
Asymptote pa
kage CAD.asy

�

Mark Henning, Germany

y

29 September 2006

Contents

1 Introdu
tion 1

2 Important rules for using this pa
kage 1

3 Usage 2

4 Example 5

1 Introdu
tion

The pa
kage CAD.asy provides basi
 pen de�nitions and measurement fun
tions

for simple 2D CAD drawings a

ording to DIN 15.

2 Important rules for using this pa
kage

If a fun
tion is de
lared like this:

void foo(int nParam1, string strParam2)

You may
all it foo(0, 'ab
'); or foo(nParam1=0, strParam2='ab
');.

The de�nitions of the fun
tions in this pa
kage may
hange in future ver-

sion: the order of the parameters may be
hanged, new parameters may be

inserted. Therefore it is strongly re
ommended always
alling the fun
tions

foo(nParam1=0, strParam2='ab
');.

�

This do
ument des
ribes version 1.0.

y

URL: http://www.markhenning.de

1

3 Usage

To use the
apabilities of the pa
kage, import it:

import CAD;

All fun
tions are en
apsulated in the stru
ture sCAD. As the pen de�nitions may

di�er depending on the size of your drawing, you have to initialize the stru
ture

before drawing:

stati
 sCAD Create(int nLineGroup = 1)

The parameter nLineGroup depends on the size of your drawing. It spe
i�es

the line group to de�ne the pens and thus the width used for the lines. The

parameter has to be within the range [0; 3℄. The larger the value, the thi
ker

the lines. Code example:

sCAD
ad = sCAD.Create();

The
reated variable
ad then provides the most important pens. Available

pens are:

� The pens of group A:

{ pA

{ pVisibleEdge

{ pVisibleContour

{ pUsableWindingLength

{ pSystemLine

{ pDiagramCurve

{ pSurfa
eStru
ture

� The pens of group B:

{ pB

{ pLightEdge

{ pMeasureLine

{ pMeasureHelpLine

{ pMeasureLineBound

{ pReferen
eLine

{ pHat
h

2

{ pWindingGround

{ pDiagonalCross

{ pBendLine

{ pProje
tionLine

{ pGrid

� The pens of group C:

{ pC

{ pFreehand

� The pens of group E:

{ pE

{ pSurfa
eTreatmentAllowed

� The pens of group F:

{ pF

{ pInvisibleEdge

{ pInvisibleContour

� The pens of group G:

{ pG

{ pMiddleLine

{ pSymmetryLine

{ pPartialCir
le

{ pCir
ularHole

{ pDivisionPlane

{ pTransferLine

� The pens of group J:

{ pJ

{ pCuttingPlane

{ pSurfa
eTreatmentRequested

� The pens of group K:

{ pK

{ pContourBeforeDeformation

{ pAdja
entPartContour

{ pEndShapeRawMaterial

3

{ pContourEligibleType

{ pPartInFrontOfCuttingPlane

All pens of one group are the same. So there is no di�eren
e between the pen

pA and the pen pVisibleEdge. You may use the short names or the des
riptive

ones. The list of groups is not
omplete. I had no idea how to implement the

pens of group D. For me, group H seems to be obsolete, and there is no group I

ontained in DIN 15. In the
ase I did something wrong translating the German

names into English, the sour
e �le also
ontains the original German names of

ea
h pen. Whenever a drawing fun
tion does not allow you to sele
t the pen,

the right pen is sele
ted automati
ally.

void MeasureLine(pi
ture pi
 =
urrentpi
ture,

Label L,

pair pFrom,

pair pTo,

real dblLeft = 0,

real dblRight = 0,

real dblRelPosition = 0.5,

bool bSmallBound = false)

This is the basi
 fun
tion to draw labeled straight measurement lines. pi

denotes the pi
ture the line has to be drawn into, L is the label of the line. The

pairs pFrom and pTo are the start and the end point of the distan
e to measure,

respe
tively. Note, that these two points do not refer to the start and end point

of the line, as it may be longer than the measured distan
e.

The line is extended on its left side (= the part of the line 'before' the start

point) by the distan
e dblLeft. On its right side (= the part of the line 'behind'

the end point) it is extended by the distan
e dblRight. dblLeft and dblRight

must be � 0. If only one of both values is zero, it is set to the value of the other

one, be
ause a

ording to DIN 15 it is not allowed to draw a measurement

line asymmetri
ally. The position of the arrows indi
ating begin and end of

the distan
e depends on dblLeft and dblRight. If both values are 0, the

measurement arrows are drawn within the measurement distan
e. Otherwise

they are drawn outside.

