mat4.h
1 /*
2 ** ClanLib SDK
3 ** Copyright (c) 1997-2015 The ClanLib Team
4 **
5 ** This software is provided 'as-is', without any express or implied
6 ** warranty. In no event will the authors be held liable for any damages
7 ** arising from the use of this software.
8 **
9 ** Permission is granted to anyone to use this software for any purpose,
10 ** including commercial applications, and to alter it and redistribute it
11 ** freely, subject to the following restrictions:
12 **
13 ** 1. The origin of this software must not be misrepresented; you must not
14 ** claim that you wrote the original software. If you use this software
15 ** in a product, an acknowledgment in the product documentation would be
16 ** appreciated but is not required.
17 ** 2. Altered source versions must be plainly marked as such, and must not be
18 ** misrepresented as being the original software.
19 ** 3. This notice may not be removed or altered from any source distribution.
20 **
21 ** Note: Some of the libraries ClanLib may link to may have additional
22 ** requirements or restrictions.
23 **
24 ** File Author(s):
25 **
26 ** Magnus Norddahl
27 ** Mark Page
28 ** Harry Storbacka
29 */
30 
31 
32 #pragma once
33 
34 #include "../System/cl_platform.h"
35 #include "mat2.h"
36 #include "mat3.h"
37 #include "vec3.h"
38 #include "angle.h"
39 
40 namespace clan
41 {
44 
46 {
49 };
50 
52 {
53  clip_negative_positive_w, // OpenGL, -wclip <= zclip <= wclip
54  clip_zero_positive_w // Direct3D, 0 <= zclip <= wclip
55 };
56 
57 template<typename Type>
58 class Mat2;
59 
60 template<typename Type>
61 class Mat3;
62 
63 template<typename Type>
64 class Mat4;
65 
66 template<typename Type>
67 class Vec3;
68 
69 template<typename Type>
71 
72 class Angle;
73 
77 template<typename Type>
78 class Mat4
79 {
82 
83 public:
85  Mat4()
86  {
87  for (auto & elem : matrix)
88  elem = 0;
89  }
90 
92  Mat4(const Mat4<Type> &copy)
93  {
94  for (int i=0; i<16; i++)
95  matrix[i] = copy.matrix[i];
96  }
97 
99  explicit Mat4(const Mat2<Type> &copy);
100 
102  explicit Mat4(const Mat3<Type> &copy);
103 
105  explicit Mat4(const float *init_matrix)
106  {
107  for (int i=0; i<16; i++)
108  matrix[i] = (Type) init_matrix[i];
109  }
110 
112  explicit Mat4(const double *init_matrix)
113  {
114  for (int i=0; i<16; i++)
115  matrix[i] = (Type) init_matrix[i];
116  }
117 
119  explicit Mat4(const int64_t *init_matrix)
120  {
121  for (int i=0; i<16; i++)
122  matrix[i] = (Type) init_matrix[i];
123  }
124 
126  explicit Mat4(const int32_t *init_matrix)
127  {
128  for (int i=0; i<16; i++)
129  matrix[i] = (Type) init_matrix[i];
130  }
131 
133  explicit Mat4(const int16_t *init_matrix)
134  {
135  for (int i=0; i<16; i++)
136  matrix[i] = (Type) init_matrix[i];
137  }
138 
140  explicit Mat4(const int8_t *init_matrix)
141  {
142  for (int i=0; i<16; i++)
143  matrix[i] = (Type) init_matrix[i];
144  }
145 
149  static Mat4<Type> null();
150 
153  static Mat4<Type> identity();
154 
159  static Mat4<Type> frustum(Type left, Type right, Type bottom, Type top, Type z_near, Type z_far, Handedness handedness, ClipZRange clip_z);
160 
166  Type field_of_view_y_degrees,
167  Type aspect,
168  Type z_near,
