files found in the Groovy source directories.

allSource Adds all source files found in the Groovy source directories.

GroovyCompile

The Groovy plugin adds a GroovyCompile task for each source set in the project. The task type
shares much with the JavaCompile task by extending AbstractCompile (see the relevant Java Plugin
section). The GroovyCompile task supports most configuration options of the official Groovy
compiler. The task can also leverage the Java toolchain support.

Table 31. Groovy plugin - GroovyCompile properties

Task
Property

Type Default Value

classpath FileCollection sourceSet.compileClasspath

source FileTree. Can set using anything
described in Specifying Multiple Files.

sourceSet.groovy

destination
Directory

File. sourceSet.groovy.destinationDirectory

groovyClass
path

FileCollection groovy configuration if non-empty; Groovy
library found on classpath otherwise

javaLaunche
r

Property<JavaLauncher>, see the
toolchain documentation.

None but will be configured if a toolchain is
defined on the java extension.

Compilation avoidance

Caveat: Groovy compilation avoidance is an incubating feature since Gradle 5.6. There are known
inaccuracies so please enable it at your own risk.

To enable the incubating support for Groovy compilation avoidance, add a enableFeaturePreview to
your settings file:

settings.gradle

enableFeaturePreview('GROOVY_COMPILATION_AVOIDANCE')

settings.gradle.kts

enableFeaturePreview("GROOVY_COMPILATION_AVOIDANCE")

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
toolchains.pdf#toolchains
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
toolchains.pdf#toolchains
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/initialization/Settings.html#enableFeaturePreview-java.lang.String-

If a dependent project has changed in an ABI-compatible way (only its private API has changed),
then Groovy compilation tasks will be up-to-date. This means that if project A depends on project B
and a class in B is changed in an ABI-compatible way (typically, changing only the body of a
method), then Gradle won’t recompile A.

See Java compile avoidance for a detailed list of the types of changes that do not affect the ABI and
are ignored.

However, similar to Java’s annotation processing, there are various ways to customize the Groovy
compilation process, for which implementation details matter. Some well-known examples are
Groovy AST transformations. In these cases, these dependencies must be declared separately in a
classpath called astTransformationClasspath:

Example 603. Declaring AST transformations

build.gradle

configurations { astTransformation }
dependencies {
 astTransformation(project(":ast-transformation"))
}
tasks.withType(GroovyCompile).configureEach {
 astTransformationClasspath.from(configurations.astTransformation)
}

build.gradle.kts

val astTransformation by configurations.creating
dependencies {
 astTransformation(project(":ast-transformation"))
}
tasks.withType<GroovyCompile>().configureEach {
 astTransformationClasspath.from(astTransformation)
}

Incremental Groovy compilation

Since 5.6, Gradle introduces an experimental incremental Groovy compiler. To enable incremental
compilation for Groovy, you need:

• Enable Groovy compilation avoidance.

• Explicitly enable incremental Groovy compilation in the build script:

https://en.wikipedia.org/wiki/Application_binary_interface
https://melix.github.io/blog/2011/05/12/customizing_groovy_compilation_process.html
https://melix.github.io/blog/2011/05/12/customizing_groovy_compilation_process.html
https://groovy-lang.org/metaprogramming.html#_code_generation_transformations

Example 604. Enable incremental Groovy compilation

buildSrc/src/main/groovy/myproject.groovy-conventions.gradle

tasks.withType(GroovyCompile).configureEach {
 options.incremental = true
}

buildSrc/src/main/kotlin/myproject.groovy-conventions.gradle.kts

tasks.withType<GroovyCompile>().configureEach {
 options.isIncremental = true
}

This gives you the following benefits:

• Incremental builds are much faster.

• If only a small set of Groovy source files are changed, only the affected source files will be
recompiled. Classes that don’t need to be recompiled remain unchanged in the output directory.
For example, if you only change a few Groovy test classes, you don’t need to recompile all
Groovy test source files — only the changed ones need to be recompiled.

To understand how incremental compilation works, see Incremental Java compilation for a
detailed overview. Note that there’re several differences from Java incremental compilation:

The Groovy compiler doesn’t keep @Retention in generated annotation class bytecode (GROOVY-
9185), thus all annotations are RUNTIME. This means that changes to source-retention annotations
won’t trigger a full recompilation.

Known issues

Also see Known issues for incremental Java compilation.

• Changes to resources won’t trigger a recompilation, this might result in some incorrectness —
for example Extension Modules.

Compiling and testing for Java 6 or Java 7

With toolchain support added to GroovyCompile, it is possible to compile Groovy code using a
different Java version than the one running Gradle. If you also have Java source files, this will also
configure JavaCompile to use the right Java compiler is used, as can be seen in the Java plugin
documentation.

https://issues.apache.org/jira/browse/GROOVY-9185
https://issues.apache.org/jira/browse/GROOVY-9185
https://mrhaki.blogspot.com/2013/01/groovy-goodness-adding-extra-methods.html
toolchains.pdf#toolchains

Example: Configure Java 7 build for Groovy

build.gradle

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(7)
 }
}

build.gradle.kts

java {
 toolchain {
 languageVersion.set(JavaLanguageVersion.of(7))
 }
}

The IDEA Plugin
The IDEA plugin generates files that are used by IntelliJ IDEA, thus making it possible to open the
project from IDEA (File - Open Project). Both external dependencies (including associated source
and Javadoc files) and project dependencies are considered.

NOTE

If you simply want to load a Gradle project into IntelliJ IDEA, then use the IDE’s
import facility. You do not need to apply this plugin to import your project into
IDEA, although if you do, the import will take account of any extra IDEA
configuration you have that doesn’t directly modify the generated files — see the
Configuration section for more details.

What exactly the IDEA plugin generates depends on which other plugins are used:

Always

Generates an IDEA module file. Also generates an IDEA project and workspace file if the project
is the root project.

Java Plugin

Additionally adds Java configuration to the IDEA module and project files.

One focus of the IDEA plugin is to be open to customization. The plugin provides a standardized set
of hooks for adding and removing content from the generated files.

http://www.jetbrains.com/idea/
https://www.jetbrains.com/help/idea/gradle.html#gradle_import

Usage

To use the IDEA plugin, include this in your build script:

Example 605. Using the IDEA plugin

build.gradle

plugins {
 id 'idea'
}

build.gradle.kts

plugins {
 idea
}

The IDEA plugin adds a number of tasks to your project. The idea task generates an IDEA module
file for the project. When the project is the root project, the idea task also generates an IDEA project
and workspace. The IDEA project includes modules for each of the projects in the Gradle build.

The IDEA plugin also adds an openIdea task when the project is the root project. This task generates
the IDEA configuration files and opens the result in IDEA. This means you can simply run ./gradlew
openIdea from the root project to generate and open the IDEA project in one convenient step.

The IDEA plugin also adds a cleanIdea task to the project. This task deletes the generated files, if
present.

Tasks

The IDEA plugin adds the tasks shown below to a project. Notice that the clean task does not depend
on the cleanIdeaWorkspace task. This is because the workspace typically contains a lot of user
specific temporary data and it is not desirable to manipulate it outside IDEA.

idea

Depends on: ideaProject, ideaModule, ideaWorkspace

Generates all IDEA configuration files

openIdea

Depends on: idea

Generates all IDEA configuration files and opens the project in IDEA

cleanIdea — Delete

Depends on: cleanIdeaProject, cleanIdeaModule

Removes all IDEA configuration files

cleanIdeaProject — Delete

Removes the IDEA project file

cleanIdeaModule — Delete

Removes the IDEA module file

cleanIdeaWorkspace — Delete

Removes the IDEA workspace file

ideaProject — GenerateIdeaProject

Generates the .ipr file. This task is only added to the root project.

ideaModule — GenerateIdeaModule

Generates the .iml file

ideaWorkspace — GenerateIdeaWorkspace

Generates the .iws file. This task is only added to the root project.

Configuration

The plugin adds some configuration options that allow to customize the IDEA project and module
files that it generates. These take the form of both model properties and lower-level mechanisms
that modify the generated files directly. For example, you can add source and resource directories,
as well as inject your own fragments of XML. The former type of configuration is honored by IDEA’s
import facility, whereas the latter is not.

Here are the configuration properties you can use:

idea — IdeaModel

Top level element that enables configuration of the idea plugin in a DSL-friendly fashion

idea.project IdeaProject

Allows configuring project information

idea.module IdeaModule

Allows configuring module information

idea.workspace IdeaWorkspace

Allows configuring the workspace XML

Follow the links to the types for examples of using these configuration properties.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.idea.GenerateIdeaProject.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.idea.GenerateIdeaModule.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.idea.GenerateIdeaWorkspace.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html

Customizing the generated files

The IDEA plugin provides hooks and behavior for customizing the generated content in a more
controlled and detailed way. In addition, the withXml hook is the only practical way to modify the
workspace file because its corresponding domain object is essentially empty.

NOTE The techniques we discuss in this section don’t work with IDEA’s import facility

The tasks recognize existing IDEA files and merge them with the generated content.

Merging

Sections of existing IDEA files that are also the target of generated content will be amended or
overwritten, depending on the particular section. The remaining sections will be left as-is.

Disabling merging with a complete overwrite

To completely rewrite existing IDEA files, execute a clean task together with its corresponding
generation task, like “gradle cleanIdea idea” (in that order). If you want to make this the default
behavior, add “tasks.idea.dependsOn(cleanIdea)” to your build script. This makes it unnecessary to
execute the clean task explicitly.

This strategy can also be used for individual files that the plugin would generate. For instance, this
can be done for the “.iml” file with “gradle cleanIdeaModule ideaModule”.

Hooking into the generation lifecycle

The plugin provides objects modeling the sections of the metadata files that are generated by
Gradle. The generation lifecycle is as follows:

1. The file is read; or a default version provided by Gradle is used if it does not exist

2. The beforeMerged hook is executed with a domain object representing the existing file

3. The existing content is merged with the configuration inferred from the Gradle build or defined
explicitly in the eclipse DSL

4. The whenMerged hook is executed with a domain object representing contents of the file to be
persisted

5. The withXml hook is executed with a raw representation of the XML that will be persisted

6. The final XML is persisted

The following are the domain objects used for each of the model types:

IdeaProject

• beforeMerged { Project arg -> … }

• whenMerged { Project arg -> … }

• withXml { XmlProvider arg -> … }

https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/idea/model/Project.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/idea/model/Project.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/XmlProvider.html

IdeaModule

• beforeMerged { Module arg -> … }

• whenMerged { Module arg -> … }

• withXml { XmlProvider arg -> … }

IdeaWorkspace

• beforeMerged { Workspace arg -> … }

• whenMerged { Workspace arg -> … }

• withXml { XmlProvider arg -> … }

Partial rewrite of existing content

A "complete rewrite" causes all existing content to be discarded, thereby losing any changes made
directly in the IDE. The beforeMerged hook makes it possible to overwrite just certain parts of the
existing content. The following example removes all existing dependencies from the Module domain
object:

Example 606. Partial Rewrite for Module

build.gradle

idea.module.iml {
 beforeMerged { module ->
 module.dependencies.clear()
 }
}

build.gradle.kts

import org.gradle.plugins.ide.idea.model.Module

idea.module.iml {
 beforeMerged(Action<Module> {
 dependencies.clear()
 })
}

The resulting module file will only contain Gradle-generated dependency entries, but not any other
dependency entries that may have been present in the original file. (In the case of dependency
entries, this is also the default behavior.) Other sections of the module file will be either left as-is or
merged. The same could be done for the module paths in the project file:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/idea/model/IdeaModule.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/idea/model/Module.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/idea/model/Module.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/XmlProvider.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/idea/model/IdeaWorkspace.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/idea/model/Workspace.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/ide/idea/model/Workspace.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/XmlProvider.html

Example 607. Partial Rewrite for Project

build.gradle

idea.project.ipr {
 beforeMerged { project ->
 project.modulePaths.clear()
 }
}

build.gradle.kts

import org.gradle.plugins.ide.idea.model.Project

idea.project.ipr {
 beforeMerged(Action<Project> {
 modulePaths.clear()
 })
}

Modifying the fully populated domain objects

The whenMerged hook allows you to manipulate the fully populated domain objects. Often this is the
preferred way to customize IDEA files. Here is how you would export all the dependencies of an
IDEA module:

Example 608. Export Dependencies

build.gradle

idea.module.iml {
 whenMerged { module ->
 module.dependencies*.exported = true
 }
}

build.gradle.kts

import org.gradle.plugins.ide.idea.model.Module
import org.gradle.plugins.ide.idea.model.ModuleDependency

idea.module.iml {
 whenMerged(Action<Module> {
 dependencies.forEach {
 (it as ModuleDependency).isExported = true
 }
 })
}

Modifying the XML representation

The withXml hook allows you to manipulate the in-memory XML representation just before the file
gets written to disk. Although Groovy’s XML support and Kotlin’s extension functions make up for a
lot, this approach is less convenient than manipulating the domain objects. In return, you get total
control over the generated file, including sections not modeled by the domain objects.

Example 609. Customizing the XML

build.gradle

idea.project.ipr {
 withXml { provider ->
 provider.node.component
 .find { it.@name == 'VcsDirectoryMappings' }
 .mapping.@vcs = 'Git'
 }
}

build.gradle.kts

import org.w3c.dom.Element

idea.project.ipr {
 withXml(Action<XmlProvider> {
 fun Element.firstElement(predicate: (Element.() -> Boolean)) =
 childNodes
 .run { (0 until length).map(::item) }
 .filterIsInstance<Element>()
 .first { it.predicate() }

 asElement()
 .firstElement { tagName == "component" && getAttribute("name") ==
"VcsDirectoryMappings" }
 .firstElement { tagName == "mapping" }
 .setAttribute("vcs", "Git")
 })
}

Further things to consider

The paths of dependencies in the generated IDEA files are absolute. If you manually define a path
variable pointing to the Gradle dependency cache, IDEA will automatically replace the absolute
dependency paths with this path variable. you can configure this path variable via the
“idea.pathVariables” property, so that it can do a proper merge without creating duplicates.

Ivy Publish Plugin
The Ivy Publish Plugin provides the ability to publish build artifacts in the Apache Ivy format,
usually to a repository for consumption by other builds or projects. What is published is one or
more artifacts created by the build, and an Ivy module descriptor (normally ivy.xml) that describes

http://ant.apache.org/ivy/

the artifacts and the dependencies of the artifacts, if any.

A published Ivy module can be consumed by Gradle (see Declaring Dependencies) and other tools
that understand the Ivy format. You can learn about the fundamentals of publishing in Publishing
Overview.

Usage

To use the Ivy Publish Plugin, include the following in your build script:

Example 610. Applying the Ivy Publish Plugin

build.gradle

plugins {
 id 'ivy-publish'
}

build.gradle.kts

plugins {
 `ivy-publish`
}

The Ivy Publish Plugin uses an extension on the project named publishing of type
PublishingExtension. This extension provides a container of named publications and a container of
named repositories. The Ivy Publish Plugin works with IvyPublication publications and
IvyArtifactRepository repositories.

Tasks

generateDescriptorFileForPubNamePublication — GenerateIvyDescriptor

Creates an Ivy descriptor file for the publication named PubName, populating the known
metadata such as project name, project version, and the dependencies. The default location for
the descriptor file is build/publications/$pubName/ivy.xml.

publishPubNamePublicationToRepoNameRepository — PublishToIvyRepository

Publishes the PubName publication to the repository named RepoName. If you have a repository
definition without an explicit name, RepoName will be "Ivy".

publish

Depends on: All publishPubNamePublicationToRepoNameRepository tasks

An aggregate task that publishes all defined publications to all defined repositories.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.PublishingExtension.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyPublication.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Publications

This plugin provides publications of type IvyPublication. To learn how to define and use
publications, see the section on basic publishing.

There are four main things you can configure in an Ivy publication:

• A component — via IvyPublication.from(org.gradle.api.component.SoftwareComponent).

• Custom artifacts — via the IvyPublication.artifact(java.lang.Object) method. See IvyArtifact for
the available configuration options for custom Ivy artifacts.

• Standard metadata like module, organisation and revision.

• Other contents of the module descriptor — via IvyPublication.descriptor(org.gradle.api.Action).

You can see all of these in action in the complete publishing example. The API documentation for
IvyPublication has additional code samples.

Identity values for the published project

The generated Ivy module descriptor file contains an <info> element that identifies the module. The
default identity values are derived from the following:

• organisation - Project.getGroup()

• module - Project.getName()

• revision - Project.getVersion()

• status - Project.getStatus()

• branch - (not set)

Overriding the default identity values is easy: simply specify the organisation, module or revision
properties when configuring the IvyPublication. status and branch can be set via the descriptor
property — see IvyModuleDescriptorSpec.

The descriptor property can also be used to add additional custom elements as children of the
<info> element, like so:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyPublication.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:from(org.gradle.api.component.SoftwareComponent)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:artifact(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyArtifact.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyPublication.html#org.gradle.api.publish.ivy.IvyPublication:descriptor(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:status
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyPublication.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html

Example 611. customizing the publication identity

build.gradle

publishing {
 publications {
 ivy(IvyPublication) {
 organisation = 'org.gradle.sample'
 module = 'project1-sample'
 revision = '1.1'
 descriptor.status = 'milestone'
 descriptor.branch = 'testing'
 descriptor.extraInfo 'http://my.namespace', 'myElement', 'Some
value'

 from components.java
 }
 }
}

build.gradle.kts

publishing {
 publications {
 create<IvyPublication>("ivy") {
 organisation = "org.gradle.sample"
 module = "project1-sample"
 revision = "1.1"
 descriptor.status = "milestone"
 descriptor.branch = "testing"
 descriptor.extraInfo("http://my.namespace", "myElement", "Some
value")

 from(components["java"])
 }
 }
}

TIP
Certain repositories are not able to handle all supported characters. For example, the :
character cannot be used as an identifier when publishing to a filesystem-backed
repository on Windows.

