Primitive Type f64 [−]
The 64-bit floating point type.
Methods
impl f64
[src]
fn is_nan(self) -> bool
1.0.0
Returns true
if this value is NaN
and false otherwise.
use std::f64; let nan = f64::NAN; let f = 7.0_f64; assert!(nan.is_nan()); assert!(!f.is_nan());Run
fn is_infinite(self) -> bool
1.0.0
Returns true
if this value is positive infinity or negative infinity and
false otherwise.
use std::f64; let f = 7.0f64; let inf = f64::INFINITY; let neg_inf = f64::NEG_INFINITY; let nan = f64::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());Run
fn is_finite(self) -> bool
1.0.0
Returns true
if this number is neither infinite nor NaN
.
use std::f64; let f = 7.0f64; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());Run
fn is_normal(self) -> bool
1.0.0
Returns true
if the number is neither zero, infinite,
subnormal, or NaN
.
use std::f64; let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64 let max = f64::MAX; let lower_than_min = 1.0e-308_f64; let zero = 0.0f64; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f64::NAN.is_normal()); assert!(!f64::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());Run
fn classify(self) -> FpCategory
1.0.0
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use std::num::FpCategory; use std::f64; let num = 12.4_f64; let inf = f64::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);Run
fn integer_decode(self) -> (u64, i16, i8)
: never really came to fruition and easily implementable outside the standard library
Returns the mantissa, base 2 exponent, and sign as integers, respectively.
The original number can be recovered by sign * mantissa * 2 ^ exponent
.
The floating point encoding is documented in the Reference.
#![feature(float_extras)] let num = 2.0f64; // (8388608, -22, 1) let (mantissa, exponent, sign) = num.integer_decode(); let sign_f = sign as f64; let mantissa_f = mantissa as f64; let exponent_f = num.powf(exponent as f64); // 1 * 8388608 * 2^(-22) == 2 let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); assert!(abs_difference < 1e-10);Run
fn floor(self) -> f64
1.0.0
Returns the largest integer less than or equal to a number.
let f = 3.99_f64; let g = 3.0_f64; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0);Run
fn ceil(self) -> f64
1.0.0
Returns the smallest integer greater than or equal to a number.
let f = 3.01_f64; let g = 4.0_f64; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);Run
fn round(self) -> f64
1.0.0
Returns the nearest integer to a number. Round half-way cases away from
0.0
.
let f = 3.3_f64; let g = -3.3_f64; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);Run
fn trunc(self) -> f64
1.0.0
Returns the integer part of a number.
let f = 3.3_f64; let g = -3.7_f64; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0);Run
fn fract(self) -> f64
1.0.0
Returns the fractional part of a number.
let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);Run
fn abs(self) -> f64
1.0.0
Computes the absolute value of self
. Returns NAN
if the
number is NAN
.
use std::f64; let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); assert!(f64::NAN.abs().is_nan());Run
fn signum(self) -> f64
1.0.0
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orINFINITY
-1.0
if the number is negative,-0.0
orNEG_INFINITY
NAN
if the number isNAN
use std::f64; let f = 3.5_f64; assert_eq!(f.signum(), 1.0); assert_eq!(f64::NEG_INFINITY.signum(), -1.0); assert!(f64::NAN.signum().is_nan());Run
fn is_sign_positive(self) -> bool
1.0.0
Returns true
if self
's sign bit is positive, including
+0.0
and INFINITY
.
use std::f64; let nan: f64 = f64::NAN; let f = 7.0_f64; let g = -7.0_f64; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive()); // Requires both tests to determine if is `NaN` assert!(!nan.is_sign_positive() && !nan.is_sign_negative());Run
fn is_positive(self) -> bool
1.0.0
: renamed to is_sign_positive
fn is_sign_negative(self) -> bool
1.0.0
Returns true
if self
's sign is negative, including -0.0
and NEG_INFINITY
.
use std::f64; let nan = f64::NAN; let f = 7.0_f64; let g = -7.0_f64; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative()); // Requires both tests to determine if is `NaN`. assert!(!nan.is_sign_positive() && !nan.is_sign_negative());Run
fn is_negative(self) -> bool
1.0.0
: renamed to is_sign_negative
fn mul_add(self, a: f64, b: f64) -> f64
1.0.0
Fused multiply-add. Computes (self * a) + b
with only one rounding
error. This produces a more accurate result with better performance than
a separate multiplication operation followed by an add.
let m = 10.0_f64; let x = 4.0_f64; let b = 60.0_f64; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference < 1e-10);Run
fn recip(self) -> f64
1.0.0
Takes the reciprocal (inverse) of a number, 1/x
.
let x = 2.0_f64; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference < 1e-10);Run
fn powi(self, n: i32) -> f64
1.0.0
Raises a number to an integer power.
