Data Statistics in Calc
Använd datastistik i Calc för att utföra komplex datanalys
Om du arbetar med komplex statistik- eller utvecklingsanalys kan du spara in moment och tid genom att använda Datastatistiken i Calc. Du stoppar in data och parametrar för varje analys och de olika verktygen använder lämpliga statistik- och utvecklingsfunktioner för att beräkna och visa resultaten i en utmatningstabell.
Stickprov
Skapa en tabell vars data är stickprov från en annan tabell
Stickprov ger dig möjlighet att plocka data från en källtabell för att fylla en måltabell. Stickprov kan vara slumpvis eller periodisk.

Stickprovet görs radvis. Det betyder att stickprovet hämtar en hel rad i källtabellen och kopierar den till en rad i måltabellen.
Stickprovsmetod
Slumpvis: Plockar slumpvis exakt Stickprovsstorlek rader från källtabellen.
Stickprovsstorlek: Antal rader valda från källtabellen.
Periodisk: Väljer rader med ett intervall bestämt av Period.
Period: the number of lines to skip periodically when sampling.
Exempel
The following data will be used as example of source data table for sampling:
A |
B |
C |
|
1 |
11 |
21 |
31 |
2 |
12 |
22 |
32 |
3 |
13 |
23 |
33 |
4 |
14 |
24 |
34 |
5 |
15 |
25 |
35 |
6 |
16 |
26 |
36 |
7 |
17 |
27 |
37 |
8 |
18 |
28 |
38 |
9 |
19 |
29 |
39 |
Sampling with a period of 2 will result in the following table:
12 |
22 |
32 |
14 |
24 |
34 |
16 |
26 |
36 |
18 |
28 |
38 |
Descriptive Statistics
Fill a table in the spreadsheet with the main statistical properties of the data set.
The Descriptive Statistics analysis tool generates a report of univariate statistics for data in the input range, providing information about the central tendency and variability of your data.

For more information on descriptive statistics, refer to the corresponding Wikipedia article.
The following table displays the results of the descriptive statistics of the sample data above.
Kolumn 1 |
Kolumn 2 |
Kolumn 3 |
|
Medelvärde |
41.9090909091 |
59.7 |
44.7 |
Standardfel |
3.5610380138 |
5.3583786934 |
4.7680650629 |
Mer |
47 |
49 |
60 |
Median |
40 |
64.5 |
43.5 |
Varians |
139.4909090909 |
287.1222222222 |
227.3444444444 |
Standardavvikelse |
11.8106269559 |
16.944681237 |
15.0779456308 |
Kurtosis |
-1.4621677981 |
-0.9415988746 |
1.418052719 |
Skewness |
0.0152409533 |
-0.2226426904 |
-0.9766803373 |
Område |
31 |
51 |
50 |
Minimum |
26 |
33 |
12 |
Maximum |
57 |
84 |
62 |
Sum |
461 |
597 |
447 |
Antal |
11 |
10 |
10 |
Analysis of Variance (ANOVA)
Produces the analysis of variance (ANOVA) of a given data set
ANOVA is the acronym for ANalysis Of VAriance. This tool produces the analysis of variance of a given data set

For more information on ANOVA, refer to the corresponding Wikipedia article.
Type
Select if the analysis is for a single factor or for two factor ANOVA.
Parametrar
Alpha: the level of significance of the test.
Rows per sample: Define how many rows a sample has.
The following table displays the results of the analysis of variance (ANOVA) of the sample data above.
ANOVA - Single Factor |
|||||
Alfa |
0.05 |
||||
Gruppera |
Count |
Sum |
Medelvärde |
Varians |
|
Kolumn |
11 |
461 |
41.9090909091 |
139.4909090909 |
|
Kolumn |
10 |
597 |
59.7 |
287.1222222222 |
|
Kolumn |
10 |
447 |
44.7 |
227.3444444444 |
|
Source of Variation |
SS |
df |
MS |
F |
P-value |
Between Groups |
1876.5683284457 |
2 |
938.2841642229 |
4.3604117704 |
0.0224614952 |
Within Groups |
6025.1090909091 |
28 |
215.1824675325 |
||
Total |
7901.6774193548 |
30 |
Correlation
Calculates the correlation of two sets of numeric data.
The correlation coefficient (a value between -1 and +1) means how strongly two variables are related to each other. You can use the CORREL function or the Data Statistics to find the correlation coefficient between two variables.
A correlation coefficient of +1 indicates a perfect positive correlation.
A correlation coefficient of -1 indicates a perfect negative correlation

For more information on statistical correlation, refer to the corresponding Wikipedia article.
The following table displays the results of the correlation of the sample data above.
Correlations |
Kolumn 1 |
Kolumn 2 |
Kolumn 3 |
Kolumn 1 |
1 |
||
Kolumn 2 |
-0.4029254917 |
1 |
|
Kolumn 3 |
-0.2107642836 |
0.2309714048 |
1 |
Kovarians
Beräknar kovariansen för två numeriska datamängder.
Kovariansen är ett mått på samvariationen mellan två slumpvariabler.

For more information on statistical covariance, refer to the corresponding Wikipedia article.
Följande tabell visar kovariansen för ovanstående data.
Kovarianser |
Kolumn 1 |
Kolumn 2 |
Kolumn 3 |
Kolumn 1 |
126.8099173554 |
||
Kolumn 2 |
-61.4444444444 |
258.41 |
|
Kolumn 3 |
-32 |
53.11 |
204.61 |
Exponentiell utjämning
Ger en utjämnad dataserie
Exponentiell utjämning är en filtreringsteknik som ger ett utjämnat resultat om det används på en datamängd. Det används inom många områden som t.ex. aktiemarknad, ekonomi och stickprovsmätningar.