Gradle will handle any valid Unicode character for organisation, module and revision (as well as the
artifact’s name, extension and classifier). The only values that are explicitly prohibited are \, / and
any ISO control character. The supplied values are validated early during publication.

Customizing the generated module descriptor

At times, the module descriptor file generated from the project information will need to be tweaked
before publishing. The Ivy Publish Plugin provides a DSL for that purpose. Please see
IvyModuleDescriptorSpec in the DSL Reference for the complete documentation of available
properties and methods.

The following sample shows how to use the most common aspects of the DSL:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html

Example 612. Customizing the module descriptor file

build.gradle

 publications {
 ivyCustom(IvyPublication) {
 descriptor {
 license {
 name = 'The Apache License, Version 2.0'
 url = 'http://www.apache.org/licenses/LICENSE-2.0.txt'
 }
 author {
 name = 'Jane Doe'
 url = 'http://example.com/users/jane'
 }
 description {
 text = 'A concise description of my library'
 homepage = 'http://www.example.com/library'
 }
 }
 versionMapping {
 usage('java-api') {
 fromResolutionOf('runtimeClasspath')
 }
 usage('java-runtime') {
 fromResolutionResult()
 }
 }
 }
 }

build.gradle.kts

 publications {
 create<IvyPublication>("ivyCustom") {
 descriptor {
 license {
 name.set("The Apache License, Version 2.0")
 url.set("http://www.apache.org/licenses/LICENSE-2.0.txt")
 }
 author {
 name.set("Jane Doe")
 url.set("http://example.com/users/jane")
 }
 description {
 text.set("A concise description of my library")
 homepage.set("http://www.example.com/library")
 }
 }
 versionMapping {
 usage("java-api") {
 fromResolutionOf("runtimeClasspath")
 }
 usage("java-runtime") {
 fromResolutionResult()
 }
 }
 }
 }

In this example we are simply adding a 'description' element to the generated Ivy dependency
descriptor, but this hook allows you to modify any aspect of the generated descriptor. For example,
you could replace the version range for a dependency with the actual version used to produce the
build.

You can also add arbitrary XML to the descriptor file via
IvyModuleDescriptorSpec.withXml(org.gradle.api.Action), but you cannot use it to modify any part
of the module identifier (organisation, module, revision).

CAUTION
It is possible to modify the descriptor in such a way that it is no longer a valid
Ivy module descriptor, so care must be taken when using this feature.

Customizing dependencies versions

Two strategies are supported for publishing dependencies:

Declared versions (default)

This strategy publishes the versions that are defined by the build script author with the

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)

dependency declarations in the dependencies block. Any other kind of processing, for example
through a rule changing the resolved version, will not be taken into account for the publication.

Resolved versions

This strategy publishes the versions that were resolved during the build, possibly by applying
resolution rules and automatic conflict resolution. This has the advantage that the published
versions correspond to the ones the published artifact was tested against.

Example use cases for resolved versions:

• A project uses dynamic versions for dependencies but prefers exposing the resolved version for
a given release to its consumers.

• In combination with dependency locking, you want to publish the locked versions.

• A project leverages the rich versions constraints of Gradle, which have a lossy conversion to Ivy.
Instead of relying on the conversion, it publishes the resolved versions.

This is done by using the versionMapping DSL method which allows to configure the
VersionMappingStrategy:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/publish/VersionMappingStrategy.html

Example 613. Using resolved versions

build.gradle

 publications {
 ivyCustom(IvyPublication) {
 versionMapping {
 usage('java-api') {
 fromResolutionOf('runtimeClasspath')
 }
 usage('java-runtime') {
 fromResolutionResult()
 }
 }
 }
 }

build.gradle.kts

 publications {
 create<IvyPublication>("ivyCustom") {
 versionMapping {
 usage("java-api") {
 fromResolutionOf("runtimeClasspath")
 }
 usage("java-runtime") {
 fromResolutionResult()
 }
 }
 }
 }

In the example above, Gradle will use the versions resolved on the runtimeClasspath for
dependencies declared in api, which are mapped to the compile configuration of Ivy. Gradle will
also use the versions resolved on the runtimeClasspath for dependencies declared in implementation,
which are mapped to the runtime configuration of Ivy. fromResolutionResult() indicates that Gradle
should use the default classpath of a variant and runtimeClasspath is the default classpath of java-
runtime.

Repositories

This plugin provides repositories of type IvyArtifactRepository. To learn how to define and use
repositories for publishing, see the section on basic publishing.

Here’s a simple example of defining a publishing repository:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html

Example 614. Declaring repositories to publish to

build.gradle

publishing {
 repositories {
 ivy {
 // change to point to your repo, e.g. http://my.org/repo
 url = layout.buildDirectory.dir("repo")
 }
 }
}

build.gradle.kts

publishing {
 repositories {
 ivy {
 // change to point to your repo, e.g. http://my.org/repo
 url = uri(layout.buildDirectory.dir("repo"))
 }
 }
}

The two main things you will want to configure are the repository’s:

• URL (required)

• Name (optional)

You can define multiple repositories as long as they have unique names within the build script. You
may also declare one (and only one) repository without a name. That repository will take on an
implicit name of "Ivy".

You can also configure any authentication details that are required to connect to the repository. See
IvyArtifactRepository for more details.

Complete example

The following example demonstrates publishing with a multi-project build. Each project publishes a
Java component configured to also build and publish Javadoc and source code artifacts. The
descriptor file is customized to include the project description for each project.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html

Example 615. Publishing a Java module

settings.gradle

rootProject.name = 'ivy-publish-java'
include 'project1', 'project2'

buildSrc/build.gradle

plugins {
 id 'groovy-gradle-plugin'
}

buildSrc/src/main/groovy/myproject.publishing-conventions.gradle

plugins {
 id 'java-library'
 id 'ivy-publish'
}

version = '1.0'
group = 'org.gradle.sample'

repositories {
 mavenCentral()
}

java {
 withJavadocJar()
 withSourcesJar()
}

publishing {
 repositories {
 ivy {
 // change to point to your repo, e.g. http://my.org/repo
 url = "${rootProject.buildDir}/repo"
 }
 }
 publications {
 ivy(IvyPublication) {
 from components.java
 descriptor.description {
 text = providers.provider({ description })
 }
 }
 }
}

project1/build.gradle

plugins {
 id 'myproject.publishing-conventions'
}

description = 'The first project'

dependencies {
 implementation 'junit:junit:4.13'
 implementation project(':project2')
}

project2/build.gradle

plugins {
 id 'myproject.publishing-conventions'
}

description = 'The second project'

dependencies {
 implementation 'commons-collections:commons-collections:3.2.2'
}

settings.gradle.kts

rootProject.name = "ivy-publish-java"
include("project1", "project2")

buildSrc/build.gradle.kts

plugins {
 `kotlin-dsl`
}

repositories {
 gradlePluginPortal()
}

buildSrc/src/main/kotlin/myproject.publishing-conventions.gradle.kts

plugins {
 id("java-library")
 id("ivy-publish")
}

version = "1.0"
group = "org.gradle.sample"

repositories {
 mavenCentral()
}

java {
 withJavadocJar()
 withSourcesJar()
}

publishing {
 repositories {
 ivy {
 // change to point to your repo, e.g. http://my.org/repo
 url = uri("${rootProject.buildDir}/repo")
 }
 }
 publications {
 create<IvyPublication>("ivy") {
 from(components["java"])
 descriptor.description {
 text.set(providers.provider({ description }))
 }
 }
 }
}

project1/build.gradle.kts

plugins {
 id("myproject.publishing-conventions")
}

description = "The first project"

dependencies {
 implementation("junit:junit:4.13")
 implementation(project(":project2"))
}

project2/build.gradle.kts

plugins {
 id("myproject.publishing-conventions")
}

description = "The second project"

dependencies {
 implementation("commons-collections:commons-collections:3.2.2")
}

The result is that the following artifacts will be published for each project:

• The Gradle Module Metadata file: project1-1.0.module.

• The Ivy module metadata file: ivy-1.0.xml.

• The primary JAR artifact for the Java component: project1-1.0.jar.

• The Javadoc and sources JAR artifacts of the Java component (because we configured
withJavadocJar() and withSourcesJar()): project1-1.0-javadoc.jar, project1-1.0-source.jar.

The JaCoCo Plugin
The JaCoCo plugin provides code coverage metrics for Java code via integration with JaCoCo.

Getting Started

To get started, apply the JaCoCo plugin to the project you want to calculate code coverage for.

Example 616. Applying the JaCoCo plugin

build.gradle

plugins {
 id 'jacoco'
}

build.gradle.kts

plugins {
 jacoco
}

http://www.eclemma.org/jacoco/

If the Java plugin is also applied to your project, a new task named jacocoTestReport is created. By
default, a HTML report is generated at $buildDir/reports/jacoco/test.

NOTE
While tests should be executed before generation of the report, the jacocoTestReport
task does not depend on the test task.

Depending on your usecases, you may want to always generate the jacocoTestReport or run the test
task before generating the report explicitly.

Example 617. Define dependencies between code coverage reports and test execution

build.gradle

test {
 finalizedBy jacocoTestReport // report is always generated after tests
run
}
jacocoTestReport {
 dependsOn test // tests are required to run before generating the report
}

build.gradle.kts

tasks.test {
 finalizedBy(tasks.jacocoTestReport) // report is always generated after
tests run
}
tasks.jacocoTestReport {
 dependsOn(tasks.test) // tests are required to run before generating the
report
}

Configuring the JaCoCo Plugin

The JaCoCo plugin adds a project extension named jacoco of type JacocoPluginExtension, which
allows configuring defaults for JaCoCo usage in your build.

https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.plugins.JacocoPluginExtension.html

Example 618. Configuring JaCoCo plugin settings

build.gradle

jacoco {
 toolVersion = "0.8.7"
 reportsDirectory = layout.buildDirectory.dir('customJacocoReportDir')
}

build.gradle.kts

jacoco {
 toolVersion = "0.8.7"
 reportsDirectory.set(layout.buildDirectory.dir("customJacocoReportDir"))
}

Table 32. Gradle defaults for JaCoCo properties

Property Gradle default

reportsDirectory $buildDir/reports/jacoco

JaCoCo Report configuration

The JacocoReport task can be used to generate code coverage reports in different formats. It
implements the standard Gradle type Reporting and exposes a report container of type
JacocoReportsContainer.

https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.reporting.Reporting.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testing/jacoco/tasks/JacocoReportsContainer.html

Example 619. Configuring test task

build.gradle

jacocoTestReport {
 reports {
 xml.required = false
 csv.required = false
 html.outputLocation = layout.buildDirectory.dir('jacocoHtml')
 }
}

build.gradle.kts

tasks.jacocoTestReport {
 reports {
 xml.required.set(false)
 csv.required.set(false)
 html.outputLocation.set(layout.buildDirectory.dir("jacocoHtml"))
 }
}

Enforcing code coverage metrics

NOTE This feature requires the use of JaCoCo version 0.6.3 or higher.

The JacocoCoverageVerification task can be used to verify if code coverage metrics are met based
on configured rules. Its API exposes the method
JacocoCoverageVerification.violationRules(org.gradle.api.Action) which is used as main entry point
for configuring rules. Invoking any of those methods returns an instance of
JacocoViolationRulesContainer providing extensive configuration options. The build fails if any of
the configured rules are not met. JaCoCo only reports the first violated rule.

Code coverage requirements can be specified for a project as a whole, for individual files, and for

https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testing/jacoco/tasks/JacocoCoverageVerification.html#violationRules-org.gradle.api.Action-
https://docs.gradle.org/7.3.2/javadoc/org/gradle/testing/jacoco/tasks/rules/JacocoViolationRulesContainer.html

particular JaCoCo-specific types of coverage, e.g., lines covered or branches covered. The following
example describes the syntax.

Example 620. Configuring violation rules

build.gradle

jacocoTestCoverageVerification {
 violationRules {
 rule {
 limit {
 minimum = 0.5
 }
 }

 rule {
 enabled = false
 element = 'CLASS'
 includes = ['org.gradle.*']

 limit {
 counter = 'LINE'
 value = 'TOTALCOUNT'
 maximum = 0.3
 }
 }
 }
}

build.gradle.kts

tasks.jacocoTestCoverageVerification {
 violationRules {
 rule {
 limit {
 minimum = "0.5".toBigDecimal()
 }
 }

 rule {
 isEnabled = false
 element = "CLASS"
 includes = listOf("org.gradle.*")

 limit {
 counter = "LINE"
 value = "TOTALCOUNT"
 maximum = "0.3".toBigDecimal()
 }
 }
 }
}

The JacocoCoverageVerification task is not a task dependency of the check task provided by the Java
plugin. There is a good reason for it. The task is currently not incremental as it doesn’t declare any
outputs. Any violation of the declared rules would automatically result in a failed build when
executing the check task. This behavior might not be desirable for all users. Future versions of
Gradle might change the behavior.

JaCoCo specific task configuration

The JaCoCo plugin adds a JacocoTaskExtension extension to all tasks of type Test. This extension
allows the configuration of the JaCoCo specific properties of the test task.

https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html

Example 621. Configuring test task

build.gradle

test {
 jacoco {
 destinationFile = layout.buildDirectory.file('jacoco/jacocoTest.exec
').get().asFile
 classDumpDir = layout.buildDirectory.dir('jacoco/classpathdumps').
get().asFile
 }
}

build.gradle.kts

tasks.test {
 extensions.configure(JacocoTaskExtension::class) {
 destinationFile =
layout.buildDirectory.file("jacoco/jacocoTest.exec").get().asFile
 classDumpDir =
layout.buildDirectory.dir("jacoco/classpathdumps").get().asFile
 }
}

NOTE
Tasks configured for running with the JaCoCo agent delete the destination file for
the execution data when the task starts executing. This ensures that no stale
coverage data is present in the execution data.

Default values of the JaCoCo Task extension

Example 622. JaCoCo task extension default values

build.gradle

test {
 jacoco {
 enabled = true
 destinationFile = layout.buildDirectory.file("jacoco/${name}.exec")
.get().asFile
 includes = []
 excludes = []
 excludeClassLoaders = []
 includeNoLocationClasses = false
 sessionId = "<auto-generated value>"
 dumpOnExit = true
 classDumpDir = null
 output = JacocoTaskExtension.Output.FILE
 address = "localhost"
 port = 6300
 jmx = false
 }
}

build.gradle.kts

tasks.test {
 configure<JacocoTaskExtension> {
 isEnabled = true
 destinationFile =
layout.buildDirectory.file("jacoco/${name}.exec").get().asFile
 includes = emptyList()
 excludes = emptyList()
 excludeClassLoaders = emptyList()
 isIncludeNoLocationClasses = false
 sessionId = "<auto-generated value>"
 isDumpOnExit = true
 classDumpDir = null
 output = JacocoTaskExtension.Output.FILE
 address = "localhost"
 port = 6300
 isJmx = false
 }
}

While all tasks of type Test are automatically enhanced to provide coverage information when the

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html

java plugin has been applied, any task that implements JavaForkOptions can be enhanced by the
JaCoCo plugin. That is, any task that forks Java processes can be used to generate coverage
information.

For example you can configure your build to generate code coverage using the application plugin.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/process/JavaForkOptions.html

Example 623. Using application plugin to generate code coverage data

build.gradle

plugins {
 id 'application'
 id 'jacoco'
}

application {
 mainClass = 'org.gradle.MyMain'
}

jacoco {
 applyTo run
}

tasks.register('applicationCodeCoverageReport', JacocoReport) {
 executionData run
 sourceSets sourceSets.main
}

build.gradle.kts

plugins {
 application
 jacoco
}

application {
 mainClass.set("org.gradle.MyMain")
}

jacoco {
 applyTo(tasks.run.get())
}

tasks.register<JacocoReport>("applicationCodeCoverageReport") {
 executionData(tasks.run.get())
 sourceSets(sourceSets.main.get())
}

Coverage reports generated by applicationCodeCoverageReport

.
└── build
 ├── jacoco
 │ └── run.exec
 └── reports
 └── jacoco
 └── applicationCodeCoverageReport
 └── html
 └── index.html

Tasks

For projects that also apply the Java Plugin, the JaCoCo plugin automatically adds the following
tasks:

jacocoTestReport — JacocoReport

Generates code coverage report for the test task.

jacocoTestCoverageVerification — JacocoCoverageVerification

Verifies code coverage metrics based on specified rules for the test task.

Dependency management

The JaCoCo plugin adds the following dependency configurations:

Table 33. JaCoCo plugin - dependency configurations

Name Meaning

jacocoAnt The JaCoCo Ant library used for running the JacocoReport, JacocoMerge and
JacocoCoverageVerification tasks.

jacocoAgen
t

The JaCoCo agent library used for instrumenting the code under test.

The Java Plugin
The Java plugin adds Java compilation along with testing and bundling capabilities to a project. It
serves as the basis for many of the other JVM language Gradle plugins. You can find a
comprehensive introduction and overview to the Java Plugin in the Building Java Projects chapter.

NOTE

As indicated above, this plugin adds basic building blocks for working with JVM
projects. Its feature set has been superseded by other plugins, offering more
features based on your project type. Instead of applying it directly to your project,
you should look into the java-library or application plugins or one of the supported
alternative JVM language.

https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.testing.jacoco.tasks.JacocoCoverageVerification.html

Usage

To use the Java plugin, include the following in your build script:

Example 624. Using the Java plugin

build.gradle

plugins {
 id 'java'
}

build.gradle.kts

plugins {
 java
}

Tasks

The Java plugin adds a number of tasks to your project, as shown below.

compileJava — JavaCompile

Depends on: All tasks which contribute to the compilation classpath, including jar tasks from
projects that are on the classpath via project dependencies

Compiles production Java source files using the JDK compiler.

processResources — Copy

Copies production resources into the production resources directory.

classes

Depends on: compileJava, processResources

This is an aggregate task that just depends on other tasks. Other plugins may attach additional
compilation tasks to it.

compileTestJava — JavaCompile

Depends on: classes, and all tasks that contribute to the test compilation classpath

Compiles test Java source files using the JDK compiler.

processTestResources — Copy

Copies test resources into the test resources directory.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html

testClasses

Depends on: compileTestJava, processTestResources

This is an aggregate task that just depends on other tasks. Other plugins may attach additional
test compilation tasks to it.

jar — Jar

Depends on: classes

Assembles the production JAR file, based on the classes and resources attached to the main
source set.

javadoc — Javadoc

Depends on: classes

Generates API documentation for the production Java source using Javadoc.

test — Test

Depends on: testClasses, and all tasks which produce the test runtime classpath

Runs the unit tests using JUnit or TestNG.

clean — Delete

Deletes the project build directory.

cleanTaskName — Delete

Deletes files created by the specified task. For example, cleanJar will delete the JAR file created
by the jar task and cleanTest will delete the test results created by the test task.