Using this function is generally faster than using powf
let x = 2.0_f64; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference < 1e-10);Run
fn powf(self, n: f64) -> f64
1.0.0
Raises a number to a floating point power.
let x = 2.0_f64; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference < 1e-10);Run
fn sqrt(self) -> f64
1.0.0
Takes the square root of a number.
Returns NaN if self
is a negative number.
let positive = 4.0_f64; let negative = -4.0_f64; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference < 1e-10); assert!(negative.sqrt().is_nan());Run
fn exp(self) -> f64
1.0.0
Returns e^(self)
, (the exponential function).
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
fn exp2(self) -> f64
1.0.0
Returns 2^(self)
.
let f = 2.0_f64; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference < 1e-10);Run
fn ln(self) -> f64
1.0.0
Returns the natural logarithm of the number.
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
fn log(self, base: f64) -> f64
1.0.0
Returns the logarithm of the number with respect to an arbitrary base.
let ten = 10.0_f64; let two = 2.0_f64; // log10(10) - 1 == 0 let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); // log2(2) - 1 == 0 let abs_difference_2 = (two.log(2.0) - 1.0).abs(); assert!(abs_difference_10 < 1e-10); assert!(abs_difference_2 < 1e-10);Run
fn log2(self) -> f64
1.0.0
Returns the base 2 logarithm of the number.
let two = 2.0_f64; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
fn log10(self) -> f64
1.0.0
Returns the base 10 logarithm of the number.
let ten = 10.0_f64; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
fn to_degrees(self) -> f64
1.0.0
Converts radians to degrees.
use std::f64::consts; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference < 1e-10);Run
fn to_radians(self) -> f64
1.0.0
Converts degrees to radians.
use std::f64::consts; let angle = 180.0_f64; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference < 1e-10);Run
fn ldexp(x: f64, exp: isize) -> f64
: never really came to fruition and easily implementable outside the standard library
Constructs a floating point number of x*2^exp
.
#![feature(float_extras)] // 3*2^2 - 12 == 0 let abs_difference = (f64::ldexp(3.0, 2) - 12.0).abs(); assert!(abs_difference < 1e-10);Run
fn frexp(self) -> (f64, isize)
: never really came to fruition and easily implementable outside the standard library
Breaks the number into a normalized fraction and a base-2 exponent, satisfying:
self = x * 2^exp
0.5 <= abs(x) < 1.0
#![feature(float_extras)] let x = 4.0_f64; // (1/2)*2^3 -> 1 * 8/2 -> 4.0 let f = x.frexp(); let abs_difference_0 = (f.0 - 0.5).abs(); let abs_difference_1 = (f.1 as f64 - 3.0).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10);Run
fn next_after(self, other: f64) -> f64
: never really came to fruition and easily implementable outside the standard library
Returns the next representable floating-point value in the direction of
other
.
#![feature(float_extras)] let x = 1.0f64; let abs_diff = (x.next_after(2.0) - 1.0000000000000002220446049250313_f64).abs(); assert!(abs_diff < 1e-10);Run
fn max(self, other: f64) -> f64
1.0.0
Returns the maximum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.max(y), y);Run
If one of the arguments is NaN, then the other argument is returned.
fn min(self, other: f64) -> f64
1.0.0
Returns the minimum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.min(y), x);Run
If one of the arguments is NaN, then the other argument is returned.
fn abs_sub(self, other: f64) -> f64
1.0.0
: you probably meant (self - other).abs()
: this operation is (self - other).max(0.0)
(also known as fdim
in C). If you truly need the positive difference, consider using that expression or the C function fdim
, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).
The positive difference of two numbers.
- If
self <= other
:0:0
- Else:
self - other
let x = 3.0_f64; let y = -3.0_f64; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);Run
fn cbrt(self) -> f64
1.0.0
Takes the cubic root of a number.
let x = 8.0_f64; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference < 1e-10);Run
fn hypot(self, other: f64) -> f64
1.0.0
Calculates the length of the hypotenuse of a right-angle triangle given
legs of length x
and y
.
let x = 2.0_f64; let y = 3.0_f64; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference < 1e-10);Run
fn sin(self) -> f64
1.0.0
Computes the sine of a number (in radians).
use std::f64; let x = f64::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
fn cos(self) -> f64
1.0.0
Computes the cosine of a number (in radians).
use std::f64; let x = 2.0*f64::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
fn tan(self) -> f64
1.0.0
Computes the tangent of a number (in radians).
