1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

#![allow(deprecated)]

//! Single-threaded reference-counting pointers.
//!
//! The type [`Rc<T>`][rc] provides shared ownership of a value of type `T`,
//! allocated in the heap. Invoking [`clone`][clone] on `Rc` produces a new
//! pointer to the same value in the heap. When the last `Rc` pointer to a
//! given value is destroyed, the pointed-to value is also destroyed.
//!
//! Shared references in Rust disallow mutation by default, and `Rc` is no
//! exception. If you need to mutate through an `Rc`, use [`Cell`][cell] or
//! [`RefCell`][refcell].
//!
//! `Rc` uses non-atomic reference counting. This means that overhead is very
//! low, but an `Rc` cannot be sent between threads, and consequently `Rc`
//! does not implement [`Send`][send]. As a result, the Rust compiler
//! will check *at compile time* that you are not sending `Rc`s between
//! threads. If you need multi-threaded, atomic reference counting, use
//! [`sync::Arc`][arc].
//!
//! The [`downgrade`][downgrade] method can be used to create a non-owning
//! [`Weak`][weak] pointer. A `Weak` pointer can be [`upgrade`][upgrade]d
//! to an `Rc`, but this will return [`None`][option] if the value has
//! already been dropped.
//!
//! A cycle between `Rc` pointers will never be deallocated. For this reason,
//! `Weak` is used to break cycles. For example, a tree could have strong
//! `Rc` pointers from parent nodes to children, and `Weak` pointers from
//! children back to their parents.
//!
//! `Rc<T>` automatically dereferences to `T` (via the [`Deref`][deref] trait),
//! so you can call `T`'s methods on a value of type `Rc<T>`. To avoid name
//! clashes with `T`'s methods, the methods of `Rc<T>` itself are [associated
//! functions][assoc], called using function-like syntax:
//!
//! ```
//! use std::rc::Rc;
//! let my_rc = Rc::new(());
//!
//! Rc::downgrade(&my_rc);
//! ```
//!
//! `Weak<T>` does not auto-dereference to `T`, because the value may have
//! already been destroyed.
//!
//! [rc]: struct.Rc.html
//! [weak]: struct.Weak.html
//! [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
//! [cell]: ../../std/cell/struct.Cell.html
//! [refcell]: ../../std/cell/struct.RefCell.html
//! [send]: ../../std/marker/trait.Send.html
//! [arc]: ../../std/sync/struct.Arc.html
//! [deref]: ../../std/ops/trait.Deref.html
//! [downgrade]: struct.Rc.html#method.downgrade
//! [upgrade]: struct.Weak.html#method.upgrade
//! [option]: ../../std/option/enum.Option.html
//! [assoc]: ../../book/method-syntax.html#associated-functions
//!
//! # Examples
//!
//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
//! unique ownership, because more than one gadget may belong to the same
//! `Owner`. `Rc` allows us to share an `Owner` between multiple `Gadget`s,
//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
//!
//! ```
//! use std::rc::Rc;
//!
//! struct Owner {
//!     name: String,
//!     // ...other fields
//! }
//!
//! struct Gadget {
//!     id: i32,
//!     owner: Rc<Owner>,
//!     // ...other fields
//! }
//!
//! fn main() {
//!     // Create a reference-counted `Owner`.
//!     let gadget_owner: Rc<Owner> = Rc::new(
//!         Owner {
//!             name: "Gadget Man".to_string(),
//!         }
//!     );
//!
//!     // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
//!     // value gives us a new pointer to the same `Owner` value, incrementing
//!     // the reference count in the process.
//!     let gadget1 = Gadget {
//!         id: 1,
//!         owner: gadget_owner.clone(),
//!     };
//!     let gadget2 = Gadget {
//!         id: 2,
//!         owner: gadget_owner.clone(),
//!     };
//!
//!     // Dispose of our local variable `gadget_owner`.
//!     drop(gadget_owner);
//!
//!     // Despite dropping `gadget_owner`, we're still able to print out the name
//!     // of the `Owner` of the `Gadget`s. This is because we've only dropped a
//!     // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
//!     // other `Rc<Owner>` values pointing at the same `Owner`, it will remain
//!     // allocated. The field projection `gadget1.owner.name` works because
//!     // `Rc<Owner>` automatically dereferences to `Owner`.
//!     println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
//!     println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
//!
//!     // At the end of the function, `gadget1` and `gadget2` are destroyed, and
//!     // with them the last counted references to our `Owner`. Gadget Man now
//!     // gets destroyed as well.
//! }
//! ```
//!
//! If our requirements change, and we also need to be able to traverse from
//! `Owner` to `Gadget`, we will run into problems. An `Rc` pointer from `Owner`
//! to `Gadget` introduces a cycle between the values. This means that their
//! reference counts can never reach 0, and the values will remain allocated
//! forever: a memory leak. In order to get around this, we can use `Weak`
//! pointers.
//!
//! Rust actually makes it somewhat difficult to produce this loop in the first
//! place. In order to end up with two values that point at each other, one of
//! them needs to be mutable. This is difficult because `Rc` enforces
//! memory safety by only giving out shared references to the value it wraps,
//! and these don't allow direct mutation. We need to wrap the part of the
//! value we wish to mutate in a [`RefCell`][refcell], which provides *interior
//! mutability*: a method to achieve mutability through a shared reference.
//! `RefCell` enforces Rust's borrowing rules at runtime.
//!
//! ```
//! use std::rc::Rc;
//! use std::rc::Weak;
//! use std::cell::RefCell;
//!
//! struct Owner {
//!     name: String,
//!     gadgets: RefCell<Vec<Weak<Gadget>>>,
//!     // ...other fields
//! }
//!
//! struct Gadget {
//!     id: i32,
//!     owner: Rc<Owner>,
//!     // ...other fields
//! }
//!
//! fn main() {
//!     // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
//!     // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
//!     // a shared reference.
//!     let gadget_owner: Rc<Owner> = Rc::new(
//!         Owner {
//!             name: "Gadget Man".to_string(),
//!             gadgets: RefCell::new(vec![]),
//!         }
//!     );
//!
//!     // Create `Gadget`s belonging to `gadget_owner`, as before.
//!     let gadget1 = Rc::new(
//!         Gadget {
//!             id: 1,
//!             owner: gadget_owner.clone(),
//!         }
//!     );
//!     let gadget2 = Rc::new(
//!         Gadget {
//!             id: 2,
//!             owner: gadget_owner.clone(),
//!         }
//!     );
//!
//!     // Add the `Gadget`s to their `Owner`.
//!     {
//!         let mut gadgets = gadget_owner.gadgets.borrow_mut();
//!         gadgets.push(Rc::downgrade(&gadget1));
//!         gadgets.push(Rc::downgrade(&gadget2));
//!
//!         // `RefCell` dynamic borrow ends here.
//!     }
//!
//!     // Iterate over our `Gadget`s, printing their details out.
//!     for gadget_weak in gadget_owner.gadgets.borrow().iter() {
//!
//!         // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
//!         // guarantee the value is still allocated, we need to call
//!         // `upgrade`, which returns an `Option<Rc<Gadget>>`.
//!         //
//!         // In this case we know the value still exists, so we simply
//!         // `unwrap` the `Option`. In a more complicated program, you might
//!         // need graceful error handling for a `None` result.
//!
//!         let gadget = gadget_weak.upgrade().unwrap();
//!         println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
//!     }
//!
//!     // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
//!     // are destroyed. There are now no strong (`Rc`) pointers to the
//!     // gadgets, so they are destroyed. This zeroes the reference count on
//!     // Gadget Man, so he gets destroyed as well.
//! }
//! ```