SourceSet Tasks

For each source set you add to the project, the Java plugin adds the following tasks:

compileSourceSetJava — JavaCompile

Depends on: All tasks which contribute to the source set’s compilation classpath

Compiles the given source set’s Java source files using the JDK compiler.

processSourceSetResources — Copy

Copies the given source set’s resources into the resources directory.

sourceSetClasses — Task

Depends on: compileSourceSetJava, processSourceSetResources

Prepares the given source set’s classes and resources for packaging and execution. Some plugins
may add additional compilation tasks for the source set.

Lifecycle Tasks

The Java plugin attaches some of its tasks to the lifecycle tasks defined by the Base Plugin — which

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Jar.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Task.html

the Java Plugin applies automatically — and it also adds a few other lifecycle tasks:

assemble

Depends on: jar, and all other tasks that create artifacts attached to the archives configuration

Aggregate task that assembles all the archives in the project. This task is added by the Base
Plugin.

check

Depends on: test

Aggregate task that performs verification tasks, such as running the tests. Some plugins add
their own verification tasks to check. You should also attach any custom Test tasks to this
lifecycle task if you want them to execute for a full build. This task is added by the Base Plugin.

build

Depends on: check, assemble

Aggregate tasks that performs a full build of the project. This task is added by the Base Plugin.

buildNeeded

Depends on: build, and buildNeeded tasks in all projects that are dependencies in the
testRuntimeClasspath configuration.

Performs a full build of the project and all projects it depends on.

buildDependents

Depends on: build, and buildDependents tasks in all projects that have this project as a
dependency in their testRuntimeClasspath configurations

Performs a full build of the project and all projects which depend upon it.

buildConfigName — task rule

Depends on: all tasks that generate the artifacts attached to the named — ConfigName —
configuration

Assembles the artifacts for the specified configuration. This rule is added by the Base Plugin.

uploadConfigName — task rule, type: Upload

Depends on: all tasks that generate the artifacts attached to the named — ConfigName —
configuration

Assembles and uploads the artifacts in the specified configuration. This rule is added by the Base
Plugin.

The following diagram shows the relationships between these tasks.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.Upload.html

Figure 34. Java plugin - tasks

Project layout

The Java plugin assumes the project layout shown below. None of these directories need to exist or
have anything in them. The Java plugin will compile whatever it finds, and handles anything which
is missing.

src/main/java

Production Java source.

src/main/resources

Production resources, such as XML and properties files.

src/test/java

Test Java source.

src/test/resources

Test resources.

src/sourceSet/java

Java source for the source set named sourceSet.

src/sourceSet/resources

Resources for the source set named sourceSet.

Changing the project layout

You configure the project layout by configuring the appropriate source set. This is discussed in
more detail in the following sections. Here is a brief example which changes the main Java and
resource source directories.

Example 625. Custom Java source layout

build.gradle

sourceSets {
 main {
 java {
 srcDirs = ['src/java']
 }
 resources {
 srcDirs = ['src/resources']
 }
 }
}

build.gradle.kts

sourceSets {
 main {
 java {
 setSrcDirs(listOf("src/java"))
 }
 resources {
 setSrcDirs(listOf("src/resources"))
 }
 }
}

Source sets

The plugin adds the following source sets:

main

Contains the production source code of the project, which is compiled and assembled into a JAR.

test

Contains your test source code, which is compiled and executed using JUnit or TestNG. These are
typically unit tests, but you can include any test in this source set as long as they all share the
same compilation and runtime classpaths.

Source set properties

The following table lists some of the important properties of a source set. You can find more details
in the API documentation for SourceSet.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.SourceSet.html

name — (read-only) String

The name of the source set, used to identify it.

output — (read-only) SourceSetOutput

The output files of the source set, containing its compiled classes and resources.

output.classesDirs — (read-only) FileCollection

Default value: $buildDir/classes/java/$name, e.g. build/classes/java/main

The directories to generate the classes of this source set into. May contain directories for other
JVM languages, e.g. build/classes/kotlin/main.

output.resourcesDir — File

Default value: $buildDir/resources/$name, e.g. build/resources/main

The directory to generate the resources of this source set into.

compileClasspath — FileCollection

Default value: ${name}CompileClasspath configuration

The classpath to use when compiling the source files of this source set.

annotationProcessorPath — FileCollection

Default value: ${name}AnnotationProcessor configuration

The processor path to use when compiling the source files of this source set.

runtimeClasspath — FileCollection

Default value: $output, ${name}RuntimeClasspath configuration

The classpath to use when executing the classes of this source set.

java — (read-only) SourceDirectorySet

The Java source files of this source set. Contains only .java files found in the Java source
directories, and excludes all other files.

java.srcDirs — Set<File>

Default value: src/$name/java, e.g. src/main/java

The source directories containing the Java source files of this source set. You can set this to any
value that is described in this section.

java.destinationDirectory — DirectoryProperty

Default value: $buildDir/classes/java/$name, e.g. build/classes/java/main

The directory to generate compiled Java sources into. You can set this to any value that is
described in this section.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.SourceSetOutput.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.file.SourceDirectorySet.html

resources — (read-only) SourceDirectorySet

The resources of this source set. Contains only resources, and excludes any .java files found in
the resource directories. Other plugins, such as the Groovy Plugin, exclude additional types of
files from this collection.

resources.srcDirs — Set<File>

Default value: [src/$name/resources]

The directories containing the resources of this source set. You can set this to any type of value
that is described in this section.

allJava — (read-only) SourceDirectorySet

Default value: Same as java property

All Java files of this source set. Some plugins, such as the Groovy Plugin, add additional Java
source files to this collection.

allSource — (read-only) SourceDirectorySet

Default value: Sum of everything in the resources and java properties

All source files of this source set of any language. This includes all resource files and all Java
source files. Some plugins, such as the Groovy Plugin, add additional source files to this
collection.

Defining new source sets

See the integration test example in the Testing in Java & JVM projects chapter.

Some other simple source set examples

Adding a JAR containing the classes of a source set:

Example 626. Assembling a JAR for a source set

build.gradle

tasks.register('intTestJar', Jar) {
 from sourceSets.intTest.output
}

build.gradle.kts

tasks.register<Jar>("intTestJar") {
 from(sourceSets["intTest"].output)
}

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.file.SourceDirectorySet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.file.SourceDirectorySet.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.file.SourceDirectorySet.html

Generating Javadoc for a source set:

Example 627. Generating the Javadoc for a source set

build.gradle

tasks.register('intTestJavadoc', Javadoc) {
 source sourceSets.intTest.allJava
}

build.gradle.kts

tasks.register<Javadoc>("intTestJavadoc") {
 source(sourceSets["intTest"].allJava)
}

Adding a test suite to run the tests in a source set:

Example 628. Running tests in a source set

build.gradle

tasks.register('intTest', Test) {
 testClassesDirs = sourceSets.intTest.output.classesDirs
 classpath = sourceSets.intTest.runtimeClasspath
}

build.gradle.kts

tasks.register<Test>("intTest") {
 testClassesDirs = sourceSets["intTest"].output.classesDirs
 classpath = sourceSets["intTest"].runtimeClasspath
}

Dependency management

The Java plugin adds a number of dependency configurations to your project, as shown below.
Tasks such as compileJava and test then use one or more of those configurations to get the
corresponding files and use them, for example by placing them on a compilation or runtime
classpath.

Dependency configurations

NOTE
To find information on the api configuration, please consult the Java Library Plugin
reference documentation and Dependency Management for Java Projects.

implementation

Implementation only dependencies.

compileOnly

Compile time only dependencies, not used at runtime.

compileClasspath extends compileOnly, implementation

Compile classpath, used when compiling source. Used by task compileJava.

annotationProcessor

Annotation processors used during compilation.

runtimeOnly

Runtime only dependencies.

runtimeClasspath extends runtimeOnly, implementation

Runtime classpath contains elements of the implementation, as well as runtime only elements.

testImplementation extends implementation

Implementation only dependencies for tests.

testCompileOnly

Additional dependencies only for compiling tests, not used at runtime.

testCompileClasspath extends testCompileOnly, testImplementation

Test compile classpath, used when compiling test sources. Used by task compileTestJava.

testRuntimeOnly extends runtimeOnly

Runtime only dependencies for running tests.

testRuntimeClasspath extends testRuntimeOnly, testImplementation

Runtime classpath for running tests. Used by task test.

archives

Artifacts (e.g. jars) produced by this project. Used by Gradle to determine "default" tasks to
execute when building.

default extends runtimeElements

The default configuration used by a project dependency on this project. Contains the artifacts
and dependencies required by this project at runtime.

The following diagrams show the dependency configurations for the main and test source sets
respectively. You can use this legend to interpret the colors:

• Gray text — the configuration is deprecated.

• Green background — you can declare dependencies against the configuration.

• Blue-gray background — the configuration is for consumption by tasks, not for you to declare
dependencies.

• Light blue background with monospace text — a task.

Figure 35. Java plugin - main source set dependency configurations

Figure 36. Java plugin - test source set dependency configurations

For each source set you add to the project, the Java plugins adds the following dependency
configurations:

SourceSet dependency configurations

sourceSetImplementation

Compile time dependencies for the given source set. Used by sourceSetCompileClasspath,
sourceSetRuntimeClasspath.

sourceSetCompileOnly

Compile time only dependencies for the given source set, not used at runtime.

sourceSetCompileClasspath extends sourceSetCompileOnly, sourceSetImplementation

Compile classpath, used when compiling source. Used by compileSourceSetJava.

sourceSetAnnotationProcessor

Annotation processors used during compilation of this source set.

sourceSetRuntimeOnly

Runtime only dependencies for the given source set.

sourceSetRuntimeClasspath extends sourceSetRuntimeOnly, sourceSetImplementation

Runtime classpath contains elements of the implementation, as well as runtime only elements.

Contributed extension

The Java plugin adds the java extension to the project. This allows to configure a number of Java
related properties inside a dedicated DSL block.

Example 629. Using the java extension

build.gradle

java {
 toolchain {
 languageVersion = JavaLanguageVersion.of(11)
 }
}

build.gradle.kts

java {
 toolchain {
 languageVersion.set(JavaLanguageVersion.of(11))
 }
}

JavaVersion sourceCompatibility

Java version compatibility to use when compiling Java source. Default value: version of the

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.JavaPluginExtension.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.JavaPluginExtension.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/JavaVersion.html

current JVM in use.

JavaVersion targetCompatibility

Java version to generate classes for. Default value: sourceCompatibility.

withJavadocJar()

Automatically packages Javadoc and creates a variant javadocElements with an artifact
-javadoc.jar, which will be part of the publication.

withSourcesJar()

Automatically packages source code and creates a variant sourceElements with an artifact
-sources.jar, which will be part of the publication.

Directory properties

String reporting.baseDir

The name of the directory to generate reports into, relative to the build directory. Default value:
reports

(read-only) File reportsDir

The directory to generate reports into. Default value: buildDir/reporting.baseDir

String testResultsDirName

The name of the directory to generate test result .xml files into, relative to the build directory.
Default value: test-results

(read-only) File testResultsDir

The directory to generate test result .xml files into. Default value: buildDir/testResultsDirName

String testReportDirName

The name of the directory to generate the test report into, relative to the reports directory.
Default value: tests

(read-only) File testReportDir

The directory to generate the test report into. Default value: reportsDir/testReportDirName

String libsDirName

The name of the directory to generate libraries into, relative to the build directory. Default value:
libs

(read-only) File libsDir

The directory to generate libraries into. Default value: buildDir/libsDirName

String distsDirName

The name of the directory to generate distributions into, relative to the build directory. Default
value: distributions

(read-only) File distsDir

The directory to generate distributions into. Default value: buildDir/distsDirName

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/JavaVersion.html

String docsDirName

The name of the directory to generate documentation into, relative to the build directory. Default
value: docs

(read-only) File docsDir

The directory to generate documentation into. Default value: buildDir/docsDirName

String dependencyCacheDirName

The name of the directory to use to cache source dependency information, relative to the build
directory. Default value: dependency-cache

Other properties

(read-only) SourceSetContainer sourceSets

Contains the project’s source sets. Default value: Not null SourceSetContainer

String archivesBaseName

The basename to use for archives, such as JAR or ZIP files. Default value: projectName

Manifest manifest

The manifest to include in all JAR files. Default value: an empty manifest.

Convention properties (deprecated)

The Java Plugin adds a number of convention properties to the project. You can use these properties
in your build script as though they were properties of the project object. These are deprecated and
superseded by the extension described above. See the JavaPluginConvention DSL documentation
for information on them.

Testing

See the Testing in Java & JVM projects chapter for more details.

Publishing

components.java

A SoftwareComponent for publishing the production JAR created by the jar task. This
component includes the runtime dependency information for the JAR.

See also the java extension.

Incremental Java compilation

Gradle comes with a sophisticated incremental Java compiler that is active by default.

This gives you the following benefits

• Incremental builds are much faster.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/SourceSetContainer.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/tasks/SourceSetContainer.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/java/archives/Manifest.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.JavaPluginConvention.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/component/SoftwareComponent.html

• The smallest possible number of class files are changed. Classes that don’t need to be
recompiled remain unchanged in the output directory. An example scenario when this is really
useful is using JRebel — the fewer output classes are changed the quicker the JVM can use
refreshed classes.

To help you understand how incremental compilation works, the following provides a high-level
overview:

• Gradle will recompile all classes affected by a change.

• A class is affected if it has been changed or if it depends on another affected class. This works no
matter if the other class is defined in the same project, another project or even an external
library.

• A class’s dependencies are determined from type references in its bytecode or symbol analysis
via a compiler plugin.

• Since source-retention annotations are not visible in bytecode, changes to a source-retention
annotation will result in full recompilation.

• You can improve incremental compilation performance by applying good software design
principles like loose coupling. For instance, if you put an interface between a concrete class and
its dependents, the dependent classes are only recompiled when the interface changes, but not
when the implementation changes.

• The class analysis is cached in the project directory, so the first build after a clean checkout can
be slower. Consider turning off the incremental compiler on your build server.

• The class analysis is also an output stored in the build cache, which means that if a compilation
output is fetched from the build cache, then the incremental compilation analysis will be too
and the next compilation will be incremental.

Known issues

• If a compile task fails due to a compile error, it will do a full compilation again the next time it is
invoked.

• If you are using an annotation processor that reads resources (e.g. a configuration file), you
need to declare those resources as an input of the compile task.

• If a resource file is changed, Gradle will trigger a full recompilation.

Incremental annotation processing

Starting with Gradle 4.7, the incremental compiler also supports incremental annotation
processing. All annotation processors need to opt in to this feature, otherwise they will trigger a full
recompilation.

As a user you can see which annotation processors are triggering full recompilations in the --info
log. Incremental annotation processing will be deactivated if a custom executable or javaHome is
configured on the compile task.

Making an annotation processor incremental

Please first have a look at incremental Java compilation, as incremental annotation processing
builds on top of it.

Gradle supports incremental compilation for two common categories of annotation processors:
"isolating" and "aggregating". Please consult the information below to decide which category fits
your processor.

You can then register your processor for incremental compilation using a file in the processor’s
META-INF directory. The format is one line per processor, with the fully qualified name of the
processor class and its case-insensitive category separated by a comma.

Example: Registering incremental annotation processors

processor/src/main/resources/META-INF/gradle/incremental.annotation.processors

org.gradle.EntityProcessor,isolating
org.gradle.ServiceRegistryProcessor,dynamic

If your processor can only decide at runtime whether it is incremental or not, you can declare it as
"dynamic" in the META-INF descriptor and return its true type at runtime using the
Processor#getSupportedOptions() method.

Example: Registering incremental annotation processors dynamically

processor/src/main/java/org/gradle/ServiceRegistryProcessor.java

@Override
public Set<String> getSupportedOptions() {
 return Collections.singleton("org.gradle.annotation.processing.aggregating");
}

Both categories have the following limitations:

• They must generate their files using the Filer API. Writing files any other way will result in
silent failures later on, as these files won’t be cleaned up correctly. If your processor does this, it
cannot be incremental.

• They must not depend on compiler-specific APIs like com.sun.source.util.Trees. Gradle wraps
the processing APIs, so attempts to cast to compiler-specific types will fail. If your processor
does this, it cannot be incremental, unless you have some fallback mechanism.

• If they use Filer#createResource, the location argument must be one of these values from
StandardLocation: CLASS_OUTPUT, SOURCE_OUTPUT, or NATIVE_HEADER_OUTPUT. Any other argument
will disable incremental processing.

"Isolating" annotation processors

The fastest category, these look at each annotated element in isolation, creating generated files or
validation messages for it. For instance an EntityProcessor could create a <TypeName>Repository for

https://docs.oracle.com/javase/8/docs/api/javax/annotation/processing/Processor.html#getSupportedOptions--
https://docs.oracle.com/javase/8/docs/api/javax/annotation/processing/Filer.html
https://docs.oracle.com/javase/8/docs/api/javax/annotation/processing/Filer.html#createResource(javax.tools.JavaFileManager.Location,java.lang.CharSequence,java.lang.CharSequence,javax.lang.model.element.Element...)
https://docs.oracle.com/javase/8/docs/api/javax/tools/StandardLocation.html

each type annotated with @Entity.

