AOMedia AV1 Codec
blockd.h
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_BLOCKD_H_
13 #define AOM_AV1_COMMON_BLOCKD_H_
14 
15 #include "config/aom_config.h"
16 
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_ports/mem.h"
19 #include "aom_scale/yv12config.h"
20 
21 #include "av1/common/common_data.h"
22 #include "av1/common/quant_common.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/mv.h"
26 #include "av1/common/scale.h"
27 #include "av1/common/seg_common.h"
28 #include "av1/common/tile_common.h"
29 
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33 
34 #define USE_B_QUANT_NO_TRELLIS 1
35 
36 #define MAX_MB_PLANE 3
37 
38 #define MAX_DIFFWTD_MASK_BITS 1
39 
40 #define INTERINTRA_WEDGE_SIGN 0
41 
44 // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
45 enum {
46  DIFFWTD_38 = 0,
47  DIFFWTD_38_INV,
48  DIFFWTD_MASK_TYPES,
49 } UENUM1BYTE(DIFFWTD_MASK_TYPE);
50 
51 enum {
52  KEY_FRAME = 0,
53  INTER_FRAME = 1,
54  INTRA_ONLY_FRAME = 2, // replaces intra-only
55  S_FRAME = 3,
56  FRAME_TYPES,
57 } UENUM1BYTE(FRAME_TYPE);
58 
59 static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
60  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
61 }
62 
63 static INLINE int is_inter_mode(PREDICTION_MODE mode) {
64  return mode >= INTER_MODE_START && mode < INTER_MODE_END;
65 }
66 
67 typedef struct {
68  uint8_t *plane[MAX_MB_PLANE];
69  int stride[MAX_MB_PLANE];
70 } BUFFER_SET;
71 
72 static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
73  return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
74 }
75 static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
76  return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
77 }
78 
79 static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
80  static const PREDICTION_MODE lut[] = {
81  DC_PRED, // DC_PRED
82  V_PRED, // V_PRED
83  H_PRED, // H_PRED
84  D45_PRED, // D45_PRED
85  D135_PRED, // D135_PRED
86  D113_PRED, // D113_PRED
87  D157_PRED, // D157_PRED
88  D203_PRED, // D203_PRED
89  D67_PRED, // D67_PRED
90  SMOOTH_PRED, // SMOOTH_PRED
91  SMOOTH_V_PRED, // SMOOTH_V_PRED
92  SMOOTH_H_PRED, // SMOOTH_H_PRED
93  PAETH_PRED, // PAETH_PRED
94  NEARESTMV, // NEARESTMV
95  NEARMV, // NEARMV
96  GLOBALMV, // GLOBALMV
97  NEWMV, // NEWMV
98  NEARESTMV, // NEAREST_NEARESTMV
99  NEARMV, // NEAR_NEARMV
100  NEARESTMV, // NEAREST_NEWMV
101  NEWMV, // NEW_NEARESTMV
102  NEARMV, // NEAR_NEWMV
103  NEWMV, // NEW_NEARMV
104  GLOBALMV, // GLOBAL_GLOBALMV
105  NEWMV, // NEW_NEWMV
106  };
107  assert(NELEMENTS(lut) == MB_MODE_COUNT);
108  assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
109  return lut[mode];
110 }
111 
112 static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
113  static const PREDICTION_MODE lut[] = {
114  MB_MODE_COUNT, // DC_PRED
115  MB_MODE_COUNT, // V_PRED
116  MB_MODE_COUNT, // H_PRED
117  MB_MODE_COUNT, // D45_PRED
118  MB_MODE_COUNT, // D135_PRED
119  MB_MODE_COUNT, // D113_PRED
120  MB_MODE_COUNT, // D157_PRED
121  MB_MODE_COUNT, // D203_PRED
122  MB_MODE_COUNT, // D67_PRED
123  MB_MODE_COUNT, // SMOOTH_PRED
124  MB_MODE_COUNT, // SMOOTH_V_PRED
125  MB_MODE_COUNT, // SMOOTH_H_PRED
126  MB_MODE_COUNT, // PAETH_PRED
127  MB_MODE_COUNT, // NEARESTMV
128  MB_MODE_COUNT, // NEARMV
129  MB_MODE_COUNT, // GLOBALMV
130  MB_MODE_COUNT, // NEWMV
131  NEARESTMV, // NEAREST_NEARESTMV
132  NEARMV, // NEAR_NEARMV
133  NEWMV, // NEAREST_NEWMV
134  NEARESTMV, // NEW_NEARESTMV
135  NEWMV, // NEAR_NEWMV
136  NEARMV, // NEW_NEARMV
137  GLOBALMV, // GLOBAL_GLOBALMV
138  NEWMV, // NEW_NEWMV
139  };
140  assert(NELEMENTS(lut) == MB_MODE_COUNT);
141  assert(is_inter_compound_mode(mode));
142  return lut[mode];
143 }
144 
145 static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
146  return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
147  mode == NEW_NEARMV);
148 }
149 
150 static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
151  return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
152  mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
153 }
154 
155 static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
156  return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
157 }
158 
159 /* For keyframes, intra block modes are predicted by the (already decoded)
160  modes for the Y blocks to the left and above us; for interframes, there
161  is a single probability table. */
162 
163 typedef struct {
164  // Value of base colors for Y, U, and V
165  uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
166  // Number of base colors for Y (0) and UV (1)
167  uint8_t palette_size[2];
168 } PALETTE_MODE_INFO;
169 
170 typedef struct {
171  FILTER_INTRA_MODE filter_intra_mode;
172  uint8_t use_filter_intra;
173 } FILTER_INTRA_MODE_INFO;
174 
175 static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
176  DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
177 };
178 
179 #if CONFIG_RD_DEBUG
180 #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
181 #endif
182 
183 typedef struct RD_STATS {
184  int rate;
185  int64_t dist;
186  // Please be careful of using rdcost, it's not guaranteed to be set all the
187  // time.
