
iproute2-ss020116 1

IPv6 Flow Labels in Linux-2.2.

Alexey N. Kuznetsov
Institute for Nuclear Research, Moscow

kuznet@ms2.inr.ac.ru

April 11, 1999

Contents

1 Introduction. 1

2 Sending/receiving
ow information. 2
Discussion . 2
Implementation . 2
IPv6 options and destination address . 3
Example . 3

3 Flow label management. 4
Discussion . 4
Implementation . 5
Example . 6
Listing
ow labels . 7
Flow labels and RSVP . 7

1 Introduction.

Every IPv6 packet carries 28 bits of
ow information. RFC2460 splits these bits to
two �elds: 8 bits of tra�c class (or DS �eld, if you prefer this term) and 20 bits of
ow
label. Currently there exist no well-de�ned API to manage IPv6
ow information. In
this document I describe an attempt to design the API for Linux-2.2 IPv6 stack.

The API must solve the following tasks:

1. To allow user to set tra�c class bits.

2. To allow user to read tra�c class bits of received packets. This feature is not
so useful as the �rst one, however it will be necessary f.e. to implement ECN
[RFC2481] for datagram oriented services or to implement receiver side of SRP
or another end-to-end protocol using tra�c class bits.

Copyright c
 1999 A.N.Kuznetsov

2 IPv6 Flow Labels

3. To assign
ow labels to packets sent by user.

4. To get
ow labels of received packets. I do not know any applications of this
feature, but it is possible that receiver will want to use
ow labels to distinguish
sub-
ows.

5. To allocate
ow labels in the way, compliant to RFC2460. Namely:

� Flow labels must be uniformly distributed (pseudo-)random numbers, so
that any subset of 20 bits can be used as hash key.

� Flows with coinciding source address and
ow label must have identical
destination address and not-fragmentable extensions headers (i.e. hop by
hop options and all the headers up to and including routing header, if it
is present.)

NB. There is a hole in specs: some hop-by-hop options can be de�ned only
on per-packet base (f.e. jumbo payload option). Essentially, it means that such
options cannot present in packets with
ow labels.

NB. NB notes here and below re
ect only my personal opinion, they should be
read with smile or should not be read at all :-).

� Flow labels have �nite lifetime and source is not allowed to reuse
ow
label for another
ow within the maximal lifetime has expired, so that
intermediate nodes will be able to invalidate
ow state before the label is
taken over by another
ow. Flow state, including lifetime, is propagated
along datagram path by some application speci�c methods (f.e. in RSVP
PATH messages or in some hop-by-hop option).

2 Sending/receiving
ow information.

Discussion. It was proposed (Where? I do not remember any explicit statement)
to solve the �rst four tasks using sin6_flowinfo �eld added to struct sockaddr_in6
(see RFC2553).

NB. This method is di�cult to consider as reasonable, because it puts additional overhead
to all the services, despite of only very small subset of them (none, to be more exact) really
use it. It contradicts both to IETF spirit and the letter. Before RFC2553 one justi�cation
existed, IPv6 address alignment left 4 byte hole in sockaddr_in6 in any case. Now it has no
justi�cation.

We have two problems with this method. The �rst one is common for all OSes: if
recvmsg() initializes sin6_flowinfo to
ow info of received packet, we loose one very
important property of BSD socket API, namely, we are not allowed to use received
address for reply directly and have to mangle it, even if we are not interested in

owinfo subtleties.

iproute2-ss020116 3

NB. RFC2553 adds new requirement: to clear sin6_flowinfo. Certainly, it is not solution
but rather attempt to force applications to make unnecessary work. Well, as usually, one
mistake in design is followed by attempts to patch the hole and more mistakes...

Another problem is Linux speci�c. Historically Linux IPv6 did not initialize
sin6_flowinfo at all, so that, if kernel does not support
ow labels, this �eld is
not zero, but a random number. Some applications also did not take care about it.

NB. Following RFC2553 such applications can be considered as broken, but I still think
that they are right: clearing all the address before �lling known �elds is robust but stupid
solution. Useless wasting CPU cycles and memory bandwidth is not a good idea. Such patches
are acceptable as temporary hacks, but not as standard of the future.