Example: An isolated annotation processor

processor/src/main/java/org/gradle/EntityProcessor.java

Set<? extends Element> entities = roundEnv.getElementsAnnotatedWith(entityAnnotation);
for (Element entity : entities) {
 createRepository((TypeElement) entity);
}

"Isolating" processors have the following limitations:

• They must make all decisions (code generation, validation messages) for an annotated type
based on information reachable from its AST. This means you can analyze the types' super-class,
method return types, annotations etc., even transitively. But you cannot make decisions based
on unrelated elements in the RoundEnvironment. Doing so will result in silent failures because
too few files will be recompiled later. If your processor needs to make decisions based on a
combination of otherwise unrelated elements, mark it as "aggregating" instead.

• They must provide exactly one originating element for each file generated with the Filer API. If
zero or many originating elements are provided, Gradle will recompile all source files.

When a source file is recompiled, Gradle will recompile all files generated from it. When a source
file is deleted, the files generated from it are deleted.

"Aggregating" annotation processors

These can aggregate several source files into one or more output files or validation messages. For
instance, a ServiceRegistryProcessor could create a single ServiceRegistry with one method for
each type annotated with @Service.

Example: An aggregating annotation processor

processor/src/main/java/org/gradle/ServiceRegistryProcessor.java

JavaFileObject serviceRegistry = filer.createSourceFile("ServiceRegistry");
Writer writer = serviceRegistry.openWriter();
writer.write("public class ServiceRegistry {");
for (Element service : roundEnv.getElementsAnnotatedWith(serviceAnnotation)) {
 addServiceCreationMethod(writer, (TypeElement) service);
}
writer.write("}");
writer.close();

"Aggregating" processors have the following limitations:

• They can only read CLASS or RUNTIME retention annotations

• They can only read parameter names if the user passes the -parameters compiler argument.

Gradle will always reprocess (but not recompile) all annotated files that the processor was
registered for. Gradle will always recompile any files the processor generates.

State of support in popular annotation processors

NOTE
Many popular annotation processors support incremental annotation processing
(see the table below). Check with the annotation processor project directly for the
most up-to-date information and documentation.

Annotation Processor Supported since Details

Auto Value 1.6.3 N/A

Auto Service 1.6.3 N/A

Auto Value extensions Partly supported. Details in issue

Butterknife 10.2.0 N/A

Lombok 1.16.22 N/A

DataBinding AGP 3.5.0-alpha5 Hidden behind a feature toggle

Dagger 2.18 2.18 Feature toggle support,
2.24 Enabled by default

kapt 1.3.30 Hidden behind a feature toggle

Toothpick 2.0 N/A

Glide 4.9.0 N/A

Android-State 1.3.0 N/A

Parceler 1.1.11 N/A

Dart and Henson 3.1.0 N/A

MapStruct 1.4.0.Beta1 N/A

Assisted Inject 0.5.0 N/A

Realm 5.11.0 N/A

Requery Open issue N/A

https://github.com/google/auto
https://github.com/google/auto/releases/tag/auto-value-1.6.3
https://github.com/google/auto
https://github.com/google/auto/releases/tag/auto-value-1.6.3
https://github.com/google/auto
https://github.com/google/auto/issues/673
https://github.com/JakeWharton/butterknife
https://github.com/JakeWharton/butterknife/commit/2acac62c7354fee46a5201d50a4712732f6dd1ed
https://github.com/rzwitserloot/lombok
https://github.com/rzwitserloot/lombok/releases/tag/v1.16.22
https://issuetracker.google.com/issues/110061530#comment28
https://github.com/google/dagger/issues/1120
https://youtrack.jetbrains.com/issue/KT-23880
https://github.com/stephanenicolas/toothpick/pull/320
https://github.com/bumptech/glide/releases/tag/v4.9.0
https://github.com/evernote/android-state/releases/tag/v1.3.0
https://github.com/johncarl81/parceler/releases/tag/parceler-project-1.1.11
https://github.com/f2prateek/dart/releases/tag/3.1.0
https://github.com/mapstruct/mapstruct
https://github.com/mapstruct/mapstruct/releases/tag/1.4.0.Beta1
https://github.com/square/AssistedInject
https://github.com/square/AssistedInject/blob/master/CHANGELOG.md#version-050-2019-08-08
https://github.com/realm/realm-java
https://github.com/realm/realm-java/blob/v5.11.0/CHANGELOG.md
https://github.com/requery/requery/issues/773

Annotation Processor Supported since Details

EventBus 3.2.0 N/A

EclipseLink Open issue N/A

PermissionsDispatcher 4.2.0 N/A

Immutables Open issue N/A

Room 2.2.0 2.2.0 Feature toggle support,
2.3.0-alpha02 Enabled by
default

Lifecycle 2.2.0-alpha02 N/A

AndroidAnnotations 4.7.0 N/A

DBFlow Open issue N/A

AndServer Open issue N/A

Litho 0.25.0 N/A

Moxy 2.0 N/A

Epoxy 4.0.0-beta1 N/A

JPA Static Metamodel Generator 5.4.11 N/A

DeepLinkDispatch 5.0.0-beta01 Hidden behind a feature toggle

Shortbread 1.1.0 N/A

Compilation avoidance

If a dependent project has changed in an ABI-compatible way (only its private API has changed),
then Java compilation tasks will be up-to-date. This means that if project A depends on project B and
a class in B is changed in an ABI-compatible way (typically, changing only the body of a method),
then Gradle won’t recompile A.

Some of the types of changes that do not affect the public API and are ignored:

• Changing a method body

• Changing a comment

https://github.com/greenrobot/EventBus
https://github.com/greenrobot/EventBus/releases/tag/V3.2.0
https://bugs.eclipse.org/bugs/show_bug.cgi?id=535985
https://github.com/permissions-dispatcher/PermissionsDispatcher
https://github.com/permissions-dispatcher/PermissionsDispatcher/releases/tag/4.2.0
https://github.com/immutables/immutables/issues/804
https://developer.android.com/topic/libraries/architecture/room
https://developer.android.com/jetpack/androidx/releases/room#version_220_3
https://developer.android.com/jetpack/androidx/releases/lifecycle
https://issuetracker.google.com/issues/129115778
https://github.com/androidannotations/androidannotations
https://github.com/androidannotations/androidannotations/wiki/ReleaseNotes#4.7.0
https://github.com/agrosner/DBFlow/issues/1648
https://github.com/yanzhenjie/AndServer/issues/152
https://github.com/facebook/litho
https://github.com/facebook/litho/blob/master/CHANGELOG.md#version-0250
https://github.com/moxy-community/Moxy/
https://github.com/moxy-community/Moxy/releases/tag/2.0.0
https://github.com/airbnb/epoxy
https://github.com/airbnb/epoxy/releases/tag/4.0.0-beta1
https://docs.jboss.org/hibernate/orm/5.4/topical/html_single/metamodelgen/MetamodelGenerator.html
https://github.com/hibernate/hibernate-orm/releases/tag/5.4.11
https://github.com/airbnb/DeepLinkDispatch
https://github.com/airbnb/DeepLinkDispatch/releases/tag/5.0.0-beta01
https://github.com/MatthiasRobbers/shortbread
https://github.com/MatthiasRobbers/shortbread/releases/tag/v1.1.0
https://en.wikipedia.org/wiki/Application_binary_interface

• Adding, removing or changing private methods, fields, or inner classes

• Adding, removing or changing a resource

• Changing the name of jars or directories in the classpath

• Renaming a parameter

Since implementation details matter for annotation processors, they must be declared separately
on the annotation processor path. Gradle ignores annotation processors on the compile classpath.

Example 630. Declaring annotation processors

build.gradle

dependencies {
 // The dagger compiler and its transitive dependencies will only be found
on annotation processing classpath
 annotationProcessor 'com.google.dagger:dagger-compiler:2.8'

 // And we still need the Dagger library on the compile classpath itself
 implementation 'com.google.dagger:dagger:2.8'
}

build.gradle.kts

dependencies {
 // The dagger compiler and its transitive dependencies will only be found
on annotation processing classpath
 annotationProcessor("com.google.dagger:dagger-compiler:2.8")

 // And we still need the Dagger library on the compile classpath itself
 implementation("com.google.dagger:dagger:2.8")
}

Variant aware selection

The whole set of JVM plugins leverage variant aware resolution for the dependencies used. They
also install a set of attributes compatibility and disambiguation rules to configure the Gradle
attributes for the specifics of the JVM ecosystem.

The Java Library Plugin
The Java Library plugin expands the capabilities of the Java plugin by providing specific knowledge
about Java libraries. In particular, a Java library exposes an API to consumers (i.e., other projects
using the Java or the Java Library plugin). All the source sets, tasks and configurations exposed by

the Java plugin are implicitly available when using this plugin.

Usage

To use the Java Library plugin, include the following in your build script:

Example 631. Using the Java Library plugin

build.gradle

plugins {
 id 'java-library'
}

build.gradle.kts

plugins {
 `java-library`
}

API and implementation separation

The key difference between the standard Java plugin and the Java Library plugin is that the latter
introduces the concept of an API exposed to consumers. A library is a Java component meant to be
consumed by other components. It’s a very common use case in multi-project builds, but also as
soon as you have external dependencies.

The plugin exposes two configurations that can be used to declare dependencies: api and
implementation. The api configuration should be used to declare dependencies which are exported
by the library API, whereas the implementation configuration should be used to declare
dependencies which are internal to the component.

Example 632. Declaring API and implementation dependencies

build.gradle

dependencies {
 api 'org.apache.httpcomponents:httpclient:4.5.7'
 implementation 'org.apache.commons:commons-lang3:3.5'
}

build.gradle.kts

dependencies {
 api("org.apache.httpcomponents:httpclient:4.5.7")
 implementation("org.apache.commons:commons-lang3:3.5")
}

Dependencies appearing in the api configurations will be transitively exposed to consumers of the
library, and as such will appear on the compile classpath of consumers. Dependencies found in the
implementation configuration will, on the other hand, not be exposed to consumers, and therefore
not leak into the consumers' compile classpath. This comes with several benefits:

• dependencies do not leak into the compile classpath of consumers anymore, so you will never
accidentally depend on a transitive dependency

• faster compilation thanks to reduced classpath size

• less recompilations when implementation dependencies change: consumers would not need to
be recompiled

• cleaner publishing: when used in conjunction with the new maven-publish plugin, Java libraries
produce POM files that distinguish exactly between what is required to compile against the
library and what is required to use the library at runtime (in other words, don’t mix what is
needed to compile the library itself and what is needed to compile against the library).

NOTE
The compile and runtime configurations have been removed with Gradle 7.0. Please
refer to the upgrade guide how to migrate to implementation and api
configurations`.

If your build consumes a published module with POM metadata, the Java and Java Library plugins
both honor api and implementation separation through the scopes used in the POM. Meaning that
the compile classpath only includes Maven compile scoped dependencies, while the runtime
classpath adds the Maven runtime scoped dependencies as well.

This often does not have an effect on modules published with Maven, where the POM that defines
the project is directly published as metadata. There, the compile scope includes both dependencies
that were required to compile the project (i.e. implementation dependencies) and dependencies

required to compile against the published library (i.e. API dependencies). For most published
libraries, this means that all dependencies belong to the compile scope. If you encounter such an
issue with an existing library, you can consider a component metadata rule to fix the incorrect
metadata in your build. However, as mentioned above, if the library is published with Gradle, the
produced POM file only puts api dependencies into the compile scope and the remaining
implementation dependencies into the runtime scope.

If your build consumes modules with Ivy metadata, you might be able to activate api and
implementation separation as described here if all modules follow a certain structure.

NOTE
Separating compile and runtime scope of modules is active by default in Gradle
5.0+. In Gradle 4.6+, you need to activate it by adding
enableFeaturePreview('IMPROVED_POM_SUPPORT') in settings.gradle.

Recognizing API and implementation dependencies

This section will help you identify API and Implementation dependencies in your code using simple
rules of thumb. The first of these is:

• Prefer the implementation configuration over api when possible

This keeps the dependencies off of the consumer’s compilation classpath. In addition, the
consumers will immediately fail to compile if any implementation types accidentally leak into the
public API.

So when should you use the api configuration? An API dependency is one that contains at least one
type that is exposed in the library binary interface, often referred to as its ABI (Application Binary
Interface). This includes, but is not limited to:

• types used in super classes or interfaces

• types used in public method parameters, including generic parameter types (where public is
something that is visible to compilers. I.e. , public, protected and package private members in the
Java world)

• types used in public fields

• public annotation types

By contrast, any type that is used in the following list is irrelevant to the ABI, and therefore should
be declared as an implementation dependency:

• types exclusively used in method bodies

• types exclusively used in private members

• types exclusively found in internal classes (future versions of Gradle will let you declare which
packages belong to the public API)

The following class makes use of a couple of third-party libraries, one of which is exposed in the
class’s public API and the other is only used internally. The import statements don’t help us
determine which is which, so we have to look at the fields, constructors and methods instead:

Example: Making the difference between API and implementation

src/main/java/org/gradle/HttpClientWrapper.java

// The following types can appear anywhere in the code
// but say nothing about API or implementation usage
import org.apache.commons.lang3.exception.ExceptionUtils;
import org.apache.http.HttpEntity;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.UnsupportedEncodingException;

public class HttpClientWrapper {

 private final HttpClient client; // private member: implementation details

 // HttpClient is used as a parameter of a public method
 // so "leaks" into the public API of this component
 public HttpClientWrapper(HttpClient client) {
 this.client = client;
 }

 // public methods belongs to your API
 public byte[] doRawGet(String url) {
 HttpGet request = new HttpGet(url);
 try {
 HttpEntity entity = doGet(request);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 entity.writeTo(baos);
 return baos.toByteArray();
 } catch (Exception e) {
 ExceptionUtils.rethrow(e); // this dependency is internal only
 } finally {
 request.releaseConnection();
 }
 return null;
 }

 // HttpGet and HttpEntity are used in a private method, so they don't belong to
the API
 private HttpEntity doGet(HttpGet get) throws Exception {
 HttpResponse response = client.execute(get);
 if (response.getStatusLine().getStatusCode() != HttpStatus.SC_OK) {
 System.err.println("Method failed: " + response.getStatusLine());
 }
 return response.getEntity();
 }
}

The public constructor of HttpClientWrapper uses HttpClient as a parameter, so it is exposed to
consumers and therefore belongs to the API. Note that HttpGet and HttpEntity are used in the
signature of a private method, and so they don’t count towards making HttpClient an API
dependency.

On the other hand, the ExceptionUtils type, coming from the commons-lang library, is only used in a
method body (not in its signature), so it’s an implementation dependency.

Therefore, we can deduce that httpclient is an API dependency, whereas commons-lang is an
implementation dependency. This conclusion translates into the following declaration in the build
script:

Example 633. Declaring API and implementation dependencies

build.gradle

dependencies {
 api 'org.apache.httpcomponents:httpclient:4.5.7'
 implementation 'org.apache.commons:commons-lang3:3.5'
}

build.gradle.kts

dependencies {
 api("org.apache.httpcomponents:httpclient:4.5.7")
 implementation("org.apache.commons:commons-lang3:3.5")
}

The Java Library plugin configurations

The following graph describes how configurations are setup when the Java Library plugin is in use.

• The configurations in green are the ones a user should use to declare dependencies

• The configurations in pink are the ones used when a component compiles, or runs against the
library

• The configurations in blue are internal to the component, for its own use

And the next graph describes the test configurations setup:

The role of each configuration is described in the following tables:

Table 34. Java Library plugin - configurations used to declare dependencies

Configura
tion name

Role Consu
mable
?

Resol
vable
?

Description

api Declaring API
dependencies

no no This is where you declare dependencies which
are transitively exported to consumers, for
compile time and runtime.

implementa
tion

Declaring
implementation
dependencies

no no This is where you declare dependencies which
are purely internal and not meant to be exposed
to consumers (they are still exposed to
consumers at runtime).

compileOnl
y

Declaring compile
only dependencies

no no This is where you declare dependencies which
are required at compile time, but not at
runtime. This typically includes dependencies
which are shaded when found at runtime.

compileOnl
yApi

Declaring compile
only API
dependencies

no no This is where you declare dependencies which
are required at compile time by your module
and consumers, but not at runtime. This
typically includes dependencies which are
shaded when found at runtime.

Configura
tion name

Role Consu
mable
?

Resol
vable
?

Description

runtimeOnl
y

Declaring runtime
dependencies

no no This is where you declare dependencies which
are only required at runtime, and not at compile
time.

testImplem
entation

Test dependencies no no This is where you declare dependencies which
are used to compile tests.

testCompil
eOnly

Declaring test
compile only
dependencies

no no This is where you declare dependencies which
are only required at test compile time, but
should not leak into the runtime. This typically
includes dependencies which are shaded when
found at runtime.

testRuntim
eOnly

Declaring test
runtime
dependencies

no no This is where you declare dependencies which
are only required at test runtime, and not at test
compile time.

Table 35. Java Library plugin — configurations used by consumers

Configura
tion name

Role Consu
mable?

Resolv
able?

Description

apiElement
s

For compiling
against this
library

yes no This configuration is meant to be used by
consumers, to retrieve all the elements necessary
to compile against this library. Unlike the default
configuration, this doesn’t leak implementation or
runtime dependencies.

runtimeEle
ments

For executing
this library

yes no This configuration is meant to be used by
consumers, to retrieve all the elements necessary
to run against this library.

Table 36. Java Library plugin - configurations used by the library itself

Configurat
ion name

Role Consu
mable
?

Resol
vable
?

