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Standard practice when transmitting packets over a medium which may block (due to
congestion, e.g.) is to use a queue which temporarily holds these packets. In Linux, this
queueing approach is where QoS happens: A Queueing Discipline (qdisc) holds multiple
packet queues with di�erent priorities for dequeueing to the network driver. The classi�cation
(i.e. deciding which queue a packet should go into) is typically done based on Type Of Service
(IPv4) or Tra�c Class (IPv6) header �elds but depending on qdisc implementation, might
be controlled by the user as well.

Qdiscs come in two 
avors, classful or classless. While classless qdiscs are not as 
exible
as classful ones, they also require much less customizing. Often it is enough to just attach
them to an interface, without exact knowledge of what is done internally. Classful qdiscs are
the exact opposite: 
exible in application, they are often not even usable without insightful
con�guration.

As the name implies, classful qdiscs provide con�gurable classes to sort tra�c into. In
it's basic form, this is not much di�erent than, say, the classless pfifo fast which holds
three queues and classi�es per packet upon priority �eld. Though typically classes go beyond
that by supporting nesting and additional characteristics like e.g. maximum tra�c rate or
quantum.

When it comes to controlling the classi�cation process, �lters come into play. They attach
to the parent of a set of classes (i.e. either the qdisc itself or a parent class) and specify how
a packet (or it's associated 
ow) has to look like in order to suit a given class. To overcome
this simpli�cation, it is possible to attach multiple �lters to the same parent, which then
consults each of them in row until the �rst one accepts the packet.

Before getting into detail about what �lters there are and how to use them, a simple
setup of a qdisc with classes is necessary:
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.-------------------------------------------------------.

| |

| HTB |

| |

| .----------------------------------------------------.|

| | ||

| | Class 1:1 ||

| | ||

| | .---------------..---------------..---------------.||

| | | || || |||

| | | Class 1:10 || Class 1:20 || Class 1:30 |||

| | | || || |||

| | | .------------.|| .------------.|| .------------.|||

| | | | ||| | ||| | ||||

| | | | fq_codel ||| | fq_codel ||| | fq_codel ||||

| | | | ||| | ||| | ||||

| | | '------------'|| '------------'|| '------------'|||

| | '---------------''---------------''---------------'||

| '----------------------------------------------------'|

'-------------------------------------------------------'

The following commands establish the basic setup shown:

(1) # tc qdisc replace dev eth0 root handle 1: htb default 30

(2) # tc class add dev eth0 parent 1: classid 1:1 htb rate 95mbit

(3) # alias tclass='tc class add dev eth0 parent 1:1'

(4) # tclass classid 1:10 htb rate 1mbit ceil 20mbit prio 1

(4) # tclass classid 1:20 htb rate 90mbit ceil 95mbit prio 2

(4) # tclass classid 1:30 htb rate 1mbit ceil 95mbit prio 3

(5) # tc qdisc add dev eth0 parent 1:10 fq_codel

(5) # tc qdisc add dev eth0 parent 1:20 fq_codel

(5) # tc qdisc add dev eth0 parent 1:30 fq_codel

A little explanation for the unfamiliar reader:

1. Replace the root qdisc of eth0 by an instance of HTB. Specifying the handle is necessary
so it can be referenced in consecutive calls to tc. The default class for unclassi�ed tra�c
is set to 30.

2. Create a single top-level class with handle 1:1 which limits the total bandwidth allowed
to 95mbit/s. It is assumed that eth0 is a 100mbit/s link, staying a little below that
helps to keep the main point of enqueueing in the qdisc layer instead of the interface
hardware queue or at another bottleneck in the network.
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3. De�ne an alias for the common part of the remaining three calls in order to improve
readability. This means all remaining classes are attached to the common parent class
from (2).

4. Create three child classes for di�erent uses: Class 1:10 has highest priority but is tightly
limited in bandwidth - �ne for interactive connections. Class 1:20 has mid priority and
high guaranteed bandwidth, for high priority bulk tra�c. Finally, there's the default
class 1:30 with lowest priority, low guaranteed bandwidth and the ability to use the
full link in case it's unused otherwise. This should be �ne for uninteresting tra�c not
explicitly taken care of.