#![stable(feature = "rust1", since = "1.0.0")]

#[cfg(not(test))]
use boxed::Box;
#[cfg(test)]
use std::boxed::Box;

use core::borrow;
use core::cell::Cell;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::intrinsics::{abort, assume};
use core::marker;
use core::marker::Unsize;
use core::mem::{self, align_of_val, forget, size_of, size_of_val, uninitialized};
use core::ops::Deref;
use core::ops::CoerceUnsized;
use core::ptr::{self, Shared};
use core::convert::From;

use heap::deallocate;
use raw_vec::RawVec;

struct RcBox<T: ?Sized> {
    strong: Cell<usize>,
    weak: Cell<usize>,
    value: T,
}


/// A single-threaded reference-counting pointer.
///
/// See the [module-level documentation](./index.html) for more details.
///
/// The inherent methods of `Rc` are all associated functions, which means
/// that you have to call them as e.g. `Rc::get_mut(&value)` instead of
/// `value.get_mut()`.  This avoids conflicts with methods of the inner
/// type `T`.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Rc<T: ?Sized> {
    ptr: Shared<RcBox<T>>,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !marker::Send for Rc<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !marker::Sync for Rc<T> {}

#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Rc<U>> for Rc<T> {}

impl<T> Rc<T> {
    /// Constructs a new `Rc<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn new(value: T) -> Rc<T> {
        unsafe {
            Rc {
                // there is an implicit weak pointer owned by all the strong
                // pointers, which ensures that the weak destructor never frees
                // the allocation while the strong destructor is running, even
                // if the weak pointer is stored inside the strong one.
                ptr: Shared::new(Box::into_raw(box RcBox {
                    strong: Cell::new(1),
                    weak: Cell::new(1),
                    value: value,
                })),
            }
        }
    }