Description

compileCla
sspath

For compiling this
library

no yes This configuration contains the compile
classpath of this library, and is therefore used
when invoking the java compiler to compile it.

runtimeCla
sspath

For executing this
library

no yes This configuration contains the runtime
classpath of this library

testCompil
eClasspath

For compiling the
tests of this library

no yes This configuration contains the test compile
classpath of this library.

testRuntim
eClasspath

For executing tests
of this library

no yes This configuration contains the test runtime
classpath of this library

Building Modules for the Java Module System

Since Java 9, Java itself offers a module system that allows for strict encapsulation during compile
and runtime. You can turn a Java library into a Java Module by creating a module-info.java file in
the main/java source folder.

src
└── main
 └── java
 └── module-info.java

In the module info file, you declare a module name, which packages of your module you want to
export and which other modules you require.

module-info.java file

module org.gradle.sample {
 requires com.google.gson; // real module
 requires org.apache.commons.lang3; // automatic module
 // commons-cli-1.4.jar is not a module and cannot be required
}

To tell the Java compiler that a Jar is a module, as opposed to a traditional Java library, Gradle needs
to place it on the so called module path. It is an alternative to the classpath, which is the traditional
way to tell the compiler about compiled dependencies. Gradle will automatically put a Jar of your
dependencies on the module path, instead of the classpath, if these three things are true:

• java.modularity.inferModulePath is not turned off

• We are actually building a module (as opposed to a traditional library) which we expressed by
adding the module-info.java file. (Another option is to add the Automatic-Module-Name Jar
manifest attribute as described further down.)

• The Jar our module depends on is itself a module, which Gradles decides based on the presence
of a module-info.class — the compiled version of the module descriptor — in the Jar. (Or,
alternatively, the presence of an Automatic-Module-Name attribute the Jar manifest)

In the following, some more details about defining Java modules and how that interacts with
Gradle’s dependency management are described. You can also look at a ready made example to try
out the Java Module support directly.

Declaring module dependencies

There is a direct relationship to the dependencies you declare in the build file and the module
dependencies you declare in the module-info.java file. Ideally the declarations should be in sync as
seen in the following table.

Table 37. Mapping between Java module directives and Gradle configurations to declare
dependencies

https://www.oracle.com/corporate/features/understanding-java-9-modules.html
../samples/sample_java_modules_multi_project.html

Java Module Directive Gradle
Configuration

Purpose

requires implementation Declaring implementation dependencies

requires transitive api Declaring API dependencies

requires static compileOnly Declaring compile only dependencies

requires static transitive compileOnlyApi Declaring compile only API dependencies

Gradle currently does not automatically check if the dependency declarations are in sync. This may
be added in future versions.

For more details on declaring module dependencies, please refer to documentation on the Java
Module System.

Declaring package visibility and services

The Java module system supports additional more fine granular encapsulation concepts than
Gradle itself currently does. For example, you explicitly need to declare which packages are part of
your API and which are only visible inside your module. Some of these capabilities might be added
to Gradle itself in future versions. For now, please refer to documentation on the Java Module
System to learn how to use these features in Java Modules.

Declaring module versions

Java Modules also have a version that is encoded as part of the module identity in the module-
info.class file. This version can be inspected when a module is running.

https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html

Example 634. Declare the module version in the build script or directly as compile task option

build.gradle

version = '1.2'

tasks.named('compileJava') {
 // use the project's version or define one directly
 options.javaModuleVersion = provider { project.version }
}

build.gradle.kts

version = "1.2"

tasks.compileJava {
 // use the project's version or define one directly
 options.javaModuleVersion.set(provider { project.version as String })
}

Using libraries that are not modules

You probably want to use external libraries, like OSS libraries from Maven Central, in your modular
Java project. Some libraries, in their newer versions, are already full modules with a module
descriptor. For example, com.google.code.gson:gson:2.8.6 that has the module name
com.google.gson.

Others, like org.apache.commons:commons-lang3:3.10, may not offer a full module descriptor but will
at least contain an Automatic-Module-Name entry in their manifest file to define the module’s name
(org.apache.commons.lang3 in the example). Such modules, that only have a name as module
description, are called automatic module that export all their packages and can read all modules on
the module path.

A third case are traditional libraries that provide no module information at all — for example
commons-cli:commons-cli:1.4. Gradle puts such libraries on the classpath instead of the module path.
The classpath is then treated as one module (the so called unnamed module) by Java.

Example 635. Dependencies to modules and libraries declared in build file

build.gradle

dependencies {
 implementation 'com.google.code.gson:gson:2.8.6' // real module
 implementation 'org.apache.commons:commons-lang3:3.10' // automatic
module
 implementation 'commons-cli:commons-cli:1.4' // plain library
}

build.gradle.kts

dependencies {
 implementation("com.google.code.gson:gson:2.8.6") // real module
 implementation("org.apache.commons:commons-lang3:3.10") // automatic
module
 implementation("commons-cli:commons-cli:1.4") // plain library
}

Module dependencies declared in module-info.java file

module org.gradle.sample.lib {
 requires com.google.gson; // real module
 requires org.apache.commons.lang3; // automatic module
 // commons-cli-1.4.jar is not a module and cannot be required
}

While a real module cannot directly depend on the unnamed module (only by adding command
line flags), automatic modules can also see the unnamed module. Thus, if you cannot avoid to rely
on a library without module information, you can wrap that library in an automatic module as part
of your project. How you do that is described in the next section.

Another way to deal with non-modules is to enrich existing Jars with module descriptors yourself
using artifact transforms. This sample contains a small buildSrc plugin registering such a transform
which you may use and adjust to your needs. This can be interesting if you want to build a fully
modular application and want the java runtime to treat everything as a real module.

Disabling Java Module support

In rare cases, you might want to disable the built-in Java Module support and define the module
path by other means. To achieve this, you can disable the functionality to automatically put any Jar
on the module path. Then Gradle puts Jars with module information on the classpath, even if you
have a module-info.java in your source set. This corresponds to the behaviour of Gradle versions

../samples/sample_java_modules_with_transform.html

<7.0.

To make this work, you need to set modularity.inferModulePath = false on the Java extension (for
all tasks) or on individual tasks.

Example 636. Disable Gradle’s module path inference

build.gradle

java {
 modularity.inferModulePath = false
}

tasks.named('compileJava') {
 modularity.inferModulePath = false
}

build.gradle.kts

java {
 modularity.inferModulePath.set(false)
}

tasks.compileJava {
 modularity.inferModulePath.set(false)
}

Building an automatic module

If you can, you should always write complete module-info.java descriptors for your modules. Still,
there are a few cases where you might consider to (initally) only provide a module name for an
automatic module:

• You are working on a library that is not a module but you want to make it usable as such in the
next release. Adding an Automatic-Module-Name is a good first step (most popular OSS libraries on
Maven central have done it by now).

• As discussed in the previous section, an automatic module can be used as an adapter between
your real modules and a traditional library on the classpath.

To turn a normal Java project into an automatic module, just add the manifest entry with the
module name:

Example 637. Declare an automatic module name as Jar manifest attribute

build.gradle

tasks.named('jar') {
 manifest {
 attributes('Automatic-Module-Name': 'org.gradle.sample')
 }
}

build.gradle.kts

tasks.jar {
 manifest {
 attributes("Automatic-Module-Name" to "org.gradle.sample")
 }
}

NOTE

You can define an automatic module as part of a multi-project that otherwise
defines real modules (e.g. as an adapter to another library). While this works fine in
the Gradle build, such automatic module projects are not correctly recognized by
IDEA/Eclipse at the moment. You can work around it by manually adding the Jar
built for the automatic module to the dependencies of the project that does not find
it in the IDE’s UI.

Using classes instead of jar for compilation

A feature of the java-library plugin is that projects which consume the library only require the
classes folder for compilation, instead of the full JAR. This enables lighter inter-project
dependencies as resources processing (processResources task) and archive construction (jar task)
are no longer executed when only Java code compilation is performed during development.

NOTE
The usage or not of the classes output instead of the JAR is a consumer decision. For
example, Groovy consumers will request classes and processed resources as these
may be needed for executing AST transformation as part of the compilation process.

Increased memory usage for consumers

An indirect consequence is that up-to-date checking will require more memory, because Gradle will
snapshot individual class files instead of a single jar. This may lead to increased memory
consumption for large projects, with the benefit of having the compileJava task up-to-date in more
cases (e.g. changing resources no longer changes the input for compileJava tasks of upstream
projects)

Significant build performance drop on Windows for huge multi-projects

Another side effect of the snapshotting of individual class files, only affecting Windows systems, is
that the performance can significantly drop when processing a very large amount of class files on
the compile classpath. This only concerns very large multi-projects where a lot of classes are
present on the classpath by using many api or (deprecated) compile dependencies. To mitigate this,
you can set the org.gradle.java.compile-classpath-packaging system property to true to change the
behavior of the Java Library plugin to use jars instead of class folders for everything on the compile
classpath. Note, since this has other performance impacts and potentially side effects, by triggering
all jar tasks at compile time, it is only recommended to activate this if you suffer from the described
performance issue on Windows.

Distributing a library

Aside from publishing a library to a component repository, you may sometimes need to package a
library and its dependencies in a distribution deliverable. The Java Library Distribution Plugin is
there to help you do just that.

The Java Library Distribution Plugin
The Java library distribution plugin adds support for building a distribution ZIP for a Java library.
The distribution contains the JAR file for the library and its dependencies.

Usage

To use the Java library distribution plugin, include the following in your build script:

Example 638. Using the Java library distribution plugin

build.gradle

plugins {
 id 'java-library-distribution'
}

build.gradle.kts

plugins {
 `java-library-distribution`
}

To define the name for the distribution you have to set the baseName property as shown below:

Example 639. Configure the distribution name

build.gradle

distributions {
 main {
 distributionBaseName = 'my-name'
 }
}

build.gradle.kts

distributions {
 main {
 distributionBaseName.set("my-name")
 }
}

The plugin builds a distribution for your library. The distribution will package up the runtime
dependencies of the library. All files stored in src/main/dist will be added to the root of the archive
distribution. You can run “gradle distZip” to create a ZIP file containing the distribution.

Tasks

The Java library distribution plugin adds the following tasks to the project.

distZip — Zip

Depends on: jar

Creates a full distribution ZIP archive including runtime libraries.

Including other resources in the distribution

All of the files from the src/dist directory are copied. To include any static files in the distribution,
simply arrange them in the src/dist directory, or add them to the content of the distribution.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html

Example 640. Include files in the distribution

build.gradle

distributions {
 main {
 distributionBaseName = 'my-name'
 contents {
 from 'src/dist'
 }
 }
}

build.gradle.kts

distributions {
 main {
 distributionBaseName.set("my-name")
 contents {
 from("src/dist")
 }
 }
}

The Java Platform Plugin
The Java Platform plugin brings the ability to declare platforms for the Java ecosystem. A platform
can be used for different purposes:

• a description of modules which are published together (and for example, share the same
version)

• a set of recommended versions for heterogeneous libraries. A typical example includes the
Spring Boot BOM

• sharing a set of dependency versions between subprojects

A platform is a special kind of software component which doesn’t contain any sources: it is only
used to reference other libraries, so that they play well together during dependency resolution.

Platforms can be published as Gradle Module Metadata and Maven BOMs.

NOTE
The java-platform plugin cannot be used in combination with the java or java-
library plugins in a given project. Conceptually a project is either a platform, with
no binaries, or produces binaries.

https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-build-systems.html#using-boot-dependency-management
https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-latest-specification.md
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Management

Usage

To use the Java Platform plugin, include the following in your build script:

Example 641. Using the Java Platform plugin

build.gradle

plugins {
 id 'java-platform'
}

build.gradle.kts

plugins {
 `java-platform`
}

API and runtime separation

A major difference between a Maven BOM and a Java platform is that in Gradle dependencies and
constraints are declared and scoped to a configuration and the ones extending it. While many users
will only care about declaring constraints for compile time dependencies, thus inherited by runtime
and tests ones, it allows declaring dependencies or constraints that only apply to runtime or test.

For this purpose, the plugin exposes two configurations that can be used to declare dependencies:
api and runtime. The api configuration should be used to declare constraints and dependencies
which should be used when compiling against the platform, whereas the runtime configuration
should be used to declare constraints or dependencies which are visible at runtime.

Example 642. Declaring API and runtime constraints

build.gradle

dependencies {
 constraints {
 api 'commons-httpclient:commons-httpclient:3.1'
 runtime 'org.postgresql:postgresql:42.2.5'
 }
}

build.gradle.kts

dependencies {
 constraints {
 api("commons-httpclient:commons-httpclient:3.1")
 runtime("org.postgresql:postgresql:42.2.5")
 }
}

Note that this example makes use of constraints and not dependencies. In general, this is what you
would like to do: constraints will only apply if such a component is added to the dependency graph,
either directly or transitively. This means that all constraints listed in a platform would not add a
dependency unless another component brings it in: they can be seen as recommendations.

NOTE

For example, if a platform declares a constraint on org:foo:1.1, and that nothing
else brings in a dependency on foo, foo will not appear in the graph. However, if foo
appears, then usual conflict resolution would kick in. If a dependency brings in
org:foo:1.0, then we would select org:foo:1.1 to satisfy the platform constraint.

By default, in order to avoid the common mistake of adding a dependency in a platform instead of a
constraint, Gradle will fail if you try to do so. If, for some reason, you also want to add dependencies
in addition to constraints, you need to enable it explicitly:

Example 643. Allowing declaration of dependencies

build.gradle

javaPlatform {
 allowDependencies()
}

build.gradle.kts

javaPlatform {
 allowDependencies()
}

Local project constraints

If you have a multi-project build and want to publish a platform that links to subprojects, you can
do it by declaring constraints on the subprojects which belong to the platform, as in the example
below:

Example 644. Declaring constraints on subprojects

build.gradle

dependencies {
 constraints {
 api project(":core")
 api project(":lib")
 }
}

build.gradle.kts

dependencies {
 constraints {
 api(project(":core"))
 api(project(":lib"))
 }
}

The project notation will become a classical group:name:version notation in the published metadata.

Sourcing constraints from another platform

Sometimes the platform you define is an extension of another existing platform.

In order to have your platform include the constraints from that third party platform, it needs to be
imported as a platform dependency:

Example 645. Importing a platform

build.gradle

javaPlatform {
 allowDependencies()
}

dependencies {
 api platform('com.fasterxml.jackson:jackson-bom:2.9.8')
}

build.gradle.kts

javaPlatform {
 allowDependencies()
}

dependencies {
 api(platform("com.fasterxml.jackson:jackson-bom:2.9.8"))
}

Publishing platforms

Publishing Java platforms is done by applying the maven-publish plugin and configuring a Maven
publication that uses the javaPlatform component:

Example 646. Publishing as a BOM

build.gradle

publishing {
 publications {
 myPlatform(MavenPublication) {
 from components.javaPlatform
 }
 }
}

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("myPlatform") {
 from(components["javaPlatform"])
 }
 }
}

This will generate a BOM file for the platform, with a <dependencyManagement> block where its
<dependencies> correspond to the constraints defined in the platform module.

Consuming platforms

Because a Java Platform is a special kind of component, a dependency on a Java platform has to be
declared using the platform or enforcedPlatform keyword, as explained in the managing transitive
dependencies section. For example, if you want to share dependency versions between subprojects,
you can define a platform module which would declare all versions:

Example 647. Recommend versions in a platform module

build.gradle

dependencies {
 constraints {
 // Platform declares some versions of libraries used in subprojects
 api 'commons-httpclient:commons-httpclient:3.1'
 api 'org.apache.commons:commons-lang3:3.8.1'
 }
}

build.gradle.kts

dependencies {
 constraints {
 // Platform declares some versions of libraries used in subprojects
 api("commons-httpclient:commons-httpclient:3.1")
 api("org.apache.commons:commons-lang3:3.8.1")
 }
}

And then have subprojects depend on the platform to get recommendations:

Example 648. Get recommendations from a platform

build.gradle

dependencies {
 // get recommended versions from the platform project
 api platform(project(':platform'))
 // no version required
 api 'commons-httpclient:commons-httpclient'
}

build.gradle.kts

dependencies {
 // get recommended versions from the platform project
 api(platform(project(":platform")))
 // no version required
 api("commons-httpclient:commons-httpclient")
}

Maven Publish Plugin
The Maven Publish Plugin provides the ability to publish build artifacts to an Apache Maven
repository. A module published to a Maven repository can be consumed by Maven, Gradle (see
Declaring Dependencies) and other tools that understand the Maven repository format. You can
learn about the fundamentals of publishing in Publishing Overview.

Usage

To use the Maven Publish Plugin, include the following in your build script:

https://maven.apache.org/

Example 649. Applying the Maven Publish Plugin

build.gradle

plugins {
 id 'maven-publish'
}

build.gradle.kts

plugins {
 `maven-publish`
}

The Maven Publish Plugin uses an extension on the project named publishing of type
PublishingExtension. This extension provides a container of named publications and a container of
named repositories. The Maven Publish Plugin works with MavenPublication publications and
MavenArtifactRepository repositories.

Tasks

generatePomFileForPubNamePublication — GenerateMavenPom

Creates a POM file for the publication named PubName, populating the known metadata such as
project name, project version, and the dependencies. The default location for the POM file is
build/publications/$pubName/pom-default.xml.

publishPubNamePublicationToRepoNameRepository — PublishToMavenRepository

Publishes the PubName publication to the repository named RepoName. If you have a repository
definition without an explicit name, RepoName will be "Maven".

publishPubNamePublicationToMavenLocal — PublishToMavenLocal

Copies the PubName publication to the local Maven cache — typically
$USER_HOME/.m2/repository — along with the publication’s POM file and other metadata.

publish

Depends on: All publishPubNamePublicationToRepoNameRepository tasks

An aggregate task that publishes all defined publications to all defined repositories. It does not
include copying publications to the local Maven cache.

publishToMavenLocal

Depends on: All publishPubNamePublicationToMavenLocal tasks

Copies all defined publications to the local Maven cache, including their metadata (POM files,

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.PublishingExtension.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.MavenPublication.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html

etc.).

Publications

This plugin provides publications of type MavenPublication. To learn how to define and use
publications, see the section on basic publishing.

There are four main things you can configure in a Maven publication:

• A component — via MavenPublication.from(org.gradle.api.component.SoftwareComponent).