188  // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
189  // these functions, make sure rdcost is always up-to-date according to
190  // rate/dist.
191  int64_t rdcost;
192  int64_t sse;
193  int skip_txfm; // sse should equal to dist when skip_txfm == 1
194  int zero_rate;
195 #if CONFIG_RD_DEBUG
196  int txb_coeff_cost[MAX_MB_PLANE];
197  // TODO(jingning): Temporary solution to silence stack over-size warning
198  // in handle_inter_mode. This should be fixed after rate-distortion
199  // optimization refactoring.
200  int16_t txb_coeff_cost_map[MAX_MB_PLANE][TXB_COEFF_COST_MAP_SIZE]
201  [TXB_COEFF_COST_MAP_SIZE];
202 #endif // CONFIG_RD_DEBUG
203 } RD_STATS;
204 
205 // This struct is used to group function args that are commonly
206 // sent together in functions related to interinter compound modes
207 typedef struct {
208  uint8_t *seg_mask;
209  int8_t wedge_index;
210  int8_t wedge_sign;
211  DIFFWTD_MASK_TYPE mask_type;
212  COMPOUND_TYPE type;
213 } INTERINTER_COMPOUND_DATA;
214 
215 #define INTER_TX_SIZE_BUF_LEN 16
216 #define TXK_TYPE_BUF_LEN 64
221 typedef struct MB_MODE_INFO {
222 
227  BLOCK_SIZE bsize;
229  PARTITION_TYPE partition;
231  PREDICTION_MODE mode;
233  UV_PREDICTION_MODE uv_mode;
238 
243  int_mv mv[2];
245  MV_REFERENCE_FRAME ref_frame[2];
247  int_interpfilters interp_filters;
249  MOTION_MODE motion_mode;
251  uint8_t num_proj_ref;
256  WarpedMotionParams wm_params;
258  INTERINTRA_MODE interintra_mode;
262  INTERINTER_COMPOUND_DATA interinter_comp;
265 
271  int8_t angle_delta[PLANE_TYPES];
273  FILTER_INTRA_MODE_INFO filter_intra_mode_info;
277  uint8_t cfl_alpha_idx;
279  PALETTE_MODE_INFO palette_mode_info;
282 
287  int8_t skip_txfm;
289  TX_SIZE tx_size;
291  TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
294 
301  int8_t delta_lf[FRAME_LF_COUNT];
304 
309  uint8_t segment_id : 3;
311  uint8_t seg_id_predicted : 1;
313  uint8_t ref_mv_idx : 2;
315  uint8_t skip_mode : 1;
317  uint8_t use_intrabc : 1;
319  uint8_t comp_group_idx : 1;
321  uint8_t compound_idx : 1;
323  uint8_t use_wedge_interintra : 1;
325  int8_t cdef_strength : 4;
328 #if CONFIG_RD_DEBUG
330  RD_STATS rd_stats;
332  int mi_row;
334  int mi_col;
335 #endif
336 #if CONFIG_INSPECTION
338  int16_t tx_skip[TXK_TYPE_BUF_LEN];
339 #endif
340 } MB_MODE_INFO;
341 
344 static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
345  return mbmi->use_intrabc;
346 }
347 
348 static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
349  assert(mode < UV_INTRA_MODES);
350  static const PREDICTION_MODE uv2y[] = {
351  DC_PRED, // UV_DC_PRED
352  V_PRED, // UV_V_PRED
353  H_PRED, // UV_H_PRED
354  D45_PRED, // UV_D45_PRED
355  D135_PRED, // UV_D135_PRED
356  D113_PRED, // UV_D113_PRED
357  D157_PRED, // UV_D157_PRED
358  D203_PRED, // UV_D203_PRED
359  D67_PRED, // UV_D67_PRED
360  SMOOTH_PRED, // UV_SMOOTH_PRED
361  SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
362  SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
363  PAETH_PRED, // UV_PAETH_PRED
364  DC_PRED, // UV_CFL_PRED
365  INTRA_INVALID, // UV_INTRA_MODES
366  INTRA_INVALID, // UV_MODE_INVALID
367  };
368  return uv2y[mode];
369 }
370 
371 static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
372  return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
373 }
374 
375 static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
376  return mbmi->ref_frame[1] > INTRA_FRAME;
377 }
378 
379 static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
380  return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
381  (mbmi->ref_frame[1] >= BWDREF_FRAME)));
382 }
383 
384 static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
385  static const MV_REFERENCE_FRAME lut[] = {
386  LAST_FRAME, // LAST_LAST2_FRAMES,
387  LAST_FRAME, // LAST_LAST3_FRAMES,
388  LAST_FRAME, // LAST_GOLDEN_FRAMES,
389  BWDREF_FRAME, // BWDREF_ALTREF_FRAMES,
390  LAST2_FRAME, // LAST2_LAST3_FRAMES
391  LAST2_FRAME, // LAST2_GOLDEN_FRAMES,
392  LAST3_FRAME, // LAST3_GOLDEN_FRAMES,
393  BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES,
394  ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES,
395  };
396  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
397  return lut[ref_idx];
398 }
399 
400 static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