use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-14);Run
fn asin(self) -> f64
1.0.0
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
use std::f64; let f = f64::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); assert!(abs_difference < 1e-10);Run
fn acos(self) -> f64
1.0.0
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
use std::f64; let f = f64::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); assert!(abs_difference < 1e-10);Run
fn atan(self) -> f64
1.0.0
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
let f = 1.0_f64; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
fn atan2(self, other: f64) -> f64
1.0.0
Computes the four quadrant arctangent of self
(y
) and other
(x
).
x = 0
,y = 0
:0
x >= 0
:arctan(y/x)
->[-pi/2, pi/2]
y >= 0
:arctan(y/x) + pi
->(pi/2, pi]
y < 0
:arctan(y/x) - pi
->(-pi, -pi/2)
use std::f64; let pi = f64::consts::PI; // All angles from horizontal right (+x) // 45 deg counter-clockwise let x1 = 3.0_f64; let y1 = -3.0_f64; // 135 deg clockwise let x2 = -3.0_f64; let y2 = 3.0_f64; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 < 1e-10); assert!(abs_difference_2 < 1e-10);Run
fn sin_cos(self) -> (f64, f64)
1.0.0
Simultaneously computes the sine and cosine of the number, x
. Returns
(sin(x), cos(x))
.
use std::f64; let x = f64::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10);Run
fn exp_m1(self) -> f64
1.0.0
Returns e^(self) - 1
in a way that is accurate even if the
number is close to zero.
let x = 7.0_f64; // e^(ln(7)) - 1 let abs_difference = (x.ln().exp_m1() - 6.0).abs(); assert!(abs_difference < 1e-10);Run
fn ln_1p(self) -> f64
1.0.0
Returns ln(1+n)
(natural logarithm) more accurately than if
the operations were performed separately.
use std::f64; let x = f64::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
fn sinh(self) -> f64
1.0.0
Hyperbolic sine function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference < 1e-10);Run
fn cosh(self) -> f64
1.0.0
Hyperbolic cosine function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference < 1.0e-10);Run
fn tanh(self) -> f64
1.0.0
Hyperbolic tangent function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference < 1.0e-10);Run
fn asinh(self) -> f64
1.0.0
Inverse hyperbolic sine function.
let x = 1.0_f64; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);Run
fn acosh(self) -> f64
1.0.0
Inverse hyperbolic cosine function.
let x = 1.0_f64; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);Run
fn atanh(self) -> f64
1.0.0
Inverse hyperbolic tangent function.
use std::f64; let e = f64::consts::E; let f = e.tanh().atanh(); let abs_difference = (f - e).abs(); assert!(abs_difference < 1.0e-10);Run
Trait Implementations
impl From<i8> for f64
1.5.0[src]
impl From<i16> for f64
1.5.0[src]
impl From<i32> for f64
1.5.0[src]
impl From<u8> for f64
1.5.0[src]
impl From<u16> for f64
1.5.0[src]
impl From<u32> for f64
1.5.0[src]
impl From<f32> for f64
1.5.0[src]
impl Neg for f64
1.0.0[src]
type Output = f64
The resulting type after applying the -
operator
fn neg(self) -> f64
The method for the unary -
operator
impl<'a> Neg for &'a f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the -
operator
fn neg(self) -> f64::Output
The method for the unary -
operator
impl Rem<f64> for f64
1.0.0[src]
type Output = f64
The resulting type after applying the %
operator
fn rem(self, other: f64) -> f64
The method for the %
operator
impl<'a> Rem<f64> for &'a f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the %
operator
fn rem(self, other: f64) -> f64::Output
The method for the %
operator
impl<'a> Rem<&'a f64> for f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the %
operator
fn rem(self, other: &'a f64) -> f64::Output
The method for the %
operator
impl<'a, 'b> Rem<&'a f64> for &'b f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the %
operator
fn rem(self, other: &'a f64) -> f64::Output
The method for the %
operator
impl Div<f64> for f64
1.0.0[src]
type Output = f64
The resulting type after applying the /
operator
fn div(self, other: f64) -> f64
The method for the /
operator
impl<'a> Div<f64> for &'a f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the /
operator
fn div(self, other: f64) -> f64::Output
The method for the /
operator
impl<'a> Div<&'a f64> for f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the /
operator
fn div(self, other: &'a f64) -> f64::Output
The method for the /
operator
impl<'a, 'b> Div<&'a f64> for &'b f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the /
operator
fn div(self, other: &'a f64) -> f64::Output
The method for the /
operator
impl Mul<f64> for f64
1.0.0[src]
type Output = f64
The resulting type after applying the *
operator
fn mul(self, other: f64) -> f64
The method for the *
operator
impl<'a> Mul<f64> for &'a f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the *
operator
fn mul(self, other: f64) -> f64::Output
The method for the *
operator
impl<'a> Mul<&'a f64> for f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the *
operator
fn mul(self, other: &'a f64) -> f64::Output
The method for the *
operator
impl<'a, 'b> Mul<&'a f64> for &'b f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the *
operator
fn mul(self, other: &'a f64) -> f64::Output
The method for the *
operator
impl SubAssign<f64> for f64
1.8.0[src]
fn sub_assign(&mut self, other: f64)
The method for the -=
operator
impl Debug for f64
1.0.0[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter.