• Custom artifacts — via the MavenPublication.artifact(java.lang.Object) method. See
MavenArtifact for the available configuration options for custom Maven artifacts.

• Standard metadata like artifactId, groupId and version.

• Other contents of the POM file — via MavenPublication.pom(org.gradle.api.Action).

You can see all of these in action in the complete publishing example. The API documentation for
MavenPublication has additional code samples.

Identity values in the generated POM

The attributes of the generated POM file will contain identity values derived from the following
project properties:

• groupId - Project.getGroup()

• artifactId - Project.getName()

• version - Project.getVersion()

Overriding the default identity values is easy: simply specify the groupId, artifactId or version
attributes when configuring the MavenPublication.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.MavenPublication.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:from(org.gradle.api.component.SoftwareComponent)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:artifact(java.lang.Object)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.MavenArtifact.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.MavenPublication.html#org.gradle.api.publish.maven.MavenPublication:pom(org.gradle.api.Action)
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.MavenPublication.html

Example 650. Customizing the publication identity

build.gradle

publishing {
 publications {
 maven(MavenPublication) {
 groupId = 'org.gradle.sample'
 artifactId = 'library'
 version = '1.1'

 from components.java
 }
 }
}

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("maven") {
 groupId = "org.gradle.sample"
 artifactId = "library"
 version = "1.1"

 from(components["java"])
 }
 }
}

TIP
Certain repositories will not be able to handle all supported characters. For example,
the : character cannot be used as an identifier when publishing to a filesystem-backed
repository on Windows.

Maven restricts groupId and artifactId to a limited character set ([A-Za-z0-9_\\-.]+) and Gradle
enforces this restriction. For version (as well as the artifact extension and classifier properties),
Gradle will handle any valid Unicode character.

The only Unicode values that are explicitly prohibited are \, / and any ISO control character.
Supplied values are validated early in publication.

Customizing the generated POM

The generated POM file can be customized before publishing. For example, when publishing a
library to Maven Central you will need to set certain metadata. The Maven Publish Plugin provides

a DSL for that purpose. Please see MavenPom in the DSL Reference for the complete documentation
of available properties and methods. The following sample shows how to use the most common
ones:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.MavenPom.html

Example 651. Customizing the POM file

build.gradle

publishing {
 publications {
 mavenJava(MavenPublication) {
 pom {
 name = 'My Library'
 description = 'A concise description of my library'
 url = 'http://www.example.com/library'
 properties = [
 myProp: "value",
 "prop.with.dots": "anotherValue"
]
 licenses {
 license {
 name = 'The Apache License, Version 2.0'
 url = 'http://www.apache.org/licenses/LICENSE-
2.0.txt'
 }
 }
 developers {
 developer {
 id = 'johnd'
 name = 'John Doe'
 email = 'john.doe@example.com'
 }
 }
 scm {
 connection = 'scm:git:git://example.com/my-library.git'
 developerConnection = 'scm:git:ssh://example.com/my-
library.git'
 url = 'http://example.com/my-library/'
 }
 }
 }
 }
}

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("mavenJava") {
 pom {
 name.set("My Library")
 description.set("A concise description of my library")
 url.set("http://www.example.com/library")
 properties.set(mapOf(
 "myProp" to "value",
 "prop.with.dots" to "anotherValue"
))
 licenses {
 license {
 name.set("The Apache License, Version 2.0")
 url.set("http://www.apache.org/licenses/LICENSE-
2.0.txt")
 }
 }
 developers {
 developer {
 id.set("johnd")
 name.set("John Doe")
 email.set("john.doe@example.com")
 }
 }
 scm {
 connection.set("scm:git:git://example.com/my-
library.git")
 developerConnection.set("scm:git:ssh://example.com/my-
library.git")
 url.set("http://example.com/my-library/")
 }
 }
 }
 }
}

Customizing dependencies versions

Two strategies are supported for publishing dependencies:

Declared versions (default)

This strategy publishes the versions that are defined by the build script author with the
dependency declarations in the dependencies block. Any other kind of processing, for example
through a rule changing the resolved version, will not be taken into account for the publication.

Resolved versions

This strategy publishes the versions that were resolved during the build, possibly by applying
resolution rules and automatic conflict resolution. This has the advantage that the published
versions correspond to the ones the published artifact was tested against.

Example use cases for resolved versions:

• A project uses dynamic versions for dependencies but prefers exposing the resolved version for
a given release to its consumers.

• In combination with dependency locking, you want to publish the locked versions.

• A project leverages the rich versions constraints of Gradle, which have a lossy conversion to
Maven. Instead of relying on the conversion, it publishes the resolved versions.

This is done by using the versionMapping DSL method which allows to configure the
VersionMappingStrategy:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/publish/VersionMappingStrategy.html

Example 652. Using resolved versions

build.gradle

publishing {
 publications {
 mavenJava(MavenPublication) {
 versionMapping {
 usage('java-api') {
 fromResolutionOf('runtimeClasspath')
 }
 usage('java-runtime') {
 fromResolutionResult()
 }
 }
 }
 }
}

build.gradle.kts

publishing {
 publications {
 create<MavenPublication>("mavenJava") {
 versionMapping {
 usage("java-api") {
 fromResolutionOf("runtimeClasspath")
 }
 usage("java-runtime") {
 fromResolutionResult()
 }
 }
 }
 }
}

In the example above, Gradle will use the versions resolved on the runtimeClasspath for
dependencies declared in api, which are mapped to the compile scope of Maven. Gradle will also use
the versions resolved on the runtimeClasspath for dependencies declared in implementation, which
are mapped to the runtime scope of Maven. fromResolutionResult() indicates that Gradle should use
the default classpath of a variant and runtimeClasspath is the default classpath of java-runtime.

Repositories

This plugin provides repositories of type MavenArtifactRepository. To learn how to define and use

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html

repositories for publishing, see the section on basic publishing.

Here’s a simple example of defining a publishing repository:

Example 653. Declaring repositories to publish to

build.gradle

publishing {
 repositories {
 maven {
 // change to point to your repo, e.g. http://my.org/repo
 url = layout.buildDirectory.dir('repo')
 }
 }
}

build.gradle.kts

publishing {
 repositories {
 maven {
 // change to point to your repo, e.g. http://my.org/repo
 url = uri(layout.buildDirectory.dir("repo"))
 }
 }
}

The two main things you will want to configure are the repository’s:

• URL (required)

• Name (optional)

You can define multiple repositories as long as they have unique names within the build script. You
may also declare one (and only one) repository without a name. That repository will take on an
implicit name of "Maven".

You can also configure any authentication details that are required to connect to the repository. See
MavenArtifactRepository for more details.

Snapshot and release repositories

It is a common practice to publish snapshots and releases to different Maven repositories. A simple
way to accomplish this is to configure the repository URL based on the project version. The
following sample uses one URL for versions that end with "SNAPSHOT" and a different URL for the

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html

rest:

Example 654. Configuring repository URL based on project version

build.gradle

publishing {
 repositories {
 maven {
 def releasesRepoUrl = layout.buildDirectory.dir('repos/releases')
 def snapshotsRepoUrl = layout.buildDirectory.dir('
repos/snapshots')
 url = version.endsWith('SNAPSHOT') ? snapshotsRepoUrl :
releasesRepoUrl
 }
 }
}

build.gradle.kts

publishing {
 repositories {
 maven {
 val releasesRepoUrl = layout.buildDirectory.dir("repos/releases")
 val snapshotsRepoUrl =
layout.buildDirectory.dir("repos/snapshots")
 url = uri(if (version.toString().endsWith("SNAPSHOT"))
snapshotsRepoUrl else releasesRepoUrl)
 }
 }
}

Similarly, you can use a project or system property to decide which repository to publish to. The
following example uses the release repository if the project property release is set, such as when a
user runs gradle -Prelease publish:

Example 655. Configuring repository URL based on project property

build.gradle

publishing {
 repositories {
 maven {
 def releasesRepoUrl = layout.buildDirectory.dir('repos/releases')
 def snapshotsRepoUrl = layout.buildDirectory.dir('
repos/snapshots')
 url = project.hasProperty('release') ? releasesRepoUrl :
snapshotsRepoUrl
 }
 }
}

build.gradle.kts

publishing {
 repositories {
 maven {
 val releasesRepoUrl = layout.buildDirectory.dir("repos/releases")
 val snapshotsRepoUrl =
layout.buildDirectory.dir("repos/snapshots")
 url = uri(if (project.hasProperty("release")) releasesRepoUrl
else snapshotsRepoUrl)
 }
 }
}

Publishing to Maven Local

For integration with a local Maven installation, it is sometimes useful to publish the module into the
Maven local repository (typically at $USER_HOME/.m2/repository), along with its POM file and other
metadata. In Maven parlance, this is referred to as 'installing' the module.

The Maven Publish Plugin makes this easy to do by automatically creating a PublishToMavenLocal
task for each MavenPublication in the publishing.publications container. The task name follows
the pattern of publishPubNamePublicationToMavenLocal. Each of these tasks is wired into the
publishToMavenLocal aggregate task. You do not need to have mavenLocal() in your
publishing.repositories section.

Publishing Maven relocation information

When a project changes the groupId or artifactId (the coordinates) of an artifact it publishes, it is

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.MavenPublication.html

important to let users know where the new artifact can be found. Maven can help with that
through the relocation feature. The way this works is that a project publishes an additional artifact
under the old coordinates consisting only of a minimal relocation POM; that POM file specifies
where the new artifact can be found. Maven repository browsers and build tools can then inform
the user that the coordinates of an artifact have changed.

For this, a project adds an additional MavenPublication specifying a MavenPomRelocation:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.publish.maven.MavenPomRelocation

Example 656. Specifying a relocation POM

build.gradle

publishing {
 publications {
 // ... artifact publications

 // Specify relocation POM
 relocation(MavenPublication) {
 pom {
 // Old artifact coordinates
 groupId = "com.example"
 artifactId = "lib"
 version = "2.0.0"

 distributionManagement {
 relocation {
 // New artifact coordinates
 groupId = "com.new-example"
 artifactId = "lib"
 version = "2.0.0"
 message = "groupId has been changed"
 }
 }
 }
 }
 }
}

build.gradle.kts

publishing {
 publications {
 // ... artifact publications

 // Specify relocation POM
 create<MavenPublication>("relocation") {
 pom {
 // Old artifact coordinates
 groupId = "com.example"
 artifactId = "lib"
 version = "2.0.0"

 distributionManagement {
 relocation {
 // New artifact coordinates
 groupId.set("com.new-example")
 artifactId.set("lib")
 version.set("2.0.0")
 message.set("groupId has been changed")
 }
 }
 }
 }
 }
}

Only the property which has changed needs to be specified under relocation, that is artifactId and
/ or groupId. All other properties are optional.

TIP
Specifying the version can be useful when the new artifact has a different version, for
example because version numbering has started at 1.0.0 again. A custom message
allows explaining why the artifact coordinates have changed.

The relocation POM should be created for what would be the next version of the old artifact. For
example when the artifact coordinates of com.example:lib:1.0.0 are changed and the artifact with
the new coordinates continues version numbering and is published as com.new-example:lib:2.0.0,
then the relocation POM should specify a relocation from com.example:lib:2.0.0 to com.new-
example:lib:2.0.0.

A relocation POM only has to be published once, the build file configuration for it should be
removed again once it has been published.

Note that a relocation POM is not suitable for all situations; when an artifact has been split into two
or more separate artifacts then a relocation POM might not be helpful.

Retroactively publishing relocation information

It is possible to publish relocation information retroactively after the coordinates of an artifact
have changed in the past, and no relocation information was published back then.

The same recommendations as described above apply. To ease migration for users, it is important
to pay attention to the version specified in the relocation POM. The relocation POM should allow the
user to move to the new artifact in one step, and then allow them to update to the latest version in a
separate step. For example when for the coordinates of com.new-example:lib:5.0.0 were changed in
version 2.0.0, then ideally the relocation POM should be published for the old coordinates
com.example:lib:2.0.0 relocating to com.new-example:lib:2.0.0. The user can then switch from
com.example:lib to com.new-example and then separately update from version 2.0.0 to 5.0.0, handling
breaking changes (if any) step by step.

When relocation information is published retroactively, it is not necessary to wait for next regular
release of the project, it can be published in the meantime. As mentioned above, the relocation
information should then be removed again from the build file once the relocation POM has been
published.

Avoiding duplicate dependencies

When only the coordinates of the artifact have changed, but package names of the classes inside the
artifact have remained the same, dependency conflicts can occur. A project might (transitively)
depend on the old artifact but at the same time also have a dependency on the new artifact which
both contain the same classes, potentially with incompatible changes.

To detect such conflicting duplicate dependencies, capabilities can be published as part of the
Gradle Module Metadata. For an example using a Java Library project, see declaring additional
capabilities for a local component.

Performing a dry run

To verify that relocation information works as expected before publishing it to a remote repository,
it can first be published to the local Maven repository. Then a local test Gradle or Maven project can
be created which has the relocation artifact as dependency.

Complete example

The following example demonstrates how to sign and publish a Java library including sources,
Javadoc, and a customized POM:

Example 657. Publishing a Java library

build.gradle

plugins {
 id 'java-library'
 id 'maven-publish'
 id 'signing'
}

group = 'com.example'
version = '1.0'

java {
 withJavadocJar()
 withSourcesJar()
}

publishing {
 publications {
 mavenJava(MavenPublication) {
 artifactId = 'my-library'
 from components.java
 versionMapping {
 usage('java-api') {
 fromResolutionOf('runtimeClasspath')
 }
 usage('java-runtime') {
 fromResolutionResult()
 }
 }
 pom {
 name = 'My Library'
 description = 'A concise description of my library'
 url = 'http://www.example.com/library'
 properties = [
 myProp: "value",
 "prop.with.dots": "anotherValue"
]
 licenses {
 license {
 name = 'The Apache License, Version 2.0'
 url = 'http://www.apache.org/licenses/LICENSE-
2.0.txt'
 }
 }
 developers {
 developer {
 id = 'johnd'
 name = 'John Doe'
 email = 'john.doe@example.com'
 }

 }
 scm {
 connection = 'scm:git:git://example.com/my-library.git'
 developerConnection = 'scm:git:ssh://example.com/my-
library.git'
 url = 'http://example.com/my-library/'
 }
 }
 }
 }
 repositories {
 maven {
 // change URLs to point to your repos, e.g. http://my.org/repo
 def releasesRepoUrl = layout.buildDirectory.dir('repos/releases')
 def snapshotsRepoUrl = layout.buildDirectory.dir('
repos/snapshots')
 url = version.endsWith('SNAPSHOT') ? snapshotsRepoUrl :
releasesRepoUrl
 }
 }
}

signing {
 sign publishing.publications.mavenJava
}

javadoc {
 if(JavaVersion.current().isJava9Compatible()) {
 options.addBooleanOption('html5', true)
 }
}

build.gradle.kts

plugins {
 `java-library`
 `maven-publish`
 signing
}

group = "com.example"
version = "1.0"

java {
 withJavadocJar()
 withSourcesJar()
}

publishing {
 publications {
 create<MavenPublication>("mavenJava") {
 artifactId = "my-library"
 from(components["java"])
 versionMapping {
 usage("java-api") {
 fromResolutionOf("runtimeClasspath")
 }
 usage("java-runtime") {
 fromResolutionResult()
 }
 }
 pom {
 name.set("My Library")
 description.set("A concise description of my library")
 url.set("http://www.example.com/library")
 properties.set(mapOf(
 "myProp" to "value",
 "prop.with.dots" to "anotherValue"
))
 licenses {
 license {
 name.set("The Apache License, Version 2.0")
 url.set("http://www.apache.org/licenses/LICENSE-
2.0.txt")
 }
 }
 developers {
 developer {
 id.set("johnd")
 name.set("John Doe")
 email.set("john.doe@example.com")
 }

 }
 scm {
 connection.set("scm:git:git://example.com/my-
library.git")
 developerConnection.set("scm:git:ssh://example.com/my-
library.git")
 url.set("http://example.com/my-library/")
 }
 }
 }
 }
 repositories {
 maven {
 // change URLs to point to your repos, e.g. http://my.org/repo
 val releasesRepoUrl =
uri(layout.buildDirectory.dir("repos/releases"))
 val snapshotsRepoUrl =
uri(layout.buildDirectory.dir("repos/snapshots"))
 url = if (version.toString().endsWith("SNAPSHOT"))
snapshotsRepoUrl else releasesRepoUrl
 }
 }
}

signing {
 sign(publishing.publications["mavenJava"])
}

tasks.javadoc {
 if (JavaVersion.current().isJava9Compatible) {
 (options as StandardJavadocDocletOptions).addBooleanOption("html5",
true)
 }
}

The result is that the following artifacts will be published:

• The POM: my-library-1.0.pom

• The primary JAR artifact for the Java component: my-library-1.0.jar

• The sources JAR artifact that has been explicitly configured: my-library-1.0-sources.jar

• The Javadoc JAR artifact that has been explicitly configured: my-library-1.0-javadoc.jar

The Signing Plugin is used to generate a signature file for each artifact. In addition, checksum files
will be generated for all artifacts and signature files.

Removal of deferred configuration behavior

Prior to Gradle 5.0, the publishing {} block was (by default) implicitly treated as if all the logic
inside it was executed after the project is evaluated. This behavior caused quite a bit of confusion
and was deprecated in Gradle 4.8, because it was the only block that behaved that way.

You may have some logic inside your publishing block or in a plugin that is depending on the
deferred configuration behavior. For instance, the following logic assumes that the subprojects will
be evaluated when the artifactId is set:

build.gradle

subprojects {
 publishing {
 publications {
 mavenJava(MavenPublication) {
 from components.java
 artifactId = jar.archiveBaseName
 }
 }
 }
}

build.gradle.kts

subprojects {
 publishing {
 publications {
 create<MavenPublication>("mavenJava") {
 from(components["java"])
 artifactId = tasks.jar.get().archiveBaseName.get()
 }
 }
 }
}

This kind of logic must now be wrapped in an afterEvaluate {} block.

build.gradle

subprojects {
 publishing {
 publications {
 mavenJava(MavenPublication) {
 from components.java
 afterEvaluate {
 artifactId = jar.archiveBaseName
 }
 }
 }
 }
}

build.gradle.kts

subprojects {
 publishing {
 publications {
 create<MavenPublication>("mavenJava") {
 from(components["java"])
 afterEvaluate {
 artifactId = tasks.jar.get().archiveBaseName.get()
 }
 }
 }
 }
}

The PMD Plugin
The PMD plugin performs quality checks on your project’s Java source files using PMD and
generates reports from these checks.

