17 #ifndef AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_
18 #define AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_
21 #include "av1/common/pred_common.h"
22 #include "av1/common/reconintra.h"
25 #include "av1/encoder/model_rd.h"
34 static const float av1_intra_hog_model_bias[DIRECTIONAL_MODES] = {
35 0.450578f, 0.695518f, -0.717944f, -0.639894f,
36 -0.602019f, -0.453454f, 0.055857f, -0.465480f,
39 static const float av1_intra_hog_model_weights[BINS * DIRECTIONAL_MODES] = {
40 -3.076402f, -3.757063f, -3.275266f, -3.180665f, -3.452105f, -3.216593f,
41 -2.871212f, -3.134296f, -1.822324f, -2.401411f, -1.541016f, -1.195322f,
42 -0.434156f, 0.322868f, 2.260546f, 3.368715f, 3.989290f, 3.308487f,
43 2.277893f, 0.923793f, 0.026412f, -0.385174f, -0.718622f, -1.408867f,
44 -1.050558f, -2.323941f, -2.225827f, -2.585453f, -3.054283f, -2.875087f,
45 -2.985709f, -3.447155f, 3.758139f, 3.204353f, 2.170998f, 0.826587f,
46 -0.269665f, -0.702068f, -1.085776f, -2.175249f, -1.623180f, -2.975142f,
47 -2.779629f, -3.190799f, -3.521900f, -3.375480f, -3.319355f, -3.897389f,
48 -3.172334f, -3.594528f, -2.879132f, -2.547777f, -2.921023f, -2.281844f,
49 -1.818988f, -2.041771f, -0.618268f, -1.396458f, -0.567153f, -0.285868f,
50 -0.088058f, 0.753494f, 2.092413f, 3.215266f, -3.300277f, -2.748658f,
51 -2.315784f, -2.423671f, -2.257283f, -2.269583f, -2.196660f, -2.301076f,
52 -2.646516f, -2.271319f, -2.254366f, -2.300102f, -2.217960f, -2.473300f,
53 -2.116866f, -2.528246f, -3.314712f, -1.701010f, -0.589040f, -0.088077f,
54 0.813112f, 1.702213f, 2.653045f, 3.351749f, 3.243554f, 3.199409f,
55 2.437856f, 1.468854f, 0.533039f, -0.099065f, -0.622643f, -2.200732f,
56 -4.228861f, -2.875263f, -1.273956f, -0.433280f, 0.803771f, 1.975043f,
57 3.179528f, 3.939064f, 3.454379f, 3.689386f, 3.116411f, 1.970991f,
58 0.798406f, -0.628514f, -1.252546f, -2.825176f, -4.090178f, -3.777448f,
59 -3.227314f, -3.479403f, -3.320569f, -3.159372f, -2.729202f, -2.722341f,
60 -3.054913f, -2.742923f, -2.612703f, -2.662632f, -2.907314f, -3.117794f,
61 -3.102660f, -3.970972f, -4.891357f, -3.935582f, -3.347758f, -2.721924f,
62 -2.219011f, -1.702391f, -0.866529f, -0.153743f, 0.107733f, 1.416882f,
63 2.572884f, 3.607755f, 3.974820f, 3.997783f, 2.970459f, 0.791687f,
64 -1.478921f, -1.228154f, -1.216955f, -1.765932f, -1.951003f, -1.985301f,
65 -1.975881f, -1.985593f, -2.422371f, -2.419978f, -2.531288f, -2.951853f,
66 -3.071380f, -3.277027f, -3.373539f, -4.462010f, -0.967888f, 0.805524f,
67 2.794130f, 3.685984f, 3.745195f, 3.252444f, 2.316108f, 1.399146f,
68 -0.136519f, -0.162811f, -1.004357f, -1.667911f, -1.964662f, -2.937579f,
69 -3.019533f, -3.942766f, -5.102767f, -3.882073f, -3.532027f, -3.451956f,
70 -2.944015f, -2.643064f, -2.529872f, -2.077290f, -2.809965f, -1.803734f,
71 -1.783593f, -1.662585f, -1.415484f, -1.392673f, -0.788794f, -1.204819f,
72 -1.998864f, -1.182102f, -0.892110f, -1.317415f, -1.359112f, -1.522867f,
