All files regression.js

100% Statements 154/154
100% Branches 24/24
100% Functions 27/27
100% Lines 141/141
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 3271x                       84x 84x   84x 372x 336x 336x       336x 84x   84x 336x 336x     84x 336x 336x 336x     84x                         36x 36x 36x   36x 120x 120x 152x 124x       120x 392x 392x 392x     120x 152x 632x         36x 120x 120x 152x     120x     36x                           1275x 1275x               1x   20x 20x   20x 76x 68x 68x 68x 68x 68x 68x       20x 20x 20x 20x   81x         76x   20x                   12x   12x 48x 40x 40x 40x 40x 40x 40x       12x 12x 12x 12x 12x 51x         48x   12x                   8x 8x   8x 32x 24x 24x 24x 24x       8x 8x 8x   34x         32x   8x                   8x 8x   8x 48x 40x 40x 40x 40x       8x 8x 8x 8x   50x         48x   8x                   36x 36x 36x 36x 36x 36x   36x 120x 576x 560x       120x 120x   120x 120x 424x 2080x 2016x     424x 424x   120x   36x   120x   177x     606x         168x   36x 36x 120x 48x 72x 36x   36x       36x                     5x       84x             1x     1x  
const DEFAULT_OPTIONS = { order: 2, precision: 2, period: null };
 
/**
* Determine the coefficient of determination (r^2) of a fit from the observations
* and predictions.
*
* @param {Array<Array<number>>} data - Pairs of observed x-y values
* @param {Array<Array<number>>} results - Pairs of observed predicted x-y values
*
* @return {number} - The r^2 value, or NaN if one cannot be calculated.
*/
function determinationCoefficient(data, results) {
  const predictions = [];
  const observations = [];
 
  data.forEach((d, i) => {
    if (d[1] !== null) {
      observations.push(d);
      predictions.push(results[i]);
    }
  });
 
  const sum = observations.reduce((a, observation) => a + observation[1], 0);
  const mean = sum / observations.length;
 
  const ssyy = observations.reduce((a, observation) => {
    const difference = observation[1] - mean;
    return a + (difference * difference);
  }, 0);
 
  const sse = observations.reduce((accum, observation, index) => {
    const prediction = predictions[index];
    const residual = observation[1] - prediction[1];
    return accum + (residual * residual);
  }, 0);
 
  return 1 - (sse / ssyy);
}
 
/**
* Determine the solution of a system of linear equations A * x = b using
* Gaussian elimination.
*
* @param {Array<Array<number>>} input - A 2-d matrix of data in row-major form [ A | b ]
* @param {number} order - How many degrees to solve for
*
* @return {Array<number>} - Vector of normalized solution coefficients matrix (x)
*/
function gaussianElimination(input, order) {
  const matrix = input;
  const n = input.length - 1;
  const coefficients = [order];
 
  for (let i = 0; i < n; i++) {
    let maxrow = i;
    for (let j = i + 1; j < n; j++) {
      if (Math.abs(matrix[i][j]) > Math.abs(matrix[i][maxrow])) {
        maxrow = j;
      }
    }
 
    for (let k = i; k < n + 1; k++) {
      const tmp = matrix[k][i];
      matrix[k][i] = matrix[k][maxrow];
      matrix[k][maxrow] = tmp;
    }
 
    for (let j = i + 1; j < n; j++) {
      for (let k = n; k >= i; k--) {
        matrix[k][j] -= (matrix[k][i] * matrix[i][j]) / matrix[i][i];
      }
    }
  }
 
  for (let j = n - 1; j >= 0; j--) {
    let total = 0;
    for (let k = j + 1; k < n; k++) {
      total += matrix[k][j] * coefficients[k];
    }
 
    coefficients[j] = (matrix[n][j] - total) / matrix[j][j];
  }
 
  return coefficients;
}
 
/**
* Round a number to a precision, specificed in number of decimal places
*
* @param {number} number - The number to round
* @param {number} precision - The number of decimal places to round to:
*                             > 0 means decimals, < 0 means powers of 10
*
*
* @return {numbr} - The number, rounded
*/
function round(number, precision) {
  const factor = 10 ** precision;
  return Math.round(number * factor) / factor;
}
 
/**
* The set of all fitting methods
*
* @namespace
*/
const methods = {
  linear(data, options) {
    const sum = [0, 0, 0, 0, 0];
    let len = 0;
 
    for (let n = 0; n < data.length; n++) {
      if (data[n][1] !== null) {
        len++;
        sum[0] += data[n][0];
        sum[1] += data[n][1];
        sum[2] += data[n][0] * data[n][0];
        sum[3] += data[n][0] * data[n][1];
        sum[4] += data[n][1] * data[n][1];
      }
    }
 
    const run = ((len * sum[2]) - (sum[0] * sum[0]));
    const rise = ((len * sum[3]) - (sum[0] * sum[1]));
    const gradient = run === 0 ? 0 : round(rise / run, options.precision);
    const intercept = round((sum[1] / len) - ((gradient * sum[0]) / len), options.precision);
 
    const predict = x => ([
      round(x, options.precision),
      round((gradient * x) + intercept, options.precision)]
    );
 
    const points = data.map(point => predict(point[0]));
 
    return {
      points,
      predict,
      equation: [gradient, intercept],
      r2: round(determinationCoefficient(data, points), options.precision),
      string: intercept === 0 ? `y = ${gradient}x` : `y = ${gradient}x + ${intercept}`,
    };
  },
 
  exponential(data, options) {
    const sum = [0, 0, 0, 0, 0, 0];
 
