vec3.h
1 /*
2 ** ClanLib SDK
3 ** Copyright (c) 1997-2015 The ClanLib Team
4 **
5 ** This software is provided 'as-is', without any express or implied
6 ** warranty. In no event will the authors be held liable for any damages
7 ** arising from the use of this software.
8 **
9 ** Permission is granted to anyone to use this software for any purpose,
10 ** including commercial applications, and to alter it and redistribute it
11 ** freely, subject to the following restrictions:
12 **
13 ** 1. The origin of this software must not be misrepresented; you must not
14 ** claim that you wrote the original software. If you use this software
15 ** in a product, an acknowledgment in the product documentation would be
16 ** appreciated but is not required.
17 ** 2. Altered source versions must be plainly marked as such, and must not be
18 ** misrepresented as being the original software.
19 ** 3. This notice may not be removed or altered from any source distribution.
20 **
21 ** Note: Some of the libraries ClanLib may link to may have additional
22 ** requirements or restrictions.
23 **
24 ** File Author(s):
25 **
26 ** Magnus Norddahl
27 ** Mark Page
28 ** Harry Storbacka
29 */
30 
31 
32 #pragma once
33 
34 #include <cmath>
35 #include "vec2.h"
36 #include "vec4.h"
37 
38 namespace clan
39 {
42 
43 template<typename Type>
44 class Vec2;
45 
46 template<typename Type>
47 class Vec3;
48 
49 template<typename Type>
50 class Vec4;
51 
52 template<typename Type>
53 class Mat2;
54 
55 template<typename Type>
56 class Mat3;
57 
58 template<typename Type>
59 class Mat4;
60 
61 template<typename Type>
62 class Sizex;
63 
64 template<typename Type>
65 class Pointx;
66 
67 class Angle;
68 
74 template<typename Type>
75 class Vec3
76 {
77 public:
78  typedef Type datatype;
79 
80  union { Type x; Type s; Type r; };
81  union { Type y; Type t; Type g; };
82  union { Type z; Type u; Type b; };
83 
84  Vec3() : x(0), y(0), z(0) { }
85  explicit Vec3(const Type &scalar) : x(scalar), y(scalar), z(scalar) { }
86  explicit Vec3(const Vec2<Type> &copy, const Type &p3) { x = copy.x; y = copy.y; z = p3; }
87  explicit Vec3(const Vec4<Type> &copy) { x = copy.x; y = copy.y; z = copy.z; }
88 
89  Vec3(const Vec3<double> &copy);
90  Vec3(const Vec3<float> &copy);
91  Vec3(const Vec3<int> &copy);
92 
93  explicit Vec3(const Type &p1, const Type &p2, const Type &p3) : x(p1), y(p2), z(p3) { }
94  explicit Vec3(const Type *array_xyz) : x(array_xyz[0]), y(array_xyz[1]), z(array_xyz[2]) { }
95 
101  static Vec3<Type> normalize(const Vec3<Type>& vector);
102 
106  static Type dot(const Vec3<Type>& vector1, const Vec3<Type>& vector2) { return vector1.x*vector2.x + vector1.y*vector2.y + vector1.z*vector2.z; }
107 
113  static Vec3<Type> cross(const Vec3<Type>& vector1, const Vec3<Type>& vector2);
114 
121  static Vec3<Type> rotate(const Vec3<Type>& vector, const Angle &angle, const Vec3<Type>& axis);
122 
128  static Vec3<Type> round(const Vec3<Type>& vector);
129 
133  static Vec3<Type> reflect(const Vec3<Type>& incident, const Vec3<Type>& normal);
134 
140  static bool is_equal(const Vec3<Type> &first, const Vec3<Type> &second, Type epsilon)
141  {
142  Type diff_x = second.x - first.x; Type diff_y = second.y - first.y; Type diff_z = second.z - first.z;
143  return (diff_x >= -epsilon && diff_x <= epsilon && diff_y >= -epsilon && diff_y <= epsilon && diff_z >= -epsilon && diff_z <= epsilon );
