Swap
Related articles
This page provides an introduction to swap space and paging on GNU/Linux. It covers creation and activation of swap partitions and swap files.
From All about Linux swap space:
- Linux divides its physical RAM (random access memory) into chunks of memory called pages. Swapping is the process whereby a page of memory is copied to the preconfigured space on the hard disk, called swap space, to free up that page of memory. The combined sizes of the physical memory and the swap space is the amount of virtual memory available.
Support for swap is provided by the Linux kernel and user-space utilities from the util-linux package.
Contents
Swap space
Swap space will usually be a disk partition but can also be a file. Users may create a swap space during installation of Arch Linux or at any later time should it become necessary. Swap space is generally recommended for users with less than 1 GB of RAM, but becomes more a matter of personal preference on systems with gratuitous amounts of physical RAM (though it is required for suspend-to-disk support).
To check swap status, use:
$ swapon --show
Or:
$ free -h
Swap partition
A swap partition can be created with most GNU/Linux partitioning tools. Swap partitions are typically designated as type 82
. Even though it is possible to use any partition type as swap, it is recommended to use type 82
in most cases since systemd will automatically detect it and mount it (see below).
To set up a partition as Linux swap area, the mkswap
command is used. For example:
# mkswap /dev/sda2
To enable the device for paging:
# swapon /dev/sda2
To enable this swap partition on boot, add an entry to fstab:
UUID=<UUID> none swap defaults 0 0
where the <UUID> is taken from the command:
lsblk -no UUID /dev/sda2
Activation by systemd
systemd activates swap partitions based on two different mechanisms. Both are executables in /usr/lib/systemd/system-generators
. The generators are run on start-up and create native systemd units for mounts. The first, systemd-fstab-generator
, reads the fstab to generate units, including a unit for swap. The second, systemd-gpt-auto-generator
inspects the root disk to generate units. It operates on GPT disks only, and can identify swap partitions by their type code 82
.
This can be solved by one of the following options:
- Removing the swap entry from
/etc/fstab
- Changing the swap partition's type code from
82
to an arbitrary type code - Setting the attribute of the swap partition to "63: do not automount"
Disabling swap
To deactivate specific swap space:
# swapoff /dev/sda2
Alternatively use the -a
switch to deactivate all swap space.
Since swap is managed by systemd, it will be activated again on the next system startup. To disable the automatic activation of detected swap space permanently, run systemctl --type swap
to find the responsible .swap unit and mask it.
Swap file
As an alternative to creating an entire partition, a swap file offers the ability to vary its size on-the-fly, and is more easily removed altogether. This may be especially desirable if disk space is at a premium (e.g. a modestly-sized SSD).
Manually
Swap file creation
As root use fallocate
to create a swap file the size of your choosing (M = Mebibytes, G = Gibibytes). For example, creating a 512 MiB swap file:
# fallocate -l 512M /swapfile
Set the right permissions (a world-readable swap file is a huge local vulnerability)
# chmod 600 /swapfile
After creating the correctly sized file, format it to swap:
# mkswap /swapfile
Activate the swap file:
# swapon /swapfile
Finally, edit fstab to add an entry for the swap file:
/etc/fstab
/swapfile none swap defaults 0 0
Remove swap file
To remove a swap file, the current swap file must be turned off.
As root:
# swapoff -a
Remove swap file:
# rm -f /swapfile
Finally remove the relevant entry from /etc/fstab
.
systemd-swap
Install the systemd-swap package. Uncomment the lines containing swapf
in the swap file section of /etc/systemd/swap.conf
. Start/enable the systemd-swap
service.
Swap with USB device
Thanks to the modularity offered by Linux, we can have multiple swap partitions spread over different devices. If you have a very full hard disk, a USB device can be used as a swap partition temporarily. However, this method has some severe disadvantages:
- A USB device is slower than a hard disk
- Flash memory has a limited number of write cycles. Using it as a swap partition can kill it quickly
To add a USB device to swap, first take a USB flash drive and partition it for swap as described in #Swap partition.
Next open /etc/fstab
and add
pri=0
to the mount options of the original swap entry so that the USB swap partition will take priority over the old swap partition.
This guide will work for other memory such as SD cards, etc.
Swap encryption
Performance Tuning
Swap values can be adjusted to help performance.
Swappiness
The swappiness sysctl parameter represents the kernel's preference (or avoidance) of swap space. Swappiness can have a value between 0 and 100, the default value is 60. A low value causes the kernel to avoid swapping, a higher value causes the kernel to try to use swap space. Using a low value on sufficient memory is known to improve responsiveness on many systems.
To check the current swappiness value:
$ cat /proc/sys/vm/swappiness
To temporarily set the swappiness value:
# sysctl vm.swappiness=10
To set the swappiness value permanently, edit a sysctl configuration file
/etc/sysctl.d/99-sysctl.conf
vm.swappiness=10
To test and more on why this may work, take a look at this article.
Another sysctl parameter that affects swap performance is vm.vfs_cache_pressure
, which controls the tendency of the kernel to reclaim the memory which is used for caching of VFS caches, versus pagecache and swap. Increasing this value increases the rate at which VFS caches are reclaimed[2]. For more information, see the Linux kernel documentation.
Priority
If you have more than one swap file or swap partition you should consider assigning a priority value (0 to 32767) for each swap area. The system will use swap areas of higher priority before using swap areas of lower priority. For example, if you have a faster disk (/dev/sda
) and a slower disk (/dev/sdb
), assign a higher priority to the swap area located on the faster device. Priorities can be assigned in fstab via the pri
parameter:
/dev/sda1 none swap defaults,pri=100 0 0 /dev/sdb2 none swap defaults,pri=10 0 0
Or via the -p
(or --priority
) parameter of swapon:
# swapon -p 100 /dev/sda1
If two or more areas have the same priority, and it is the highest priority available, pages are allocated on a round-robin basis between them.
Striping
There is no necessity to use RAID for swap performance reasons. The kernel itself can stripe swapping on several devices, if you just give them the same priority in the /etc/fstab
file. Refer to The Software-RAID HOWTO for details.