5. Attach a leaf qdisc to each of the child classes created in (4). Since HTB by default
attaches pfifo as leaf qdisc, this step is optional. Still, the fairness between di�erent

ows provided by the classless fq codel is worth the e�ort.

More information about the qdiscs and �ne-tuning parameters can be found in tc-htb(8) and
tc-fq codel(8).

Without any additional setup done, now all tra�c leaving eth0 is shaped to 95mbit/s
and directed through class 1:30. This can be veri�ed by looking at the Sent �eld of the class
statistics printed via tc -s class show dev eth0: Only the root class 1:1 and it's child
1:30 should show any tra�c.

Finally time to start �ltering!

Let's begin with a simple one, i.e. reestablishing what pfifo fast did automatically based
on TOS/Priority �eld. Linux internally translates the header �eld into the priority �eld of
struct skbu�, which pfifo fast uses for classi�cation. tc-prio(8) contains a table listing the
priority (and ultimately, pfifo fast queue index) each TOS value is being translated into.
Here is a shorter version:

TOS Values Linux Priority (Number) Queue Index

0x0 - 0x6 Best E�ort (0) 1
0x8 - 0xe Bulk (2) 2
0x10 - 0x16 Interactive (6) 0
0x18 - 0x1e Interactive Bulk (4) 1

Using the basic �lter, it is possible to match packets based on that skbu� �eld, which has
the added bene�t of being IP version agnostic. Since the HTB setup above defaults to class ID
1:30, the Bulk priority can be ignored. The basic �lter allows to combine matches, therefore
we get along with only two �lters:

# tc filter add dev eth0 parent 1: basic \

match 'meta(priority eq 6)' classid 1:10

# tc filter add dev eth0 parent 1: basic \
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match 'meta(priority eq 0)' \

or 'meta(priority eq 4)' classid 1:20

A detailed description of the basic �lter and the ematch syntax it uses can be found in
tc-basic(8) and tc-ematch(8).

Obviously, this �rst example cries for optimization. A simple one would be to just
change the default class from 1:30 to 1:20, so �lters are only needed for Bulk and Interactive
priorities:

# tc filter add dev eth0 parent 1: basic \

match 'meta(priority eq 6)' classid 1:10

# tc filter add dev eth0 parent 1: basic \

match 'meta(priority eq 2)' classid 1:20

Given that class IDs are random, choosing them wisely allows for a direct mapping. So �rst,
recreate the qdisc and classes con�guration:

# tc qdisc replace dev eth0 root handle 1: htb default 10

# tc class add dev eth0 parent 1: classid 1:1 htb rate 95mbit

# alias tclass='tc class add dev eth0 parent 1:1'

# tclass classid 1:16 htb rate 1mbit ceil 20mbit prio 1

# tclass classid 1:10 htb rate 90mbit ceil 95mbit prio 2

# tclass classid 1:12 htb rate 1mbit ceil 95mbit prio 3

# tc qdisc add dev eth0 parent 1:16 fq_codel

# tc qdisc add dev eth0 parent 1:10 fq_codel

# tc qdisc add dev eth0 parent 1:12 fq_codel

This is basically identical to above, but with changed leaf class IDs and the second priority
class being the default. Using the flow �lter with it's map functionality, a single �lter
command is enough:

# tc filter add dev eth0 parent 1: handle 0x1337 flow \

map key priority baseclass 1:10

The flow �lter now uses the priority value to construct a destination class ID by adding it
to the value of baseclass. While this works for priority values of 0, 2 and 6, it will result in
non-existent class ID 1:14 for Interactive Bulk tra�c. In that case, the HTB default applies
so that tra�c goes into class ID 1:10 just as intended. Please note that specifying a handle
is a mandatory requirement by the flow �lter, although I didn't see where one would use
that later. For more information about flow, see tc-
ow(8).

