Statistilised funktsioonid, 3. osa

CONFIDENCE

Returns the (1-alpha) confidence interval for a normal distribution.

SĂĽntaks

CONFIDENCE(alfa; stdev; suurus)

Alpha is the level of the confidence interval.

Stdev on kogu populatsiooni standardhälve.

Suurus on kogu populatsiooni suurus.

Näide

=CONFIDENCE(0,05; 1,5; 100) võrdub 0,29.

CONFIDENCE.NORM

Returns the (1-alpha) confidence interval for a normal distribution.

tip

See funktsioon on saadaval alates LibreOffice'i versioonist 4.2


SĂĽntaks

CONFIDENCE.NORM(Alpha; StDev; Size)

Alpha is the level of the confidence interval.

Stdev on kogu populatsiooni standardhälve.

Suurus on kogu populatsiooni suurus.

Näide

=CONFIDENCE.NORM(0.05;1.5;100) gives 0.2939945977.

CONFIDENCE.T

Returns the (1-alpha) confidence interval for a Student's t distribution.

tip

See funktsioon on saadaval alates LibreOffice'i versioonist 4.2


SĂĽntaks

CONFIDENCE.T(Alpha; StDev; Size)

Alpha is the level of the confidence interval.

Stdev on kogu populatsiooni standardhälve.

Suurus on kogu populatsiooni suurus.

Näide

=CONFIDENCE.T(0.05;1.5;100) gives 0.2976325427.

CORREL

Tagastab kahe andmehulga vahelise korrelatsioonikordaja.

SĂĽntaks

CORREL(Data1; Data2)

Andmed1 on esimene andmehulk.

Andmed2 on teine andmehulk.

Näide

=CORREL(A1:A50;B1:B50) calculates the correlation coefficient as a measure of the linear correlation of the two data sets.

COVAR

Returns the covariance of the product of paired deviations.

SĂĽntaks

COVAR(Data1; Data2)

Andmed1 on esimene andmehulk.

Andmed2 on teine andmehulk.

Näide

=COVAR(A1:A30; B1:B30)

COVARIANCE.P

Returns the covariance of the product of paired deviations, for the entire population.

tip

See funktsioon on saadaval alates LibreOffice'i versioonist 4.2


SĂĽntaks

COVARIANCE.P(Data1; Data2)

Andmed1 on esimene andmehulk.

Andmed2 on teine andmehulk.

Näide

=COVARIANCE.P(A1:A30;B1:B30)

COVARIANCE.S

Returns the covariance of the product of paired deviations, for a sample of the population.

tip

See funktsioon on saadaval alates LibreOffice'i versioonist 4.2


SĂĽntaks

COVARIANCE.S(Data1; Data2)

Andmed1 on esimene andmehulk.

Andmed2 on teine andmehulk.

Näide

=COVARIANCE.S(A1:A30;B1:B30)

CRITBINOM

Returns the smallest value for which the cumulative binomial distribution is greater than or equal to a criterion value.

SĂĽntaks

CRITBINOM(katseid; SP; alfa)

Katseid on katsete koguarv.

SP on ühe katse edu tõenäosus.

Alfa on tõenäosuse lävi, mis saavutatakse või ületatakse.

Näide

=CRITBINOM(100; 0,5; 0,1) võrdub 44.

KURT

Tagastab andmehulga järsakuse (vähemalt 4 väärtust on nõutavad).

SĂĽntaks

KURT(Number1; Number2; ...; Number30)

Number1, Number2, ..., Number30 are numeric arguments or ranges representing a random sample of distribution.

Näide

=KURT(A1;A2;A3;A4;A5;A6)

LOGINV

Returns the inverse of the lognormal distribution.

SĂĽntaks

LOGINV(arv; keskmine; stdev)

Number is the probability value for which the inverse standard logarithmic distribution is to be calculated.

Mean is the arithmetic mean of the standard logarithmic distribution.

StDev is the standard deviation of the standard logarithmic distribution.

Näide

=LOGINV(0,05; 0; 1) tagastab 0,1930408167.

LOGNORM.DIST

Returns the values of a lognormal distribution.

tip

See funktsioon on saadaval alates LibreOffice'i versioonist 4.3


SĂĽntaks

LOGNORM.DIST(Number; Mean; StDev; Cumulative)

Number (required) is the probability value for which the standard logarithmic distribution is to be calculated.

Mean (required) is the mean value of the standard logarithmic distribution.

StDev (required) is the standard deviation of the standard logarithmic distribution.

Cumulative (required) = 0 calculates the density function, Cumulative = 1 calculates the distribution.

Näide

=LOGNORM.DIST(0.1;0;1;1) returns 0.0106510993.

LOGNORM.INV

Returns the inverse of the lognormal distribution.

This function is identical to LOGINV and was introduced for interoperability with other office suites.

tip

See funktsioon on saadaval alates LibreOffice'i versioonist 4.3


SĂĽntaks

LOGNORM.INV(Number; Mean; StDev)

Number (required) is the probability value for which the inverse standard logarithmic distribution is to be calculated.

Mean (required) is the arithmetic mean of the standard logarithmic distribution.

StDev (required) is the standard deviation of the standard logarithmic distribution.

Näide

=LOGNORM.INV(0.05;0;1) returns 0.1930408167.

LOGNORMDIST

Returns the values of a lognormal distribution.

SĂĽntaks

LOGNORMDIST(Number; Mean; StDev; Cumulative)

Number is the probability value for which the standard logarithmic distribution is to be calculated.

Mean (optional) is the mean value of the standard logarithmic distribution.

StDev (optional) is the standard deviation of the standard logarithmic distribution.

Cumulative (optional) = 0 calculates the density function, Cumulative = 1 calculates the distribution.

Näide

=LOGNORMDIST(0,1; 0; 1) tagastab 0,01.

LARGE

Returns the Rank_c-th largest value in a data set.

Märkuse ikoon

This function is part of the Open Document Format for Office Applications (OpenDocument) standard Version 1.2. (ISO/IEC 26300:2-2015)


SĂĽntaks

LARGE(andmed; järk_c)

Data is the cell range of data.

RankC is the ranking of the value. If RankC is an array, the function becomes an array function.

Näide

=LARGE(A1:C50;2) gives the second largest value in A1:C50.

=LARGE(A1:C50;B1:B5) entered as an array function gives an array of the c-th largest value in A1:C50 with ranks defined in B1:B5.

SMALL

Returns the Rank_c-th smallest value in a data set.

Märkuse ikoon

This function is part of the Open Document Format for Office Applications (OpenDocument) standard Version 1.2. (ISO/IEC 26300:2-2015)


SĂĽntaks

SMALL(andmed; järk_c)

Data is the cell range of data.

RankC is the rank of the value. If RankC is an array, the function becomes an array function.

Näide

=SMALL(A1:C50;2) gives the second smallest value in A1:C50.

=SMALL(A1:C50;B1:B5) entered as an array function gives an array of the c-th smallest value in A1:C50 with ranks defined in B1:B5.