    /// Returns the contained value, if the `Rc` has exactly one strong reference.
    ///
    /// Otherwise, an [`Err`][result] is returned with the same `Rc` that was
    /// passed in.
    ///
    /// This will succeed even if there are outstanding weak references.
    ///
    /// [result]: ../../std/result/enum.Result.html
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let x = Rc::new(3);
    /// assert_eq!(Rc::try_unwrap(x), Ok(3));
    ///
    /// let x = Rc::new(4);
    /// let _y = x.clone();
    /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
    /// ```
    #[inline]
    #[stable(feature = "rc_unique", since = "1.4.0")]
    pub fn try_unwrap(this: Self) -> Result<T, Self> {
        if Rc::would_unwrap(&this) {
            unsafe {
                let val = ptr::read(&*this); // copy the contained object

                // Indicate to Weaks that they can't be promoted by decrememting
                // the strong count, and then remove the implicit "strong weak"
                // pointer while also handling drop logic by just crafting a
                // fake Weak.
                this.dec_strong();
                let _weak = Weak { ptr: this.ptr };
                forget(this);
                Ok(val)
            }
        } else {
            Err(this)
        }
    }

    /// Checks whether [`Rc::try_unwrap`][try_unwrap] would return
    /// [`Ok`][result].
    ///
    /// [try_unwrap]: struct.Rc.html#method.try_unwrap
    /// [result]: ../../std/result/enum.Result.html
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(rc_would_unwrap)]
    ///
    /// use std::rc::Rc;
    ///
    /// let x = Rc::new(3);
    /// assert!(Rc::would_unwrap(&x));
    /// assert_eq!(Rc::try_unwrap(x), Ok(3));
    ///
    /// let x = Rc::new(4);
    /// let _y = x.clone();
    /// assert!(!Rc::would_unwrap(&x));
    /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
    /// ```
    #[unstable(feature = "rc_would_unwrap",
               reason = "just added for niche usecase",
               issue = "28356")]
    pub fn would_unwrap(this: &Self) -> bool {
        Rc::strong_count(&this) == 1
    }
}

impl Rc<str> {
    /// Constructs a new `Rc<str>` from a string slice.
    #[doc(hidden)]
    #[unstable(feature = "rustc_private",
               reason = "for internal use in rustc",
               issue = "0")]
    pub fn __from_str(value: &str) -> Rc<str> {
        unsafe {
            // Allocate enough space for `RcBox<str>`.
            let aligned_len = 2 + (value.len() + size_of::<usize>() - 1) / size_of::<usize>();
            let vec = RawVec::<usize>::with_capacity(aligned_len);
            let ptr = vec.ptr();
            forget(vec);
            // Initialize fields of `RcBox<str>`.
            *ptr.offset(0) = 1; // strong: Cell::new(1)
            *ptr.offset(1) = 1; // weak: Cell::new(1)
            ptr::copy_nonoverlapping(value.as_ptr(), ptr.offset(2) as *mut u8, value.len());
            // Combine the allocation address and the string length into a fat pointer to `RcBox`.
            let rcbox_ptr: *mut RcBox<str> = mem::transmute([ptr as usize, value.len()]);
            assert!(aligned_len * size_of::<usize>() == size_of_val(&*rcbox_ptr));
            Rc { ptr: Shared::new(rcbox_ptr) }
        }
    }
}

impl<T: ?Sized> Rc<T> {
    /// Creates a new [`Weak`][weak] pointer to this value.
    ///
    /// [weak]: struct.Weak.html
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// let weak_five = Rc::downgrade(&five);
    /// ```
    #[stable(feature = "rc_weak", since = "1.4.0")]
    pub fn downgrade(this: &Self) -> Weak<T> {
        this.inc_weak();
        Weak { ptr: this.ptr }
    }

    /// Gets the number of [`Weak`][weak] pointers to this value.
    ///
    /// [weak]: struct.Weak.html
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(rc_counts)]
    ///
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    /// let _weak_five = Rc::downgrade(&five);
    ///
    /// assert_eq!(1, Rc::weak_count(&five));
    /// ```
    #[inline]
    #[unstable(feature = "rc_counts", reason = "not clearly useful",
               issue = "28356")]
    pub fn weak_count(this: &Self) -> usize {
        this.weak() - 1
    }

    /// Gets the number of strong (`Rc`) pointers to this value.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(rc_counts)]
    ///
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    /// let _also_five = five.clone();
    ///
    /// assert_eq!(2, Rc::strong_count(&five));
    /// ```
    #[inline]
    #[unstable(feature = "rc_counts", reason = "not clearly useful",
               issue = "28356")]
    pub fn strong_count(this: &Self) -> usize {
        this.strong()
    }

