Previous Up Next

5.55.5  Jordan normal form: jordan

jordan takes as argument a square matrix A of size n.
jordan returns:

Remarks

Input in Xcas, Mupad or TI mode:

jordan([[1,0,0],[0,1,1],[1,1,-1]])

Output:

[[1,0,0],[0,1,1],[1,1,-1]],[[-1,0,0],[1,1,1],[0,-sqrt(2)-1,sqrt(2)-1]],[[1,0,0],[0,-(sqrt(2)),0],[0,0,sqrt(2)]]

Input in Maple mode:

jordan([[1,0,0],[0,1,1],[1,1,-1]])

Output:

[[1,0,0],[0,-(sqrt(2)),0],[0,0,sqrt(2)]]

then input:

P

Output:

[[-1,0,0],[1,1,1],[0,-sqrt(2)-1,sqrt(2)-1]]

Input in Xcas, Mupad or TI mode:

jordan([[4,1,-2],[1,2,-1],[2,1,0]])

Output:

[[[1,2,1],[0,1,0],[1,2,0]],[[2,1,0],[0,2,1],[0,0,2]]]

In complex mode and in Xcas, Mupad or TI mode , input:

jordan([[2,0,0],[0,2,-1],[2,1,2]])

Output:

[[1,0,0],[-2,-1,-1],[0,-i,i]],[[2,0,0],[0,2-i,0],[0,0,2+i]]

Previous Up Next