401  static const MV_REFERENCE_FRAME lut[] = {
402  LAST2_FRAME, // LAST_LAST2_FRAMES,
403  LAST3_FRAME, // LAST_LAST3_FRAMES,
404  GOLDEN_FRAME, // LAST_GOLDEN_FRAMES,
405  ALTREF_FRAME, // BWDREF_ALTREF_FRAMES,
406  LAST3_FRAME, // LAST2_LAST3_FRAMES
407  GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES,
408  GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES,
409  ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES,
410  ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES,
411  };
412  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
413  return lut[ref_idx];
414 }
415 
416 PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
417 
418 PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
419 
420 static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
421  TransformationType type) {
422  const PREDICTION_MODE mode = mbmi->mode;
423  const BLOCK_SIZE bsize = mbmi->bsize;
424  const int block_size_allowed =
425  AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
426  return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
427  block_size_allowed;
428 }
429 
430 #if CONFIG_MISMATCH_DEBUG
431 static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
432  int mi_row, int tx_blk_col, int tx_blk_row,
433  int subsampling_x, int subsampling_y) {
434  *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
435  (tx_blk_col << MI_SIZE_LOG2);
436  *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
437  (tx_blk_row << MI_SIZE_LOG2);
438 }
439 #endif
440 
441 enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
442 
443 struct buf_2d {
444  uint8_t *buf;
445  uint8_t *buf0;
446  int width;
447  int height;
448  int stride;
449 };
450 
451 typedef struct eob_info {
452  uint16_t eob;
453  uint16_t max_scan_line;
454 } eob_info;
455 
456 typedef struct {
457  DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
458  eob_info eob_data[MAX_MB_PLANE]
459  [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
460  DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
461 } CB_BUFFER;
462 
463 typedef struct macroblockd_plane {
464  PLANE_TYPE plane_type;
465  int subsampling_x;
466  int subsampling_y;
467  struct buf_2d dst;
468  struct buf_2d pre[2];
469  ENTROPY_CONTEXT *above_entropy_context;
470  ENTROPY_CONTEXT *left_entropy_context;
471 
472  // The dequantizers below are true dequantizers used only in the
473  // dequantization process. They have the same coefficient
474  // shift/scale as TX.
475  int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
476  // Pointer to color index map of:
477  // - Current coding block, on encoder side.
478  // - Current superblock, on decoder side.
479  uint8_t *color_index_map;
480 
481  // block size in pixels
482  uint8_t width, height;
483 
484  qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
485  qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
486 } MACROBLOCKD_PLANE;
487 
488 #define BLOCK_OFFSET(i) ((i) << 4)
489 
493 typedef struct {
497  DECLARE_ALIGNED(16, InterpKernel, vfilter);
498 
502  DECLARE_ALIGNED(16, InterpKernel, hfilter);
503 } WienerInfo;
504 
506 typedef struct {
510  int ep;
511 
515  int xqd[2];
516 } SgrprojInfo;
517 
520 #if CONFIG_DEBUG
521 #define CFL_SUB8X8_VAL_MI_SIZE (4)
522 #define CFL_SUB8X8_VAL_MI_SQUARE \
523  (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE)
524 #endif // CONFIG_DEBUG
525 #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
526 #define CFL_BUF_LINE (32)
527 #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
528 #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
529 #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
530 typedef struct cfl_ctx {
531  // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
532  // shifts)
533  uint16_t recon_buf_q3[CFL_BUF_SQUARE];
534  // Q3 AC contributions (reconstructed luma pixels - tx block avg)
535  int16_t ac_buf_q3[CFL_BUF_SQUARE];
536 
537  // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
538  // for every scaling parameter
539  int dc_pred_is_cached[CFL_PRED_PLANES];
540  // The DC_PRED cache is disable when decoding
541  int use_dc_pred_cache;
542  // Only cache the first row of the DC_PRED
543  int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
544 
545  // Height and width currently used in the CfL prediction buffer.