169  Type z_far,
170  Handedness handedness,
171  ClipZRange clip_z);
172 
177  static Mat4<Type> ortho(Type left, Type right, Type bottom, Type top, Type z_near, Type z_far, Handedness handedness, ClipZRange clip_z);
178 
183  static Mat4<Type> ortho_2d(Type left, Type right, Type bottom, Type top, Handedness handedness, ClipZRange clip_z);
184 
194  static Mat4<Type> rotate(const Angle &angle, Type x, Type y, Type z, bool normalize = true);
195 
203  static Mat4<Type> rotate(const Angle &angle, Vec3<Type> rotation, bool normalize = true)
204  {
205  return rotate(angle, rotation.x, rotation.y, rotation.z, normalize);
206  }
207 
213  static Mat4<Type> rotate(const Angle &angle_x, const Angle &angle_y, const Angle &angle_z, EulerOrder order);
214 
221  static Mat4<Type> scale(Type x, Type y, Type z);
222 
227  static Mat4<Type> scale(const Vec3<Type> &xyz)
228  {
229  return scale(xyz.x, xyz.y, xyz.z);
230  }
231 
239  static Mat4<Type> translate(Type x, Type y, Type z);
240 
246  static Mat4<Type> translate(const Vec3<Type> &xyz)
247  {
248  return translate(xyz.x, xyz.y, xyz.z);
249  }
250 
265  Type eye_x, Type eye_y, Type eye_z,
266  Type center_x, Type center_y, Type center_z,
267  Type up_x, Type up_y, Type up_z);
268 
277  Vec3<Type> eye,
278  Vec3<Type> center,
279  Vec3<Type> up)
280  {
281  return look_at(eye.x, eye.y, eye.z, center.x, center.y, center.z, up.x, up.y, up.z);
282  }
283 
292  static Mat4<Type> multiply(const Mat4<Type> &matrix_1, const Mat4<Type> &matrix_2);
293 
301  static Mat4<Type> add(const Mat4<Type> &matrix_1, const Mat4<Type> &matrix_2);
302 
310  static Mat4<Type> subtract(const Mat4<Type> &matrix_1, const Mat4<Type> &matrix_2);
311 
316  static Mat4<Type> adjoint(const Mat4<Type> &matrix);
317 
323  static Mat4<Type> inverse(const Mat4<Type> &matrix);
324 
329  static Mat4<Type> transpose(const Mat4<Type> &matrix);
330 
336  static bool is_equal(const Mat4<Type> &first, const Mat4<Type> &second, Type epsilon)
337  {
338  for (int i=0; i<16; i++)
339  {
340  Type diff = second.matrix[i] - first.matrix[i];
341  if (diff < -epsilon || diff > epsilon) return false;
342  }
343  return true;
344  }
345 
349 
350 public:
352  Type matrix[16];
353 
355  Vec3<Type> get_translate() const { return Vec3<Type>(matrix[12], matrix[13], matrix[14]); }
356 
361 
366 
370 
371 public:
381  Mat4<Type> &scale_self(Type x, Type y, Type z);
382 
391 
402  Mat4<Type> &translate_self(Type x, Type y, Type z);
403 
412  Mat4<Type> &translate_self(const Vec3<Type> &translation) { return translate_self(translation.x, translation.y, translation.z); }
413 
424  Mat4<Type> &set_translate(Type x, Type y, Type z) { matrix[3 * 4 + 0] = x; matrix[3 * 4 + 1] = y; matrix[3 * 4 + 2] = z; return *this;}
425 
434  Mat4<Type> &set_translate(const Vec3<Type> &translation) { matrix[3 * 4 + 0] = translation.x; matrix[3 * 4 + 1] = translation.y; matrix[3 * 4 + 2] = translation.z; return *this; }
435 
439  double det() const;
440 
445 
451 
456 
458  void decompose(Vec3<Type> &out_position, Quaternionx<Type> &out_orientation, Vec3<Type> &out_scale) const;
459 
464  bool is_equal(const Mat4<Type> &other, Type epsilon) const { return Mat4<Type>::is_equal(*this, other, epsilon); }