Usage

To use the PMD plugin, include the following in your build script:

https://pmd.github.io/

Example 658. Using the PMD plugin

build.gradle

plugins {
 id 'pmd'
}

build.gradle.kts

plugins {
 pmd
}

The plugin adds a number of tasks to the project that perform the quality checks. You can execute
the checks by running gradle check.

Note that PMD will run with the same Java version used to run Gradle.

Tasks

The PMD plugin adds the following tasks to the project:

pmdMain — Pmd

Runs PMD against the production Java source files.

pmdTest — Pmd

Runs PMD against the test Java source files.

pmdSourceSet — Pmd

Runs PMD against the given source set’s Java source files.

The PMD plugin adds the following dependencies to tasks defined by the Java plugin.

Table 38. PMD plugin - additional task dependencies

Task
name

Depends on

check All PMD tasks, including pmdMain and pmdTest.

Dependency management

The PMD plugin adds the following dependency configurations:

Table 39. PMD plugin - dependency configurations

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.Pmd.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.Pmd.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.Pmd.html

Nam
e

Meaning

pmd The PMD libraries to use

pmdAu
x

The additional libraries that are available for type resolution during analysis. This might be
useful if PMD complains about missing classes.

Configuration

build.gradle

pmd {
 consoleOutput = true
 toolVersion = "6.21.0"
 rulesMinimumPriority = 5
 ruleSets = ["category/java/errorprone.xml",
"category/java/bestpractices.xml"]
}

build.gradle.kts

pmd {
 isConsoleOutput = true
 toolVersion = "6.21.0"
 rulesMinimumPriority.set(5)
 ruleSets = listOf("category/java/errorprone.xml",
"category/java/bestpractices.xml")
}

See the PmdExtension class in the API documentation.

The Scala Plugin
The Scala plugin extends the Java plugin to add support for Scala projects. It can deal with Scala
code, mixed Scala and Java code, and even pure Java code (although we don’t necessarily
recommend to use it for the latter). The plugin supports joint compilation, which allows you to
freely mix and match Scala and Java code, with dependencies in both directions. For example, a
Scala class can extend a Java class that in turn extends a Scala class. This makes it possible to use
the best language for the job, and to rewrite any class in the other language if needed.

Note that if you want to benefit from the API / implementation separation, you can also apply the
java-library plugin to your Scala project.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.quality.PmdExtension.html
https://www.scala-lang.org/

Usage

To use the Scala plugin, include the following in your build script:

Example 659. Using the Scala plugin

build.gradle

plugins {
 id 'scala'
}

build.gradle.kts

plugins {
 scala
}

Tasks

The Scala plugin adds the following tasks to the project. Information about altering the
dependencies to Java compile tasks are found here.

compileScala — ScalaCompile

Depends on: compileJava

Compiles production Scala source files.

compileTestScala — ScalaCompile

Depends on: compileTestJava

Compiles test Scala source files.

compileSourceSetScala — ScalaCompile

Depends on: compileSourceSetJava

Compiles the given source set’s Scala source files.

scaladoc — ScalaDoc

Generates API documentation for the production Scala source files.

The ScalaCompile and ScalaDoc tasks can also leverage the Java toolchain support.

The Scala plugin adds the following dependencies to tasks added by the Java plugin.

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.scala.ScalaDoc.html
toolchains.pdf#toolchains

Table 40. Scala plugin - additional task dependencies

Task name Depends on

classes compileScala

testClasses compileTestScala

sourceSetClasses compileSourceSetScala

Figure 37. Scala plugin - tasks

Project layout

The Scala plugin assumes the project layout shown below. All the Scala source directories can
contain Scala and Java code. The Java source directories may only contain Java source code. None
of these directories need to exist or have anything in them; the Scala plugin will simply compile
whatever it finds.

src/main/java

Production Java source.

src/main/resources

Production resources, such as XML and properties files.

src/main/scala

Production Scala source. May also contain Java source files for joint compilation.

src/test/java

Test Java source.

src/test/resources

Test resources.

src/test/scala

Test Scala source. May also contain Java source files for joint compilation.

src/sourceSet/java

Java source for the source set named sourceSet.

src/sourceSet/resources

Resources for the source set named sourceSet.

src/sourceSet/scala

Scala source files for the given source set. May also contain Java source files for joint
compilation.

Changing the project layout

Just like the Java plugin, the Scala plugin allows you to configure custom locations for Scala
production and test source files.

Example 660. Custom Scala source layout

build.gradle

sourceSets {
 main {
 scala {
 srcDirs = ['src/scala']
 }
 }
 test {
 scala {
 srcDirs = ['test/scala']
 }
 }
}

build.gradle.kts

sourceSets {
 main {
 withConvention(ScalaSourceSet::class) {
 scala {
 setSrcDirs(listOf("src/scala"))
 }
 }
 }
 test {
 withConvention(ScalaSourceSet::class) {
 scala {
 setSrcDirs(listOf("test/scala"))
 }
 }
 }
}

Dependency management

Scala projects need to declare a scala-library dependency. This dependency will then be used on
compile and runtime class paths. It will also be used to get hold of the Scala compiler and Scaladoc
tool, respectively.[18]

If Scala is used for production code, the scala-library dependency should be added to the
implementation configuration:

Example 661. Declaring a Scala dependency for production code

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.scala-lang:scala-library:2.11.12'
 testImplementation 'org.scalatest:scalatest_2.11:3.0.0'
 testImplementation 'junit:junit:4.13'
}

build.gradle.kts

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.scala-lang:scala-library:2.11.12")
 testImplementation("org.scalatest:scalatest_2.11:3.0.0")
 testImplementation("junit:junit:4.13")
}

If you want to use Scala 3 instead of the scala-library dependency you should add the scala3-
library_3 dependency:

Example 662. Declaring a Scala 3 dependency for production code

build.gradle

plugins {
 id 'scala'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.scala-lang:scala3-library_3:3.0.1'
 testImplementation 'org.scalatest:scalatest_3:3.2.9'
 testImplementation 'junit:junit:4.13'
}

dependencies {
 implementation 'commons-collections:commons-collections:3.2.2'
}

build.gradle.kts

plugins {
 scala
}

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.scala-lang:scala3-library_3:3.0.1")
 testImplementation("org.scalatest:scalatest_3:3.2.9")
 testImplementation("junit:junit:4.13")
}

dependencies {
 implementation("commons-collections:commons-collections:3.2.2")
}

If Scala is only used for test code, the scala-library dependency should be added to the
testImplementation configuration:

Example 663. Declaring a Scala dependency for test code

build.gradle

dependencies {
 testImplementation 'org.scala-lang:scala-library:2.11.1'
}

build.gradle.kts

dependencies {
 testImplementation("org.scala-lang:scala-library:2.11.1")
}

Automatic configuration of scalaClasspath

The ScalaCompile and ScalaDoc tasks consume Scala code in two ways: on their classpath, and on
their scalaClasspath. The former is used to locate classes referenced by the source code, and will
typically contain scala-library along with other libraries. The latter is used to load and execute the
Scala compiler and Scaladoc tool, respectively, and should only contain the scala-compiler library
and its dependencies.

Unless a task’s scalaClasspath is configured explicitly, the Scala (base) plugin will try to infer it from
the task’s classpath. This is done as follows:

• If a scala-library jar is found on classpath, and the project has at least one repository declared,
a corresponding scala-compiler repository dependency will be added to scalaClasspath.

• Otherwise, execution of the task will fail with a message saying that scalaClasspath could not be
inferred.

Configuring the Zinc compiler

The Scala plugin uses a configuration named zinc to resolve the Zinc compiler and its
dependencies. Gradle will provide a default version of Zinc, but if you need to use a particular Zinc
version, you can change it. Gradle supports version 1.2.0 of Zinc and above.

https://github.com/sbt/zinc

Example 664. Declaring a version of the Zinc compiler to use

build.gradle

scala {
 zincVersion = "1.2.1"
}

build.gradle.kts

scala {
 zincVersion.set("1.2.1")
}

The Zinc compiler itself needs a compatible version of scala-library that may be different from the
version required by your application. Gradle takes care of specifying a compatible version of scala-
library for you. [19]

You can diagnose problems with the version of the Zinc compiler selected by running
dependencyInsight for the zinc configuration.

Table 41. Zinc compatibility table

Gradle
versio
n

Supported Zinc versions Zinc
coordinat
es

Required Scala
version

Supported Scala
compilation
version

6.0 and
newer

SBT Zinc. Versions 1.2.0 and above. org.scala-
sbt:zinc_2
.12

Scala 2.12.x is
required for
running Zinc.

Scala 2.10.x
through 2.13.x can
be compiled.

1.x
throug
h 5.x

Deprecated Typesafe Zinc compiler.
Versions 0.3.0 and above, except for
0.3.2 through 0.3.5.2.

com.typesa
fe.zinc:zi
nc

Scala 2.10.x is
required for
running Zinc.

Scala 2.9.x
through 2.12.x can
be compiled.

Adding plugins to the Scala compiler

The Scala plugin adds a configuration named scalaCompilerPlugins which is used to declare and
resolve optional compiler plugins.

https://github.com/sbt/zinc
https://github.com/typesafehub/zinc
https://github.com/typesafehub/zinc

Example 665. Adding a dependency on a Scala compiler plugin

build.gradle

dependencies {
 implementation "org.scala-lang:scala-library:2.13.1"
 scalaCompilerPlugins "org.typelevel:kind-projector_2.13.1:0.11.0"
}

build.gradle.kts

dependencies {
 implementation("org.scala-lang:scala-library:2.13.1")
 scalaCompilerPlugins("org.typelevel:kind-projector_2.13.1:0.11.0")
}

Convention properties

The Scala plugin does not add any convention properties to the project.

Source set properties

The Scala plugin adds the following extensions to each source set in the project. You can use these
in your build script as though they were properties of the source set object.

scala — SourceDirectorySet (read-only)

The Scala source files of this source set. Contains all .scala and .java files found in the Scala
source directories, and excludes all other types of files. Default value: non-null.

scala.srcDirs — Set<File>

The source directories containing the Scala source files of this source set. May also contain Java
source files for joint compilation. Can set using anything described in Understanding implicit
conversion to file collections. Default value: [projectDir/src/name/scala].

allScala — FileTree (read-only)

All Scala source files of this source set. Contains only the .scala files found in the Scala source
directories. Default value: non-null.

These extensions are backed by an object of type ScalaSourceSet.

The Scala plugin also modifies some source set properties:

Table 42. Scala plugin - source set properties

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.file.SourceDirectorySet.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.scala.ScalaSourceSet.html

Property
name

Change

allJava Adds all .java files found in the Scala source directories.

allSource Adds all source files found in the Scala source directories.

Compiling in external process

Scala compilation takes place in an external process.

Memory settings for the external process default to the defaults of the JVM. To adjust memory
settings, configure the scalaCompileOptions.forkOptions property as needed:

Example 666. Adjusting memory settings

build.gradle

tasks.withType(ScalaCompile) {
 scalaCompileOptions.forkOptions.with {
 memoryMaximumSize = '1g'
 jvmArgs = ['-XX:MaxMetaspaceSize=512m']
 }
}

build.gradle.kts

tasks.withType<ScalaCompile>().configureEach {
 scalaCompileOptions.forkOptions.apply {
 memoryMaximumSize = "1g"
 jvmArgs = listOf("-XX:MaxMetaspaceSize=512m")
 }
}

Incremental compilation

By compiling only classes whose source code has changed since the previous compilation, and
classes affected by these changes, incremental compilation can significantly reduce Scala
compilation time. It is particularly effective when frequently compiling small code increments, as is
often done at development time.

The Scala plugin defaults to incremental compilation by integrating with Zinc, a standalone version
of sbt's incremental Scala compiler. If you want to disable the incremental compilation, set force =
true in your build file:

https://github.com/typesafehub/zinc
https://github.com/harrah/xsbt

Example 667. Forcing all code to be compiled

build.gradle

tasks.withType(ScalaCompile) {
 scalaCompileOptions.with {
 force = true
 }
}

build.gradle.kts

tasks.withType<ScalaCompile>().configureEach {
 scalaCompileOptions.apply {
 isForce = true
 }
}

Note: This will only cause all classes to be recompiled if at least one input source file has changed. If
there are no changes to the source files, the compileScala task will still be considered UP-TO-DATE as
usual.

The Zinc-based Scala Compiler supports joint compilation of Java and Scala code. By default, all
Java and Scala code under src/main/scala will participate in joint compilation. Even Java code will
be compiled incrementally.

Incremental compilation requires dependency analysis of the source code. The results of this
analysis are stored in the file designated by scalaCompileOptions.incrementalOptions.analysisFile
(which has a sensible default). In a multi-project build, analysis files are passed on to downstream
ScalaCompile tasks to enable incremental compilation across project boundaries. For ScalaCompile
tasks added by the Scala plugin, no configuration is necessary to make this work. For other
ScalaCompile tasks that you might add, the property
scalaCompileOptions.incrementalOptions.publishedCode needs to be configured to point to the
classes folder or Jar archive by which the code is passed on to compile class paths of downstream
ScalaCompile tasks. Note that if publishedCode is not set correctly, downstream tasks may not
recompile code affected by upstream changes, leading to incorrect compilation results.

Note that Zinc’s Nailgun based daemon mode is not supported. Instead, we plan to enhance Gradle’s
own compiler daemon to stay alive across Gradle invocations, reusing the same Scala compiler.
This is expected to yield another significant speedup for Scala compilation.

Eclipse Integration

When the Eclipse plugin encounters a Scala project, it adds additional configuration to make the
project work with Scala IDE out of the box. Specifically, the plugin adds a Scala nature and

dependency container.

IntelliJ IDEA Integration

When the IDEA plugin encounters a Scala project, it adds additional configuration to make the
project work with IDEA out of the box. Specifically, the plugin adds a Scala SDK (IntelliJ IDEA 14+)
and a Scala compiler library that matches the Scala version on the project’s class path. The Scala
plugin is backwards compatible with earlier versions of IntelliJ IDEA and it is possible to add a
Scala facet instead of the default Scala SDK by configuring targetVersion on IdeaModel.

Example 668. Explicitly specify a target IntelliJ IDEA version

build.gradle

idea {
 targetVersion = '13'
}

build.gradle.kts

idea {
 targetVersion = "13"
}

The Signing Plugin
The Signing Plugin adds the ability to digitally sign built files and artifacts. These digital signatures
can then be used to prove who built the artifact the signature is attached to as well as other
information such as when the signature was generated.

The Signing Plugin currently only provides support for generating OpenPGP signatures (which is
the signature format required for publication to the Maven Central Repository).

Usage

To use the Signing Plugin, include the following in your build script:

https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP
http://central.sonatype.org/pages/requirements.html#sign-files-with-gpgpgp

Example 669. Using the Signing Plugin

build.gradle

plugins {
 id 'signing'
}

build.gradle.kts

plugins {
 signing
}

Signatory credentials

In order to create OpenPGP signatures, you will need a key pair (instructions on creating a key pair
using the GnuPG tools can be found in the GnuPG HOWTOs). You need to provide the Signing Plugin
with your key information, which means three things:

• The public key ID (The last 8 symbols of the keyId. You can use gpg -K to get it).

• The absolute path to the secret key ring file containing your private key. (Since gpg 2.1, you need
to export the keys with command gpg --keyring secring.gpg --export-secret-keys >
~/.gnupg/secring.gpg).

• The passphrase used to protect your private key.

These items must be supplied as the values of the signing.keyId, signing.secretKeyRingFile, and
signing.password properties, respectively.

NOTE
Given the personal and private nature of these values, a good practice is to store
them in the gradle.properties file in the user’s Gradle home directory (described in
System properties) instead of in the project directory itself.

signing.keyId=24875D73
signing.password=secret
signing.secretKeyRingFile=/Users/me/.gnupg/secring.gpg

If specifying this information (especially signing.password) in the user gradle.properties file is not
feasible for your environment, you can supply the information via the command line:

https://www.gnupg.org/
https://www.gnupg.org/documentation/howtos.html

> gradle sign -Psigning.secretKeyRingFile=/Users/me/.gnupg/secring.gpg
-Psigning.password=secret -Psigning.keyId=24875D73

Using in-memory ascii-armored keys

In some setups it is easier to use environment variables to pass the secret key and password used
for signing. For instance, when using a CI server to sign artifacts, securely providing the keyring file
is often troublesome. On the other hand, most CI servers provide means to securely store
environment variables and provide them to builds. Using the following setup, you can pass the
secret key (in ascii-armored format) and the password using the ORG_GRADLE_PROJECT_signingKey and
ORG_GRADLE_PROJECT_signingPassword environment variables, respectively:

build.gradle

signing {
 def signingKey = findProperty("signingKey")
 def signingPassword = findProperty("signingPassword")
 useInMemoryPgpKeys(signingKey, signingPassword)
 sign stuffZip
}

build.gradle.kts

signing {
 val signingKey: String? by project
 val signingPassword: String? by project
 useInMemoryPgpKeys(signingKey, signingPassword)
 sign(tasks["stuffZip"])
}

Using in-memory ascii-armored OpenPGP subkeys

To prevent sharing of the master key and to keep it secure it is also possible to use in-memory ascii-
armored subkeys. The main difference between using in-memory ascii-armored keys and subkeys
is that it is necessary to specify key identifier as well. Using the following setup, you can pass the
key identifier, secret key (in ascii-armored format) and the password using the
ORG_GRADLE_PROJECT_signingKeyId, ORG_GRADLE_PROJECT_signingKey and
ORG_GRADLE_PROJECT_signingPassword environment variables respectively:

build.gradle

signing {
 def signingKeyId = findProperty("signingKeyId")
 def signingKey = findProperty("signingKey")
 def signingPassword = findProperty("signingPassword")
 useInMemoryPgpKeys(signingKeyId, signingKey, signingPassword)
 sign stuffZip
}

build.gradle.kts

signing {
 val signingKeyId: String? by project
 val signingKey: String? by project
 val signingPassword: String? by project
 useInMemoryPgpKeys(signingKeyId, signingKey, signingPassword)
 sign(tasks["stuffZip"])
}

Using OpenPGP subkeys

OpenPGP supports subkeys, which are like the normal keys, except they’re bound to a master key
pair. One feature of OpenPGP subkeys is that they can be revoked independently of the master keys
which makes key management easier. A practical case study of how subkeys can be leveraged in
software development can be read on the Debian wiki.