For more information on exponential smoothing, refer to the corresponding Wikipedia article.
Parametrar
Utjämningsfaktor: En parameter mellan 0 och 1 som representerar dämpningsfaktorn Alfa i utjämningsekvationen.
Resultatet av utjämning med utjämningsfaktorn 0,5 är som följer:
Alpha |
|
0.5 |
|
Kolumn 1 |
Kolumn 2 |
1 |
0 |
1 |
0 |
0.5 |
0 |
0.25 |
0.5 |
0.125 |
0.25 |
0.0625 |
0.125 |
0.03125 |
0.0625 |
0.015625 |
0.03125 |
0.0078125 |
0.015625 |
0.00390625 |
0.0078125 |
0.001953125 |
0.00390625 |
0.0009765625 |
0.001953125 |
0.0004882813 |
0.0009765625 |
0.0002441406 |
0.0004882813 |
Moving Average
Calculates the moving average of a time series

For more information on the moving average, refer to the corresponding Wikipedia article.
Parametrar
Interval: The number of samples used in the moving average calculation.
Results of the moving average:
Kolumn 1 |
Kolumn 2 |
#SAKNAS |
#SAKNAS |
0.3333333333 |
0.3333333333 |
0 |
0.3333333333 |
0 |
0.3333333333 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
#SAKNAS |
#SAKNAS |
Paired t-test
Calculates the paired t-Test of two data samples.
A paired t-test is any statistical hypothesis test that follows a Student's t distribution.

For more information on paired t-tests, refer to the corresponding Wikipedia article.
Data
Variable 1 range: The reference of the range of the first data series to analyze.
Variable 2 range: The reference of the range of the second data series to analyze.
Results to: The reference of the top left cell of the range where the test will be displayed.
Results for paired t-test:
The following table shows the paired t-test for the data series above:
paired t-test |
||
Alpha |
0.05 |
|
Hypothesized Mean Difference |
0 |
|
Variable 1 |
Variable 2 |
|
Medelvärde |
16.9230769231 |
20.4615384615 |
Varians |
125.0769230769 |
94.4358974359 |
Observations |
13 |
13 |
Pearson Correlation |
-0.0617539772 |
|
Observed Mean Difference |
-3.5384615385 |
|
Variance of the Differences |
232.9358974359 |
|
df |
12 |
|
t Stat |
-0.8359262137 |
|
P (T<=t) one-tail |
0.2097651442 |
|
t Critical one-tail |
1.7822875556 |
|
P (T<=t) two-tail |
0.4195302884 |
|
t Critical two-tail |
2.1788128297 |
F-test
Calculates the F-Test of two data samples.
A F-test is any statistical test based on the F-distribution under the null hypothesis.

For more information on F-tests, refer to the corresponding Wikipedia article.
Data
Variable 1 range: The reference of the range of the first data series to analyze.
Variable 2 range: The reference of the range of the second data series to analyze.
Results to: The reference of the top left cell of the range where the test will be displayed.
Results for F-Test:
The following table shows the F-Test for the data series above:
Ftest |
||
Alpha |
0.05 |
|
Variable 1 |
Variable 2 |
|
Medelvärde |
16.9230769231 |
20.4615384615 |
Varians |
125.0769230769 |
94.4358974359 |
Observations |
13 |
13 |
df |
12 |
12 |
F |
1.3244637524 |
|
P (F<=f) right-tail |
0.3170614146 |
|
F Critical right-tail |
2.6866371125 |
|
P (F<=f) left-tail |
0.6829385854 |
|
F Critical left-tail |
0.3722125312 |
|
P two-tail |
0.6341228293 |
|
F Critical two-tail |
0.3051313549 |
3.277277094 |
Z-test
Calculates the z-Test of two data samples.

For more information on Z-tests, refer to the corresponding Wikipedia article.
Data
Variable 1 range: The reference of the range of the first data series to analyze.
Variable 2 range: The reference of the range of the second data series to analyze.
Results to: The reference of the top left cell of the range where the test will be displayed.
Results for z-Test:
The following table shows the z-Test for the data series above:
z-test |
||
Alpha |
0.05 |
|
Hypothesized Mean Difference |
0 |
|
Variable 1 |
Variable 2 |
|
Known Variance |
0 |
0 |
Medelvärde |
16.9230769231 |
20.4615384615 |
Observations |
13 |
13 |
Observed Mean Difference |
-3.5384615385 |
|
z |
#DIV/0! |
|
P (Z<=z) one-tail |
#DIV/0! |
|
z Critical one-tail |
1.644853627 |
|
P (Z<=z) two-tail |
#DIV/0! |
|
z Critical two-tail |
1.9599639845 |
Chi-square test
Calculates the Chi-square test of a data sample.

For more information on chi-square tests, refer to the corresponding Wikipedia article.
Data
Input range: The reference of the range of the data series to analyze.
Results to: The reference of the top left cell of the range where the test will be displayed.
Results for Chi-square Test:
Test of Independence (Chi-Square) |
|
Alpha |
0.05 |
df |
12 |
P-value |
2.32567054678584E-014 |
Test Statistic |
91.6870055842 |
Critical Value |
21.0260698175 |