465 
469 
470 public:
472  operator Type const*() const { return matrix; }
473 
475  operator Type *() { return matrix; }
476 
478  Type &operator[](int i) { return matrix[i]; }
479 
481  const Type &operator[](int i) const { return matrix[i]; }
482 
484  Type &operator[](unsigned int i) { return matrix[i]; }
485 
487  const Type &operator[](unsigned int i) const { return matrix[i]; }
488 
490  Mat4<Type> &operator =(const Mat4<Type> &copy) {memcpy(matrix, copy.matrix, sizeof(matrix)); return *this; }
491 
494 
497 
499  Mat4<Type> operator *(const Mat4<Type> &mult) const;
500 
502  Mat4<Type> operator +(const Mat4<Type> &add_matrix) const;
503 
505  Mat4<Type> operator -(const Mat4<Type> &sub_matrix) const;
506 
508  bool operator==(const Mat4<Type> &other) const
509  {
510  for (int i=0; i<16; i++)
511  if (matrix[i] != other.matrix[i]) return false;
512  return true;
513  }
514 
516  bool operator!=(const Mat4<Type> &other) { return !((*this) == other); }
517 
521 
522 private:
524 };
525 
526 template<typename Type>
527 inline Mat4<Type> Mat4<Type>::null() { Mat4<Type> m; memset(m.matrix, 0, sizeof(m.matrix)); return m; }
528 
529 template<typename Type>
530 inline Mat4<Type> Mat4<Type>::identity() { Mat4<Type> m = null(); m.matrix[0] = 1; m.matrix[5] = 1; m.matrix[10] = 1; m.matrix[15] = 1; return m; }
531 
532 template<typename Type>
533 inline Mat4<Type> Mat4<Type>::multiply(const Mat4<Type> &matrix_1, const Mat4<Type> &matrix_2) { return matrix_1 * matrix_2; }
534 
535 template<typename Type>
536 inline Mat4<Type> Mat4<Type>::add(const Mat4<Type> &matrix_1, const Mat4<Type> &matrix_2) { return matrix_1 + matrix_2; }
537 
538 template<typename Type>
539 inline Mat4<Type> Mat4<Type>::subtract(const Mat4<Type> &matrix_1, const Mat4<Type> &matrix_2) { return matrix_1 - matrix_2; }
540 
541 template<typename Type>
542 inline Mat4<Type> Mat4<Type>::adjoint(const Mat4<Type> &matrix) { Mat4<Type> dest(matrix); dest.adjoint(); return dest; }
543 
544 template<typename Type>
545 inline Mat4<Type> Mat4<Type>::inverse(const Mat4<Type> &matrix) { Mat4<Type> dest(matrix); dest.inverse(); return dest; }
546 
547 template<typename Type>
548 inline Mat4<Type> Mat4<Type>::transpose(const Mat4<Type> &matrix) { Mat4<Type> dest(matrix); dest.transpose(); return dest; }
549 
550 typedef Mat4<int> Mat4i;
553 
554 }
555 
static Mat4< Type > add(const Mat4< Type > &matrix_1, const Mat4< Type > &matrix_2)
Add 2 matrices.
Definition: mat4.h:536
static Mat4< Type > null()
Create a zero matrix.
Definition: mat4.h:527
Vec3< Type > get_transformed_point(const Vec3< Type > &vector) const
Get a transformed point from the matrix (in column-major format)
Type & operator[](unsigned int i)
Operator that returns the matrix cell at the given index.
Definition: mat4.h:484
Vec3< Type > get_translate() const
Returns the translation coordinates for this matrix (in column-major format)
Definition: mat4.h:355
ClipZRange
Definition: mat4.h:52
Mat4< Type > & scale_self(Type x, Type y, Type z)
Scale this matrix.
static Mat4< Type > frustum(Type left, Type right, Type bottom, Type top, Type z_near, Type z_far, Handedness handedness, ClipZRange clip_z)
Create a frustum matrix.