    /// Returns true if there are no other `Rc` or [`Weak`][weak] pointers to
    /// this inner value.
    ///
    /// [weak]: struct.Weak.html
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(rc_counts)]
    ///
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(Rc::is_unique(&five));
    /// ```
    #[inline]
    #[unstable(feature = "rc_counts", reason = "uniqueness has unclear meaning",
               issue = "28356")]
    pub fn is_unique(this: &Self) -> bool {
        Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
    }

    /// Returns a mutable reference to the inner value, if there are
    /// no other `Rc` or [`Weak`][weak] pointers to the same value.
    ///
    /// Returns [`None`][option] otherwise, because it is not safe to
    /// mutate a shared value.
    ///
    /// See also [`make_mut`][make_mut], which will [`clone`][clone]
    /// the inner value when it's shared.
    ///
    /// [weak]: struct.Weak.html
    /// [option]: ../../std/option/enum.Option.html
    /// [make_mut]: struct.Rc.html#method.make_mut
    /// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let mut x = Rc::new(3);
    /// *Rc::get_mut(&mut x).unwrap() = 4;
    /// assert_eq!(*x, 4);
    ///
    /// let _y = x.clone();
    /// assert!(Rc::get_mut(&mut x).is_none());
    /// ```
    #[inline]
    #[stable(feature = "rc_unique", since = "1.4.0")]
    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
        if Rc::is_unique(this) {
            let inner = unsafe { &mut **this.ptr };
            Some(&mut inner.value)
        } else {
            None
        }
    }

    #[inline]
    #[unstable(feature = "ptr_eq",
               reason = "newly added",
               issue = "36497")]
    /// Returns true if the two `Rc`s point to the same value (not
    /// just values that compare as equal).
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(ptr_eq)]
    ///
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    /// let same_five = five.clone();
    /// let other_five = Rc::new(5);
    ///
    /// assert!(Rc::ptr_eq(&five, &same_five));
    /// assert!(!Rc::ptr_eq(&five, &other_five));
    /// ```
    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
        let this_ptr: *const RcBox<T> = *this.ptr;
        let other_ptr: *const RcBox<T> = *other.ptr;
        this_ptr == other_ptr
    }
}

impl<T: Clone> Rc<T> {
    /// Makes a mutable reference into the given `Rc`.
    ///
    /// If there are other `Rc` or [`Weak`][weak] pointers to the same value,
    /// then `make_mut` will invoke [`clone`][clone] on the inner value to
    /// ensure unique ownership. This is also referred to as clone-on-write.
    ///
    /// See also [`get_mut`][get_mut], which will fail rather than cloning.
    ///
    /// [weak]: struct.Weak.html
    /// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
    /// [get_mut]: struct.Rc.html#method.get_mut
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let mut data = Rc::new(5);
    ///
    /// *Rc::make_mut(&mut data) += 1;        // Won't clone anything
    /// let mut other_data = data.clone();    // Won't clone inner data
    /// *Rc::make_mut(&mut data) += 1;        // Clones inner data
    /// *Rc::make_mut(&mut data) += 1;        // Won't clone anything
    /// *Rc::make_mut(&mut other_data) *= 2;  // Won't clone anything
    ///
    /// // Now `data` and `other_data` point to different values.
    /// assert_eq!(*data, 8);
    /// assert_eq!(*other_data, 12);
    /// ```
    #[inline]
    #[stable(feature = "rc_unique", since = "1.4.0")]
    pub fn make_mut(this: &mut Self) -> &mut T {
        if Rc::strong_count(this) != 1 {
            // Gotta clone the data, there are other Rcs
            *this = Rc::new((**this).clone())
        } else if Rc::weak_count(this) != 0 {
            // Can just steal the data, all that's left is Weaks
            unsafe {
                let mut swap = Rc::new(ptr::read(&(**this.ptr).value));
                mem::swap(this, &mut swap);
                swap.dec_strong();
                // Remove implicit strong-weak ref (no need to craft a fake
                // Weak here -- we know other Weaks can clean up for us)
                swap.dec_weak();
                forget(swap);
            }
        }
        // This unsafety is ok because we're guaranteed that the pointer
        // returned is the *only* pointer that will ever be returned to T. Our
        // reference count is guaranteed to be 1 at this point, and we required
        // the `Rc<T>` itself to be `mut`, so we're returning the only possible
        // reference to the inner value.
        let inner = unsafe { &mut **this.ptr };
        &mut inner.value
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for Rc<T> {
    type Target = T;