546  int buf_height, buf_width;
547 
548  int are_parameters_computed;
549 
550  // Chroma subsampling
551  int subsampling_x, subsampling_y;
552 
553  // Whether the reconstructed luma pixels need to be stored
554  int store_y;
555 
556 #if CONFIG_DEBUG
557  int rate;
558 #endif // CONFIG_DEBUG
559 } CFL_CTX;
560 
561 typedef struct dist_wtd_comp_params {
562  int use_dist_wtd_comp_avg;
563  int fwd_offset;
564  int bck_offset;
565 } DIST_WTD_COMP_PARAMS;
566 
567 struct scale_factors;
568 
577 typedef struct macroblockd {
582  int mi_row;
583  int mi_col;
590 
609 
613  struct macroblockd_plane plane[MAX_MB_PLANE];
614 
618  TileInfo tile;
619 
625 
642 
667 
673  uint8_t *tx_type_map;
679 
694  const struct scale_factors *block_ref_scale_factors[2];
695 
703 
710  ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
717  ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
718 
725  PARTITION_CONTEXT *above_partition_context;
732  PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
733 
740  TXFM_CONTEXT *above_txfm_context;
747  TXFM_CONTEXT *left_txfm_context;
754  TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
755 
764  WienerInfo wiener_info[MAX_MB_PLANE];
765  SgrprojInfo sgrproj_info[MAX_MB_PLANE];
772  uint8_t width;
773  uint8_t height;
783  CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
788  uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
789 
800 
805  uint8_t neighbors_ref_counts[REF_FRAMES];
806 
810  FRAME_CONTEXT *tile_ctx;
811 
815  int bd;
816 
820  int qindex[MAX_SEGMENTS];
824  int lossless[MAX_SEGMENTS];
836 
841 
845  struct aom_internal_error_info *error_info;
846 
850  const WarpedMotionParams *global_motion;
851 
875  int8_t delta_lf[FRAME_LF_COUNT];
892 
896  DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]);
897 
901  CFL_CTX cfl;
902 
913 
923  CONV_BUF_TYPE *tmp_conv_dst;
934  uint8_t *tmp_obmc_bufs[2];
935 } MACROBLOCKD;
936 
939 static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
940  return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
941 }
942 
943 static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
944  return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
945  ? CONVERT_TO_BYTEPTR(buf16)
946  : buf16;
947 }
948 
949 static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
950  switch (bsize) {
951  case BLOCK_4X4: return 0;
952  case BLOCK_8X8: return 1;
953  case BLOCK_16X16: return 2;
954  case BLOCK_32X32: return 3;
955  case BLOCK_64X64: return 4;
956  case BLOCK_128X128: return 5;
957  default: return SQR_BLOCK_SIZES;
958  }
959 }
960 
961 // For a square block size 'bsize', returns the size of the sub-blocks used by
962 // the given partition type. If the partition produces sub-blocks of different
963 // sizes, then the function returns the largest sub-block size.
964 // Implements the Partition_Subsize lookup table in the spec (Section 9.3.
965 // Conversion tables).
966 // Note: the input block size should be square.
967 // Otherwise it's considered invalid.
968 static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
969  PARTITION_TYPE partition) {
970  if (partition == PARTITION_INVALID) {
971  return BLOCK_INVALID;
972  } else {
973  const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
974  return sqr_bsize_idx >= SQR_BLOCK_SIZES
975  ? BLOCK_INVALID
976  : subsize_lookup[partition][sqr_bsize_idx];
977  }
978 }
979 
980 static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
981  PLANE_TYPE plane_type) {
982  static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
983  DCT_DCT, // DC_PRED
984  ADST_DCT, // V_PRED
985  DCT_ADST, // H_PRED
986  DCT_DCT, // D45_PRED
987  ADST_ADST, // D135_PRED
988  ADST_DCT, // D113_PRED
989  DCT_ADST, // D157_PRED
990  DCT_ADST, // D203_PRED
991  ADST_DCT, // D67_PRED
992  ADST_ADST, // SMOOTH_PRED
993  ADST_DCT, // SMOOTH_V_PRED
994  DCT_ADST, // SMOOTH_H_PRED
995  ADST_ADST, // PAETH_PRED
996  };
997  const PREDICTION_MODE mode =
998  (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
999  assert(mode < INTRA_MODES);
1000  return _intra_mode_to_tx_type[mode];
1001 }
1002 
1003 static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
1004 
1005 static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
1006  return bsize > BLOCK_4X4;
1007 }
1008 
1009 // Number of transform types in each set type
1010 static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
1011  1, 2, 5, 7, 12, 16,
1012 };
1013 
1014 static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
1015  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1016  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1017  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1018  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
1019  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
1020  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
1021 };
1022 
1023 static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
1024  0x080F, // DC_PRED: 0000 1000 0000 1111
1025  0x040F, // V_PRED: 0000 0100 0000 1111
1026  0x080F, // H_PRED: 0000 1000 0000 1111
1027  0x020F, // D45_PRED: 0000 0010 0000 1111
1028  0x080F, // D135_PRED: 0000 1000 0000 1111
1029  0x040F, // D113_PRED: 0000 0100 0000 1111
1030  0x080F, // D157_PRED: 0000 1000 0000 1111
1031  0x080F, // D203_PRED: 0000 1000 0000 1111
1032  0x040F, // D67_PRED: 0000 0100 0000 1111
1033  0x080F, // SMOOTH_PRED: 0000 1000 0000 1111
1034  0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111
1035  0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111
1036  0x0C0E, // PAETH_PRED: 0000 1100 0000 1110
1037 };
1038 
1039 static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
1040  0x0001, // 0000 0000 0000 0001
1041  0x0201, // 0000 0010 0000 0001
1042  0x020F, // 0000 0010 0000 1111
1043  0x0E0F, // 0000 1110 0000 1111
1044  0x0FFF, // 0000 1111 1111 1111
1045  0xFFFF, // 1111 1111 1111 1111
1046 };
1047 
1048 static const TxSetType av1_ext_tx_set_lookup[2][2] = {
1049  { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
1050  { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
1051 };
1052 
1053 static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
1054  int use_reduced_set) {
1055  const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
1056  if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
1057  if (tx_size_sqr_up == TX_32X32)
1058  return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
1059  if (use_reduced_set)
1060  return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
1061  const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
1062  return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
1063 }
1064 
1065 // Maps tx set types to the indices.