73 -1.468552f, -1.779072f, -2.332959f, -2.160346f, -2.329387f, -2.631259f,
74 -2.744936f, -3.052494f, -2.787363f, -3.442548f, -4.245075f, -3.032172f,
75 -2.061609f, -1.768116f, -1.286072f, -0.706587f, -0.192413f, 0.386938f,
76 0.716997f, 1.481393f, 2.216702f, 2.737986f, 3.109809f, 3.226084f,
77 2.490098f, -0.095827f, -3.864816f, -3.507248f, -3.128925f, -2.908251f,
78 -2.883836f, -2.881411f, -2.524377f, -2.624478f, -2.399573f, -2.367718f,
79 -1.918255f, -1.926277f, -1.694584f, -1.723790f, -0.966491f, -1.183115f,
80 -1.430687f, 0.872896f, 2.766550f, 3.610080f, 3.578041f, 3.334928f,
81 2.586680f, 1.895721f, 1.122195f, 0.488519f, -0.140689f, -0.799076f,
82 -1.222860f, -1.502437f, -1.900969f, -3.206816f,
85 static const NN_CONFIG av1_intra_hog_model_nnconfig = {
91 av1_intra_hog_model_weights,
94 av1_intra_hog_model_bias,
98 #define FIX_PREC_BITS (16)
99 static AOM_INLINE
int get_hist_bin_idx(
int dx,
int dy) {
100 const int32_t ratio = (dy * (1 << FIX_PREC_BITS)) / dx;
103 static const int thresholds[BINS] = {
104 -1334015, -441798, -261605, -183158, -138560, -109331, -88359, -72303,
105 -59392, -48579, -39272, -30982, -23445, -16400, -9715, -3194,
106 3227, 9748, 16433, 23478, 31015, 39305, 48611, 59425,
107 72336, 88392, 109364, 138593, 183191, 261638, 441831, INT32_MAX
110 int lo_idx = 0, hi_idx = BINS - 1;
113 if (ratio <= thresholds[7]) {
116 }
else if (ratio <= thresholds[15]) {
119 }
else if (ratio <= thresholds[23]) {
127 for (
int idx = lo_idx; idx <= hi_idx; idx++) {
128 if (ratio <= thresholds[idx]) {
132 assert(0 &&
"No valid histogram bin found!");
137 static AOM_INLINE
void generate_hog(
const uint8_t *src,
int stride,
int rows,
138 int cols,
float *hist) {
141 for (
int r = 1; r < rows - 1; ++r) {
142 for (
int c = 1; c < cols - 1; ++c) {
143 const uint8_t *above = &src[c - stride];
144 const uint8_t *below = &src[c + stride];
145 const uint8_t *left = &src[c - 1];
146 const uint8_t *right = &src[c + 1];
148 const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
149 (left[-stride] + 2 * left[0] + left[stride]);
150 const int dy = (below[-1] + 2 * below[0] + below[1]) -
151 (above[-1] + 2 * above[0] + above[1]);
152 if (dx == 0 && dy == 0)
continue;
153 const int temp = abs(dx) + abs(dy);
158 hist[BINS - 1] += temp / 2;
160 const int idx = get_hist_bin_idx(dx, dy);
161 assert(idx >= 0 && idx < BINS);
168 for (
int i = 0; i < BINS; ++i) hist[i] /= total;
171 static AOM_INLINE
void generate_hog_hbd(
const uint8_t *src8,
int stride,
172 int rows,
int cols,
float *hist) {
174 uint16_t *src = CONVERT_TO_SHORTPTR(src8);
176 for (
int r = 1; r < rows - 1; ++r) {
177 for (
int c = 1; c < cols - 1; ++c) {
178 const uint16_t *above = &src[c - stride];
179 const uint16_t *below = &src[c + stride];
180 const uint16_t *left = &src[c - 1];
181 const uint16_t *right = &src[c + 1];
183 const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
184 (left[-stride] + 2 * left[0] + left[stride]);