    #[inline(always)]
    fn deref(&self) -> &T {
        &self.inner().value
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Drop for Rc<T> {
    /// Drops the `Rc`.
    ///
    /// This will decrement the strong reference count. If the strong reference
    /// count reaches zero then the only other references (if any) are
    /// [`Weak`][weak], so we `drop` the inner value.
    ///
    /// [weak]: struct.Weak.html
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// struct Foo;
    ///
    /// impl Drop for Foo {
    ///     fn drop(&mut self) {
    ///         println!("dropped!");
    ///     }
    /// }
    ///
    /// let foo  = Rc::new(Foo);
    /// let foo2 = foo.clone();
    ///
    /// drop(foo);    // Doesn't print anything
    /// drop(foo2);   // Prints "dropped!"
    /// ```
    #[unsafe_destructor_blind_to_params]
    fn drop(&mut self) {
        unsafe {
            let ptr = *self.ptr;

            self.dec_strong();
            if self.strong() == 0 {
                // destroy the contained object
                ptr::drop_in_place(&mut (*ptr).value);

                // remove the implicit "strong weak" pointer now that we've
                // destroyed the contents.
                self.dec_weak();

                if self.weak() == 0 {
                    deallocate(ptr as *mut u8, size_of_val(&*ptr), align_of_val(&*ptr))
                }
            }
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Clone for Rc<T> {
    /// Makes a clone of the `Rc` pointer.
    ///
    /// This creates another pointer to the same inner value, increasing the
    /// strong reference count.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// five.clone();
    /// ```
    #[inline]
    fn clone(&self) -> Rc<T> {
        self.inc_strong();
        Rc { ptr: self.ptr }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Rc<T> {
    /// Creates a new `Rc<T>`, with the `Default` value for `T`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let x: Rc<i32> = Default::default();
    /// assert_eq!(*x, 0);
    /// ```
    #[inline]
    fn default() -> Rc<T> {
        Rc::new(Default::default())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq> PartialEq for Rc<T> {
    /// Equality for two `Rc`s.
    ///
    /// Two `Rc`s are equal if their inner values are equal.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five == Rc::new(5));
    /// ```
    #[inline(always)]
    fn eq(&self, other: &Rc<T>) -> bool {
        **self == **other
    }

    /// Inequality for two `Rc`s.
    ///
    /// Two `Rc`s are unequal if their inner values are unequal.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five != Rc::new(6));
    /// ```
    #[inline(always)]
    fn ne(&self, other: &Rc<T>) -> bool {
        **self != **other
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Eq> Eq for Rc<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialOrd> PartialOrd for Rc<T> {
    /// Partial comparison for two `Rc`s.
    ///
    /// The two are compared by calling `partial_cmp()` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    /// use std::cmp::Ordering;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
    /// ```
    #[inline(always)]
    fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering> {
        (**self).partial_cmp(&**other)
    }

    /// Less-than comparison for two `Rc`s.
    ///
    /// The two are compared by calling `<` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five < Rc::new(6));
    /// ```
    #[inline(always)]
    fn lt(&self, other: &Rc<T>) -> bool {
        **self < **other
    }

    /// 'Less than or equal to' comparison for two `Rc`s.
    ///
    /// The two are compared by calling `<=` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five <= Rc::new(5));
    /// ```
    #[inline(always)]
    fn le(&self, other: &Rc<T>) -> bool {
        **self <= **other
    }

    /// Greater-than comparison for two `Rc`s.
    ///
    /// The two are compared by calling `>` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five > Rc::new(4));
    /// ```
    #[inline(always)]
    fn gt(&self, other: &Rc<T>) -> bool {
        **self > **other
    }

    /// 'Greater than or equal to' comparison for two `Rc`s.
    ///
    /// The two are compared by calling `>=` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five >= Rc::new(5));
    /// ```
    #[inline(always)]
    fn ge(&self, other: &Rc<T>) -> bool {
        **self >= **other
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Ord> Ord for Rc<T> {
    /// Comparison for two `Rc`s.
    ///
    /// The two are compared by calling `cmp()` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    /// use std::cmp::Ordering;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
    /// ```
    #[inline]
    fn cmp(&self, other: &Rc<T>) -> Ordering {
        (**self).cmp(&**other)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for Rc<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state);
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Display> fmt::Display for Rc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for Rc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> fmt::Pointer for Rc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Pointer::fmt(&*self.ptr, f)
    }
}

#[stable(feature = "from_for_ptrs", since = "1.6.0")]
impl<T> From<T> for Rc<T> {
    fn from(t: T) -> Self {
        Rc::new(t)
    }
}