@ clip_negative_positive_w
Definition: mat4.h:53
Mat4(const Mat2< Type > &copy)
Constructs a 4x4 matrix (copied from a 2d matrix)
Mat4< Type > operator+(const Mat4< Type > &add_matrix) const
Addition operator.
Handedness
Definition: mat4.h:46
Mat4(const int64_t *init_matrix)
Constructs a 4x4 matrix (copied from a array of 64 bit integers)
Definition: mat4.h:119
Quaternion.
Definition: mat4.h:70
static Mat4< Type > scale(const Vec3< Type > &xyz)
Create a scale matrix.
Definition: mat4.h:227
Mat4< Type > & translate_self(Type x, Type y, Type z)
Translate this matrix.
Mat4(const double *init_matrix)
Constructs a 4x4 matrix (copied from a array of doubles)
Definition: mat4.h:112
static Mat4< Type > translate(const Vec3< Type > &xyz)
Create a translation matrix.
Definition: mat4.h:246
Mat4(const float *init_matrix)
Constructs a 4x4 matrix (copied from a array of floats)
Definition: mat4.h:105
Mat4< Type > & scale_self(const Vec3< Type > &scale)
Scale this matrix.
Definition: mat4.h:390
const Type & operator[](int i) const
Operator that returns the matrix cell at the given index.
Definition: mat4.h:481
double det() const
Calculate the matrix determinant of this matrix.
static Mat4< Type > look_at(Type eye_x, Type eye_y, Type eye_z, Type center_x, Type center_y, Type center_z, Type up_x, Type up_y, Type up_z)
Create the "look at" matrix.
Vec3< Type > get_euler(EulerOrder order) const
Extract the euler angles (in radians) from a matrix (in column-major format)
void decompose(Vec3< Type > &out_position, Quaternionx< Type > &out_orientation, Vec3< Type > &out_scale) const
Decompose matrix into position, orientation/rotation and scale.
@ handed_right
Definition: mat4.h:48
Mat4(const Mat4< Type > &copy)
Constructs a 4x4 matrix (copied)
Definition: mat4.h:92
Mat4< Type > & operator=(const Mat4< Type > &copy)
Copy assignment operator.
Definition: mat4.h:490
Mat4< Type > operator-(const Mat4< Type > &sub_matrix) const
Subtraction operator.
static Mat4< Type > subtract(const Mat4< Type > &matrix_1, const Mat4< Type > &matrix_2)
Subtract 2 matrices.
Definition: mat4.h:539
Mat4< Type > & set_translate(Type x, Type y, Type z)
Set this matrix translation values.
Definition: mat4.h:424
2D matrix
Definition: mat2.h:45
static Mat4< Type > transpose(const Mat4< Type > &matrix)
Calculate the transpose of a matrix.
Definition: mat4.h:548
Type & operator[](int i)
Operator that returns the matrix cell at the given index.
Definition: mat4.h:478
Angle class.
Definition: angle.h:63
Mat4< Type > & translate_self(const Vec3< Type > &translation)
Translate this matrix.
Definition: mat4.h:412
@ angle
value is a color
EulerOrder
Euler angle rotation order.
Definition: angle.h:51
bool operator==(const Mat4< Type > &other) const
Equality operator.
Definition: mat4.h:508
static Mat4< Type > identity()
Create the identity matrix.
Definition: mat4.h:530
Mat4< double > Mat4d
Definition: mat4.h:552
Mat4< float > Mat4f
Definition: mat4.h:551
4D matrix
Definition: mat2.h:51
bool is_equal(const Mat4< Type > &other, Type epsilon) const
Returns true if equal within the bounds of an epsilon.