185 const int dy = (below[-1] + 2 * below[0] + below[1]) -
186 (above[-1] + 2 * above[0] + above[1]);
187 if (dx == 0 && dy == 0)
continue;
188 const int temp = abs(dx) + abs(dy);
193 hist[BINS - 1] += temp / 2;
195 const int idx = get_hist_bin_idx(dx, dy);
196 assert(idx >= 0 && idx < BINS);
203 for (
int i = 0; i < BINS; ++i) hist[i] /= total;
206 static INLINE
void collect_hog_data(
const MACROBLOCK *x, BLOCK_SIZE bsize,
207 int plane,
float *hog) {
209 const struct macroblockd_plane *
const pd = &xd->
plane[plane];
210 const int ss_x = pd->subsampling_x;
211 const int ss_y = pd->subsampling_y;
212 const int bh = block_size_high[bsize];
213 const int bw = block_size_wide[bsize];
220 const int src_stride = x->
plane[plane].
src.stride;
221 const uint8_t *src = x->
plane[plane].
src.buf;
222 if (is_cur_buf_hbd(xd)) {
223 generate_hog_hbd(src, src_stride, rows, cols, hog);
225 generate_hog(src, src_stride, rows, cols, hog);
229 for (
int b = 0; b < BINS; ++b) {
230 hog[b] *= (1 + ss_x) * (1 + ss_y);
234 static AOM_INLINE
void prune_intra_mode_with_hog(
235 const MACROBLOCK *x, BLOCK_SIZE bsize,
float th,
236 uint8_t *directional_mode_skip_mask,
int is_chroma) {
237 aom_clear_system_state();
240 float hist[BINS] = { 0.0f };
241 collect_hog_data(x, bsize, plane, hist);
244 float scores[DIRECTIONAL_MODES] = { 0.0f };
245 aom_clear_system_state();
246 av1_nn_predict(hist, &av1_intra_hog_model_nnconfig, 1, scores);
247 for (UV_PREDICTION_MODE uv_mode = UV_V_PRED; uv_mode <= UV_D67_PRED;
249 if (scores[uv_mode - UV_V_PRED] <= th) {
250 directional_mode_skip_mask[uv_mode] = 1;
254 aom_clear_system_state();
259 static AOM_INLINE
int write_uniform_cost(
int n,
int v) {
260 const int l = get_unsigned_bits(n);
261 const int m = (1 << l) - n;
262 if (l == 0)
return 0;
264 return av1_cost_literal(l - 1);
266 return av1_cost_literal(l);
277 BLOCK_SIZE bsize,
int mode_cost) {
278 int total_rate = mode_cost;
284 assert(((mbmi->
mode != DC_PRED) + use_palette + use_intrabc +
285 use_filter_intra) <= 1);
286 const int try_palette = av1_allow_palette(
288 if (try_palette && mbmi->
mode == DC_PRED) {
290 const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
291 const int mode_ctx = av1_get_palette_mode_ctx(xd);
295 const uint8_t *
const color_map = xd->
plane[0].color_index_map;
296 int block_width, block_height, rows, cols;
297 av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
300 int palette_mode_cost =
303 write_uniform_cost(plt_size, color_map[0]);
304 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
305 const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
310 av1_cost_color_map(x, 0, bsize, mbmi->
tx_size, PALETTE_MAP);
311 total_rate += palette_mode_cost;
314 if (av1_filter_intra_allowed(&cpi->
common, mbmi)) {
316 if (use_filter_intra) {
322 if (av1_is_directional_mode(mbmi->
mode)) {
323 if (av1_use_angle_delta(bsize)) {
330 if (av1_allow_intrabc(&cpi->
common))
342 BLOCK_SIZE bsize,