/// A weak version of [`Rc`][rc].
///
/// `Weak` pointers do not count towards determining if the inner value
/// should be dropped.
///
/// The typical way to obtain a `Weak` pointer is to call
/// [`Rc::downgrade`][downgrade].
///
/// See the [module-level documentation](./index.html) for more details.
///
/// [rc]: struct.Rc.html
/// [downgrade]: struct.Rc.html#method.downgrade
#[stable(feature = "rc_weak", since = "1.4.0")]
pub struct Weak<T: ?Sized> {
    ptr: Shared<RcBox<T>>,
}

#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized> !marker::Send for Weak<T> {}
#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized> !marker::Sync for Weak<T> {}

#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}

impl<T> Weak<T> {
    /// Constructs a new `Weak<T>`, without an accompanying instance of `T`.
    ///
    /// This allocates memory for `T`, but does not initialize it. Calling
    /// [`upgrade`][upgrade] on the return value always gives
    /// [`None`][option].
    ///
    /// [upgrade]: struct.Weak.html#method.upgrade
    /// [option]: ../../std/option/enum.Option.html
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Weak;
    ///
    /// let empty: Weak<i64> = Weak::new();
    /// assert!(empty.upgrade().is_none());
    /// ```
    #[stable(feature = "downgraded_weak", since = "1.10.0")]
    pub fn new() -> Weak<T> {
        unsafe {
            Weak {
                ptr: Shared::new(Box::into_raw(box RcBox {
                    strong: Cell::new(0),
                    weak: Cell::new(1),
                    value: uninitialized(),
                })),
            }
        }
    }
}

impl<T: ?Sized> Weak<T> {
    /// Upgrades the `Weak` pointer to an [`Rc`][rc], if possible.
    ///
    /// Returns [`None`][option] if the strong count has reached zero and the
    /// inner value was destroyed.
    ///
    /// [rc]: struct.Rc.html
    /// [option]: ../../std/option/enum.Option.html
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// let weak_five = Rc::downgrade(&five);
    ///
    /// let strong_five: Option<Rc<_>> = weak_five.upgrade();
    /// assert!(strong_five.is_some());
    ///
    /// // Destroy all strong pointers.
    /// drop(strong_five);
    /// drop(five);
    ///
    /// assert!(weak_five.upgrade().is_none());
    /// ```
    #[stable(feature = "rc_weak", since = "1.4.0")]
    pub fn upgrade(&self) -> Option<Rc<T>> {
        if self.strong() == 0 {
            None
        } else {
            self.inc_strong();
            Some(Rc { ptr: self.ptr })
        }
    }
}

#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized> Drop for Weak<T> {
    /// Drops the `Weak` pointer.
    ///
    /// This will decrement the weak reference count.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// struct Foo;
    ///
    /// impl Drop for Foo {
    ///     fn drop(&mut self) {
    ///         println!("dropped!");
    ///     }
    /// }
    ///
    /// let foo = Rc::new(Foo);
    /// let weak_foo = Rc::downgrade(&foo);
    /// let other_weak_foo = weak_foo.clone();
    ///
    /// drop(weak_foo);   // Doesn't print anything
    /// drop(foo);        // Prints "dropped!"
    ///
    /// assert!(other_weak_foo.upgrade().is_none());
    /// ```
    fn drop(&mut self) {
        unsafe {
            let ptr = *self.ptr;

            self.dec_weak();
            // the weak count starts at 1, and will only go to zero if all
            // the strong pointers have disappeared.
            if self.weak() == 0 {
                deallocate(ptr as *mut u8, size_of_val(&*ptr), align_of_val(&*ptr))
            }
        }
    }
}

#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized> Clone for Weak<T> {
    /// Makes a clone of the `Weak` pointer.
    ///
    /// This creates another pointer to the same inner value, increasing the
    /// weak reference count.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let weak_five = Rc::downgrade(&Rc::new(5));
    ///
    /// weak_five.clone();
    /// ```
    #[inline]
    fn clone(&self) -> Weak<T> {
        self.inc_weak();
        Weak { ptr: self.ptr }
    }
}

#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "(Weak)")
    }
}

#[stable(feature = "downgraded_weak", since = "1.10.0")]
impl<T> Default for Weak<T> {
    /// Constructs a new `Weak<T>`, without an accompanying instance of `T`.
    ///
    /// This allocates memory for `T`, but does not initialize it. Calling
    /// [`upgrade`][upgrade] on the return value always gives
    /// [`None`][option].
    ///
    /// [upgrade]: struct.Weak.html#method.upgrade
    /// [option]: ../../std/option/enum.Option.html
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Weak;
    ///
    /// let empty: Weak<i64> = Default::default();
    /// assert!(empty.upgrade().is_none());
    /// ```
    fn default() -> Weak<T> {
        Weak::new()
    }
}

// NOTE: We checked_add here to deal with mem::forget safety. In particular
// if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then
// you can free the allocation while outstanding Rcs (or Weaks) exist.
// We abort because this is such a degenerate scenario that we don't care about
// what happens -- no real program should ever experience this.
//
// This should have negligible overhead since you don't actually need to
// clone these much in Rust thanks to ownership and move-semantics.