144  }
145 
148 
149 public:
154  Type length() const;
155 
161 
168  Type dot(const Vec3<Type>& vector) const { return x*vector.x + y*vector.y + z*vector.z; }
169 
175  Angle angle(const Vec3<Type>& vector) const;
176 
182  Angle angle_normed(const Vec3<Type>& vector) const;
183 
189  Type distance(const Vec3<Type>& vector) const;
190 
196  Vec3<Type> &cross(const Vec3<Type>& vector);
197 
203  Vec3<Type> &rotate(const Angle &angle, const Vec3<Type>& axis);
204 
210 
215  bool is_equal(const Vec3<Type> &other, Type epsilon) const { return Vec3<Type>::is_equal(*this, other, epsilon); }
216 
220 
221 public:
223  void operator += (const Vec3<Type>& vector) { x+= vector.x; y+= vector.y; z+= vector.z; }
224 
226  void operator += ( Type value) { x+= value; y+= value; z+= value; }
227 
229  void operator -= (const Vec3<Type>& vector) { x-= vector.x; y-= vector.y; z-= vector.z; }
230 
232  void operator -= ( Type value) { x-= value; y-= value; z-= value; }
233 
235  Vec3<Type> operator - () const {return Vec3<Type>(-x , -y, -z);}
236 
238  void operator *= (const Vec3<Type>& vector) { x*= vector.x; y*= vector.y; z*= vector.z; }
239 
241  void operator *= ( Type value) { x*= value; y*= value; z*= value; }
242 
244  void operator /= (const Vec3<Type>& vector) { x/= vector.x; y/= vector.y; z/= vector.z; }
245 
247  void operator /= ( Type value) { x/= value; y/= value; z/= value; }
248 
250  Vec3<Type> &operator = (const Vec3<Type>& vector) { x = vector.x; y = vector.y; z = vector.z; return *this; }
251 
253  bool operator == (const Vec3<Type>& vector) const {return ((x == vector.x) && (y == vector.y) && (z == vector.z));}
254 
256  bool operator != (const Vec3<Type>& vector) const {return ((x != vector.x) || (y != vector.y) || (z != vector.z));}
257 
259  bool operator < (const Vec3<Type>& vector) const { return z < vector.z || (z == vector.z && (y < vector.y || (y == vector.y && x < vector.x))); }
261 };
262 
264 template<typename Type>
265 Vec3<Type> operator + (const Vec3<Type>& v1, const Vec3<Type>& v2) {return Vec3<Type>(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z);}
266 
268 template<typename Type>
269 Vec3<Type> operator + (Type s, const Vec3<Type>& v) {return Vec3<Type>(s + v.x, s + v.y, s + v.z);}
270 
272 template<typename Type>
273 Vec3<Type> operator + (const Vec3<Type>& v, Type s) {return Vec3<Type>(v.x + s, v.y + s, v.z + s);}
274 
276 template<typename Type>
277 Vec3<Type> operator - (const Vec3<Type>& v1, const Vec3<Type>& v2) {return Vec3<Type>(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z);}
278 
280 template<typename Type>
281 Vec3<Type> operator - (Type s, const Vec3<Type>& v) {return Vec3<Type>(s - v.x, s - v.y, s - v.z);}
282 
284 template<typename Type>
285 Vec3<Type> operator - (const Vec3<Type>& v, Type s) {return Vec3<Type>(v.x - s, v.y - s, v.z - s);}
286 
288 template<typename Type>
289 Vec3<Type> operator * (const Vec3<Type>& v1, const Vec3<Type>& v2) {return Vec3<Type>(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z);}
290 
292 template<typename Type>
293 Vec3<Type> operator * (Type s, const Vec3<Type>& v) {return Vec3<Type>(s * v.x, s * v.y, s * v.z);}
294 
296 template<typename Type>
297 Vec3<Type> operator * (const Vec3<Type>& v, Type s) {return Vec3<Type>(v.x * s, v.y * s, v.z * s);}
298 
300 template<typename Type>