int mode_cost) {
343 int total_rate = mode_cost;
346 const UV_PREDICTION_MODE mode = mbmi->
uv_mode;
348 assert(((mode != UV_DC_PRED) + use_palette + mbmi->
use_intrabc) <= 1);
350 const int try_palette = av1_allow_palette(
352 if (try_palette && mode == UV_DC_PRED) {
357 const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
358 const int plt_size = pmi->palette_size[1];
360 const uint8_t *
const color_map = xd->
plane[1].color_index_map;
361 int palette_mode_cost =
364 write_uniform_cost(plt_size, color_map[0]);
365 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
366 const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
370 av1_cost_color_map(x, 1, bsize, mbmi->
tx_size, PALETTE_MAP);
371 total_rate += palette_mode_cost;
374 if (av1_is_directional_mode(get_uv_mode(mode))) {
375 if (av1_use_angle_delta(bsize)) {
389 BLOCK_SIZE bsize,
int mode_cost) {
393 assert(!is_inter_block(mbmi));
394 RD_STATS this_rd_stats;
396 int64_t temp_sse, this_rd;
401 const int stepr = tx_size_high_unit[tx_size];
402 const int stepc = tx_size_wide_unit[tx_size];
403 const int max_blocks_wide = max_block_wide(xd, bsize, 0);
404 const int max_blocks_high = max_block_high(xd, bsize, 0);
407 for (row = 0; row < max_blocks_high; row += stepr) {
408 for (col = 0; col < max_blocks_wide; col += stepc) {
409 av1_predict_intra_block_facade(cm, xd, 0, col, row, tx_size);
413 model_rd_sb_fn[cpi->
sf.
rt_sf.use_simple_rd_model ? MODELRD_LEGACY
414 : MODELRD_TYPE_INTRA](
415 cpi, bsize, x, xd, 0, 0, &this_rd_stats.rate, &this_rd_stats.dist,
416 &this_rd_stats.skip_txfm, &temp_sse, NULL, NULL, NULL);
417 if (av1_is_directional_mode(mbmi->
mode) && av1_use_angle_delta(bsize)) {
422 if (mbmi->
mode == DC_PRED &&
423 av1_filter_intra_allowed_bsize(cm, mbmi->
bsize)) {
433 RDCOST(x->rdmult, this_rd_stats.rate + mode_cost, this_rd_stats.dist);
451 int64_t *best_model_rd) {
452 const int64_t this_model_rd = intra_model_yrd(cpi, x, bsize, mode_info_cost);
453 if (*best_model_rd != INT64_MAX &&
454 this_model_rd > *best_model_rd + (*best_model_rd >> 1)) {
456 }
else if (this_model_rd < *best_model_rd) {
457 *best_model_rd = this_model_rd;
#define AOM_PLANE_U
Definition: aom_image.h:200
#define AOM_PLANE_Y
Definition: aom_image.h:199
Declares top-level encoder structures and functions.
static int model_intra_yrd_and_prune(const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mode_info_cost, int64_t *best_model_rd)
Estimate the luma rdcost of a given intra mode and try to prune it.
Definition: intra_mode_search_utils.h:448
int av1_palette_color_cost_y(const PALETTE_MODE_INFO *const pmi, const uint16_t *color_cache, int n_cache, int bit_depth)
Gets the rate cost for transmitting luma palette color values.
Definition: palette.c:125
int av1_palette_color_cost_uv(const PALETTE_MODE_INFO *const pmi, const uint16_t *color_cache, int n_cache, int bit_depth)
Gets the rate cost for transmitting luma palette chroma values.