#[doc(hidden)]
trait RcBoxPtr<T: ?Sized> {
    fn inner(&self) -> &RcBox<T>;

    #[inline]
    fn strong(&self) -> usize {
        self.inner().strong.get()
    }

    #[inline]
    fn inc_strong(&self) {
        self.inner().strong.set(self.strong().checked_add(1).unwrap_or_else(|| unsafe { abort() }));
    }

    #[inline]
    fn dec_strong(&self) {
        self.inner().strong.set(self.strong() - 1);
    }

    #[inline]
    fn weak(&self) -> usize {
        self.inner().weak.get()
    }

    #[inline]
    fn inc_weak(&self) {
        self.inner().weak.set(self.weak().checked_add(1).unwrap_or_else(|| unsafe { abort() }));
    }

    #[inline]
    fn dec_weak(&self) {
        self.inner().weak.set(self.weak() - 1);
    }
}

impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
    #[inline(always)]
    fn inner(&self) -> &RcBox<T> {
        unsafe {
            // Safe to assume this here, as if it weren't true, we'd be breaking
            // the contract anyway.
            // This allows the null check to be elided in the destructor if we
            // manipulated the reference count in the same function.
            assume(!(*(&self.ptr as *const _ as *const *const ())).is_null());
            &(**self.ptr)
        }
    }
}

impl<T: ?Sized> RcBoxPtr<T> for Weak<T> {
    #[inline(always)]
    fn inner(&self) -> &RcBox<T> {
        unsafe {
            // Safe to assume this here, as if it weren't true, we'd be breaking
            // the contract anyway.
            // This allows the null check to be elided in the destructor if we
            // manipulated the reference count in the same function.
            assume(!(*(&self.ptr as *const _ as *const *const ())).is_null());
            &(**self.ptr)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::{Rc, Weak};
    use std::boxed::Box;
    use std::cell::RefCell;
    use std::option::Option;
    use std::option::Option::{None, Some};
    use std::result::Result::{Err, Ok};
    use std::mem::drop;
    use std::clone::Clone;
    use std::convert::From;

    #[test]
    fn test_clone() {
        let x = Rc::new(RefCell::new(5));
        let y = x.clone();
        *x.borrow_mut() = 20;
        assert_eq!(*y.borrow(), 20);
    }

    #[test]
    fn test_simple() {
        let x = Rc::new(5);
        assert_eq!(*x, 5);
    }

    #[test]
    fn test_simple_clone() {
        let x = Rc::new(5);
        let y = x.clone();
        assert_eq!(*x, 5);
        assert_eq!(*y, 5);
    }

    #[test]
    fn test_destructor() {
        let x: Rc<Box<_>> = Rc::new(box 5);
        assert_eq!(**x, 5);
    }

    #[test]
    fn test_live() {
        let x = Rc::new(5);
        let y = Rc::downgrade(&x);
        assert!(y.upgrade().is_some());
    }

    #[test]
    fn test_dead() {
        let x = Rc::new(5);
        let y = Rc::downgrade(&x);
        drop(x);
        assert!(y.upgrade().is_none());
    }

    #[test]
    fn weak_self_cyclic() {
        struct Cycle {
            x: RefCell<Option<Weak<Cycle>>>,
        }

        let a = Rc::new(Cycle { x: RefCell::new(None) });
        let b = Rc::downgrade(&a.clone());
        *a.x.borrow_mut() = Some(b);

        // hopefully we don't double-free (or leak)...
    }

    #[test]
    fn is_unique() {
        let x = Rc::new(3);
        assert!(Rc::is_unique(&x));
        let y = x.clone();
        assert!(!Rc::is_unique(&x));
        drop(y);
        assert!(Rc::is_unique(&x));
        let w = Rc::downgrade(&x);
        assert!(!Rc::is_unique(&x));
        drop(w);
        assert!(Rc::is_unique(&x));
    }

    #[test]
    fn test_strong_count() {
        let a = Rc::new(0);
        assert!(Rc::strong_count(&a) == 1);
        let w = Rc::downgrade(&a);
        assert!(Rc::strong_count(&a) == 1);
        let b = w.upgrade().expect("upgrade of live rc failed");
        assert!(Rc::strong_count(&b) == 2);
        assert!(Rc::strong_count(&a) == 2);
        drop(w);
        drop(a);
        assert!(Rc::strong_count(&b) == 1);
        let c = b.clone();
        assert!(Rc::strong_count(&b) == 2);
        assert!(Rc::strong_count(&c) == 2);
    }