The parameter dblRelPosition refers to the relative position of the label be-

tween the start and end point. This means: The value 0 positions the label at

the start point, 0.5 refers to the
enter between the start and the end point.

Finally, the value 1 will position the label at the end point. If dblLeft or

dblRight are nonzero, you may position the label at the left side of the start

point (< 0) or at the right side of the start point (> 1).

Usually, there is enough spa
e to draw the measurement arrows. If you wish to

use small
ir
les instead of the arrows, set bSmallBound to true.

real GetMeasurementBoundSize(bool bSmallBound = false)

4

Returns the size of the arrow or the small bound
ir
le used for measurement

lines.

guide GetMeasurementBound(bool bSmallBound = false)

Returns the
orre
tly s
aled guide of the arrow or the small bound
ir
le used

for measurement lines.

void MeasureParallel(pi
ture pi
 =
urrentpi
ture,

Label L,

pair pFrom,

pair pTo,

real dblDistan
e,

// Variables from MeasureLine

real dblLeft = 0,

real dblRight = 0,

real dblRelPosition = 0.5,

bool bSmallBound = false)

Usually, measurement lines are pla
ed outside the drawing with referen
e lines to

the measured distan
e. pFrom and pTo denote the points of the drawing marking

the begin and the end of the distan
e to measure, and not the begin and the

end of the measurement line as in the
ase of the fun
tion MeasureLine. The

measurement line is pla
ed dblDistan
e away from the distan
e to measure. If

you would be at pFrom and look into the dire
tion pTo, it is pla
ed on the left

for positive values of dblDistan
e. For negative values, it is positioned on the

right. For the meaning of the other parameters see the fun
tion MeasureLine.

guide MakeFreehand(pair pFrom, pair pTo,

real dblRelDivisionLength = 12.5,

real dblRelDistortion = 2.5,

bool bIn
ludeTo = true)

To draw a line between two points, whi
h is not straight, but more like a free-

hand line, use this fun
tion. The pairs pFrom and pTo denote start and end

point, respe
tively. dblRelDivisionLength is the length of the parts, the line

is subdivided into. dblRelDistortion is the amount of distortion. Both sizes

are given relative to the width of a freehand line. If bIn
ludeTo is true, the

point pTo is added to the path. Otherwise it is not. This may be useful for

onverting a guide
ontaining more than two points to a freehand line.

4 Example

To produ
e �gure 1, use this
ode:

5

p

2

1 0.5 0.5

Figure 1: Example showing the measurement
apabilities and a small freehand

line.

import CAD;

sCAD
ad = sCAD.Create();

// Freehand line

draw(g =
ad.MakeFreehand(pFrom = (3, -1)*
m, (6, -1)*
m),

p =
ad.pFreehand);

// Standard measurement lines

draw(g = box((0, 0)*
m, (1, 1)*
m), p =
ad.pVisibleEdge);

ad.MeasureParallel(L = "$\sqrt{2}$",

pFrom = (0, 1)*
m,

pTo = (1, 0)*
m,

dblDistan
e = -15mm);

// Label inside, shifted to the right; arrows outside

draw(g = box((2, 0)*
m, (3, 1)*
m), p =
ad.pVisibleEdge);

ad.MeasureParallel(L = "1",

pFrom = (2, 1)*
m,

pTo = (3, 1)*
m,

dblDistan
e = 5mm,

dblLeft = 5mm,

dblRelPosition = 0.75);

// Label and arrows outside

draw(g = box((5, 0)*
m, (5.5, 1)*
m), p =
ad.pVisibleEdge);

ad.MeasureParallel(L = "0.5",

pFrom = (5, 1)*
m,

pTo = (5.5, 1)*
m,

dblDistan
e = 5mm,

dblLeft = 10mm,

dblRelPosition = -1);

// Small bounds, asymmetri
 measurement line

draw(g = box((7, 0)*
m, (7.5, 1)*
m), p =
ad.pVisibleEdge);

ad.MeasureParallel(L = "0.5",

pFrom = (7, 1)*
m,

6

pTo = (7.5, 1)*
m,

dblDistan
e = 5mm,

dblLeft = 2*
ad.GetMeasurementBoundSize(

bSmallBound = true),

dblRight = 10mm,

dblRelPosition = 2,

bSmallBound = true);

7