301 Vec3<Type> operator / (const Vec3<Type>& v1, const Vec3<Type>& v2) {return Vec3<Type>(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z);}
302 
304 template<typename Type>
305 Vec3<Type> operator / (Type s, const Vec3<Type>& v) {return Vec3<Type>(s / v.x, s / v.y, s / v.z);}
306 
308 template<typename Type>
309 Vec3<Type> operator / (const Vec3<Type>& v, Type s) {return Vec3<Type>(v.x / s, v.y / s, v.z / s);}
310 
313 template<typename Type>
314 Vec3<Type> operator * (const Vec3<Type>& v, const Mat3<Type>& matrix)
315 {
316  return Vec3<Type>(
317  matrix[0*3+0]*v.x + matrix[0*3+1]*v.y + matrix[0*3+2]*v.z,
318  matrix[1*3+0]*v.x + matrix[1*3+1]*v.y + matrix[1*3+2]*v.z,
319  matrix[2*3+0]*v.x + matrix[2*3+1]*v.y + matrix[2*3+2]*v.z);
320 }
321 
324 template<typename Type>
325 Vec3<Type> operator * (const Mat3<Type>& matrix, const Vec3<Type>& v)
326 {
327  return Vec3<Type>(
328  matrix[0*3+0]*v.x + matrix[1*3+0]*v.y + matrix[2*3+0]*v.z,
329  matrix[0*3+1]*v.x + matrix[1*3+1]*v.y + matrix[2*3+1]*v.z,
330  matrix[0*3+2]*v.x + matrix[1*3+2]*v.y + matrix[2*3+2]*v.z);
331 }
332 
333 template<>
334 inline Vec3<unsigned char>::Vec3(const Vec3<float> &copy) { x = (unsigned char) floor(copy.x +0.5f); y = (unsigned char) floor(copy.y + 0.5f); z = (unsigned char) floor(copy.z + 0.5f); }
335 
336 template<>
337 inline Vec3<unsigned char>::Vec3(const Vec3<double> &copy) { x = (unsigned char) floor(copy.x+0.5); y = (unsigned char) floor(copy.y+0.5); z = (unsigned char) floor(copy.z + 0.5); }
338 
339 template<>
340 inline Vec3<unsigned char>::Vec3(const Vec3<int> &copy) { x = (unsigned char) copy.x; y = (unsigned char) copy.y; z = (unsigned char) copy.z; }
341 
342 template<>
343 inline Vec3<char>::Vec3(const Vec3<float> &copy) { x = (char) floor(copy.x +0.5f); y = (char) floor(copy.y + 0.5f); z = (char) floor(copy.z + 0.5f); }
344 
345 template<>
346 inline Vec3<char>::Vec3(const Vec3<double> &copy) { x = (char) floor(copy.x+0.5); y = (char) floor(copy.y+0.5); z = (char) floor(copy.z + 0.5); }
347 
348 template<>
349 inline Vec3<char>::Vec3(const Vec3<int> &copy) { x = (char) copy.x; y = (char) copy.y; z = (char) copy.z; }
350 
351 template<>
352 inline Vec3<unsigned short>::Vec3(const Vec3<float> &copy) { x = (unsigned short) floor(copy.x +0.5f); y = (unsigned short) floor(copy.y + 0.5f); z = (unsigned short) floor(copy.z + 0.5f); }
353 
354 template<>
355 inline Vec3<unsigned short>::Vec3(const Vec3<double> &copy) { x = (unsigned short) floor(copy.x+0.5); y = (unsigned short) floor(copy.y+0.5); z = (unsigned short) floor(copy.z + 0.5); }
356 
357 template<>
358 inline Vec3<unsigned short>::Vec3(const Vec3<int> &copy) { x = (unsigned short) copy.x; y = (unsigned short) copy.y; z = (unsigned short) copy.z; }
359 
360 template<>
361 inline Vec3<short>::Vec3(const Vec3<float> &copy) { x = (short) floor(copy.x +0.5f); y = (short) floor(copy.y + 0.5f); z = (short) floor(copy.z + 0.5f); }
362 
363 template<>
364 inline Vec3<short>::Vec3(const Vec3<double> &copy) { x = (short) floor(copy.x+0.5); y = (short) floor(copy.y+0.5); z = (short) floor(copy.z + 0.5); }
365 
366 template<>
367 inline Vec3<short>::Vec3(const Vec3<int> &copy) { x = (short) copy.x; y = (short) copy.y; z = (short) copy.z; }
368 
369 template<>
370 inline Vec3<int>::Vec3(const Vec3<float> &copy) { x = (int) floor(copy.x +0.5f); y = (int) floor(copy.y + 0.5f); z = (int) floor(copy.z + 0.5f); }