    #[test]
    fn test_weak_count() {
        let a = Rc::new(0);
        assert!(Rc::strong_count(&a) == 1);
        assert!(Rc::weak_count(&a) == 0);
        let w = Rc::downgrade(&a);
        assert!(Rc::strong_count(&a) == 1);
        assert!(Rc::weak_count(&a) == 1);
        drop(w);
        assert!(Rc::strong_count(&a) == 1);
        assert!(Rc::weak_count(&a) == 0);
        let c = a.clone();
        assert!(Rc::strong_count(&a) == 2);
        assert!(Rc::weak_count(&a) == 0);
        drop(c);
    }

    #[test]
    fn try_unwrap() {
        let x = Rc::new(3);
        assert_eq!(Rc::try_unwrap(x), Ok(3));
        let x = Rc::new(4);
        let _y = x.clone();
        assert_eq!(Rc::try_unwrap(x), Err(Rc::new(4)));
        let x = Rc::new(5);
        let _w = Rc::downgrade(&x);
        assert_eq!(Rc::try_unwrap(x), Ok(5));
    }

    #[test]
    fn get_mut() {
        let mut x = Rc::new(3);
        *Rc::get_mut(&mut x).unwrap() = 4;
        assert_eq!(*x, 4);
        let y = x.clone();
        assert!(Rc::get_mut(&mut x).is_none());
        drop(y);
        assert!(Rc::get_mut(&mut x).is_some());
        let _w = Rc::downgrade(&x);
        assert!(Rc::get_mut(&mut x).is_none());
    }

    #[test]
    fn test_cowrc_clone_make_unique() {
        let mut cow0 = Rc::new(75);
        let mut cow1 = cow0.clone();
        let mut cow2 = cow1.clone();

        assert!(75 == *Rc::make_mut(&mut cow0));
        assert!(75 == *Rc::make_mut(&mut cow1));
        assert!(75 == *Rc::make_mut(&mut cow2));

        *Rc::make_mut(&mut cow0) += 1;
        *Rc::make_mut(&mut cow1) += 2;
        *Rc::make_mut(&mut cow2) += 3;

        assert!(76 == *cow0);
        assert!(77 == *cow1);
        assert!(78 == *cow2);

        // none should point to the same backing memory
        assert!(*cow0 != *cow1);
        assert!(*cow0 != *cow2);
        assert!(*cow1 != *cow2);
    }

    #[test]
    fn test_cowrc_clone_unique2() {
        let mut cow0 = Rc::new(75);
        let cow1 = cow0.clone();
        let cow2 = cow1.clone();

        assert!(75 == *cow0);
        assert!(75 == *cow1);
        assert!(75 == *cow2);

        *Rc::make_mut(&mut cow0) += 1;

        assert!(76 == *cow0);
        assert!(75 == *cow1);
        assert!(75 == *cow2);

        // cow1 and cow2 should share the same contents
        // cow0 should have a unique reference
        assert!(*cow0 != *cow1);
        assert!(*cow0 != *cow2);
        assert!(*cow1 == *cow2);
    }

    #[test]
    fn test_cowrc_clone_weak() {
        let mut cow0 = Rc::new(75);
        let cow1_weak = Rc::downgrade(&cow0);

        assert!(75 == *cow0);
        assert!(75 == *cow1_weak.upgrade().unwrap());

        *Rc::make_mut(&mut cow0) += 1;

        assert!(76 == *cow0);
        assert!(cow1_weak.upgrade().is_none());
    }

    #[test]
    fn test_show() {
        let foo = Rc::new(75);
        assert_eq!(format!("{:?}", foo), "75");
    }

    #[test]
    fn test_unsized() {
        let foo: Rc<[i32]> = Rc::new([1, 2, 3]);
        assert_eq!(foo, foo.clone());
    }

    #[test]
    fn test_from_owned() {
        let foo = 123;
        let foo_rc = Rc::from(foo);
        assert!(123 == *foo_rc);
    }

    #[test]
    fn test_new_weak() {
        let foo: Weak<usize> = Weak::new();
        assert!(foo.upgrade().is_none());
    }

    #[test]
    fn test_ptr_eq() {
        let five = Rc::new(5);
        let same_five = five.clone();
        let other_five = Rc::new(5);

        assert!(Rc::ptr_eq(&five, &same_five));
        assert!(!Rc::ptr_eq(&five, &other_five));
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> borrow::Borrow<T> for Rc<T> {
    fn borrow(&self) -> &T {
        &**self
    }
}

#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized> AsRef<T> for Rc<T> {
    fn as_ref(&self) -> &T {
        &**self
    }
}