While flow and basic �lters are relatively easy to apply and understand, they are as
well quite limited to their intended purpose. A more 
exible option is the u32 �lter, which
allows to match on arbitrary parts of the packet data - yet only on that, not any meta data
associated to it by the kernel (with the exception of �rewall mark value). So in order to
continue this little exercise with u32, we have to base classi�cation directly upon the actual
TOS value. An intuitive attempt might look like this:
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# alias tcfilter='tc filter add dev eth0 parent 1:'

# tcfilter u32 match ip dsfield 0x10 0x1e classid 1:16

# tcfilter u32 match ip dsfield 0x12 0x1e classid 1:16

# tcfilter u32 match ip dsfield 0x14 0x1e classid 1:16

# tcfilter u32 match ip dsfield 0x16 0x1e classid 1:16

# tcfilter u32 match ip dsfield 0x8 0x1e classid 1:12

# tcfilter u32 match ip dsfield 0xa 0x1e classid 1:12

# tcfilter u32 match ip dsfield 0xc 0x1e classid 1:12

# tcfilter u32 match ip dsfield 0xe 0x1e classid 1:12

The obvious drawback here is the amount of �lters needed. And without the default class,
eight more �lters would be necessary. This also has performance implications: A packet
with TOS value 0xe will be checked eight times in total in order to determine it's destination
class. While there's not much to be done about the number of �lters, at least the performance
problem can be eliminated by using u32's hash table support:

# tc filter add dev eth0 parent 1: prio 99 handle 1: u32 divisor 16

This creates a hash table with 16 buckets. The table size is arbitrary, but not random: Since
the �rst bit of the TOS �eld is not interesting, it can be ignored and therefore the range
of values to consider is just [0;15], i.e. a number of 16 di�erent values. The next step is to
populate the hash table:

# alias tcfilter='tc filter add dev eth0 parent 1: prio 99'

# tcfilter u32 match u8 0 0 ht 1:0: classid 1:16

# tcfilter u32 match u8 0 0 ht 1:1: classid 1:16

# tcfilter u32 match u8 0 0 ht 1:2: classid 1:16

# tcfilter u32 match u8 0 0 ht 1:3: classid 1:16

# tcfilter u32 match u8 0 0 ht 1:4: classid 1:12

# tcfilter u32 match u8 0 0 ht 1:5: classid 1:12

# tcfilter u32 match u8 0 0 ht 1:6: classid 1:12

# tcfilter u32 match u8 0 0 ht 1:7: classid 1:12

# tcfilter u32 match u8 0 0 ht 1:8: classid 1:16

# tcfilter u32 match u8 0 0 ht 1:9: classid 1:16

# tcfilter u32 match u8 0 0 ht 1:a: classid 1:16

# tcfilter u32 match u8 0 0 ht 1:b: classid 1:16

# tcfilter u32 match u8 0 0 ht 1:c: classid 1:10

# tcfilter u32 match u8 0 0 ht 1:d: classid 1:10

# tcfilter u32 match u8 0 0 ht 1:e: classid 1:10

# tcfilter u32 match u8 0 0 ht 1:f: classid 1:10

The parameter ht denotes the hash table and bucket the �lter should be added to. Since
the �rst TOS bit is ignored, it's value has to be divided by two in order to get to the bucket
it maps to. E.g. a TOS value of 0x10 will therefore map to bucket 0x8. For the sake of
completeness, all possible values are mapped and therefore a con�gurable default class is not
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required. Note that the used match expression is not necessary, but mandatory. Therefore
anything that matches any packet will su�ce. Finally, a �lter which links to the de�ned
hash table is needed:

# tc filter add dev eth0 parent 1: prio 1 protocol ip u32 \

link 1: hashkey mask 0x001e0000 match u8 0 0

Here again, the actual match statement is not necessary, but syntactically required. All the
magic lies within the hashkey parameter, which de�nes which part of the packet should be
used directly as hash key. Here's a drawing of the �rst four bytes of the IPv4 header, with
the area selected by hashkey mask highlighted:

0 1 2 3

.-----------------------------------------------------------------.

| | | ######## | | |

| Version| IHL | #DSCP### | ECN| Total Length |

| | | ######## | | |

'-----------------------------------------------------------------'

This may look confusing at �rst, but keep in mind that bit- as well as byte-ordering here is
LSB while the mask value is written in MSB we humans use. Therefore reading the mask is
done like so, starting from left:

1. Skip the �rst byte (which contains Version and IHL �elds).

2. Skip the lowest bit of the second byte (0x1e is even).

3. Mark the four following bits (0x1e is 11110 in binary).

4. Skip the remaining three bits of the second byte as well as the remaining two bytes.

Before doing the lookup, the kernel right-shifts the masked value by the amount of zero-bits
in mask, which implicitly also does the division by two which the hash table depends on.
With this setup, every packet has to pass exactly two �lters to be classi�ed. Note that this
�lter is limited to IPv4 packets: Due to the related Tra�c Class �eld being at a di�erent
o�set in the packet, it would not work for IPv6. To use the same setup for IPv6 as well, a
second entry-level �lter is necessary:

# tc filter add dev eth0 parent 1: prio 2 protocol ipv6 u32 \

link 1: hashkey mask 0x01e00000 match u8 0 0

For illustration purposes, here again is a drawing of the �rst four bytes of the IPv6 header,
again with masked area highlighted:
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0 1 2 3

.-----------------------------------------------------------------.

| | ######## | |

| Version| #Traffic Class| Flow Label |

| | ######## | |

'-----------------------------------------------------------------'

Reading the mask value is analogous to IPv4 with the added complexity that Tra�c Class
spans over two bytes. Yet, for comparison there's a simple trick: IPv6 has the interesting
�eld shifted by four bits to the left, and the new mask's value is shifted by the same amount.
For further information about u32 and what can be done with it, consult it's man page
tc-u32(8).

Of course, the kernel provides many more �lters than just basic, flow and u32 which
have been presented above. As of now, the remaining ones are:

bpf Filtering using Berkeley Packet Filter programs. The program's return code determines
the packet's destination class ID.

cgroup Filter packets based on control groups. This is only useful for packets originating
from the local host, as control groups only exist in that scope.


ower An extended variant of the 
ow �lter.

fw Matches on �rewall mark values previously assigned to the packet by net�lter (or a �lter
action, see below for details). This allows to export the classi�cation algorithm into
net�lter, which is very convenient if appropriate rules exist on the same system in there
already.

route Filter packets based on matching routing table entry. Basically equivalent to the fw
�lter above, to make use of an already existing extensive routing table setup.

rsvp, rsvp6 Implementation of the Resource Reservation Protocol in Linux, to react upon
requests sent by an RSVP daemon.

tcindex Match packets based on tcindex value, which is usually set by the dsmark qdisc.
This is part of an approach to support Di�erentiated Services in Linux, which is another
topic on it's own.

Filter Actions

The tc �lter framework provides the infrastructure to another extensible set of tools as well,
namely tc actions. As the name suggests, they allow to do things with packets (or associated
data). (The list of) Actions are part of a given �lter. If it matches, each action it contains is
executed in order before returning the classi�cation result. Since the action has direct access
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to the latter, it is in theory possible for an action to react upon or even change the �ltering
result - as long as the packet matched, of course. Yet none of the currently in-tree actions
make use of this.

The Generic Actions framework originally evolved out of the �lters' ability to police
tra�c to a given maximum bandwidth. One common use case for that is to limit ingress
tra�c, dropping packets which exceed the threshold. A classic setup example is like so:

# tc qdisc add dev eth0 handle ffff: ingress

# tc filter add dev eth0 parent ffff: u32 \

match u32 0 0

police rate 1mbit burst 100k

The ingress qdisc is not a real one, but merely a point of reference for �lters to attach to
which should get applied to incoming tra�c. The u32 �lter added above matches on any
packet and therefore limits the total incoming bandwidth to 1mbit/s, allowing bursts of up
to 100kbytes. Using the new syntax, the �lter command changes slightly:

# tc filter add dev eth0 parent ffff: u32 \

match u32 0 0 \

action police rate 1mbit burst 100k

The important detail is that this syntax allows to de�ne multiple actions. E.g. for testing
purposes, it is possible to redirect exceeding tra�c to the loopback interface instead of
dropping it:

# tc filter add dev eth0 parent ffff: u32 \

match u32 0 0 \

action police rate 1mbit burst 100k conform-exceed pipe \

action mirred egress redirect dev lo

The added parameter conform-exceed pipe tells the police action to allow for further
actions to handle the exceeding packet.