371 
372 template<>
373 inline Vec3<int>::Vec3(const Vec3<double> &copy) { x = (int) floor(copy.x+0.5); y = (int) floor(copy.y+0.5); z = (int) floor(copy.z + 0.5); }
374 
375 template<>
376 inline Vec3<int>::Vec3(const Vec3<int> &copy) { x = (int) copy.x; y = (int) copy.y; z = (int) copy.z; }
377 
378 template<>
379 inline Vec3<unsigned int>::Vec3(const Vec3<float> &copy) { x = (unsigned int) floor(copy.x +0.5f); y = (unsigned int) floor(copy.y + 0.5f); z = (unsigned int) floor(copy.z + 0.5f); }
380 
381 template<>
382 inline Vec3<unsigned int>::Vec3(const Vec3<double> &copy) { x = (unsigned int) floor(copy.x+0.5); y = (unsigned int) floor(copy.y+0.5); z = (unsigned int) floor(copy.z + 0.5); }
383 
384 template<>
385 inline Vec3<unsigned int>::Vec3(const Vec3<int> &copy) { x = (unsigned int) copy.x; y = (unsigned int) copy.y; z = (unsigned int) copy.z; }
386 
387 template<>
388 inline Vec3<float>::Vec3(const Vec3<float> &copy) { x = (float) copy.x; y = (float) copy.y; z = (float) copy.z; }
389 
390 template<>
391 inline Vec3<float>::Vec3(const Vec3<double> &copy) { x = (float) copy.x; y = (float) copy.y; z = (float) copy.z; }
392 
393 template<>
394 inline Vec3<float>::Vec3(const Vec3<int> &copy) { x = (float) copy.x; y = (float) copy.y; z = (float) copy.z; }
395 
396 template<>
397 inline Vec3<double>::Vec3(const Vec3<float> &copy) { x = (double) copy.x; y = (double) copy.y; z = (double) copy.z; }
398 
399 template<>
400 inline Vec3<double>::Vec3(const Vec3<double> &copy) { x = (double) copy.x; y = (double) copy.y; z = (double) copy.z; }
401 
402 template<>
403 inline Vec3<double>::Vec3(const Vec3<int> &copy) { x = (double) copy.x; y = (double) copy.y; z = (double) copy.z; }
404 
405 template<typename Type>
406 inline Type Vec3<Type>::length() const {return (Type) floor(sqrt(float(x*x+y*y+z*z))+0.5f);}
407 
408 template<>
409 inline double Vec3<double>::length() const {return sqrt(x*x+y*y+z*z);}
410 
411 template<>
412 inline float Vec3<float>::length() const {return sqrt(x*x+y*y+z*z);}
413 
414 template<typename Type>
415 inline Vec3<Type> &Vec3<Type>::normalize() { Type f = length(); if (f!=0) { x /= f; y /= f; z /= f; } return *this; }
416 
417 template<typename Type>
418 inline Vec3<Type> Vec3<Type>::normalize(const Vec3<Type>& vector) { Vec3<Type> dest(vector); dest.normalize(); return dest; }
419 
425 typedef Vec3<int> Vec3i;
428 
429 }
430 
bool operator<(const Vec3< Type > &vector) const
< operator.
Definition: vec3.h:259
Type x
Definition: vec4.h:80
Vec3< float > Vec3f
Definition: vec3.h:426
static bool is_equal(const Vec3< Type > &first, const Vec3< Type > &second, Type epsilon)
Returns true if equal within the bounds of an epsilon.
Definition: vec3.h:140
Vec3< int > Vec3i
Definition: vec3.h:425
void operator-=(const Vec3< Type > &vector)
-= operator.
Definition: vec3.h:229
Vec3< double > Vec3d
Definition: vec3.h:427
Vec3(const Vec3< int > &copy)
Type y
Definition: vec2.h:81
Vec3< Type > & operator=(const Vec3< Type > &vector)
= operator.
Definition: vec3.h:250
Type g
Definition: vec3.h:81
void operator+=(const Vec3< Type > &vector)
+= operator.
Definition: vec3.h:223
Vec2< Type > operator+(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition: vec2.h:276
bool is_equal(const Vec3< Type > &other, Type epsilon) const
Returns true if equal within the bounds of an epsilon.