Definition: mat4.h:464
@ clip_zero_positive_w
Definition: mat4.h:54
static Mat4< Type > look_at(Vec3< Type > eye, Vec3< Type > center, Vec3< Type > up)
Create the "look at" matrix.
Definition: mat4.h:276
bool operator!=(const Mat4< Type > &other)
Not-equal operator.
Definition: mat4.h:516
Type matrix[16]
The matrix (in column-major format)
Definition: mat4.h:352
static Mat4< Type > scale(Type x, Type y, Type z)
Create a scale matrix.
Mat4< Type > & inverse()
Calculate the matrix inverse of this matrix.
Mat4< Type > & transpose()
Calculate the transpose of this matrix.
static Mat4< Type > inverse(const Mat4< Type > &matrix)
Calculate the matrix inverse of a matrix.
Definition: mat4.h:545
Mat4()
Constructs a 4x4 matrix (zero'ed)
Definition: mat4.h:85
static bool is_equal(const Mat4< Type > &first, const Mat4< Type > &second, Type epsilon)
Returns true if equal within the bounds of an epsilon.
Definition: mat4.h:336
@ handed_left
Definition: mat4.h:47
Definition: clanapp.h:36
Mat4< Type > operator*(const Mat4< Type > &mult) const
Multiplication operator.
Mat4< Type > & set_translate(const Vec3< Type > &translation)
Set this matrix translation values.
Definition: mat4.h:434
static Mat4< Type > rotate(const Angle &angle, Vec3< Type > rotation, bool normalize=true)
Create a rotation matrix.
Definition: mat4.h:203
static Mat4< Type > ortho_2d(Type left, Type right, Type bottom, Type top, Handedness handedness, ClipZRange clip_z)
Create a ortho_2d matrix.
static Mat4< Type > rotate(const Angle &angle, Type x, Type y, Type z, bool normalize=true)
Create a rotation matrix.
static Mat4< Type > perspective(Type field_of_view_y_degrees, Type aspect, Type z_near, Type z_far, Handedness handedness, ClipZRange clip_z)
Create a perspective matrix.
static Mat4< Type > adjoint(const Mat4< Type > &matrix)
Calculate the adjoint (or known as Adjugate or Conjugate Transpose) of a matrix.
Definition: mat4.h:542
const Type & operator[](unsigned int i) const
Operator that returns the matrix cell at the given index.
Definition: mat4.h:487
static Mat4< Type > rotate(const Angle &angle_x, const Angle &angle_y, const Angle &angle_z, EulerOrder order)
Create a rotation matrix using euler angles.
3D matrix
Definition: mat2.h:48
Mat4(const int8_t *init_matrix)
Constructs a 4x4 matrix (copied from a array of 8 bit integers)
Definition: mat4.h:140
3D vector
Definition: line_ray.h:48
static Mat4< Type > ortho(Type left, Type right, Type bottom, Type top, Type z_near, Type z_far, Handedness handedness, ClipZRange clip_z)
Create a ortho matrix.
Type x
Definition: vec3.h:80
static Mat4< Type > multiply(const Mat4< Type > &matrix_1, const Mat4< Type > &matrix_2)
Multiply 2 matrices.
Definition: mat4.h:533
Mat4(const Mat3< Type > &copy)
Constructs a 4x4 matrix (copied from a 3d matrix)
static Mat4< Type > translate(Type x, Type y, Type z)
Create a translation matrix.
Type z
Definition: vec3.h:82
Mat4< int > Mat4i
Definition: mat4.h:550
Mat4< Type > & adjoint()
Calculate the adjoint (or known as adjugate) of this matrix.
Mat4(const int16_t *init_matrix)
Constructs a 4x4 matrix (copied from a array of 16 bit integers)
Definition: mat4.h:133
Mat4(const int32_t *init_matrix)
Constructs a 4x4 matrix (copied from a array of 32 bit integers)
Definition: mat4.h:126
Type y
Definition: vec3.h:81