impl Sub<f64> for f64
1.0.0[src]
type Output = f64
The resulting type after applying the -
operator
fn sub(self, other: f64) -> f64
The method for the -
operator
impl<'a> Sub<f64> for &'a f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the -
operator
fn sub(self, other: f64) -> f64::Output
The method for the -
operator
impl<'a> Sub<&'a f64> for f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the -
operator
fn sub(self, other: &'a f64) -> f64::Output
The method for the -
operator
impl<'a, 'b> Sub<&'a f64> for &'b f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the -
operator
fn sub(self, other: &'a f64) -> f64::Output
The method for the -
operator
impl Add<f64> for f64
1.0.0[src]
type Output = f64
The resulting type after applying the +
operator
fn add(self, other: f64) -> f64
The method for the +
operator
impl<'a> Add<f64> for &'a f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the +
operator
fn add(self, other: f64) -> f64::Output
The method for the +
operator
impl<'a> Add<&'a f64> for f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the +
operator
fn add(self, other: &'a f64) -> f64::Output
The method for the +
operator
impl<'a, 'b> Add<&'a f64> for &'b f64
1.0.0[src]
type Output = f64::Output
The resulting type after applying the +
operator
fn add(self, other: &'a f64) -> f64::Output
The method for the +
operator
impl FromStr for f64
1.0.0[src]
type Err = ParseFloatError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<f64, ParseFloatError>
Converts a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
- '3.14'
- '-3.14'
- '2.5E10', or equivalently, '2.5e10'
- '2.5E-10'
- '.' (understood as 0)
- '5.'
- '.5', or, equivalently, '0.5'
- 'inf', '-inf', 'NaN'
Leading and trailing whitespace represent an error.
Arguments
- src - A string
Return value
Err(ParseFloatError)
if the string did not represent a valid
number. Otherwise, Ok(n)
where n
is the floating-point
number represented by src
.
impl Product<f64> for f64
1.12.0[src]
fn product<I>(iter: I) -> f64 where I: Iterator<Item=f64>
Method which takes an iterator and generates Self
from the elements by multiplying the items. Read more
impl<'a> Product<&'a f64> for f64
1.12.0[src]
fn product<I>(iter: I) -> f64 where I: Iterator<Item=&'a f64>
Method which takes an iterator and generates Self
from the elements by multiplying the items. Read more
impl AddAssign<f64> for f64
1.8.0[src]
fn add_assign(&mut self, other: f64)
The method for the +=
operator
impl UpperExp for f64
1.0.0[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter.
impl Sum<f64> for f64
1.12.0[src]
fn sum<I>(iter: I) -> f64 where I: Iterator<Item=f64>
Method which takes an iterator and generates Self
from the elements by "summing up" the items. Read more
impl<'a> Sum<&'a f64> for f64
1.12.0[src]
fn sum<I>(iter: I) -> f64 where I: Iterator<Item=&'a f64>
Method which takes an iterator and generates Self
from the elements by "summing up" the items. Read more
impl PartialOrd<f64> for f64
1.0.0[src]
fn partial_cmp(&self, other: &f64) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, other: &f64) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, other: &f64) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn ge(&self, other: &f64) -> bool
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
fn gt(&self, other: &f64) -> bool
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
impl PartialEq<f64> for f64
1.0.0[src]
fn eq(&self, other: &f64) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &f64) -> bool
This method tests for !=
.
impl Zero for f64
[src]
fn zero() -> f64
: no longer used for Iterator::sum
The "zero" (usually, additive identity) for this type.
impl RemAssign<f64> for f64
1.8.0[src]
fn rem_assign(&mut self, other: f64)
The method for the %=
operator
impl Default for f64
1.0.0[src]
impl Clone for f64
1.0.0[src]
fn clone(&self) -> f64
Returns a deep copy of the value.
fn clone_from(&mut self, source: &Self)
1.0.0
Performs copy-assignment from source
. Read more
impl LowerExp for f64
1.0.0[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter.
impl DivAssign<f64> for f64
1.8.0[src]
fn div_assign(&mut self, other: f64)
The method for the /=
operator
impl Display for f64
1.0.0[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter.
impl One for f64
[src]
fn one() -> f64
: no longer used for Iterator::product
The "one" (usually, multiplicative identity) for this type.
impl MulAssign<f64> for f64
1.8.0[src]
fn mul_assign(&mut self, other: f64)
The method for the *=
operator