Definition: vec3.h:215
Type length() const
Returns the length (magnitude) of this vector.
Definition: vec3.h:406
Vec3< unsigned int > Vec3ui
Definition: vec3.h:424
Vec3< Type > & normalize()
Normalizes this vector.
Definition: vec3.h:415
Vec3< Type > & cross(const Vec3< Type > &vector)
Calculate the cross product between this vector and an other vector.
Vec3< Type > & rotate(const Angle &angle, const Vec3< Type > &axis)
Rotate this vector around an axis. Same as glRotate[f|d](angle, a);.
Type x
Definition: vec2.h:80
Vec3(const Type *array_xyz)
Definition: vec3.h:94
Vec3< Type > & round()
Rounds all components on this vector.
Type z
Definition: vec4.h:82
void operator/=(const Vec3< Type > &vector)
/= operator.
Definition: vec3.h:244
Vec3(const Vec3< float > &copy)
Vec2< Type > operator/(const Vec2< Type > &v1, const Vec2< Type > &v2)
/ operator.
Definition: vec2.h:312
Angle class.
Definition: angle.h:63
static Vec3< Type > reflect(const Vec3< Type > &incident, const Vec3< Type > &normal)
Calculate the reflection direction for an incident vector.
Vec3()
Definition: vec3.h:84
Vec2< Type > operator*(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition: vec2.h:300
Type s
Definition: vec3.h:80
static Vec3< Type > normalize(const Vec3< Type > &vector)
Normalizes a vector.
Definition: vec3.h:418
2D vector
Definition: line.h:48
static Vec3< Type > rotate(const Vec3< Type > &vector, const Angle &angle, const Vec3< Type > &axis)
Rotate a vector around an axis. Same as glRotate[f|d](angle, a);.
Vec3< char > Vec3b
Definition: vec3.h:421
Vec3(const Type &scalar)
Definition: vec3.h:85
Angle angle_normed(const Vec3< Type > &vector) const
Calculate the angle between this vector and an other vector, where the vectors are unit vectors.
void operator*=(const Vec3< Type > &vector)
*= operator.
Definition: vec3.h:238
@ length
value is a keyword
Type r
Definition: vec3.h:80
Vec3< unsigned short > Vec3us
Definition: vec3.h:422
static Type dot(const Vec3< Type > &vector1, const Vec3< Type > &vector2)
Dot products between two vectors.
Definition: vec3.h:106
Type dot(const Vec3< Type > &vector) const
Dot products this vector with an other vector.
Definition: vec3.h:168
bool operator!=(const Vec3< Type > &vector) const
!= operator.
Definition: vec3.h:256
static Vec3< Type > round(const Vec3< Type > &vector)
Rounds all components on a vector.
Angle angle(const Vec3< Type > &vector) const
Calculate the angle between this vector and an other vector.
4D vector
Definition: size.h:47
Definition: clanapp.h:36
Vec3(const Vec2< Type > &copy, const Type &p3)
Definition: vec3.h:86
Vec3(const Type &p1, const Type &p2, const Type &p3)
Definition: vec3.h:93
Type y
Definition: vec4.h:81
Vec3(const Vec4< Type > &copy)
Definition: vec3.h:87
Vec2< Type > operator-(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition: vec2.h:288
Type u
Definition: vec3.h:82
Vec3< short > Vec3s
Definition: vec3.h:423
3D matrix
Definition: mat2.h:48
Type b
Definition: vec3.h:82
Vec3(const Vec3< double > &copy)
Type t
Definition: vec3.h:81
static Vec3< Type > cross(const Vec3< Type > &vector1, const Vec3< Type > &vector2)
Calculate the cross product between two vectors.
Type datatype
Definition: vec3.h:78
Type x
Definition: vec3.h:80
Type distance(const Vec3< Type > &vector) const
Calculate the distance between this vector and an other vector.
Type z
Definition: vec3.h:82
Vec3< unsigned char > Vec3ub
Definition: vec3.h:420
bool operator==(const Vec3< Type > &vector) const
== operator.
Definition: vec3.h:253
Type y
Definition: vec3.h:81
Vec3< Type > operator-() const
operator.
Definition: vec3.h:235