Definition: palette.c:139
static int intra_mode_info_cost_uv(const AV1_COMP *cpi, const MACROBLOCK *x, const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, int mode_cost)
Return the rate cost for chroma prediction mode info of intra blocks.
Definition: intra_mode_search_utils.h:339
static int intra_mode_info_cost_y(const AV1_COMP *cpi, const MACROBLOCK *x, const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, int mode_cost)
Returns the rate cost for luma prediction mode info of intra blocks.
Definition: intra_mode_search_utils.h:274
Declares functions used in palette search.
Top level common structure used by both encoder and decoder.
Definition: av1_common_int.h:723
SequenceHeader seq_params
Definition: av1_common_int.h:953
FeatureFlags features
Definition: av1_common_int.h:882
Top level encoder structure.
Definition: encoder.h:2042
SPEED_FEATURES sf
Definition: encoder.h:2264
AV1_COMMON common
Definition: encoder.h:2080
bool allow_screen_content_tools
Definition: av1_common_int.h:351
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:221
PREDICTION_MODE mode
The prediction mode used.
Definition: blockd.h:231
UV_PREDICTION_MODE uv_mode
The UV mode when intra is used.
Definition: blockd.h:233
PALETTE_MODE_INFO palette_mode_info
Stores the size and colors of palette mode.
Definition: blockd.h:279
int8_t angle_delta[PLANE_TYPES]
Directional mode delta: the angle is base angle + (angle_delta * step).
Definition: blockd.h:271
FILTER_INTRA_MODE_INFO filter_intra_mode_info
The type of filter intra mode used (if applicable).
Definition: blockd.h:273
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:227
TX_SIZE tx_size
Transform size when fixed size txfm is used (e.g. intra modes).
Definition: blockd.h:289
uint8_t use_intrabc
Whether intrabc is used.
Definition: blockd.h:317
Holds the entropy costs for various modes sent to the bitstream.
Definition: block.h:583
int intrabc_cost[2]
intrabc_cost
Definition: block.h:618
int palette_uv_mode_cost[2][2]
palette_uv_mode_cost
Definition: block.h:633
int palette_y_size_cost[7][PALETTE_SIZES]
palette_y_size_cost
Definition: block.h:621
int palette_uv_size_cost[7][PALETTE_SIZES]
palette_uv_size_cost
Definition: block.h:623
int filter_intra_cost[BLOCK_SIZES_ALL][2]
filter_intra_cost
Definition: block.h:603
int filter_intra_mode_cost[FILTER_INTRA_MODES]
filter_intra_mode_cost
Definition: block.h:605
int angle_delta_cost[DIRECTIONAL_MODES][2 *MAX_ANGLE_DELTA+1]
angle_delta_cost
Definition: block.h:607
int palette_y_mode_cost[7][3][2]
palette_y_mode_cost
Definition: block.h:631
REAL_TIME_SPEED_FEATURES rt_sf
Definition: speed_features.h:1128
Defines the parameters used to perform txfm search.
Definition: block.h:425
TX_MODE tx_mode_search_type
How to search for the optimal tx_size.
Definition: block.h:468
struct buf_2d src
A buffer containing the source frame.
Definition: block.h:117
Encoder's parameters related to the current coding block.
Definition: block.h:829
MACROBLOCKD e_mbd
Decoder's view of current coding block.
Definition: block.h:847
ModeCosts mode_costs
The rate needed to signal a mode to the bitstream.
Definition: block.h:942
struct macroblock_plane plane[3]
Each of the encoding plane.
Definition: block.h:839
TxfmSearchParams txfm_search_params
Parameters that control how motion search is done.
Definition: block.h:1168
Variables related to current coding block.
Definition: blockd.h:577
int mb_to_bottom_edge
Definition: blockd.h:687
struct macroblockd_plane plane[3]
Definition: blockd.h:613
int mb_to_right_edge
Definition: blockd.h:685
MB_MODE_INFO ** mi
Definition: blockd.h:624