1066 static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
1067  { // Intra
1068  0, -1, 2, 1, -1, -1 },
1069  { // Inter
1070  0, 3, -1, -1, 2, 1 },
1071 };
1072 
1073 static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
1074  int use_reduced_set) {
1075  const TxSetType set_type =
1076  av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1077  return ext_tx_set_index[is_inter][set_type];
1078 }
1079 
1080 static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
1081  int use_reduced_set) {
1082  const int set_type =
1083  av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1084  return av1_num_ext_tx_set[set_type];
1085 }
1086 
1087 #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
1088 #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
1089 
1090 static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
1091  const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1092  const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
1093  if (bsize == BLOCK_4X4)
1094  return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
1095  if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
1096  return max_rect_tx_size;
1097  else
1098  return largest_tx_size;
1099 }
1100 
1101 static const uint8_t mode_to_angle_map[] = {
1102  0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
1103 };
1104 
1105 // Converts block_index for given transform size to index of the block in raster
1106 // order.
1107 static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
1108  int block_idx) {
1109  // For transform size 4x8, the possible block_idx values are 0 & 2, because
1110  // block_idx values are incremented in steps of size 'tx_width_unit x
1111  // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
1112  // block number 1 in raster order, inside an 8x8 MI block.
1113  // For any other transform size, the two indices are equivalent.
1114  return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
1115 }
1116 
1117 // Inverse of above function.
1118 // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
1119 static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
1120  int raster_order) {
1121  assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
1122  // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
1123  return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
1124 }
1125 
1126 static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
1127  const MACROBLOCKD *xd,
1128  TX_SIZE tx_size,
1129  int use_screen_content_tools) {
1130  const MB_MODE_INFO *const mbmi = xd->mi[0];
1131 
1132  if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
1133  xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
1134  use_screen_content_tools)
1135  return DCT_DCT;
1136 
1137  return intra_mode_to_tx_type(mbmi, plane_type);
1138 }
1139 
1140 // Implements the get_plane_residual_size() function in the spec (Section
1141 // 5.11.38. Get plane residual size function).
1142 static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
1143  int subsampling_x,
1144  int subsampling_y) {
1145  assert(bsize < BLOCK_SIZES_ALL);
1146  assert(subsampling_x >= 0 && subsampling_x < 2);
1147  assert(subsampling_y >= 0 && subsampling_y < 2);
1148  return ss_size_lookup[bsize][subsampling_x][subsampling_y];
1149 }
1150 
1151 /*
1152  * Logic to generate the lookup tables:
1153  *
1154  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1155  * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
1156  * txs = sub_tx_size_map[txs];
1157  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1158  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1159  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1160  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1161  */
1162 static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
1163  int blk_col) {
1164  static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1165  0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
1166  };
1167  static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1168  0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
1169  };
1170  static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1171  0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
1172  };
1173  const int index =
1174  ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1175  (blk_col >> tw_w_log2_table[bsize]);
1176  assert(index < INTER_TX_SIZE_BUF_LEN);
1177  return index;
1178 }
1179 
1180 #if CONFIG_INSPECTION
1181 /*
1182  * Here is the logic to generate the lookup tables:
1183  *
1184  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1185  * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
1186  * txs = sub_tx_size_map[txs];
1187  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1188  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1189  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1190  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1191  */
1192 static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
1193  int blk_col) {
1194  static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1195  0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1196  };
1197  static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1198  0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1199  };
1200  static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1201  0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
1202  };
1203  const int index =
1204  ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1205  (blk_col >> tw_w_log2_table[bsize]);
1206  assert(index < TXK_TYPE_BUF_LEN);
1207  return index;
1208 }
1209 #endif // CONFIG_INSPECTION
1210 
1211 static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
1212  int blk_col, TX_SIZE tx_size,
1213  TX_TYPE tx_type) {
1214  const int stride = xd->tx_type_map_stride;
1215  xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
1216 
1217  const int txw = tx_size_wide_unit[tx_size];
1218  const int txh = tx_size_high_unit[tx_size];
1219  // The 16x16 unit is due to the constraint from tx_64x64 which sets the
1220  // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
1221  // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
1222  // the intricacy, cover all the 16x16 units inside a 64 level transform.
1223  if (txw == tx_size_wide_unit[TX_64X64] ||
1224  txh == tx_size_high_unit[TX_64X64]) {
1225  const int tx_unit = tx_size_wide_unit[TX_16X16];
1226  for (int idy = 0; idy < txh; idy += tx_unit) {
1227  for (int idx = 0; idx < txw; idx += tx_unit) {
1228  xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
1229  }
1230  }
1231  }
1232 }
1233 
1234 static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
1235  PLANE_TYPE plane_type, int blk_row,
1236  int blk_col, TX_SIZE tx_size,
1237  int reduced_tx_set) {
1238  const MB_MODE_INFO *const mbmi = xd->mi[0];
1239  if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
1240  return DCT_DCT;
1241  }
1242 
1243  TX_TYPE tx_type;
1244  if (plane_type == PLANE_TYPE_Y) {
1245  tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1246  } else {
1247  if (is_inter_block(mbmi)) {
1248  // scale back to y plane's coordinate
1249  const struct macroblockd_plane *const pd = &xd->plane[plane_type];
1250  blk_row <<= pd->subsampling_y;
1251  blk_col <<= pd->subsampling_x;
1252  tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1253  } else {