Implementation. By default Linux IPv6 does not read sin6_flowinfo �eld as-
suming that common applications are not obliged to initialize it and are permitted
to consider it as pure alignment padding. In order to tell kernel that application is
aware of this �eld, it is necessary to set socket option IPV6_FLOWINFO_SEND.

int on = 1;

setsockopt(sock, SOL_IPV6, IPV6_FLOWINFO_SEND,

(void*)&on, sizeof(on));

Linux kernel never �lls sin6_flowinfo �eld, when passing message to user space,
though the kernels which support
ow labels initialize it to zero. If user wants to
get received
owinfo, he will set option IPV6_FLOWINFO and after this he will receive

owinfo as ancillary data object of type IPV6_FLOWINFO (cf. RFC2292).

int on = 1;

setsockopt(sock, SOL_IPV6, IPV6_FLOWINFO, (void*)&on, sizeof(on));

Flowinfo received and latched by a connected TCP socket also may be fetched
with getsockopt() IPV6_PKTOPTIONS together with another optional information.

Besides that, in the spirit of RFC2292 the option IPV6_FLOWINFO may be used as
alternative way to send
owinfo with sendmsg() or to latch it with IPV6_PKTOPTIONS.

Note about IPv6 options and destination address. If sin6_flowinfo does
contain not zero
ow label, destination address in sin6_addr and non-fragmentable
extension headers are ignored. Instead, kernel uses the values cached at
ow setup
(see below). However, for connected sockets kernel prefers the values set at connection
time.

Example. After setting socket option IPV6_FLOWINFO
owlabel and DS �eld are
received as ancillary data object of type IPV6_FLOWINFO and level SOL_IPV6. In the
cases when it is convenient to use recvfrom(2), it is possible to replace library variant
with your own one, sort of:

4 IPv6 Flow Labels

#include <sys/socket.h>

#include <netinet/in6.h>

size_t recvfrom(int fd, char *buf, size_t len, int flags,

struct sockaddr *addr, int *addrlen)

{

size_t cc;

char cbuf[128];

struct cmsghdr *c;

struct iovec iov = { buf, len };

struct msghdr msg = { addr, *addrlen,

&iov, 1,

cbuf, sizeof(cbuf),

0 };

cc = recvmsg(fd, &msg, flags);

if (cc < 0)

return cc;

((struct sockaddr_in6*)addr)->sin6_flowinfo = 0;

*addrlen = msg.msg_namelen;

for (c=CMSG_FIRSTHDR(&msg); c; c = CMSG_NEXTHDR(&msg, c)) {

if (c->cmsg_level != SOL_IPV6 ||

c->cmsg_type != IPV6_FLOWINFO)

continue;

((struct sockaddr_in6*)addr)->sin6_flowinfo = *(__u32*)CMSG_DATA(c);

}

return cc;

}

3 Flow label management.

Discussion. Requirements of RFC2460 are pretty tough. Particularly, lifetimes
longer than boot time require to store allocated labels at stable storage, so that the
full implementation necessarily includes user space
ow label manager. There are at
least three di�erent approaches:

1. \Cooperative". We could leave
ow label allocation wholly to user space.
When user needs label he requests manager directly. The approach is valid, but
as any \cooperative" approach it su�ers of security problems.

NB. One idea is to disallow not privileged user to allocate
ow labels, but instead to
pass the socket to manager via SCM_RIGHTS control message, so that it will allocate
label and assign it to socket itself. Hmm... the idea is interesting.

iproute2-ss020116 5

2. \Indirect". Kernel redirects requests to user level daemon and does not in-
stall label until the daemon acknowledged the request. The approach is the
most promising, it is especially pleasant to recognize parallel with IPsec API
[RFC2367,Craig]. Actually, it may share API with IPsec.

3. \Stupid". To allocate labels in kernel space. It is the simplest method, but
it su�ers of two serious
aws: the �rst, we cannot lease labels with lifetimes
longer than boot time, the second, it is sensitive to DoS attacks. Kernel have to
remember all the obsolete labels until their expiration and malicious user may
fastly eat all the
ow label space.

Certainly, I choose the most \stupid" method. It is the cheapest one for im-
plementor (i.e. me), and taking into account that
ow labels still have no serious
applications it is not useful to work on more advanced API, especially, taking into
account that eventually we will get it for no fee together with IPsec.

Implementation. Socket option IPV6_FLOWLABEL_MGR allows to request
ow label
manager to allocate new
ow label, to reuse already allocated one or to delete old

ow label. Its argument is struct in6_flowlabel_req:

struct in6_flowlabel_req

{

struct in6_addr flr_dst;

__u32 flr_label;

__u8 flr_action;

__u8 flr_share;

__u16 flr_flags;

__u16 flr_expires;

__u16 flr_linger;

__u32 __flr_reserved;

/* Options in format of IPV6_PKTOPTIONS */

};

� dst is IPv6 destination address associated with the label.

� label is
ow label value in network byte order. If it is zero, kernel will allo-
cate new pseudo-random number. Otherwise, kernel will try to lease
ow label
ordered by user. In this case, it is user task to provide necessary
ow label
randomness.