Apart from police and mirred actions, there are a few more. Here's a full list of the
currently implemented ones:

bpf Apply a Berkeley Packet Filter program to the packet.

connmark Set the packet's �rewall mark to that of it's connection. This works by searching
the conntrack table for a matching entry. If found, the mark is restored.

csum Trigger recalculation of packet checksums. The supported protocols are: IPv4, ICMP,
IGMP, TCP, UDP and UDPLite.

ipt Pass the packet to an iptables target. This allows to use iptables extensions directly in-
stead of having to go the extra mile via setting an arbitrary �rewall mark and matching
on that from within net�lter.
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mirred Mirror or redirect packets. This is often combined with the ifb pseudo device to
share a common QoS setup between multiple interfaces or even ingress tra�c.

nat Perform stateless Native Address Translation. This is certainly not complete and there-
fore inferior to NAT using iptables: Although the kernel module decides between TCP,
UDP and ICMP tra�c, it does not handle typical problematic protocols such as active
FTP or SIP.

pedit Generic packet editing. This allows to alter arbitrary bytes of the packet, either by
specifying an o�set into the packet or by naming a packet header and �eld name to
change. Currently, the latter is implemented only for IPv4 yet.

police Apply a bandwidth rate limiting policy. Packets exceeding it are dropped by default,
but may optionally be handled di�erently.

simple This is rather an example than real action. All it does is print a user-de�ned string
together with a packet counter. Useful maybe for debugging when �lter statistics are
not available or too complicated.

skbedit Edit associated packet data, supports changing queue mapping, priority �eld and
�rewall mark value.

vlan Add/remove a VLAN header to/from the packet. This might serve as alternative to
using 802.1Q pseudo-interfaces in combination with routing rules when e.g. packets
for a given destination need to be encapsulated.

Intermediate Functional Block

The Intermediate Functional Block (ifb) pseudo network interface acts as a QoS concen-
trator for multiple di�erent sources of tra�c. Packets from or to other interfaces have to
be redirected to it using the mirred action in order to be handled, regularly routed tra�c
will be dropped. This way, a single stack of qdiscs, classes and �lters can be shared between
multiple interfaces.

Here's a simple example to feed incoming tra�c from multiple interfaces through a
Stochastic Fairness Queue (sfq):

(1) # modprobe ifb

(2) # ip link set ifb0 up

(3) # tc qdisc add dev ifb0 root sfq

The �rst step is to load the ifb kernel module (1). By default, this will create two ifb
devices: ifb0 and ifb1. After setting ifb0 up in (2), the root qdisc is replaced by sfq in (3).
Finally, one can start redirecting ingress tra�c to ifb0, e.g. from eth0 :
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# tc qdisc add dev eth0 handle ffff: ingress

# tc filter add dev eth0 parent ffff: u32 \

match u32 0 0 \

action mirred egress redirect dev ifb0

The same can be done for other interfaces, just replacing eth0 in the two commands above.
One thing to keep in mind here is the asymmetrical routing this creates within the host
doing the QoS: Incoming packets enter the system via ifb0, while corresponding replies leave
directly via eth0. This can be observed using tcpdump on ifb0, which shows the input part
of the tra�c only. What's more confusing is that tcpdump on eth0 shows both incoming and
outgoing tra�c, but the redirection is still e�ective - a simple prove is setting ifb0 down,
which will interrupt the communication. Obviously tcpdump catches the packets to dump
before they enter the ingress qdisc, which is why it sees them while the kernel itself doesn't.

Conclusion

Once the steep learning curve has been mastered, the conglomerate of (classful) qdiscs, �lters
and actions provides a highly sophisticated and 
exible infrastructure to perform QoS, which
plays nicely along with routing and �rewalling setups.

Further Reading

A good starting point for novice users and experienced ones diving into unknown areas is
the extensive HOWTO at http://lartc.org. The iproute2 package ships some examples
(usually in /usr/share/doc/, depending on distribution) as well as man pages for tc in
general, qdiscs and �lters. The latter have been added just recently though, so if your
distribution does not ship iproute2 version 4.3.0 yet, these are not in there. Apart from that,
the internet is a spring of HOWTOs and scripts people wrote - though these should be taken
with a grain of salt: The complexity of the matter often leads to copying others' solutions
without much validation, which allows for less optimal or even obsolete implementations to
survive much longer than desired.
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