1254  // In intra mode, uv planes don't share the same prediction mode as y
1255  // plane, so the tx_type should not be shared
1256  tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
1257  }
1258  const TxSetType tx_set_type =
1259  av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
1260  if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
1261  }
1262  assert(tx_type < TX_TYPES);
1263  assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
1264  reduced_tx_set)][tx_type]);
1265  return tx_type;
1266 }
1267 
1268 void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
1269  const int num_planes);
1270 
1271 /*
1272  * Logic to generate the lookup table:
1273  *
1274  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1275  * int depth = 0;
1276  * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
1277  * depth++;
1278  * tx_size = sub_tx_size_map[tx_size];
1279  * }
1280  */
1281 static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
1282  static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
1283  0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1284  };
1285  return bsize_to_max_depth_table[bsize];
1286 }
1287 
1288 /*
1289  * Logic to generate the lookup table:
1290  *
1291  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1292  * assert(tx_size != TX_4X4);
1293  * int depth = 0;
1294  * while (tx_size != TX_4X4) {
1295  * depth++;
1296  * tx_size = sub_tx_size_map[tx_size];
1297  * }
1298  * assert(depth < 10);
1299  */
1300 static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
1301  assert(bsize < BLOCK_SIZES_ALL);
1302  static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
1303  0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
1304  };
1305  const int depth = bsize_to_tx_size_depth_table[bsize];
1306  assert(depth <= MAX_TX_CATS);
1307  return depth - 1;
1308 }
1309 
1310 static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
1311  TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1312  TX_SIZE tx_size = max_tx_size;
1313  for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
1314  return tx_size;
1315 }
1316 
1317 static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
1318  switch (tx_size) {
1319  case TX_64X64:
1320  case TX_64X32:
1321  case TX_32X64: return TX_32X32;
1322  case TX_64X16: return TX_32X16;
1323  case TX_16X64: return TX_16X32;
1324  default: return tx_size;
1325  }
1326 }
1327 
1328 static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
1329  int subsampling_y) {
1330  const BLOCK_SIZE plane_bsize =
1331  get_plane_block_size(bsize, subsampling_x, subsampling_y);
1332  assert(plane_bsize < BLOCK_SIZES_ALL);
1333  const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
1334  return av1_get_adjusted_tx_size(uv_tx);
1335 }
1336 
1337 static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
1338  const MB_MODE_INFO *mbmi = xd->mi[0];
1339  if (xd->lossless[mbmi->segment_id]) return TX_4X4;
1340  if (plane == 0) return mbmi->tx_size;
1341  const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
1342  return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
1343  pd->subsampling_y);
1344 }
1345 
1346 void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
1347  const int num_planes);
1348 
1349 void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
1350 
1351 void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
1352 
1353 typedef void (*foreach_transformed_block_visitor)(int plane, int block,
1354  int blk_row, int blk_col,
1355  BLOCK_SIZE plane_bsize,
1356  TX_SIZE tx_size, void *arg);
1357 
1358 void av1_set_entropy_contexts(const MACROBLOCKD *xd,
1359  struct macroblockd_plane *pd, int plane,
1360  BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1361  int has_eob, int aoff, int loff);
1362 
1363 #define MAX_INTERINTRA_SB_SQUARE 32 * 32
1364 static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
1365  return (mbmi->ref_frame[0] > INTRA_FRAME &&
1366  mbmi->ref_frame[1] == INTRA_FRAME);
1367 }
1368 
1369 static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
1370  return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
1371 }
1372 
1373 static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
1374  return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
1375 }
1376 
1377 static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
1378  return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
1379 }
1380 
1381 static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
1382  return is_interintra_allowed_bsize(mbmi->bsize) &&
1383  is_interintra_allowed_mode(mbmi->mode) &&
1384  is_interintra_allowed_ref(mbmi->ref_frame);
1385 }
1386 
1387 static INLINE int is_interintra_allowed_bsize_group(int group) {
1388  int i;
1389  for (i = 0; i < BLOCK_SIZES_ALL; i++) {
1390  if (size_group_lookup[i] == group &&
1391  is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
1392  return 1;
1393  }
1394  }
1395  return 0;
1396 }
1397 
1398 static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
1399  return mbmi->ref_frame[0] > INTRA_FRAME &&
1400  mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
1401 }
1402 
1403 static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1404  int plane) {
1405  if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1406  const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
1407  if (plane == 0) return max_txsize; // luma
1408  return av1_get_adjusted_tx_size(max_txsize); // chroma
1409 }
1410 
1411 static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
1412  assert(bsize < BLOCK_SIZES_ALL);
1413  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
1414 }
1415 
1416 static INLINE int is_motion_variation_allowed_compound(
1417  const MB_MODE_INFO *mbmi) {
1418  return !has_second_ref(mbmi);
1419 }
1420 
1421 // input: log2 of length, 0(4), 1(8), ...
1422 static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
1423 
1424 static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
1425  return mbmi->overlappable_neighbors != 0;
1426 }
1427 
1428 static INLINE MOTION_MODE
1429 motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
1430  const MB_MODE_INFO *mbmi, int allow_warped_motion) {
1431  if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
1432  if (xd->cur_frame_force_integer_mv == 0) {
1433  const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
1434  if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
1435  }
1436  if (is_motion_variation_allowed_bsize(mbmi->bsize) &&
1437  is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
1438  is_motion_variation_allowed_compound(mbmi)) {
1439  assert(!has_second_ref(mbmi));
1440  if (mbmi->num_proj_ref >= 1 && allow_warped_motion &&
1442  !av1_is_scaled(xd->block_ref_scale_factors[0])) {
1443  return WARPED_CAUSAL;
1444  }
1445  return OBMC_CAUSAL;
1446  }
1447  return SIMPLE_TRANSLATION;
1448 }
1449 
1450 static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
1451  return (is_inter_block(mbmi));
1452 }
1453 
1454 static INLINE int av1_allow_palette(int allow_screen_content_tools,
1455  BLOCK_SIZE sb_type) {
1456  assert(sb_type < BLOCK_SIZES_ALL);
1457  return allow_screen_content_tools && block_size_wide[sb_type] <= 64 &&
1458  block_size_high[sb_type] <= 64 && sb_type >= BLOCK_8X8;
1459 }
1460 
1461 // Returns sub-sampled dimensions of the given block.