The Signing Plugin supports OpenPGP subkeys out of the box. Just specify a subkey ID as the value
in the signing.keyId property.

Using gpg-agent

By default the Signing Plugin uses a Java-based implementation of PGP for signing. This
implementation cannot use the gpg-agent program for managing private keys, though. If you want
to use the gpg-agent, you can change the signatory implementation used by the Signing Plugin:

https://wiki.debian.org/Subkeys

Example 670. Sign with GnuPG

build.gradle

signing {
 useGpgCmd()
 sign configurations.archives
}

build.gradle.kts

signing {
 useGpgCmd()
 sign(configurations.archives.get())
}

This tells the Signing Plugin to use the GnupgSignatory instead of the default PgpSignatory. The
GnupgSignatory relies on the gpg2 program to sign the artifacts. Of course, this requires that GnuPG
is installed.

Without any further configuration the gpg2 (on Windows: gpg2.exe) executable found on the PATH
will be used. The password is supplied by the gpg-agent and the default key is used for signing.

Gnupg signatory configuration

The GnupgSignatory supports a number of configuration options for controlling how gpg is invoked.
These are typically set in gradle.properties:

Example: Configure the GnupgSignatory

gradle.properties

signing.gnupg.executable=gpg
signing.gnupg.useLegacyGpg=true
signing.gnupg.homeDir=gnupg-home
signing.gnupg.optionsFile=gnupg-home/gpg.conf
signing.gnupg.keyName=24875D73
signing.gnupg.passphrase=gradle

signing.gnupg.executable

The gpg executable that is invoked for signing. The default value of this property depends on
useLegacyGpg. If that is true then the default value of executable is "gpg" otherwise it is "gpg2".

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/signing/signatory/pgp/PgpSignatory.html

signing.gnupg.useLegacyGpg

Must be true if GnuPG version 1 is used and false otherwise. The default value of the property is
false.

signing.gnupg.homeDir

Sets the home directory for GnuPG. If not given the default home directory of GnuPG is used.

signing.gnupg.optionsFile

Sets a custom options file for GnuPG. If not given GnuPG’s default configuration file is used.

signing.gnupg.keyName

The id of the key that should be used for signing. If not given then the default key configured in
GnuPG will be used.

signing.gnupg.passphrase

The passphrase for unlocking the secret key. If not given then the gpg-agent program is used for
getting the passphrase.

All configuration properties are optional.

Specifying what to sign

As well as configuring how things are to be signed (i.e. the signatory configuration), you must also
specify what is to be signed. The Signing Plugin provides a DSL that allows you to specify the tasks
and/or configurations that should be signed.

Signing Publications

When publishing artifacts, you often want to sign them so the consumer of your artifacts can verify
their signature. For example, the Java plugin defines a component that you can use to define a
publication to a Maven (or Ivy) repository using the Maven Publish Plugin (or the Ivy Publish
Plugin, respectively). Using the Signing DSL, you can specify that all of the artifacts of this
publication should be signed.

Example 671. Signing a publication

build.gradle

signing {
 sign publishing.publications.mavenJava
}

build.gradle.kts

signing {
 sign(publishing.publications["mavenJava"])
}

This will create a task (of type Sign) in your project named signMavenJavaPublication that will build
all artifacts that are part of the publication (if needed) and then generate signatures for them. The
signature files will be placed alongside the artifacts being signed.

Example: Signing a publication output

Output of gradle signMavenJavaPublication

> gradle signMavenJavaPublication
> Task :compileJava
> Task :processResources
> Task :classes
> Task :jar
> Task :javadoc
> Task :javadocJar
> Task :sourcesJar
> Task :generateMetadataFileForMavenJavaPublication
> Task :generatePomFileForMavenJavaPublication
> Task :signMavenJavaPublication

BUILD SUCCESSFUL in 0s
9 actionable tasks: 9 executed

In addition, the above DSL allows to sign multiple comma-separated publications. Alternatively, you
may specify publishing.publications to sign all publications, or use
publishing.publications.matching { … } to sign all publications that match the specified predicate.

Signing Configurations

It is common to want to sign the artifacts of a configuration. For example, the Java plugin
configures a jar to build and this jar artifact is added to the archives configuration. Using the

https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.signing.Sign.html

Signing DSL, you can specify that all of the artifacts of this configuration should be signed.

Example 672. Signing a configuration

build.gradle

signing {
 sign configurations.archives
}

build.gradle.kts

signing {
 sign(configurations.archives.get())
}

This will create a task (of type Sign) in your project named signArchives, that will build any archives
artifacts (if needed) and then generate signatures for them. The signature files will be placed
alongside the artifacts being signed.

Example: Signing a configuration output

Output of gradle signArchives

> gradle signArchives
> Task :compileJava
> Task :processResources
> Task :classes
> Task :jar
> Task :signArchives

BUILD SUCCESSFUL in 0s
4 actionable tasks: 4 executed

Signing Task Output

In some cases the artifact that you need to sign may not be part of a configuration. In this case you
can directly sign the task that produces the artifact to sign.

https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.signing.Sign.html

Example 673. Signing a task output

build.gradle

tasks.register('stuffZip', Zip) {
 archiveBaseName = 'stuff'
 from 'src/stuff'
}

signing {
 sign stuffZip
}

build.gradle.kts

tasks.register<Zip>("stuffZip") {
 archiveBaseName.set("stuff")
 from("src/stuff")
}

signing {
 sign(tasks["stuffZip"])
}

This will create a task (of type Sign) in your project named signStuffZip, that will build the input
task’s archive (if needed) and then sign it. The signature file will be placed alongside the artifact
being signed.

Example: Signing a task output

Output of gradle signStuffZip

> gradle signStuffZip
> Task :stuffZip
> Task :signStuffZip

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

For a task to be signable, it must produce an archive of some type, i.e. it must extend
AbstractArchiveTask. Tasks that do this are the Tar, Zip, Jar, War and Ear tasks.

Conditional Signing

A common usage pattern is to require the signing of build artifacts only under certain conditions.

https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.signing.Sign.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.Jar.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.War.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.ear.Ear.html

For example, you may not need to sign artifacts for non-release versions. To achieve this, you can
specify the condition as an argument of the required() method.

Example 674. Specifying when signing is required

build.gradle

version = '1.0-SNAPSHOT'
ext.isReleaseVersion = !version.endsWith("SNAPSHOT")

signing {
 required { isReleaseVersion && gradle.taskGraph.hasTask("publish") }
 sign publishing.publications.main
}

build.gradle.kts

version = "1.0-SNAPSHOT"
extra["isReleaseVersion"] = !version.toString().endsWith("SNAPSHOT")

signing {
 setRequired({
 (project.extra["isReleaseVersion"] as Boolean) &&
gradle.taskGraph.hasTask("publish")
 })
 sign(publishing.publications["main"])
}

In this example, we only want to require signing if we are building a release version and we are
going to publish it. Because we are inspecting the task graph to determine if we are going to be
publishing, we must set the signing.required property to a closure to defer the evaluation. See
SigningExtension.setRequired(java.lang.Object) for more information.

If the required condition does not hold true, artifacts will only be signed if signatory credentials are
configured. Alternatively, you may want to skip signing entirely whether or not signatory
credentials are available. If so, you can configure the Sign tasks to be skipped, for example by
attaching a predicate using the onlyIf() method shown in the following example:

https://docs.gradle.org/7.3.2/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired-java.lang.Object-
https://docs.gradle.org/7.3.2/dsl/org.gradle.plugins.signing.Sign.html

Example 675. Specifying when signing is skipped

build.gradle

tasks.withType(Sign) {
 onlyIf { isReleaseVersion }
}

build.gradle.kts

tasks.withType<Sign>().configureEach {
 onlyIf { project.extra["isReleaseVersion"] as Boolean }
}

Publishing the signatures

When signing publications, the resultant signature artifacts are automatically added to the
corresponding publication. Thus, when publishing to a repository, e.g. by executing the publish task,
your signatures will be distributed along with the other artifacts without any additional
configuration.

When signing configurations and tasks, the resultant signature artifacts are automatically added to
the signatures and archives dependency configurations.

The War Plugin
The War plugin extends the Java plugin to add support for assembling web application WAR files. It
disables the default JAR archive generation of the Java plugin and adds a default WAR archive task.

Usage

To use the War plugin, include the following in your build script:

Example 676. Using the War plugin

build.gradle

plugins {
 id 'war'
}

build.gradle.kts

plugins {
 war
}

Project layout

In addition to the standard Java project layout, the War Plugin adds:

src/main/webapp

Web application sources

Tasks

The War plugin adds and modifies the following tasks:

war — War

Depends on: compile

Assembles the application WAR file.

assemble - lifecycle task

Depends on: war

The War plugin adds the following dependencies to tasks added by the Java plugin;

Figure 38. War plugin - tasks

Dependency management

The War plugin adds two dependency configurations:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.War.html

providedCompile

This configuration should be used for dependencies required at compilation but which are
provided by the environment in which the WAR is deployed. Dependencies declared here are
thus visible to the main and test compilation classpaths.

providedRuntime

This configuration should be used for dependencies required at runtime but which are provided
by the environment in which the WAR is deployed. Dependencies declared here are only visible
to the main and test runtime classpaths.

NOTE

It is important to note that these provided configurations work transitively. Let’s say
you add commons-httpclient:commons-httpclient:3.0 to any of the provided
configurations. This dependency has a dependency on commons-codec. Because this is
a "provided" configuration, this means that neither of these dependencies will be
added to your WAR, even if the commons-codec library is an explicit dependency of
your implementation configuration. If you don’t want this transitive behavior, simply
declare your provided dependencies like commons-httpclient:commons-
httpclient:3.0@jar.

Publishing

components.web

A SoftwareComponent for publishing the production WAR created by the war task.

Convention properties (deprecated)

webAppDirName — String

Default value: src/main/webapp

The name of the web application source directory, relative to the project directory.

webAppDir — (read-only) File

Default value: $webAppDirName, e.g. src/main/webapp

The path to the web application source directory.

These properties are provided by a WarPluginConvention object.

Configuring war tasks via convention properties is deprecated. If you need to set default values the
war task then configure the task directly. If you want to configure all tasks of type War in the project
then use tasks.withType(War.class).configureEach(…).

War

The default behavior of the War task is to copy the content of src/main/webapp to the root of the
archive. Your webapp directory may of course contain a WEB-INF sub-directory, which may contain a
web.xml file. Your compiled classes are compiled to WEB-INF/classes. All the dependencies of the
runtime [20] configuration are copied to WEB-INF/lib.

https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/component/SoftwareComponent.html
https://docs.gradle.org/7.3.2/dsl/org.gradle.api.plugins.WarPluginConvention.html
https://docs.gradle.org/7.3.2/javadoc/org/gradle/api/DomainObjectCollection.html#withType-java.lang.Class-

The War class in the API documentation has additional useful information.

Customizing

Here is an example with the most important customization options:

https://docs.gradle.org/7.3.2/dsl/org.gradle.api.tasks.bundling.War.html

Example 677. Customization of war plugin

build.gradle

configurations {
 moreLibs
}

repositories {
 flatDir { dirs "lib" }
 mavenCentral()
}

dependencies {
 implementation module(":compile:1.0") {
 dependency ":compile-transitive-1.0@jar"
 dependency ":providedCompile-transitive:1.0@jar"
 }
 providedCompile "javax.servlet:servlet-api:2.5"
 providedCompile module(":providedCompile:1.0") {
 dependency ":providedCompile-transitive:1.0@jar"
 }
 runtimeOnly ":runtime:1.0"
 providedRuntime ":providedRuntime:1.0@jar"
 testImplementation "junit:junit:4.13"
 moreLibs ":otherLib:1.0"
}

war {
 webAppDirectory = file('src/main/webapp')
 from 'src/rootContent' // adds a file-set to the root of the archive
 webInf { from 'src/additionalWebInf' } // adds a file-set to the WEB-INF
dir.
 classpath fileTree('additionalLibs') // adds a file-set to the WEB-
INF/lib dir.
 classpath configurations.moreLibs // adds a configuration to the WEB-
INF/lib dir.
 webXml = file('src/someWeb.xml') // copies a file to WEB-INF/web.xml
}

build.gradle.kts

val moreLibs = configurations.create("moreLibs")

repositories {
 flatDir { dir("lib") }
 mavenCentral()
}

dependencies {
 implementation(module(":compile:1.0") {
 dependency(":compile-transitive-1.0@jar")
 dependency(":providedCompile-transitive:1.0@jar")
 })
 providedCompile("javax.servlet:servlet-api:2.5")
 providedCompile(module(":providedCompile:1.0") {
 dependency(":providedCompile-transitive:1.0@jar")
 })
 runtimeOnly(":runtime:1.0")
 providedRuntime(":providedRuntime:1.0@jar")
 testImplementation("junit:junit:4.13")
 moreLibs(":otherLib:1.0")
}

tasks.war {
 webAppDirectory.set(file("src/main/webapp"))
 from("src/rootContent") // adds a file-set to the root of the archive
 webInf { from("src/additionalWebInf") } // adds a file-set to the WEB-INF
dir.
 classpath(fileTree("additionalLibs")) // adds a file-set to the WEB-
INF/lib dir.
 classpath(moreLibs) // adds a configuration to the WEB-INF/lib dir.
 webXml = file("src/someWeb.xml") // copies a file to WEB-INF/web.xml
}

Of course one can configure the different file-sets with a closure to define excludes and includes.

[17] Gradle uses the same conventions as introduced by Russel Winder’s Gant tool.

[18] See Automatic configuration of Scala classpath.

[19] Gradle does not support running the Zinc compiler v1.2.0 with Scala 2.11.

[20] The runtime configuration extends the compile configuration.

https://gant.github.io/

License Information

License Information

Gradle Documentation
Copyright © 2007-2019 Gradle, Inc.

Gradle build tool source code is open-source and licensed under the Apache License 2.0.

Gradle user manual and DSL references are licensed under Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

Gradle Build Scan Plugin
Use of the build scan plugin is subject to Gradle’s Terms of Service.

https://github.com/gradle/gradle/blob/master/LICENSE
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://scans.gradle.com/plugin/
https://gradle.com/legal/terms-of-service/

	Gradle User Manual: Version 7.3.2
	Table of Contents
	About Gradle
	What is Gradle?

	Getting Started
	Getting Started
	Installing Gradle
	Troubleshooting builds
	Compatibility Matrix

	Upgrading and Migrating
	Upgrading your build from Gradle 6.x to the latest
	Upgrading your build from Gradle 5.x to 6.0
	Upgrading your build from Gradle 4.x to 5.0
	Migrating Builds From Apache Maven
	Migrating Builds From Apache Ant

	Running Gradle Builds
	Build Environment
	The Gradle Daemon
	Initialization Scripts
	Executing Multi-Project Builds
	Build Cache

	Authoring Gradle Builds
	Build Script Basics
	Authoring Tasks
	Writing Build Scripts
	Working With Files
	Using Gradle Plugins
	Build Lifecycle
	Logging
	Structuring and Building a Software Component with Gradle
	Sharing Build Logic between Subprojects
	Fine Tuning the Project Layout
	Declaring Dependencies between Subprojects
	Configuration time and execution time
	Organizing Gradle Projects
	Best practices for authoring maintainable builds
	Lazy Configuration
	Testing Build Logic with TestKit
	Using Ant from Gradle

	Dependency Management
	Learning the Basics
	Declaring Versions
	Controlling Transitive Dependencies
	Producing and Consuming Variants of Libraries
	Working in a Multi-repo Environment
	Publishing Libraries

	Java & Other JVM Projects
	Building Java & JVM projects
	Testing in Java & JVM projects
	Managing Dependencies of JVM Projects

	C++ & Other Native Projects
	Building C++ projects
	Testing in C++ projects
	Building Swift projects
	Testing in Swift projects

	Native Projects using the Software Model
	Building native software
	Implementing model rules in a plugin

	Extending Gradle
	Developing Custom Gradle Task Types
	Developing Custom Gradle Plugins
	Developing Custom Gradle Types
	Gradle Plugin Development Plugin

	Reference
	A Groovy Build Script Primer
	Gradle Kotlin DSL Primer
	Gradle Plugin Reference
	Command-Line Interface
	Gradle & Third-party Tools
	The Gradle Wrapper
	The Directories and Files Gradle Uses

	Plugins
	The ANTLR Plugin
	The Application Plugin
	The Base Plugin
	Build Init Plugin
	The Checkstyle Plugin
	The CodeNarc Plugin
	The Distribution Plugin
	The Ear Plugin
	The Eclipse Plugins
	The Groovy Plugin
	The IDEA Plugin
	Ivy Publish Plugin
	The JaCoCo Plugin
	The Java Plugin
	The Java Library Plugin
	The Java Library Distribution Plugin
	The Java Platform Plugin
	Maven Publish Plugin
	The PMD Plugin
	The Scala Plugin
	The Signing Plugin
	The War Plugin

	License Information
	License Information
	Gradle Documentation
	Gradle Build Scan Plugin