    for (let n = 0; n < data.length; n++) {
      if (data[n][1] !== null) {
        sum[0] += data[n][0];
        sum[1] += data[n][1];
        sum[2] += data[n][0] * data[n][0] * data[n][1];
        sum[3] += data[n][1] * Math.log(data[n][1]);
        sum[4] += data[n][0] * data[n][1] * Math.log(data[n][1]);
        sum[5] += data[n][0] * data[n][1];
      }
    }
 
    const denominator = ((sum[1] * sum[2]) - (sum[5] * sum[5]));
    const a = Math.exp(((sum[2] * sum[3]) - (sum[5] * sum[4])) / denominator);
    const b = ((sum[1] * sum[4]) - (sum[5] * sum[3])) / denominator;
    const coeffA = round(a, options.precision);
    const coeffB = round(b, options.precision);
    const predict = x => ([
      round(x, options.precision),
      round(coeffA * Math.exp(coeffB * x), options.precision),
    ]);
 
    const points = data.map(point => predict(point[0]));
 
    return {
      points,
      predict,
      equation: [coeffA, coeffB],
      string: `y = ${coeffA}e^(${coeffB}x)`,
      r2: round(determinationCoefficient(data, points), options.precision),
    };
  },
 
  logarithmic(data, options) {
    const sum = [0, 0, 0, 0];
    const len = data.length;
 
    for (let n = 0; n < len; n++) {
      if (data[n][1] !== null) {
        sum[0] += Math.log(data[n][0]);
        sum[1] += data[n][1] * Math.log(data[n][0]);
        sum[2] += data[n][1];
        sum[3] += (Math.log(data[n][0]) ** 2);
      }
    }
 
    const a = ((len * sum[1]) - (sum[2] * sum[0])) / ((len * sum[3]) - (sum[0] * sum[0]));
    const coeffB = round(a, options.precision);
    const coeffA = round((sum[2] - (coeffB * sum[0])) / len, options.precision);
 
    const predict = x => ([
      round(x, options.precision),
      round(round(coeffA + (coeffB * Math.log(x)), options.precision), options.precision),
    ]);
 
    const points = data.map(point => predict(point[0]));
 
    return {
      points,
      predict,
      equation: [coeffA, coeffB],
      string: `y = ${coeffA} + ${coeffB} ln(x)`,
      r2: round(determinationCoefficient(data, points), options.precision),
    };
  },
 
  power(data, options) {
    const sum = [0, 0, 0, 0, 0];
    const len = data.length;
 
    for (let n = 0; n < len; n++) {
      if (data[n][1] !== null) {
        sum[0] += Math.log(data[n][0]);
        sum[1] += Math.log(data[n][1]) * Math.log(data[n][0]);
        sum[2] += Math.log(data[n][1]);
        sum[3] += (Math.log(data[n][0]) ** 2);
      }
    }
 
    const b = ((len * sum[1]) - (sum[0] * sum[2])) / ((len * sum[3]) - (sum[0] ** 2));
    const a = ((sum[2] - (b * sum[0])) / len);
    const coeffA = round(Math.exp(a), options.precision);
    const coeffB = round(b, options.precision);
 
    const predict = x => ([
      round(x, options.precision),
      round(round(coeffA * (x ** coeffB), options.precision), options.precision),
    ]);
 
    const points = data.map(point => predict(point[0]));
 
    return {
      points,
      predict,
      equation: [coeffA, coeffB],
      string: `y = ${coeffA}x^${coeffB}`,
      r2: round(determinationCoefficient(data, points), options.precision),
    };
  },
 
  polynomial(data, options) {
    const lhs = [];
    const rhs = [];
    let a = 0;
    let b = 0;
    const len = data.length;
    const k = options.order + 1;
 
    for (let i = 0; i < k; i++) {
      for (let l = 0; l < len; l++) {
        if (data[l][1] !== null) {
          a += (data[l][0] ** i) * data[l][1];
        }
      }
 
      lhs.push(a);
      a = 0;
 
      const c = [];
      for (let j = 0; j < k; j++) {
        for (let l = 0; l < len; l++) {
          if (data[l][1] !== null) {
            b += data[l][0] ** (i + j);
          }
        }
        c.push(b);
        b = 0;
      }
      rhs.push(c);
    }
    rhs.push(lhs);
 
    const coefficients = gaussianElimination(rhs, k).map(v => round(v, options.precision));
 
    const predict = x => ([
      round(x, options.precision),
      round(
        coefficients.reduce((sum, coeff, power) => sum + (coeff * (x ** power)), 0),
        options.precision,
      ),
    ]);
 
    const points = data.map(point => predict(point[0]));
 
    let string = 'y = ';
    for (let i = coefficients.length - 1; i >= 0; i--) {
      if (i > 1) {
        string += `${coefficients[i]}x^${i} + `;
      } else if (i === 1) {
        string += `${coefficients[i]}x + `;
      } else {
        string += coefficients[i];
      }
    }
 
    return {
      string,
      points,
      predict,
      equation: [...coefficients].reverse(),
      r2: round(determinationCoefficient(data, points), options.precision),
    };
  },
};
 
function createWrapper() {
  const reduce = (accumulator, name) => ({
    _round: round,
    ...accumulator,
    [name](data, supplied) {
      return methods[name](data, {
        ...DEFAULT_OPTIONS,
        ...supplied,
      });
    },
  });
 
  return Object.keys(methods).reduce(reduce, {});
}
 
module.exports = createWrapper();