1462 // The output values for 'rows_within_bounds' and 'cols_within_bounds' will
1463 // differ from 'height' and 'width' when part of the block is outside the
1464 // right
1465 // and/or bottom image boundary.
1466 static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
1467  const MACROBLOCKD *xd, int *width,
1468  int *height,
1469  int *rows_within_bounds,
1470  int *cols_within_bounds) {
1471  const int block_height = block_size_high[bsize];
1472  const int block_width = block_size_wide[bsize];
1473  const int block_rows = (xd->mb_to_bottom_edge >= 0)
1474  ? block_height
1475  : (xd->mb_to_bottom_edge >> 3) + block_height;
1476  const int block_cols = (xd->mb_to_right_edge >= 0)
1477  ? block_width
1478  : (xd->mb_to_right_edge >> 3) + block_width;
1479  const struct macroblockd_plane *const pd = &xd->plane[plane];
1480  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
1481  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
1482  assert(block_width >= block_cols);
1483  assert(block_height >= block_rows);
1484  const int plane_block_width = block_width >> pd->subsampling_x;
1485  const int plane_block_height = block_height >> pd->subsampling_y;
1486  // Special handling for chroma sub8x8.
1487  const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
1488  const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
1489  if (width) {
1490  *width = plane_block_width + 2 * is_chroma_sub8_x;
1491  assert(*width >= 0);
1492  }
1493  if (height) {
1494  *height = plane_block_height + 2 * is_chroma_sub8_y;
1495  assert(*height >= 0);
1496  }
1497  if (rows_within_bounds) {
1498  *rows_within_bounds =
1499  (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
1500  assert(*rows_within_bounds >= 0);
1501  }
1502  if (cols_within_bounds) {
1503  *cols_within_bounds =
1504  (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
1505  assert(*cols_within_bounds >= 0);
1506  }
1507 }
1508 
1509 /* clang-format off */
1510 typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
1511  [CDF_SIZE(PALETTE_COLORS)];
1512 typedef const int (*ColorCost)[PALETTE_SIZES][PALETTE_COLOR_INDEX_CONTEXTS]
1513  [PALETTE_COLORS];
1514 /* clang-format on */
1515 
1516 typedef struct {
1517  int rows;
1518  int cols;
1519  int n_colors;
1520  int plane_width;
1521  int plane_height;
1522  uint8_t *color_map;
1523  MapCdf map_cdf;
1524  ColorCost color_cost;
1525 } Av1ColorMapParam;
1526 
1527 static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
1528  const MB_MODE_INFO *mbmi) {
1529  int ref;
1530 
1531  // First check if all modes are GLOBALMV
1532  if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
1533 
1534  if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2)
1535  return 0;
1536 
1537  // Now check if all global motion is non translational
1538  for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
1539  if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
1540  }
1541  return 1;
1542 }
1543 
1544 static INLINE PLANE_TYPE get_plane_type(int plane) {
1545  return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
1546 }
1547 
1548 static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
1549  if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
1550  return 1024;
1551  }
1552  if (tx_size == TX_16X64 || tx_size == TX_64X16) {
1553  return 512;
1554  }
1555  return tx_size_2d[tx_size];
1556 }
1557 
1560 #ifdef __cplusplus
1561 } // extern "C"
1562 #endif
1563 
1564 #endif // AOM_AV1_COMMON_BLOCKD_H_
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:221
int8_t delta_lf_from_base
Definition: blockd.h:299
int_interpfilters interp_filters
Filter used in subpel interpolation.
Definition: blockd.h:247
int8_t interintra_wedge_index
The type of wedge used in interintra mode.
Definition: blockd.h:260
int_mv mv[2]
The motion vectors used by the current inter mode.
Definition: blockd.h:243
int8_t delta_lf[FRAME_LF_COUNT]
Definition: blockd.h:301
PREDICTION_MODE mode
The prediction mode used.
Definition: blockd.h:231
INTERINTER_COMPOUND_DATA interinter_comp
Struct that stores the data used in interinter compound mode.
Definition: blockd.h:262
uint8_t use_wedge_interintra
Whether to use interintra wedge.
Definition: blockd.h:323
UV_PREDICTION_MODE uv_mode
The UV mode when intra is used.
Definition: blockd.h:233
PALETTE_MODE_INFO palette_mode_info
Stores the size and colors of palette mode.
Definition: blockd.h:279
uint8_t segment_id
The segment id.
Definition: blockd.h:309
uint8_t cfl_alpha_idx
Chroma from Luma: Index of the alpha Cb and alpha Cr combination.
Definition: blockd.h:277
uint8_t ref_mv_idx
Which ref_mv to use.
Definition: blockd.h:313
uint8_t compound_idx
Indicates whether dist_wtd_comp(0) is used or not (0).
Definition: blockd.h:321
uint8_t overlappable_neighbors
The number of overlapped neighbors above/left for obmc/warp motion mode.
Definition: blockd.h:254
MV_REFERENCE_FRAME ref_frame[2]
The reference frames for the MV.
Definition: blockd.h:245
TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN]
Transform size when recursive txfm tree is on.
Definition: blockd.h:291
int8_t cdef_strength
CDEF strength per BLOCK_64X64.