� action is requested operation. Currently, only three operations are de�ned:

#define IPV6_FL_A_GET 0 /* Get flow label */

#define IPV6_FL_A_PUT 1 /* Release flow label */

#define IPV6_FL_A_RENEW 2 /* Update expire time */

6 IPv6 Flow Labels

� flags are optional modi�ers. Currently only IPV6_FL_A_GET has modi�ers:

#define IPV6_FL_F_CREATE 1 /* Allowed to create new label */

#define IPV6_FL_F_EXCL 2 /* Do not create new label */

� share de�nes who is allowed to reuse the same
ow label.

#define IPV6_FL_S_NONE 0 /* Not defined */

#define IPV6_FL_S_EXCL 1 /* Label is private */

#define IPV6_FL_S_PROCESS 2 /* May be reused by this process */

#define IPV6_FL_S_USER 3 /* May be reused by this user */

#define IPV6_FL_S_ANY 255 /* Anyone may reuse it */

� linger is time in seconds. After the last user releases
ow label, it will not
be reused with di�erent destination and options at least during this time. If
share is not IPV6_FL_S_EXCL the label still can be shared by another sockets.
Current implementation does not allow unprivileged user to set linger longer
than 60 sec.

� expires is time in seconds. Flow label will be kept at least for this time,
but it will not be destroyed before user released it explicitly or closed all the
sockets using it. Current implementation does not allow unprivileged user to set
timeout longer than 60 sec. Proviledged applications MAY set longer lifetimes,
but in this case they MUST save allocated labels at stable storage and restore
them back after reboot before the �rst application allocates new
ow.

This structure is followed by optional extension headers associated with this

ow label in format of IPV6_PKTOPTIONS. Only IPV6_HOPOPTS, IPV6_RTHDR and, if
IPV6_RTHDR presents, IPV6_DSTOPTS are allowed.

Example. The function get_flow_label allocates private
ow label.

int get_flow_label(int fd, struct sockaddr_in6 *dst, __u32 fl)

{

int on = 1;

struct in6_flowlabel_req freq;

memset(&freq, 0, sizeof(freq));

freq.flr_label = htonl(fl);

freq.flr_action = IPV6_FL_A_GET;

freq.flr_flags = IPV6_FL_F_CREATE | IPV6_FL_F_EXCL;

freq.flr_share = IPV6_FL_S_EXCL;

iproute2-ss020116 7

memcpy(&freq.flr_dst, &dst->sin6_addr, 16);

if (setsockopt(fd, SOL_IPV6, IPV6_FLOWLABEL_MGR,

&freq, sizeof(freq)) == -1) {

perror ("can't lease flowlabel");

return -1;

}

dst->sin6_flowinfo |= freq.flr_label;

if (setsockopt(fd, SOL_IPV6, IPV6_FLOWINFO_SEND,

&on, sizeof(on)) == -1) {

perror ("can't send flowinfo");

freq.flr_action = IPV6_FL_A_PUT;

setsockopt(fd, SOL_IPV6, IPV6_FLOWLABEL_MGR,

&freq, sizeof(freq));

return -1;

}

return 0;

}

A bit more complicated example using routing header can be found in ping6 utility
(iputils package). Linux rsvpd backend contains an example of using operation
IPV6_FL_A_RENEW.

Listing
ow labels. List of currently allocated
ow labels may be read from
/proc/net/ip6_flowlabel.

Label S Owner Users Linger Expires Dst Opt

A1BE5 1 0 0 6 3 3ffe2400000000010a0020fffe71fb30 0

� Label is hexadecimal
ow label value.

� S is sharing style.

� Owner is ID of creator, it is zero, pid or uid, depending on sharing style.

� Users is number of applications using the label now.

� Linger is linger of this label in seconds.

� Expires is time until expiration of the label in seconds. It may be negative, if
the label is in use.

� Dst is IPv6 destination address.

� Opt is length of options, associated with the label. Option data are not acces-
sible.

8 IPv6 Flow Labels

Flow labels and RSVP. RSVP daemon supports IPv6
ow labels without any
modi�cations to standard ISI RAPI. Sender must allocate
ow label, �ll corresponding
sender template and submit it to local rsvp daemon. rsvpd will check the label and
start to announce it in PATH messages. Rsvpd on sender node will renew the
ow
label, so that it will not be reused before path state expires and all the intermediate
routers and receiver purge
ow state.

rtap utility is modi�ed to parse
ow labels. F.e. if user allocated
ow label
0xA1234, he may write:

RTAP> sender 3ffe:2400::1/FL0xA1234 <Tspec>

Receiver makes reservation with command:

RTAP> reserve ff 3ffe:2400::1/FL0xA1234 <Flowspec>