Definition: blockd.h:325
int current_qindex
The q index for the current coding block.
Definition: blockd.h:235
int8_t angle_delta[PLANE_TYPES]
Directional mode delta: the angle is base angle + (angle_delta * step).
Definition: blockd.h:271
int8_t skip_txfm
Whether to skip transforming and sending.
Definition: blockd.h:287
FILTER_INTRA_MODE_INFO filter_intra_mode_info
The type of filter intra mode used (if applicable).
Definition: blockd.h:273
WarpedMotionParams wm_params
The parameters used in warp motion mode.
Definition: blockd.h:256
MOTION_MODE motion_mode
The motion mode used by the inter prediction.
Definition: blockd.h:249
uint8_t num_proj_ref
Number of samples used by warp causal.
Definition: blockd.h:251
uint8_t seg_id_predicted
Only valid when temporal update if off.
Definition: blockd.h:311
int8_t cfl_alpha_signs
Chroma from Luma: Joint sign of alpha Cb and alpha Cr.
Definition: blockd.h:275
uint8_t comp_group_idx
Indicates if masked compound is used(1) or not (0).
Definition: blockd.h:319
uint8_t skip_mode
Inter skip mode.
Definition: blockd.h:315
INTERINTRA_MODE interintra_mode
The type of intra mode used by inter-intra.
Definition: blockd.h:258
PARTITION_TYPE partition
The partition type of the current coding block.
Definition: blockd.h:229
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:227
TX_SIZE tx_size
Transform size when fixed size txfm is used (e.g. intra modes).
Definition: blockd.h:289
uint8_t use_intrabc
Whether intrabc is used.
Definition: blockd.h:317
Parameters related to Sgrproj Filter.
Definition: blockd.h:506
int ep
Definition: blockd.h:510
Parameters related to Wiener Filter.
Definition: blockd.h:493
Variables related to current coding block.
Definition: blockd.h:577
bool left_available
Definition: blockd.h:633
uint8_t * tx_type_map
Definition: blockd.h:673
int mb_to_bottom_edge
Definition: blockd.h:687
TXFM_CONTEXT * left_txfm_context
Definition: blockd.h:747
struct macroblockd_plane plane[3]
Definition: blockd.h:613
TileInfo tile
Definition: blockd.h:618
int mb_to_top_edge
Definition: blockd.h:686
int8_t delta_lf_from_base
Definition: blockd.h:860
int mb_to_right_edge
Definition: blockd.h:685
WienerInfo wiener_info[3]
Definition: blockd.h:764
bool up_available
Definition: blockd.h:629
CONV_BUF_TYPE * tmp_conv_dst
Definition: blockd.h:923
MB_MODE_INFO * above_mbmi
Definition: blockd.h:652
bool chroma_up_available
Definition: blockd.h:637
TXFM_CONTEXT * above_txfm_context
Definition: blockd.h:740
int bd
Definition: blockd.h:815
bool chroma_left_available
Definition: blockd.h:641
PARTITION_CONTEXT * above_partition_context
Definition: blockd.h:725
int qindex[8]
Definition: blockd.h:820
uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]
Definition: blockd.h:788
MB_MODE_INFO * chroma_left_mbmi
Definition: blockd.h:659
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition: blockd.h:754
int tx_type_map_stride
Definition: blockd.h:678
const WarpedMotionParams * global_motion
Definition: blockd.h:850
MB_MODE_INFO * chroma_above_mbmi
Definition: blockd.h:666
FRAME_CONTEXT * tile_ctx
Definition: blockd.h:810
uint8_t * tmp_obmc_bufs[2]
Definition: blockd.h:934
int mi_row
Definition: blockd.h:582
const YV12_BUFFER_CONFIG * cur_buf
Definition: blockd.h:702
int mi_stride
Definition: blockd.h:589
bool is_last_vertical_rect
Definition: blockd.h:794
bool is_first_horizontal_rect
Definition: blockd.h:799
uint8_t width
Definition: blockd.h:772
struct aom_internal_error_info * error_info
Definition: blockd.h:845
CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]
Definition: blockd.h:783
int current_base_qindex
Definition: blockd.h:835
CFL_CTX cfl
Definition: blockd.h:901
const struct scale_factors * block_ref_scale_factors[2]
Definition: blockd.h:694
int lossless[8]
Definition: blockd.h:824
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition: blockd.h:717
bool cdef_transmitted[4]
Definition: blockd.h:891
ENTROPY_CONTEXT * above_entropy_context[3]
Definition: blockd.h:710
uint8_t seg_mask[2 *MAX_SB_SQUARE]
Definition: blockd.h:896
int8_t delta_lf[FRAME_LF_COUNT]
Definition: blockd.h:875
MB_MODE_INFO ** mi
Definition: blockd.h:624
uint8_t height
Definition: blockd.h:773
MB_MODE_INFO * left_mbmi
Definition: blockd.h:647
uint16_t color_index_map_offset[2]
Definition: blockd.h:912
SgrprojInfo sgrproj_info[3]
Definition: blockd.h:765
int cur_frame_force_integer_mv
Definition: blockd.h:840
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition: blockd.h:732
uint8_t neighbors_ref_counts[REF_FRAMES]
Definition: blockd.h:805
bool is_chroma_ref
Definition: blockd.h:608
int mi_col
Definition: blockd.h:583
int mb_to_left_edge
Definition: blockd.h:684
YV12 frame buffer data structure.
Definition: yv12config.h:38